2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
30 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
31 static const int cfq_hist_divisor
= 4;
34 * offset from end of service tree
36 #define CFQ_IDLE_DELAY (HZ / 5)
39 * below this threshold, we consider thinktime immediate
41 #define CFQ_MIN_TT (2)
44 * Allow merged cfqqs to perform this amount of seeky I/O before
45 * deciding to break the queues up again.
47 #define CFQQ_COOP_TOUT (HZ)
49 #define CFQ_SLICE_SCALE (5)
50 #define CFQ_HW_QUEUE_MIN (5)
53 ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56 static struct kmem_cache
*cfq_pool
;
57 static struct kmem_cache
*cfq_ioc_pool
;
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
60 static struct completion
*ioc_gone
;
61 static DEFINE_SPINLOCK(ioc_gone_lock
);
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
80 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
83 * Per process-grouping structure
88 /* various state flags, see below */
91 struct cfq_data
*cfqd
;
92 /* service_tree member */
93 struct rb_node rb_node
;
94 /* service_tree key */
96 /* prio tree member */
97 struct rb_node p_node
;
98 /* prio tree root we belong to, if any */
99 struct rb_root
*p_root
;
100 /* sorted list of pending requests */
101 struct rb_root sort_list
;
102 /* if fifo isn't expired, next request to serve */
103 struct request
*next_rq
;
104 /* requests queued in sort_list */
106 /* currently allocated requests */
108 /* fifo list of requests in sort_list */
109 struct list_head fifo
;
111 unsigned long slice_end
;
113 unsigned int slice_dispatch
;
115 /* pending metadata requests */
117 /* number of requests that are on the dispatch list or inside driver */
120 /* io prio of this group */
121 unsigned short ioprio
, org_ioprio
;
122 unsigned short ioprio_class
, org_ioprio_class
;
124 unsigned int seek_samples
;
127 sector_t last_request_pos
;
128 unsigned long seeky_start
;
132 struct cfq_rb_root
*service_tree
;
133 struct cfq_queue
*new_cfqq
;
137 * First index in the service_trees.
138 * IDLE is handled separately, so it has negative index
147 * Second index in the service_trees.
151 SYNC_NOIDLE_WORKLOAD
= 1,
157 * Per block device queue structure
160 struct request_queue
*queue
;
163 * rr lists of queues with requests, onle rr for each priority class.
164 * Counts are embedded in the cfq_rb_root
166 struct cfq_rb_root service_trees
[2][3];
167 struct cfq_rb_root service_tree_idle
;
169 * The priority currently being served
171 enum wl_prio_t serving_prio
;
172 enum wl_type_t serving_type
;
173 unsigned long workload_expires
;
176 * Each priority tree is sorted by next_request position. These
177 * trees are used when determining if two or more queues are
178 * interleaving requests (see cfq_close_cooperator).
180 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
182 unsigned int busy_queues
;
183 unsigned int busy_queues_avg
[2];
189 * queue-depth detection
194 int rq_in_driver_peak
;
197 * idle window management
199 struct timer_list idle_slice_timer
;
200 struct work_struct unplug_work
;
202 struct cfq_queue
*active_queue
;
203 struct cfq_io_context
*active_cic
;
206 * async queue for each priority case
208 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
209 struct cfq_queue
*async_idle_cfqq
;
211 sector_t last_position
;
214 * tunables, see top of file
216 unsigned int cfq_quantum
;
217 unsigned int cfq_fifo_expire
[2];
218 unsigned int cfq_back_penalty
;
219 unsigned int cfq_back_max
;
220 unsigned int cfq_slice
[2];
221 unsigned int cfq_slice_async_rq
;
222 unsigned int cfq_slice_idle
;
223 unsigned int cfq_latency
;
225 struct list_head cic_list
;
228 * Fallback dummy cfqq for extreme OOM conditions
230 struct cfq_queue oom_cfqq
;
232 unsigned long last_end_sync_rq
;
235 static struct cfq_rb_root
*service_tree_for(enum wl_prio_t prio
,
237 struct cfq_data
*cfqd
)
239 if (prio
== IDLE_WORKLOAD
)
240 return &cfqd
->service_tree_idle
;
242 return &cfqd
->service_trees
[prio
][type
];
245 enum cfqq_state_flags
{
246 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
247 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
248 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
249 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
250 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
251 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
252 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
253 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
254 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
255 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
256 CFQ_CFQQ_FLAG_coop_preempt
, /* coop preempt */
259 #define CFQ_CFQQ_FNS(name) \
260 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
262 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
264 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
266 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
268 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
270 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
274 CFQ_CFQQ_FNS(wait_request
);
275 CFQ_CFQQ_FNS(must_dispatch
);
276 CFQ_CFQQ_FNS(must_alloc_slice
);
277 CFQ_CFQQ_FNS(fifo_expire
);
278 CFQ_CFQQ_FNS(idle_window
);
279 CFQ_CFQQ_FNS(prio_changed
);
280 CFQ_CFQQ_FNS(slice_new
);
283 CFQ_CFQQ_FNS(coop_preempt
);
286 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
287 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
288 #define cfq_log(cfqd, fmt, args...) \
289 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
291 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
293 if (cfq_class_idle(cfqq
))
294 return IDLE_WORKLOAD
;
295 if (cfq_class_rt(cfqq
))
301 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
303 if (!cfq_cfqq_sync(cfqq
))
304 return ASYNC_WORKLOAD
;
305 if (!cfq_cfqq_idle_window(cfqq
))
306 return SYNC_NOIDLE_WORKLOAD
;
307 return SYNC_WORKLOAD
;
310 static inline int cfq_busy_queues_wl(enum wl_prio_t wl
, struct cfq_data
*cfqd
)
312 if (wl
== IDLE_WORKLOAD
)
313 return cfqd
->service_tree_idle
.count
;
315 return cfqd
->service_trees
[wl
][ASYNC_WORKLOAD
].count
316 + cfqd
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
317 + cfqd
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
320 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
321 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
322 struct io_context
*, gfp_t
);
323 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
324 struct io_context
*);
326 static inline int rq_in_driver(struct cfq_data
*cfqd
)
328 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
331 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
334 return cic
->cfqq
[is_sync
];
337 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
338 struct cfq_queue
*cfqq
, bool is_sync
)
340 cic
->cfqq
[is_sync
] = cfqq
;
344 * We regard a request as SYNC, if it's either a read or has the SYNC bit
345 * set (in which case it could also be direct WRITE).
347 static inline bool cfq_bio_sync(struct bio
*bio
)
349 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
353 * scheduler run of queue, if there are requests pending and no one in the
354 * driver that will restart queueing
356 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
358 if (cfqd
->busy_queues
) {
359 cfq_log(cfqd
, "schedule dispatch");
360 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
364 static int cfq_queue_empty(struct request_queue
*q
)
366 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
368 return !cfqd
->busy_queues
;
372 * Scale schedule slice based on io priority. Use the sync time slice only
373 * if a queue is marked sync and has sync io queued. A sync queue with async
374 * io only, should not get full sync slice length.
376 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
379 const int base_slice
= cfqd
->cfq_slice
[sync
];
381 WARN_ON(prio
>= IOPRIO_BE_NR
);
383 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
387 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
389 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
393 * get averaged number of queues of RT/BE priority.
394 * average is updated, with a formula that gives more weight to higher numbers,
395 * to quickly follows sudden increases and decrease slowly
398 static inline unsigned cfq_get_avg_queues(struct cfq_data
*cfqd
, bool rt
)
400 unsigned min_q
, max_q
;
401 unsigned mult
= cfq_hist_divisor
- 1;
402 unsigned round
= cfq_hist_divisor
/ 2;
403 unsigned busy
= cfq_busy_queues_wl(rt
, cfqd
);
405 min_q
= min(cfqd
->busy_queues_avg
[rt
], busy
);
406 max_q
= max(cfqd
->busy_queues_avg
[rt
], busy
);
407 cfqd
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
409 return cfqd
->busy_queues_avg
[rt
];
413 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
415 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
416 if (cfqd
->cfq_latency
) {
417 /* interested queues (we consider only the ones with the same
419 unsigned iq
= cfq_get_avg_queues(cfqd
, cfq_class_rt(cfqq
));
420 unsigned sync_slice
= cfqd
->cfq_slice
[1];
421 unsigned expect_latency
= sync_slice
* iq
;
422 if (expect_latency
> cfq_target_latency
) {
423 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
424 /* scale low_slice according to IO priority
425 * and sync vs async */
427 min(slice
, base_low_slice
* slice
/ sync_slice
);
428 /* the adapted slice value is scaled to fit all iqs
429 * into the target latency */
430 slice
= max(slice
* cfq_target_latency
/ expect_latency
,
434 cfqq
->slice_end
= jiffies
+ slice
;
435 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
439 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
440 * isn't valid until the first request from the dispatch is activated
441 * and the slice time set.
443 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
445 if (cfq_cfqq_slice_new(cfqq
))
447 if (time_before(jiffies
, cfqq
->slice_end
))
454 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
455 * We choose the request that is closest to the head right now. Distance
456 * behind the head is penalized and only allowed to a certain extent.
458 static struct request
*
459 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
461 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
462 unsigned long back_max
;
463 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
464 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
465 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
467 if (rq1
== NULL
|| rq1
== rq2
)
472 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
474 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
476 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
478 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
481 s1
= blk_rq_pos(rq1
);
482 s2
= blk_rq_pos(rq2
);
484 last
= cfqd
->last_position
;
487 * by definition, 1KiB is 2 sectors
489 back_max
= cfqd
->cfq_back_max
* 2;
492 * Strict one way elevator _except_ in the case where we allow
493 * short backward seeks which are biased as twice the cost of a
494 * similar forward seek.
498 else if (s1
+ back_max
>= last
)
499 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
501 wrap
|= CFQ_RQ1_WRAP
;
505 else if (s2
+ back_max
>= last
)
506 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
508 wrap
|= CFQ_RQ2_WRAP
;
510 /* Found required data */
513 * By doing switch() on the bit mask "wrap" we avoid having to
514 * check two variables for all permutations: --> faster!
517 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
533 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
536 * Since both rqs are wrapped,
537 * start with the one that's further behind head
538 * (--> only *one* back seek required),
539 * since back seek takes more time than forward.
549 * The below is leftmost cache rbtree addon
551 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
554 root
->left
= rb_first(&root
->rb
);
557 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
562 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
568 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
572 rb_erase_init(n
, &root
->rb
);
577 * would be nice to take fifo expire time into account as well
579 static struct request
*
580 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
581 struct request
*last
)
583 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
584 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
585 struct request
*next
= NULL
, *prev
= NULL
;
587 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
590 prev
= rb_entry_rq(rbprev
);
593 next
= rb_entry_rq(rbnext
);
595 rbnext
= rb_first(&cfqq
->sort_list
);
596 if (rbnext
&& rbnext
!= &last
->rb_node
)
597 next
= rb_entry_rq(rbnext
);
600 return cfq_choose_req(cfqd
, next
, prev
);
603 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
604 struct cfq_queue
*cfqq
)
607 * just an approximation, should be ok.
609 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
610 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
614 * The cfqd->service_trees holds all pending cfq_queue's that have
615 * requests waiting to be processed. It is sorted in the order that
616 * we will service the queues.
618 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
621 struct rb_node
**p
, *parent
;
622 struct cfq_queue
*__cfqq
;
623 unsigned long rb_key
;
624 struct cfq_rb_root
*service_tree
;
627 service_tree
= service_tree_for(cfqq_prio(cfqq
), cfqq_type(cfqq
), cfqd
);
628 if (cfq_class_idle(cfqq
)) {
629 rb_key
= CFQ_IDLE_DELAY
;
630 parent
= rb_last(&service_tree
->rb
);
631 if (parent
&& parent
!= &cfqq
->rb_node
) {
632 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
633 rb_key
+= __cfqq
->rb_key
;
636 } else if (!add_front
) {
638 * Get our rb key offset. Subtract any residual slice
639 * value carried from last service. A negative resid
640 * count indicates slice overrun, and this should position
641 * the next service time further away in the tree.
643 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
644 rb_key
-= cfqq
->slice_resid
;
645 cfqq
->slice_resid
= 0;
648 __cfqq
= cfq_rb_first(service_tree
);
649 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
652 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
654 * same position, nothing more to do
656 if (rb_key
== cfqq
->rb_key
&&
657 cfqq
->service_tree
== service_tree
)
660 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
661 cfqq
->service_tree
= NULL
;
666 cfqq
->service_tree
= service_tree
;
667 p
= &service_tree
->rb
.rb_node
;
672 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
675 * sort by key, that represents service time.
677 if (time_before(rb_key
, __cfqq
->rb_key
))
688 service_tree
->left
= &cfqq
->rb_node
;
690 cfqq
->rb_key
= rb_key
;
691 rb_link_node(&cfqq
->rb_node
, parent
, p
);
692 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
693 service_tree
->count
++;
696 static struct cfq_queue
*
697 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
698 sector_t sector
, struct rb_node
**ret_parent
,
699 struct rb_node
***rb_link
)
701 struct rb_node
**p
, *parent
;
702 struct cfq_queue
*cfqq
= NULL
;
710 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
713 * Sort strictly based on sector. Smallest to the left,
714 * largest to the right.
716 if (sector
> blk_rq_pos(cfqq
->next_rq
))
718 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
726 *ret_parent
= parent
;
732 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
734 struct rb_node
**p
, *parent
;
735 struct cfq_queue
*__cfqq
;
738 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
742 if (cfq_class_idle(cfqq
))
747 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
748 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
749 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
751 rb_link_node(&cfqq
->p_node
, parent
, p
);
752 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
758 * Update cfqq's position in the service tree.
760 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
763 * Resorting requires the cfqq to be on the RR list already.
765 if (cfq_cfqq_on_rr(cfqq
)) {
766 cfq_service_tree_add(cfqd
, cfqq
, 0);
767 cfq_prio_tree_add(cfqd
, cfqq
);
772 * add to busy list of queues for service, trying to be fair in ordering
773 * the pending list according to last request service
775 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
777 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
778 BUG_ON(cfq_cfqq_on_rr(cfqq
));
779 cfq_mark_cfqq_on_rr(cfqq
);
782 cfq_resort_rr_list(cfqd
, cfqq
);
786 * Called when the cfqq no longer has requests pending, remove it from
789 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
791 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
792 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
793 cfq_clear_cfqq_on_rr(cfqq
);
795 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
796 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
797 cfqq
->service_tree
= NULL
;
800 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
804 BUG_ON(!cfqd
->busy_queues
);
809 * rb tree support functions
811 static void cfq_del_rq_rb(struct request
*rq
)
813 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
814 struct cfq_data
*cfqd
= cfqq
->cfqd
;
815 const int sync
= rq_is_sync(rq
);
817 BUG_ON(!cfqq
->queued
[sync
]);
818 cfqq
->queued
[sync
]--;
820 elv_rb_del(&cfqq
->sort_list
, rq
);
822 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
823 cfq_del_cfqq_rr(cfqd
, cfqq
);
826 static void cfq_add_rq_rb(struct request
*rq
)
828 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
829 struct cfq_data
*cfqd
= cfqq
->cfqd
;
830 struct request
*__alias
, *prev
;
832 cfqq
->queued
[rq_is_sync(rq
)]++;
835 * looks a little odd, but the first insert might return an alias.
836 * if that happens, put the alias on the dispatch list
838 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
839 cfq_dispatch_insert(cfqd
->queue
, __alias
);
841 if (!cfq_cfqq_on_rr(cfqq
))
842 cfq_add_cfqq_rr(cfqd
, cfqq
);
845 * check if this request is a better next-serve candidate
847 prev
= cfqq
->next_rq
;
848 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
851 * adjust priority tree position, if ->next_rq changes
853 if (prev
!= cfqq
->next_rq
)
854 cfq_prio_tree_add(cfqd
, cfqq
);
856 BUG_ON(!cfqq
->next_rq
);
859 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
861 elv_rb_del(&cfqq
->sort_list
, rq
);
862 cfqq
->queued
[rq_is_sync(rq
)]--;
866 static struct request
*
867 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
869 struct task_struct
*tsk
= current
;
870 struct cfq_io_context
*cic
;
871 struct cfq_queue
*cfqq
;
873 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
877 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
879 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
881 return elv_rb_find(&cfqq
->sort_list
, sector
);
887 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
889 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
891 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
892 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
895 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
898 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
900 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
901 const int sync
= rq_is_sync(rq
);
903 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
904 cfqd
->rq_in_driver
[sync
]--;
905 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
909 static void cfq_remove_request(struct request
*rq
)
911 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
913 if (cfqq
->next_rq
== rq
)
914 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
916 list_del_init(&rq
->queuelist
);
919 cfqq
->cfqd
->rq_queued
--;
920 if (rq_is_meta(rq
)) {
921 WARN_ON(!cfqq
->meta_pending
);
922 cfqq
->meta_pending
--;
926 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
929 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
930 struct request
*__rq
;
932 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
933 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
935 return ELEVATOR_FRONT_MERGE
;
938 return ELEVATOR_NO_MERGE
;
941 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
944 if (type
== ELEVATOR_FRONT_MERGE
) {
945 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
947 cfq_reposition_rq_rb(cfqq
, req
);
952 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
953 struct request
*next
)
956 * reposition in fifo if next is older than rq
958 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
959 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
960 list_move(&rq
->queuelist
, &next
->queuelist
);
961 rq_set_fifo_time(rq
, rq_fifo_time(next
));
964 cfq_remove_request(next
);
967 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
970 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
971 struct cfq_io_context
*cic
;
972 struct cfq_queue
*cfqq
;
975 * Disallow merge of a sync bio into an async request.
977 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
981 * Lookup the cfqq that this bio will be queued with. Allow
982 * merge only if rq is queued there.
984 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
988 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
989 return cfqq
== RQ_CFQQ(rq
);
992 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
993 struct cfq_queue
*cfqq
)
996 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
998 cfqq
->slice_dispatch
= 0;
1000 cfq_clear_cfqq_wait_request(cfqq
);
1001 cfq_clear_cfqq_must_dispatch(cfqq
);
1002 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1003 cfq_clear_cfqq_fifo_expire(cfqq
);
1004 cfq_mark_cfqq_slice_new(cfqq
);
1006 del_timer(&cfqd
->idle_slice_timer
);
1009 cfqd
->active_queue
= cfqq
;
1013 * current cfqq expired its slice (or was too idle), select new one
1016 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1019 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1021 if (cfq_cfqq_wait_request(cfqq
))
1022 del_timer(&cfqd
->idle_slice_timer
);
1024 cfq_clear_cfqq_wait_request(cfqq
);
1027 * store what was left of this slice, if the queue idled/timed out
1029 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1030 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1031 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1034 cfq_resort_rr_list(cfqd
, cfqq
);
1036 if (cfqq
== cfqd
->active_queue
)
1037 cfqd
->active_queue
= NULL
;
1039 if (cfqd
->active_cic
) {
1040 put_io_context(cfqd
->active_cic
->ioc
);
1041 cfqd
->active_cic
= NULL
;
1045 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1047 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1050 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1054 * Get next queue for service. Unless we have a queue preemption,
1055 * we'll simply select the first cfqq in the service tree.
1057 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1059 struct cfq_rb_root
*service_tree
=
1060 service_tree_for(cfqd
->serving_prio
, cfqd
->serving_type
, cfqd
);
1062 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1064 return cfq_rb_first(service_tree
);
1068 * Get and set a new active queue for service.
1070 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1071 struct cfq_queue
*cfqq
)
1074 cfqq
= cfq_get_next_queue(cfqd
);
1076 if (cfqq
&& !cfq_cfqq_coop_preempt(cfqq
))
1077 cfq_clear_cfqq_coop(cfqq
);
1081 cfq_clear_cfqq_coop_preempt(cfqq
);
1083 __cfq_set_active_queue(cfqd
, cfqq
);
1087 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1090 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1091 return blk_rq_pos(rq
) - cfqd
->last_position
;
1093 return cfqd
->last_position
- blk_rq_pos(rq
);
1096 #define CFQQ_SEEK_THR 8 * 1024
1097 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1099 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1102 sector_t sdist
= cfqq
->seek_mean
;
1104 if (!sample_valid(cfqq
->seek_samples
))
1105 sdist
= CFQQ_SEEK_THR
;
1107 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
1110 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1111 struct cfq_queue
*cur_cfqq
)
1113 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1114 struct rb_node
*parent
, *node
;
1115 struct cfq_queue
*__cfqq
;
1116 sector_t sector
= cfqd
->last_position
;
1118 if (RB_EMPTY_ROOT(root
))
1122 * First, if we find a request starting at the end of the last
1123 * request, choose it.
1125 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1130 * If the exact sector wasn't found, the parent of the NULL leaf
1131 * will contain the closest sector.
1133 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1134 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1137 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1138 node
= rb_next(&__cfqq
->p_node
);
1140 node
= rb_prev(&__cfqq
->p_node
);
1144 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1145 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1153 * cur_cfqq - passed in so that we don't decide that the current queue is
1154 * closely cooperating with itself.
1156 * So, basically we're assuming that that cur_cfqq has dispatched at least
1157 * one request, and that cfqd->last_position reflects a position on the disk
1158 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1161 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1162 struct cfq_queue
*cur_cfqq
)
1164 struct cfq_queue
*cfqq
;
1166 if (!cfq_cfqq_sync(cur_cfqq
))
1168 if (CFQQ_SEEKY(cur_cfqq
))
1172 * We should notice if some of the queues are cooperating, eg
1173 * working closely on the same area of the disk. In that case,
1174 * we can group them together and don't waste time idling.
1176 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1181 * It only makes sense to merge sync queues.
1183 if (!cfq_cfqq_sync(cfqq
))
1185 if (CFQQ_SEEKY(cfqq
))
1189 * Do not merge queues of different priority classes
1191 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1198 * Determine whether we should enforce idle window for this queue.
1201 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1203 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1204 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1206 /* We never do for idle class queues. */
1207 if (prio
== IDLE_WORKLOAD
)
1210 /* We do for queues that were marked with idle window flag. */
1211 if (cfq_cfqq_idle_window(cfqq
))
1215 * Otherwise, we do only if they are the last ones
1216 * in their service tree.
1219 service_tree
= service_tree_for(prio
, cfqq_type(cfqq
), cfqd
);
1221 if (service_tree
->count
== 0)
1224 return (service_tree
->count
== 1 && cfq_rb_first(service_tree
) == cfqq
);
1227 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1229 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1230 struct cfq_io_context
*cic
;
1234 * SSD device without seek penalty, disable idling. But only do so
1235 * for devices that support queuing, otherwise we still have a problem
1236 * with sync vs async workloads.
1238 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1241 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1242 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1245 * idle is disabled, either manually or by past process history
1247 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1251 * still requests with the driver, don't idle
1253 if (rq_in_driver(cfqd
))
1257 * task has exited, don't wait
1259 cic
= cfqd
->active_cic
;
1260 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1264 * If our average think time is larger than the remaining time
1265 * slice, then don't idle. This avoids overrunning the allotted
1268 if (sample_valid(cic
->ttime_samples
) &&
1269 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1272 cfq_mark_cfqq_wait_request(cfqq
);
1274 sl
= cfqd
->cfq_slice_idle
;
1275 /* are we servicing noidle tree, and there are more queues?
1276 * non-rotational or NCQ: no idle
1277 * non-NCQ rotational : very small idle, to allow
1278 * fair distribution of slice time for a process doing back-to-back
1281 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
1282 service_tree_for(cfqd
->serving_prio
, SYNC_NOIDLE_WORKLOAD
, cfqd
)
1284 if (blk_queue_nonrot(cfqd
->queue
) || cfqd
->hw_tag
)
1286 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1289 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1290 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1294 * Move request from internal lists to the request queue dispatch list.
1296 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1298 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1299 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1301 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1303 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1304 cfq_remove_request(rq
);
1306 elv_dispatch_sort(q
, rq
);
1308 if (cfq_cfqq_sync(cfqq
))
1309 cfqd
->sync_flight
++;
1313 * return expired entry, or NULL to just start from scratch in rbtree
1315 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1317 struct request
*rq
= NULL
;
1319 if (cfq_cfqq_fifo_expire(cfqq
))
1322 cfq_mark_cfqq_fifo_expire(cfqq
);
1324 if (list_empty(&cfqq
->fifo
))
1327 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1328 if (time_before(jiffies
, rq_fifo_time(rq
)))
1331 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1336 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1338 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1340 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1342 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1346 * Must be called with the queue_lock held.
1348 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1350 int process_refs
, io_refs
;
1352 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1353 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1354 BUG_ON(process_refs
< 0);
1355 return process_refs
;
1358 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1360 int process_refs
, new_process_refs
;
1361 struct cfq_queue
*__cfqq
;
1363 /* Avoid a circular list and skip interim queue merges */
1364 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1370 process_refs
= cfqq_process_refs(cfqq
);
1372 * If the process for the cfqq has gone away, there is no
1373 * sense in merging the queues.
1375 if (process_refs
== 0)
1379 * Merge in the direction of the lesser amount of work.
1381 new_process_refs
= cfqq_process_refs(new_cfqq
);
1382 if (new_process_refs
>= process_refs
) {
1383 cfqq
->new_cfqq
= new_cfqq
;
1384 atomic_add(process_refs
, &new_cfqq
->ref
);
1386 new_cfqq
->new_cfqq
= cfqq
;
1387 atomic_add(new_process_refs
, &cfqq
->ref
);
1391 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
, enum wl_prio_t prio
,
1394 struct cfq_queue
*queue
;
1396 bool key_valid
= false;
1397 unsigned long lowest_key
= 0;
1398 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1402 * When priorities switched, we prefer starting
1403 * from SYNC_NOIDLE (first choice), or just SYNC
1406 if (service_tree_for(prio
, cur_best
, cfqd
)->count
)
1408 cur_best
= SYNC_WORKLOAD
;
1409 if (service_tree_for(prio
, cur_best
, cfqd
)->count
)
1412 return ASYNC_WORKLOAD
;
1415 for (i
= 0; i
< 3; ++i
) {
1416 /* otherwise, select the one with lowest rb_key */
1417 queue
= cfq_rb_first(service_tree_for(prio
, i
, cfqd
));
1419 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1420 lowest_key
= queue
->rb_key
;
1429 static void choose_service_tree(struct cfq_data
*cfqd
)
1431 enum wl_prio_t previous_prio
= cfqd
->serving_prio
;
1436 /* Choose next priority. RT > BE > IDLE */
1437 if (cfq_busy_queues_wl(RT_WORKLOAD
, cfqd
))
1438 cfqd
->serving_prio
= RT_WORKLOAD
;
1439 else if (cfq_busy_queues_wl(BE_WORKLOAD
, cfqd
))
1440 cfqd
->serving_prio
= BE_WORKLOAD
;
1442 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1443 cfqd
->workload_expires
= jiffies
+ 1;
1448 * For RT and BE, we have to choose also the type
1449 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1452 prio_changed
= (cfqd
->serving_prio
!= previous_prio
);
1453 count
= service_tree_for(cfqd
->serving_prio
, cfqd
->serving_type
, cfqd
)
1457 * If priority didn't change, check workload expiration,
1458 * and that we still have other queues ready
1460 if (!prio_changed
&& count
&&
1461 !time_after(jiffies
, cfqd
->workload_expires
))
1464 /* otherwise select new workload type */
1465 cfqd
->serving_type
=
1466 cfq_choose_wl(cfqd
, cfqd
->serving_prio
, prio_changed
);
1467 count
= service_tree_for(cfqd
->serving_prio
, cfqd
->serving_type
, cfqd
)
1471 * the workload slice is computed as a fraction of target latency
1472 * proportional to the number of queues in that workload, over
1473 * all the queues in the same priority class
1475 slice
= cfq_target_latency
* count
/
1476 max_t(unsigned, cfqd
->busy_queues_avg
[cfqd
->serving_prio
],
1477 cfq_busy_queues_wl(cfqd
->serving_prio
, cfqd
));
1479 if (cfqd
->serving_type
== ASYNC_WORKLOAD
)
1480 /* async workload slice is scaled down according to
1481 * the sync/async slice ratio. */
1482 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
1484 /* sync workload slice is at least 2 * cfq_slice_idle */
1485 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
1487 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
1488 cfqd
->workload_expires
= jiffies
+ slice
;
1492 * Select a queue for service. If we have a current active queue,
1493 * check whether to continue servicing it, or retrieve and set a new one.
1495 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1497 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1499 cfqq
= cfqd
->active_queue
;
1504 * The active queue has run out of time, expire it and select new.
1506 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1510 * The active queue has requests and isn't expired, allow it to
1513 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1517 * If another queue has a request waiting within our mean seek
1518 * distance, let it run. The expire code will check for close
1519 * cooperators and put the close queue at the front of the service
1520 * tree. If possible, merge the expiring queue with the new cfqq.
1522 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
1524 if (!cfqq
->new_cfqq
)
1525 cfq_setup_merge(cfqq
, new_cfqq
);
1530 * No requests pending. If the active queue still has requests in
1531 * flight or is idling for a new request, allow either of these
1532 * conditions to happen (or time out) before selecting a new queue.
1534 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1535 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
1541 cfq_slice_expired(cfqd
, 0);
1544 * Current queue expired. Check if we have to switch to a new
1548 choose_service_tree(cfqd
);
1550 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1555 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1559 while (cfqq
->next_rq
) {
1560 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1564 BUG_ON(!list_empty(&cfqq
->fifo
));
1569 * Drain our current requests. Used for barriers and when switching
1570 * io schedulers on-the-fly.
1572 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1574 struct cfq_queue
*cfqq
;
1577 for (i
= 0; i
< 2; ++i
)
1578 for (j
= 0; j
< 3; ++j
)
1579 while ((cfqq
= cfq_rb_first(&cfqd
->service_trees
[i
][j
]))
1581 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1583 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree_idle
)) != NULL
)
1584 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1586 cfq_slice_expired(cfqd
, 0);
1588 BUG_ON(cfqd
->busy_queues
);
1590 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1594 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1596 unsigned int max_dispatch
;
1599 * Drain async requests before we start sync IO
1601 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
1605 * If this is an async queue and we have sync IO in flight, let it wait
1607 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1610 max_dispatch
= cfqd
->cfq_quantum
;
1611 if (cfq_class_idle(cfqq
))
1615 * Does this cfqq already have too much IO in flight?
1617 if (cfqq
->dispatched
>= max_dispatch
) {
1619 * idle queue must always only have a single IO in flight
1621 if (cfq_class_idle(cfqq
))
1625 * We have other queues, don't allow more IO from this one
1627 if (cfqd
->busy_queues
> 1)
1631 * Sole queue user, allow bigger slice
1637 * Async queues must wait a bit before being allowed dispatch.
1638 * We also ramp up the dispatch depth gradually for async IO,
1639 * based on the last sync IO we serviced
1641 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
1642 unsigned long last_sync
= jiffies
- cfqd
->last_end_sync_rq
;
1645 depth
= last_sync
/ cfqd
->cfq_slice
[1];
1646 if (!depth
&& !cfqq
->dispatched
)
1648 if (depth
< max_dispatch
)
1649 max_dispatch
= depth
;
1653 * If we're below the current max, allow a dispatch
1655 return cfqq
->dispatched
< max_dispatch
;
1659 * Dispatch a request from cfqq, moving them to the request queue
1662 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1666 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1668 if (!cfq_may_dispatch(cfqd
, cfqq
))
1672 * follow expired path, else get first next available
1674 rq
= cfq_check_fifo(cfqq
);
1679 * insert request into driver dispatch list
1681 cfq_dispatch_insert(cfqd
->queue
, rq
);
1683 if (!cfqd
->active_cic
) {
1684 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1686 atomic_long_inc(&cic
->ioc
->refcount
);
1687 cfqd
->active_cic
= cic
;
1694 * Find the cfqq that we need to service and move a request from that to the
1697 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1699 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1700 struct cfq_queue
*cfqq
;
1702 if (!cfqd
->busy_queues
)
1705 if (unlikely(force
))
1706 return cfq_forced_dispatch(cfqd
);
1708 cfqq
= cfq_select_queue(cfqd
);
1713 * Dispatch a request from this cfqq, if it is allowed
1715 if (!cfq_dispatch_request(cfqd
, cfqq
))
1718 cfqq
->slice_dispatch
++;
1719 cfq_clear_cfqq_must_dispatch(cfqq
);
1722 * expire an async queue immediately if it has used up its slice. idle
1723 * queue always expire after 1 dispatch round.
1725 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1726 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1727 cfq_class_idle(cfqq
))) {
1728 cfqq
->slice_end
= jiffies
+ 1;
1729 cfq_slice_expired(cfqd
, 0);
1732 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
1737 * task holds one reference to the queue, dropped when task exits. each rq
1738 * in-flight on this queue also holds a reference, dropped when rq is freed.
1740 * queue lock must be held here.
1742 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1744 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1746 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1748 if (!atomic_dec_and_test(&cfqq
->ref
))
1751 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1752 BUG_ON(rb_first(&cfqq
->sort_list
));
1753 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1754 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1756 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1757 __cfq_slice_expired(cfqd
, cfqq
, 0);
1758 cfq_schedule_dispatch(cfqd
);
1761 kmem_cache_free(cfq_pool
, cfqq
);
1765 * Must always be called with the rcu_read_lock() held
1768 __call_for_each_cic(struct io_context
*ioc
,
1769 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1771 struct cfq_io_context
*cic
;
1772 struct hlist_node
*n
;
1774 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1779 * Call func for each cic attached to this ioc.
1782 call_for_each_cic(struct io_context
*ioc
,
1783 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1786 __call_for_each_cic(ioc
, func
);
1790 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1792 struct cfq_io_context
*cic
;
1794 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1796 kmem_cache_free(cfq_ioc_pool
, cic
);
1797 elv_ioc_count_dec(cfq_ioc_count
);
1801 * CFQ scheduler is exiting, grab exit lock and check
1802 * the pending io context count. If it hits zero,
1803 * complete ioc_gone and set it back to NULL
1805 spin_lock(&ioc_gone_lock
);
1806 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
1810 spin_unlock(&ioc_gone_lock
);
1814 static void cfq_cic_free(struct cfq_io_context
*cic
)
1816 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1819 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1821 unsigned long flags
;
1823 BUG_ON(!cic
->dead_key
);
1825 spin_lock_irqsave(&ioc
->lock
, flags
);
1826 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1827 hlist_del_rcu(&cic
->cic_list
);
1828 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1834 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1835 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1836 * and ->trim() which is called with the task lock held
1838 static void cfq_free_io_context(struct io_context
*ioc
)
1841 * ioc->refcount is zero here, or we are called from elv_unregister(),
1842 * so no more cic's are allowed to be linked into this ioc. So it
1843 * should be ok to iterate over the known list, we will see all cic's
1844 * since no new ones are added.
1846 __call_for_each_cic(ioc
, cic_free_func
);
1849 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1851 struct cfq_queue
*__cfqq
, *next
;
1853 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1854 __cfq_slice_expired(cfqd
, cfqq
, 0);
1855 cfq_schedule_dispatch(cfqd
);
1859 * If this queue was scheduled to merge with another queue, be
1860 * sure to drop the reference taken on that queue (and others in
1861 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1863 __cfqq
= cfqq
->new_cfqq
;
1865 if (__cfqq
== cfqq
) {
1866 WARN(1, "cfqq->new_cfqq loop detected\n");
1869 next
= __cfqq
->new_cfqq
;
1870 cfq_put_queue(__cfqq
);
1874 cfq_put_queue(cfqq
);
1877 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1878 struct cfq_io_context
*cic
)
1880 struct io_context
*ioc
= cic
->ioc
;
1882 list_del_init(&cic
->queue_list
);
1885 * Make sure key == NULL is seen for dead queues
1888 cic
->dead_key
= (unsigned long) cic
->key
;
1891 if (ioc
->ioc_data
== cic
)
1892 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1894 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1895 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1896 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1899 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1900 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1901 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1905 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1906 struct cfq_io_context
*cic
)
1908 struct cfq_data
*cfqd
= cic
->key
;
1911 struct request_queue
*q
= cfqd
->queue
;
1912 unsigned long flags
;
1914 spin_lock_irqsave(q
->queue_lock
, flags
);
1917 * Ensure we get a fresh copy of the ->key to prevent
1918 * race between exiting task and queue
1920 smp_read_barrier_depends();
1922 __cfq_exit_single_io_context(cfqd
, cic
);
1924 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1929 * The process that ioc belongs to has exited, we need to clean up
1930 * and put the internal structures we have that belongs to that process.
1932 static void cfq_exit_io_context(struct io_context
*ioc
)
1934 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1937 static struct cfq_io_context
*
1938 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1940 struct cfq_io_context
*cic
;
1942 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1945 cic
->last_end_request
= jiffies
;
1946 INIT_LIST_HEAD(&cic
->queue_list
);
1947 INIT_HLIST_NODE(&cic
->cic_list
);
1948 cic
->dtor
= cfq_free_io_context
;
1949 cic
->exit
= cfq_exit_io_context
;
1950 elv_ioc_count_inc(cfq_ioc_count
);
1956 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1958 struct task_struct
*tsk
= current
;
1961 if (!cfq_cfqq_prio_changed(cfqq
))
1964 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1965 switch (ioprio_class
) {
1967 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1968 case IOPRIO_CLASS_NONE
:
1970 * no prio set, inherit CPU scheduling settings
1972 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1973 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1975 case IOPRIO_CLASS_RT
:
1976 cfqq
->ioprio
= task_ioprio(ioc
);
1977 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1979 case IOPRIO_CLASS_BE
:
1980 cfqq
->ioprio
= task_ioprio(ioc
);
1981 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1983 case IOPRIO_CLASS_IDLE
:
1984 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1986 cfq_clear_cfqq_idle_window(cfqq
);
1991 * keep track of original prio settings in case we have to temporarily
1992 * elevate the priority of this queue
1994 cfqq
->org_ioprio
= cfqq
->ioprio
;
1995 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1996 cfq_clear_cfqq_prio_changed(cfqq
);
1999 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2001 struct cfq_data
*cfqd
= cic
->key
;
2002 struct cfq_queue
*cfqq
;
2003 unsigned long flags
;
2005 if (unlikely(!cfqd
))
2008 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2010 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2012 struct cfq_queue
*new_cfqq
;
2013 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2016 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2017 cfq_put_queue(cfqq
);
2021 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2023 cfq_mark_cfqq_prio_changed(cfqq
);
2025 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2028 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2030 call_for_each_cic(ioc
, changed_ioprio
);
2031 ioc
->ioprio_changed
= 0;
2034 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2035 pid_t pid
, bool is_sync
)
2037 RB_CLEAR_NODE(&cfqq
->rb_node
);
2038 RB_CLEAR_NODE(&cfqq
->p_node
);
2039 INIT_LIST_HEAD(&cfqq
->fifo
);
2041 atomic_set(&cfqq
->ref
, 0);
2044 cfq_mark_cfqq_prio_changed(cfqq
);
2047 if (!cfq_class_idle(cfqq
))
2048 cfq_mark_cfqq_idle_window(cfqq
);
2049 cfq_mark_cfqq_sync(cfqq
);
2054 static struct cfq_queue
*
2055 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2056 struct io_context
*ioc
, gfp_t gfp_mask
)
2058 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2059 struct cfq_io_context
*cic
;
2062 cic
= cfq_cic_lookup(cfqd
, ioc
);
2063 /* cic always exists here */
2064 cfqq
= cic_to_cfqq(cic
, is_sync
);
2067 * Always try a new alloc if we fell back to the OOM cfqq
2068 * originally, since it should just be a temporary situation.
2070 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2075 } else if (gfp_mask
& __GFP_WAIT
) {
2076 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2077 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2078 gfp_mask
| __GFP_ZERO
,
2080 spin_lock_irq(cfqd
->queue
->queue_lock
);
2084 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2085 gfp_mask
| __GFP_ZERO
,
2090 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2091 cfq_init_prio_data(cfqq
, ioc
);
2092 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2094 cfqq
= &cfqd
->oom_cfqq
;
2098 kmem_cache_free(cfq_pool
, new_cfqq
);
2103 static struct cfq_queue
**
2104 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2106 switch (ioprio_class
) {
2107 case IOPRIO_CLASS_RT
:
2108 return &cfqd
->async_cfqq
[0][ioprio
];
2109 case IOPRIO_CLASS_BE
:
2110 return &cfqd
->async_cfqq
[1][ioprio
];
2111 case IOPRIO_CLASS_IDLE
:
2112 return &cfqd
->async_idle_cfqq
;
2118 static struct cfq_queue
*
2119 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2122 const int ioprio
= task_ioprio(ioc
);
2123 const int ioprio_class
= task_ioprio_class(ioc
);
2124 struct cfq_queue
**async_cfqq
= NULL
;
2125 struct cfq_queue
*cfqq
= NULL
;
2128 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2133 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2136 * pin the queue now that it's allocated, scheduler exit will prune it
2138 if (!is_sync
&& !(*async_cfqq
)) {
2139 atomic_inc(&cfqq
->ref
);
2143 atomic_inc(&cfqq
->ref
);
2148 * We drop cfq io contexts lazily, so we may find a dead one.
2151 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2152 struct cfq_io_context
*cic
)
2154 unsigned long flags
;
2156 WARN_ON(!list_empty(&cic
->queue_list
));
2158 spin_lock_irqsave(&ioc
->lock
, flags
);
2160 BUG_ON(ioc
->ioc_data
== cic
);
2162 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2163 hlist_del_rcu(&cic
->cic_list
);
2164 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2169 static struct cfq_io_context
*
2170 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2172 struct cfq_io_context
*cic
;
2173 unsigned long flags
;
2182 * we maintain a last-hit cache, to avoid browsing over the tree
2184 cic
= rcu_dereference(ioc
->ioc_data
);
2185 if (cic
&& cic
->key
== cfqd
) {
2191 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2195 /* ->key must be copied to avoid race with cfq_exit_queue() */
2198 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2203 spin_lock_irqsave(&ioc
->lock
, flags
);
2204 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2205 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2213 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2214 * the process specific cfq io context when entered from the block layer.
2215 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2217 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2218 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2220 unsigned long flags
;
2223 ret
= radix_tree_preload(gfp_mask
);
2228 spin_lock_irqsave(&ioc
->lock
, flags
);
2229 ret
= radix_tree_insert(&ioc
->radix_root
,
2230 (unsigned long) cfqd
, cic
);
2232 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2233 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2235 radix_tree_preload_end();
2238 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2239 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2240 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2245 printk(KERN_ERR
"cfq: cic link failed!\n");
2251 * Setup general io context and cfq io context. There can be several cfq
2252 * io contexts per general io context, if this process is doing io to more
2253 * than one device managed by cfq.
2255 static struct cfq_io_context
*
2256 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2258 struct io_context
*ioc
= NULL
;
2259 struct cfq_io_context
*cic
;
2261 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2263 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2267 cic
= cfq_cic_lookup(cfqd
, ioc
);
2271 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2275 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2279 smp_read_barrier_depends();
2280 if (unlikely(ioc
->ioprio_changed
))
2281 cfq_ioc_set_ioprio(ioc
);
2287 put_io_context(ioc
);
2292 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2294 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2295 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2297 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2298 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2299 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2303 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2309 if (!cfqq
->last_request_pos
)
2311 else if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2312 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2314 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2317 * Don't allow the seek distance to get too large from the
2318 * odd fragment, pagein, etc
2320 if (cfqq
->seek_samples
<= 60) /* second&third seek */
2321 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*1024);
2323 sdist
= min(sdist
, (cfqq
->seek_mean
* 4) + 2*1024*64);
2325 cfqq
->seek_samples
= (7*cfqq
->seek_samples
+ 256) / 8;
2326 cfqq
->seek_total
= (7*cfqq
->seek_total
+ (u64
)256*sdist
) / 8;
2327 total
= cfqq
->seek_total
+ (cfqq
->seek_samples
/2);
2328 do_div(total
, cfqq
->seek_samples
);
2329 cfqq
->seek_mean
= (sector_t
)total
;
2332 * If this cfqq is shared between multiple processes, check to
2333 * make sure that those processes are still issuing I/Os within
2334 * the mean seek distance. If not, it may be time to break the
2335 * queues apart again.
2337 if (cfq_cfqq_coop(cfqq
)) {
2338 if (CFQQ_SEEKY(cfqq
) && !cfqq
->seeky_start
)
2339 cfqq
->seeky_start
= jiffies
;
2340 else if (!CFQQ_SEEKY(cfqq
))
2341 cfqq
->seeky_start
= 0;
2346 * Disable idle window if the process thinks too long or seeks so much that
2350 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2351 struct cfq_io_context
*cic
)
2353 int old_idle
, enable_idle
;
2356 * Don't idle for async or idle io prio class
2358 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
2361 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
2363 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
2364 (sample_valid(cfqq
->seek_samples
) && CFQQ_SEEKY(cfqq
)))
2366 else if (sample_valid(cic
->ttime_samples
)) {
2367 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
2373 if (old_idle
!= enable_idle
) {
2374 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
2376 cfq_mark_cfqq_idle_window(cfqq
);
2378 cfq_clear_cfqq_idle_window(cfqq
);
2383 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2384 * no or if we aren't sure, a 1 will cause a preempt.
2387 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
2390 struct cfq_queue
*cfqq
;
2392 cfqq
= cfqd
->active_queue
;
2396 if (cfq_slice_used(cfqq
))
2399 if (cfq_class_idle(new_cfqq
))
2402 if (cfq_class_idle(cfqq
))
2405 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
2406 && new_cfqq
->service_tree
== cfqq
->service_tree
)
2410 * if the new request is sync, but the currently running queue is
2411 * not, let the sync request have priority.
2413 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2417 * So both queues are sync. Let the new request get disk time if
2418 * it's a metadata request and the current queue is doing regular IO.
2420 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2424 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2426 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2429 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2433 * if this request is as-good as one we would expect from the
2434 * current cfqq, let it preempt
2436 if (cfq_rq_close(cfqd
, cfqq
, rq
))
2437 if (cfq_rq_close(cfqd
, cfqq
, rq
) && (!cfq_cfqq_coop(new_cfqq
) ||
2438 cfqd
->busy_queues
== 1)) {
2440 * Mark new queue coop_preempt, so its coop flag will not be
2441 * cleared when new queue gets scheduled at the very first time
2443 cfq_mark_cfqq_coop_preempt(new_cfqq
);
2444 cfq_mark_cfqq_coop(new_cfqq
);
2452 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2453 * let it have half of its nominal slice.
2455 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2457 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2458 cfq_slice_expired(cfqd
, 1);
2461 * Put the new queue at the front of the of the current list,
2462 * so we know that it will be selected next.
2464 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2466 cfq_service_tree_add(cfqd
, cfqq
, 1);
2468 cfqq
->slice_end
= 0;
2469 cfq_mark_cfqq_slice_new(cfqq
);
2473 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2474 * something we should do about it
2477 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2480 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2484 cfqq
->meta_pending
++;
2486 cfq_update_io_thinktime(cfqd
, cic
);
2487 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
2488 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2490 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2492 if (cfqq
== cfqd
->active_queue
) {
2494 * Remember that we saw a request from this process, but
2495 * don't start queuing just yet. Otherwise we risk seeing lots
2496 * of tiny requests, because we disrupt the normal plugging
2497 * and merging. If the request is already larger than a single
2498 * page, let it rip immediately. For that case we assume that
2499 * merging is already done. Ditto for a busy system that
2500 * has other work pending, don't risk delaying until the
2501 * idle timer unplug to continue working.
2503 if (cfq_cfqq_wait_request(cfqq
)) {
2504 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2505 cfqd
->busy_queues
> 1) {
2506 del_timer(&cfqd
->idle_slice_timer
);
2507 __blk_run_queue(cfqd
->queue
);
2509 cfq_mark_cfqq_must_dispatch(cfqq
);
2511 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2513 * not the active queue - expire current slice if it is
2514 * idle and has expired it's mean thinktime or this new queue
2515 * has some old slice time left and is of higher priority or
2516 * this new queue is RT and the current one is BE
2518 cfq_preempt_queue(cfqd
, cfqq
);
2519 __blk_run_queue(cfqd
->queue
);
2523 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2525 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2526 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2528 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2529 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2531 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
2532 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2535 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2539 * Update hw_tag based on peak queue depth over 50 samples under
2542 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2544 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2546 if (rq_in_driver(cfqd
) > cfqd
->rq_in_driver_peak
)
2547 cfqd
->rq_in_driver_peak
= rq_in_driver(cfqd
);
2549 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2550 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
2554 * If active queue hasn't enough requests and can idle, cfq might not
2555 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2558 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
2559 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
2560 CFQ_HW_QUEUE_MIN
&& rq_in_driver(cfqd
) < CFQ_HW_QUEUE_MIN
)
2563 if (cfqd
->hw_tag_samples
++ < 50)
2566 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2571 cfqd
->hw_tag_samples
= 0;
2572 cfqd
->rq_in_driver_peak
= 0;
2575 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2577 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2578 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2579 const int sync
= rq_is_sync(rq
);
2583 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2585 cfq_update_hw_tag(cfqd
);
2587 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
2588 WARN_ON(!cfqq
->dispatched
);
2589 cfqd
->rq_in_driver
[sync
]--;
2592 if (cfq_cfqq_sync(cfqq
))
2593 cfqd
->sync_flight
--;
2596 RQ_CIC(rq
)->last_end_request
= now
;
2597 cfqd
->last_end_sync_rq
= now
;
2601 * If this is the active queue, check if it needs to be expired,
2602 * or if we want to idle in case it has no pending requests.
2604 if (cfqd
->active_queue
== cfqq
) {
2605 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2607 if (cfq_cfqq_slice_new(cfqq
)) {
2608 cfq_set_prio_slice(cfqd
, cfqq
);
2609 cfq_clear_cfqq_slice_new(cfqq
);
2612 * If there are no requests waiting in this queue, and
2613 * there are other queues ready to issue requests, AND
2614 * those other queues are issuing requests within our
2615 * mean seek distance, give them a chance to run instead
2618 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2619 cfq_slice_expired(cfqd
, 1);
2620 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
) &&
2621 sync
&& !rq_noidle(rq
))
2622 cfq_arm_slice_timer(cfqd
);
2625 if (!rq_in_driver(cfqd
))
2626 cfq_schedule_dispatch(cfqd
);
2630 * we temporarily boost lower priority queues if they are holding fs exclusive
2631 * resources. they are boosted to normal prio (CLASS_BE/4)
2633 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2635 if (has_fs_excl()) {
2637 * boost idle prio on transactions that would lock out other
2638 * users of the filesystem
2640 if (cfq_class_idle(cfqq
))
2641 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2642 if (cfqq
->ioprio
> IOPRIO_NORM
)
2643 cfqq
->ioprio
= IOPRIO_NORM
;
2646 * unboost the queue (if needed)
2648 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2649 cfqq
->ioprio
= cfqq
->org_ioprio
;
2653 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2655 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
2656 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2657 return ELV_MQUEUE_MUST
;
2660 return ELV_MQUEUE_MAY
;
2663 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2665 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2666 struct task_struct
*tsk
= current
;
2667 struct cfq_io_context
*cic
;
2668 struct cfq_queue
*cfqq
;
2671 * don't force setup of a queue from here, as a call to may_queue
2672 * does not necessarily imply that a request actually will be queued.
2673 * so just lookup a possibly existing queue, or return 'may queue'
2676 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2678 return ELV_MQUEUE_MAY
;
2680 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2682 cfq_init_prio_data(cfqq
, cic
->ioc
);
2683 cfq_prio_boost(cfqq
);
2685 return __cfq_may_queue(cfqq
);
2688 return ELV_MQUEUE_MAY
;
2692 * queue lock held here
2694 static void cfq_put_request(struct request
*rq
)
2696 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2699 const int rw
= rq_data_dir(rq
);
2701 BUG_ON(!cfqq
->allocated
[rw
]);
2702 cfqq
->allocated
[rw
]--;
2704 put_io_context(RQ_CIC(rq
)->ioc
);
2706 rq
->elevator_private
= NULL
;
2707 rq
->elevator_private2
= NULL
;
2709 cfq_put_queue(cfqq
);
2713 static struct cfq_queue
*
2714 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
2715 struct cfq_queue
*cfqq
)
2717 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
2718 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
2719 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
2720 cfq_put_queue(cfqq
);
2721 return cic_to_cfqq(cic
, 1);
2724 static int should_split_cfqq(struct cfq_queue
*cfqq
)
2726 if (cfqq
->seeky_start
&&
2727 time_after(jiffies
, cfqq
->seeky_start
+ CFQQ_COOP_TOUT
))
2733 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2734 * was the last process referring to said cfqq.
2736 static struct cfq_queue
*
2737 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
2739 if (cfqq_process_refs(cfqq
) == 1) {
2740 cfqq
->seeky_start
= 0;
2741 cfqq
->pid
= current
->pid
;
2742 cfq_clear_cfqq_coop(cfqq
);
2746 cic_set_cfqq(cic
, NULL
, 1);
2747 cfq_put_queue(cfqq
);
2751 * Allocate cfq data structures associated with this request.
2754 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2756 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2757 struct cfq_io_context
*cic
;
2758 const int rw
= rq_data_dir(rq
);
2759 const bool is_sync
= rq_is_sync(rq
);
2760 struct cfq_queue
*cfqq
;
2761 unsigned long flags
;
2763 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2765 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2767 spin_lock_irqsave(q
->queue_lock
, flags
);
2773 cfqq
= cic_to_cfqq(cic
, is_sync
);
2774 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2775 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2776 cic_set_cfqq(cic
, cfqq
, is_sync
);
2779 * If the queue was seeky for too long, break it apart.
2781 if (cfq_cfqq_coop(cfqq
) && should_split_cfqq(cfqq
)) {
2782 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
2783 cfqq
= split_cfqq(cic
, cfqq
);
2789 * Check to see if this queue is scheduled to merge with
2790 * another, closely cooperating queue. The merging of
2791 * queues happens here as it must be done in process context.
2792 * The reference on new_cfqq was taken in merge_cfqqs.
2795 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
2798 cfqq
->allocated
[rw
]++;
2799 atomic_inc(&cfqq
->ref
);
2801 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2803 rq
->elevator_private
= cic
;
2804 rq
->elevator_private2
= cfqq
;
2809 put_io_context(cic
->ioc
);
2811 cfq_schedule_dispatch(cfqd
);
2812 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2813 cfq_log(cfqd
, "set_request fail");
2817 static void cfq_kick_queue(struct work_struct
*work
)
2819 struct cfq_data
*cfqd
=
2820 container_of(work
, struct cfq_data
, unplug_work
);
2821 struct request_queue
*q
= cfqd
->queue
;
2823 spin_lock_irq(q
->queue_lock
);
2824 __blk_run_queue(cfqd
->queue
);
2825 spin_unlock_irq(q
->queue_lock
);
2829 * Timer running if the active_queue is currently idling inside its time slice
2831 static void cfq_idle_slice_timer(unsigned long data
)
2833 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2834 struct cfq_queue
*cfqq
;
2835 unsigned long flags
;
2838 cfq_log(cfqd
, "idle timer fired");
2840 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2842 cfqq
= cfqd
->active_queue
;
2847 * We saw a request before the queue expired, let it through
2849 if (cfq_cfqq_must_dispatch(cfqq
))
2855 if (cfq_slice_used(cfqq
))
2859 * only expire and reinvoke request handler, if there are
2860 * other queues with pending requests
2862 if (!cfqd
->busy_queues
)
2866 * not expired and it has a request pending, let it dispatch
2868 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2872 cfq_slice_expired(cfqd
, timed_out
);
2874 cfq_schedule_dispatch(cfqd
);
2876 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2879 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2881 del_timer_sync(&cfqd
->idle_slice_timer
);
2882 cancel_work_sync(&cfqd
->unplug_work
);
2885 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2889 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2890 if (cfqd
->async_cfqq
[0][i
])
2891 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2892 if (cfqd
->async_cfqq
[1][i
])
2893 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2896 if (cfqd
->async_idle_cfqq
)
2897 cfq_put_queue(cfqd
->async_idle_cfqq
);
2900 static void cfq_exit_queue(struct elevator_queue
*e
)
2902 struct cfq_data
*cfqd
= e
->elevator_data
;
2903 struct request_queue
*q
= cfqd
->queue
;
2905 cfq_shutdown_timer_wq(cfqd
);
2907 spin_lock_irq(q
->queue_lock
);
2909 if (cfqd
->active_queue
)
2910 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2912 while (!list_empty(&cfqd
->cic_list
)) {
2913 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2914 struct cfq_io_context
,
2917 __cfq_exit_single_io_context(cfqd
, cic
);
2920 cfq_put_async_queues(cfqd
);
2922 spin_unlock_irq(q
->queue_lock
);
2924 cfq_shutdown_timer_wq(cfqd
);
2929 static void *cfq_init_queue(struct request_queue
*q
)
2931 struct cfq_data
*cfqd
;
2934 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2938 for (i
= 0; i
< 2; ++i
)
2939 for (j
= 0; j
< 3; ++j
)
2940 cfqd
->service_trees
[i
][j
] = CFQ_RB_ROOT
;
2941 cfqd
->service_tree_idle
= CFQ_RB_ROOT
;
2944 * Not strictly needed (since RB_ROOT just clears the node and we
2945 * zeroed cfqd on alloc), but better be safe in case someone decides
2946 * to add magic to the rb code
2948 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2949 cfqd
->prio_trees
[i
] = RB_ROOT
;
2952 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2953 * Grab a permanent reference to it, so that the normal code flow
2954 * will not attempt to free it.
2956 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
2957 atomic_inc(&cfqd
->oom_cfqq
.ref
);
2959 INIT_LIST_HEAD(&cfqd
->cic_list
);
2963 init_timer(&cfqd
->idle_slice_timer
);
2964 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2965 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2967 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2969 cfqd
->cfq_quantum
= cfq_quantum
;
2970 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2971 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2972 cfqd
->cfq_back_max
= cfq_back_max
;
2973 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2974 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2975 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2976 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2977 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2978 cfqd
->cfq_latency
= 1;
2980 cfqd
->last_end_sync_rq
= jiffies
;
2984 static void cfq_slab_kill(void)
2987 * Caller already ensured that pending RCU callbacks are completed,
2988 * so we should have no busy allocations at this point.
2991 kmem_cache_destroy(cfq_pool
);
2993 kmem_cache_destroy(cfq_ioc_pool
);
2996 static int __init
cfq_slab_setup(void)
2998 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3002 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3013 * sysfs parts below -->
3016 cfq_var_show(unsigned int var
, char *page
)
3018 return sprintf(page
, "%d\n", var
);
3022 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3024 char *p
= (char *) page
;
3026 *var
= simple_strtoul(p
, &p
, 10);
3030 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3031 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3033 struct cfq_data *cfqd = e->elevator_data; \
3034 unsigned int __data = __VAR; \
3036 __data = jiffies_to_msecs(__data); \
3037 return cfq_var_show(__data, (page)); \
3039 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3040 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3041 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3042 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3043 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3044 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3045 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3046 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3047 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3048 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3049 #undef SHOW_FUNCTION
3051 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3052 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3054 struct cfq_data *cfqd = e->elevator_data; \
3055 unsigned int __data; \
3056 int ret = cfq_var_store(&__data, (page), count); \
3057 if (__data < (MIN)) \
3059 else if (__data > (MAX)) \
3062 *(__PTR) = msecs_to_jiffies(__data); \
3064 *(__PTR) = __data; \
3067 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3068 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3070 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3072 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3073 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3075 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3076 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3077 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3078 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3080 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3081 #undef STORE_FUNCTION
3083 #define CFQ_ATTR(name) \
3084 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3086 static struct elv_fs_entry cfq_attrs
[] = {
3088 CFQ_ATTR(fifo_expire_sync
),
3089 CFQ_ATTR(fifo_expire_async
),
3090 CFQ_ATTR(back_seek_max
),
3091 CFQ_ATTR(back_seek_penalty
),
3092 CFQ_ATTR(slice_sync
),
3093 CFQ_ATTR(slice_async
),
3094 CFQ_ATTR(slice_async_rq
),
3095 CFQ_ATTR(slice_idle
),
3096 CFQ_ATTR(low_latency
),
3100 static struct elevator_type iosched_cfq
= {
3102 .elevator_merge_fn
= cfq_merge
,
3103 .elevator_merged_fn
= cfq_merged_request
,
3104 .elevator_merge_req_fn
= cfq_merged_requests
,
3105 .elevator_allow_merge_fn
= cfq_allow_merge
,
3106 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3107 .elevator_add_req_fn
= cfq_insert_request
,
3108 .elevator_activate_req_fn
= cfq_activate_request
,
3109 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3110 .elevator_queue_empty_fn
= cfq_queue_empty
,
3111 .elevator_completed_req_fn
= cfq_completed_request
,
3112 .elevator_former_req_fn
= elv_rb_former_request
,
3113 .elevator_latter_req_fn
= elv_rb_latter_request
,
3114 .elevator_set_req_fn
= cfq_set_request
,
3115 .elevator_put_req_fn
= cfq_put_request
,
3116 .elevator_may_queue_fn
= cfq_may_queue
,
3117 .elevator_init_fn
= cfq_init_queue
,
3118 .elevator_exit_fn
= cfq_exit_queue
,
3119 .trim
= cfq_free_io_context
,
3121 .elevator_attrs
= cfq_attrs
,
3122 .elevator_name
= "cfq",
3123 .elevator_owner
= THIS_MODULE
,
3126 static int __init
cfq_init(void)
3129 * could be 0 on HZ < 1000 setups
3131 if (!cfq_slice_async
)
3132 cfq_slice_async
= 1;
3133 if (!cfq_slice_idle
)
3136 if (cfq_slab_setup())
3139 elv_register(&iosched_cfq
);
3144 static void __exit
cfq_exit(void)
3146 DECLARE_COMPLETION_ONSTACK(all_gone
);
3147 elv_unregister(&iosched_cfq
);
3148 ioc_gone
= &all_gone
;
3149 /* ioc_gone's update must be visible before reading ioc_count */
3153 * this also protects us from entering cfq_slab_kill() with
3154 * pending RCU callbacks
3156 if (elv_ioc_count_read(cfq_ioc_count
))
3157 wait_for_completion(&all_gone
);
3161 module_init(cfq_init
);
3162 module_exit(cfq_exit
);
3164 MODULE_AUTHOR("Jens Axboe");
3165 MODULE_LICENSE("GPL");
3166 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");