Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
blobebc17ad61dec4612d0bbe872588c4f0e751d4fb4
1 /*
2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
51 * Allow hardware encryption to be disabled.
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 unsigned int i;
60 u32 reg;
63 * SOC devices don't support MCU requests.
65 if (rt2x00_is_soc(rt2x00dev))
66 return;
68 for (i = 0; i < 200; i++) {
69 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 break;
77 udelay(REGISTER_BUSY_DELAY);
80 if (i == 200)
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
94 iounmap(base_addr);
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
105 struct rt2x00_dev *rt2x00dev = eeprom->data;
106 u32 reg;
108 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
110 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 eeprom->reg_data_clock =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 eeprom->reg_chip_select =
115 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
120 struct rt2x00_dev *rt2x00dev = eeprom->data;
121 u32 reg = 0;
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126 !!eeprom->reg_data_clock);
127 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128 !!eeprom->reg_chip_select);
130 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
135 struct eeprom_93cx6 eeprom;
136 u32 reg;
138 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
140 eeprom.data = rt2x00dev;
141 eeprom.register_read = rt2800pci_eepromregister_read;
142 eeprom.register_write = rt2800pci_eepromregister_write;
143 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
145 case 0:
146 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147 break;
148 case 1:
149 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150 break;
151 default:
152 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153 break;
155 eeprom.reg_data_in = 0;
156 eeprom.reg_data_out = 0;
157 eeprom.reg_data_clock = 0;
158 eeprom.reg_chip_select = 0;
160 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 EEPROM_SIZE / sizeof(u16));
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
166 return rt2800_efuse_detect(rt2x00dev);
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
171 rt2800_read_eeprom_efuse(rt2x00dev);
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
180 return 0;
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
186 #endif /* CONFIG_PCI */
189 * Queue handlers.
191 static void rt2800pci_start_queue(struct data_queue *queue)
193 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194 u32 reg;
196 switch (queue->qid) {
197 case QID_RX:
198 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 break;
202 case QID_BEACON:
204 * Allow beacon tasklets to be scheduled for periodic
205 * beacon updates.
207 tasklet_enable(&rt2x00dev->tbtt_tasklet);
208 tasklet_enable(&rt2x00dev->pretbtt_tasklet);
210 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
211 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
212 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
213 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
214 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
216 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
217 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
218 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
219 break;
220 default:
221 break;
225 static void rt2800pci_kick_queue(struct data_queue *queue)
227 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
228 struct queue_entry *entry;
230 switch (queue->qid) {
231 case QID_AC_VO:
232 case QID_AC_VI:
233 case QID_AC_BE:
234 case QID_AC_BK:
235 entry = rt2x00queue_get_entry(queue, Q_INDEX);
236 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
237 entry->entry_idx);
238 break;
239 case QID_MGMT:
240 entry = rt2x00queue_get_entry(queue, Q_INDEX);
241 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
242 entry->entry_idx);
243 break;
244 default:
245 break;
249 static void rt2800pci_stop_queue(struct data_queue *queue)
251 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
252 u32 reg;
254 switch (queue->qid) {
255 case QID_RX:
256 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
257 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
258 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
259 break;
260 case QID_BEACON:
261 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
262 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
263 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
264 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
265 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
267 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
268 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
269 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
272 * Wait for tbtt tasklets to finish.
274 tasklet_disable(&rt2x00dev->tbtt_tasklet);
275 tasklet_disable(&rt2x00dev->pretbtt_tasklet);
276 break;
277 default:
278 break;
283 * Firmware functions
285 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
287 return FIRMWARE_RT2860;
290 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
291 const u8 *data, const size_t len)
293 u32 reg;
296 * enable Host program ram write selection
298 reg = 0;
299 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
300 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
303 * Write firmware to device.
305 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
306 data, len);
308 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
309 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
311 rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
312 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
314 return 0;
318 * Initialization functions.
320 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
322 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
323 u32 word;
325 if (entry->queue->qid == QID_RX) {
326 rt2x00_desc_read(entry_priv->desc, 1, &word);
328 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
329 } else {
330 rt2x00_desc_read(entry_priv->desc, 1, &word);
332 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
336 static void rt2800pci_clear_entry(struct queue_entry *entry)
338 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
339 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
340 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
341 u32 word;
343 if (entry->queue->qid == QID_RX) {
344 rt2x00_desc_read(entry_priv->desc, 0, &word);
345 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
346 rt2x00_desc_write(entry_priv->desc, 0, word);
348 rt2x00_desc_read(entry_priv->desc, 1, &word);
349 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
350 rt2x00_desc_write(entry_priv->desc, 1, word);
353 * Set RX IDX in register to inform hardware that we have
354 * handled this entry and it is available for reuse again.
356 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
357 entry->entry_idx);
358 } else {
359 rt2x00_desc_read(entry_priv->desc, 1, &word);
360 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
361 rt2x00_desc_write(entry_priv->desc, 1, word);
365 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
367 struct queue_entry_priv_pci *entry_priv;
368 u32 reg;
371 * Initialize registers.
373 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
374 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
375 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
376 rt2x00dev->tx[0].limit);
377 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
378 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
380 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
381 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
382 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
383 rt2x00dev->tx[1].limit);
384 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
385 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
387 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
388 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
389 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
390 rt2x00dev->tx[2].limit);
391 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
392 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
394 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
395 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
396 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
397 rt2x00dev->tx[3].limit);
398 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
399 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
401 entry_priv = rt2x00dev->rx->entries[0].priv_data;
402 rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
403 rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
404 rt2x00dev->rx[0].limit);
405 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
406 rt2x00dev->rx[0].limit - 1);
407 rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
410 * Enable global DMA configuration
412 rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
413 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
414 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
415 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
416 rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
418 rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
420 return 0;
424 * Device state switch handlers.
426 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
427 enum dev_state state)
429 int mask = (state == STATE_RADIO_IRQ_ON);
430 u32 reg;
431 unsigned long flags;
434 * When interrupts are being enabled, the interrupt registers
435 * should clear the register to assure a clean state.
437 if (state == STATE_RADIO_IRQ_ON) {
438 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
439 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
442 * Enable tasklets. The beacon related tasklets are
443 * enabled when the beacon queue is started.
445 tasklet_enable(&rt2x00dev->txstatus_tasklet);
446 tasklet_enable(&rt2x00dev->rxdone_tasklet);
447 tasklet_enable(&rt2x00dev->autowake_tasklet);
450 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
451 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
452 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
453 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
454 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
455 rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
456 rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
457 rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
458 rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
459 rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
460 rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
461 rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
462 rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
463 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
464 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
465 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
466 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
467 rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
468 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
469 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
470 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
471 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
473 if (state == STATE_RADIO_IRQ_OFF) {
475 * Ensure that all tasklets are finished before
476 * disabling the interrupts.
478 tasklet_disable(&rt2x00dev->txstatus_tasklet);
479 tasklet_disable(&rt2x00dev->rxdone_tasklet);
480 tasklet_disable(&rt2x00dev->autowake_tasklet);
484 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
486 u32 reg;
489 * Reset DMA indexes
491 rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
492 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
493 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
494 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
495 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
496 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
497 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
498 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
499 rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
501 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
502 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
504 if (rt2x00_is_pcie(rt2x00dev) &&
505 (rt2x00_rt(rt2x00dev, RT3572) ||
506 rt2x00_rt(rt2x00dev, RT5390))) {
507 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
508 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
509 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
510 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
513 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
515 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
516 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
517 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
518 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
520 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
522 return 0;
525 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
527 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
528 rt2800pci_init_queues(rt2x00dev)))
529 return -EIO;
531 return rt2800_enable_radio(rt2x00dev);
534 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
536 if (rt2x00_is_soc(rt2x00dev)) {
537 rt2800_disable_radio(rt2x00dev);
538 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
539 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
543 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
544 enum dev_state state)
546 if (state == STATE_AWAKE) {
547 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
548 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
549 } else if (state == STATE_SLEEP) {
550 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
551 0xffffffff);
552 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
553 0xffffffff);
554 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
557 return 0;
560 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
561 enum dev_state state)
563 int retval = 0;
565 switch (state) {
566 case STATE_RADIO_ON:
568 * Before the radio can be enabled, the device first has
569 * to be woken up. After that it needs a bit of time
570 * to be fully awake and then the radio can be enabled.
572 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
573 msleep(1);
574 retval = rt2800pci_enable_radio(rt2x00dev);
575 break;
576 case STATE_RADIO_OFF:
578 * After the radio has been disabled, the device should
579 * be put to sleep for powersaving.
581 rt2800pci_disable_radio(rt2x00dev);
582 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
583 break;
584 case STATE_RADIO_IRQ_ON:
585 case STATE_RADIO_IRQ_OFF:
586 rt2800pci_toggle_irq(rt2x00dev, state);
587 break;
588 case STATE_DEEP_SLEEP:
589 case STATE_SLEEP:
590 case STATE_STANDBY:
591 case STATE_AWAKE:
592 retval = rt2800pci_set_state(rt2x00dev, state);
593 break;
594 default:
595 retval = -ENOTSUPP;
596 break;
599 if (unlikely(retval))
600 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
601 state, retval);
603 return retval;
607 * TX descriptor initialization
609 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
611 return (__le32 *) entry->skb->data;
614 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
615 struct txentry_desc *txdesc)
617 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
618 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
619 __le32 *txd = entry_priv->desc;
620 u32 word;
623 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
624 * must contains a TXWI structure + 802.11 header + padding + 802.11
625 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
626 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
627 * data. It means that LAST_SEC0 is always 0.
631 * Initialize TX descriptor
633 rt2x00_desc_read(txd, 0, &word);
634 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
635 rt2x00_desc_write(txd, 0, word);
637 rt2x00_desc_read(txd, 1, &word);
638 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
639 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
640 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
641 rt2x00_set_field32(&word, TXD_W1_BURST,
642 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
643 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
644 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
645 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
646 rt2x00_desc_write(txd, 1, word);
648 rt2x00_desc_read(txd, 2, &word);
649 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
650 skbdesc->skb_dma + TXWI_DESC_SIZE);
651 rt2x00_desc_write(txd, 2, word);
653 rt2x00_desc_read(txd, 3, &word);
654 rt2x00_set_field32(&word, TXD_W3_WIV,
655 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
656 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
657 rt2x00_desc_write(txd, 3, word);
660 * Register descriptor details in skb frame descriptor.
662 skbdesc->desc = txd;
663 skbdesc->desc_len = TXD_DESC_SIZE;
667 * RX control handlers
669 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
670 struct rxdone_entry_desc *rxdesc)
672 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
673 __le32 *rxd = entry_priv->desc;
674 u32 word;
676 rt2x00_desc_read(rxd, 3, &word);
678 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
679 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
682 * Unfortunately we don't know the cipher type used during
683 * decryption. This prevents us from correct providing
684 * correct statistics through debugfs.
686 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
688 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
690 * Hardware has stripped IV/EIV data from 802.11 frame during
691 * decryption. Unfortunately the descriptor doesn't contain
692 * any fields with the EIV/IV data either, so they can't
693 * be restored by rt2x00lib.
695 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
698 * The hardware has already checked the Michael Mic and has
699 * stripped it from the frame. Signal this to mac80211.
701 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
703 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
704 rxdesc->flags |= RX_FLAG_DECRYPTED;
705 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
706 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
709 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
710 rxdesc->dev_flags |= RXDONE_MY_BSS;
712 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
713 rxdesc->dev_flags |= RXDONE_L2PAD;
716 * Process the RXWI structure that is at the start of the buffer.
718 rt2800_process_rxwi(entry, rxdesc);
722 * Interrupt functions.
724 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
726 struct ieee80211_conf conf = { .flags = 0 };
727 struct rt2x00lib_conf libconf = { .conf = &conf };
729 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
732 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
734 struct data_queue *queue;
735 struct queue_entry *entry;
736 u32 status;
737 u8 qid;
738 int max_tx_done = 16;
740 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
741 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
742 if (unlikely(qid >= QID_RX)) {
744 * Unknown queue, this shouldn't happen. Just drop
745 * this tx status.
747 WARNING(rt2x00dev, "Got TX status report with "
748 "unexpected pid %u, dropping\n", qid);
749 break;
752 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
753 if (unlikely(queue == NULL)) {
755 * The queue is NULL, this shouldn't happen. Stop
756 * processing here and drop the tx status
758 WARNING(rt2x00dev, "Got TX status for an unavailable "
759 "queue %u, dropping\n", qid);
760 break;
763 if (unlikely(rt2x00queue_empty(queue))) {
765 * The queue is empty. Stop processing here
766 * and drop the tx status.
768 WARNING(rt2x00dev, "Got TX status for an empty "
769 "queue %u, dropping\n", qid);
770 break;
773 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
774 rt2800_txdone_entry(entry, status);
776 if (--max_tx_done == 0)
777 break;
780 return !max_tx_done;
783 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
784 struct rt2x00_field32 irq_field)
786 u32 reg;
789 * Enable a single interrupt. The interrupt mask register
790 * access needs locking.
792 spin_lock_irq(&rt2x00dev->irqmask_lock);
793 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
794 rt2x00_set_field32(&reg, irq_field, 1);
795 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
796 spin_unlock_irq(&rt2x00dev->irqmask_lock);
799 static void rt2800pci_txstatus_tasklet(unsigned long data)
801 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
802 if (rt2800pci_txdone(rt2x00dev))
803 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
806 * No need to enable the tx status interrupt here as we always
807 * leave it enabled to minimize the possibility of a tx status
808 * register overflow. See comment in interrupt handler.
812 static void rt2800pci_pretbtt_tasklet(unsigned long data)
814 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
815 rt2x00lib_pretbtt(rt2x00dev);
816 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
819 static void rt2800pci_tbtt_tasklet(unsigned long data)
821 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
822 rt2x00lib_beacondone(rt2x00dev);
823 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
826 static void rt2800pci_rxdone_tasklet(unsigned long data)
828 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
829 if (rt2x00pci_rxdone(rt2x00dev))
830 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
831 else
832 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
835 static void rt2800pci_autowake_tasklet(unsigned long data)
837 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
838 rt2800pci_wakeup(rt2x00dev);
839 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
842 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
844 u32 status;
845 int i;
848 * The TX_FIFO_STATUS interrupt needs special care. We should
849 * read TX_STA_FIFO but we should do it immediately as otherwise
850 * the register can overflow and we would lose status reports.
852 * Hence, read the TX_STA_FIFO register and copy all tx status
853 * reports into a kernel FIFO which is handled in the txstatus
854 * tasklet. We use a tasklet to process the tx status reports
855 * because we can schedule the tasklet multiple times (when the
856 * interrupt fires again during tx status processing).
858 * Furthermore we don't disable the TX_FIFO_STATUS
859 * interrupt here but leave it enabled so that the TX_STA_FIFO
860 * can also be read while the tx status tasklet gets executed.
862 * Since we have only one producer and one consumer we don't
863 * need to lock the kfifo.
865 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
866 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
868 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
869 break;
871 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
872 WARNING(rt2x00dev, "TX status FIFO overrun,"
873 "drop tx status report.\n");
874 break;
878 /* Schedule the tasklet for processing the tx status. */
879 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
882 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
884 struct rt2x00_dev *rt2x00dev = dev_instance;
885 u32 reg, mask;
887 /* Read status and ACK all interrupts */
888 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
889 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
891 if (!reg)
892 return IRQ_NONE;
894 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
895 return IRQ_HANDLED;
898 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
899 * for interrupts and interrupt masks we can just use the value of
900 * INT_SOURCE_CSR to create the interrupt mask.
902 mask = ~reg;
904 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
905 rt2800pci_txstatus_interrupt(rt2x00dev);
907 * Never disable the TX_FIFO_STATUS interrupt.
909 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
912 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
913 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
915 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
916 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
918 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
919 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
921 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
922 tasklet_schedule(&rt2x00dev->autowake_tasklet);
925 * Disable all interrupts for which a tasklet was scheduled right now,
926 * the tasklet will reenable the appropriate interrupts.
928 spin_lock(&rt2x00dev->irqmask_lock);
929 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
930 reg &= mask;
931 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
932 spin_unlock(&rt2x00dev->irqmask_lock);
934 return IRQ_HANDLED;
938 * Device probe functions.
940 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
943 * Read EEPROM into buffer
945 if (rt2x00_is_soc(rt2x00dev))
946 rt2800pci_read_eeprom_soc(rt2x00dev);
947 else if (rt2800pci_efuse_detect(rt2x00dev))
948 rt2800pci_read_eeprom_efuse(rt2x00dev);
949 else
950 rt2800pci_read_eeprom_pci(rt2x00dev);
952 return rt2800_validate_eeprom(rt2x00dev);
955 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
957 int retval;
960 * Allocate eeprom data.
962 retval = rt2800pci_validate_eeprom(rt2x00dev);
963 if (retval)
964 return retval;
966 retval = rt2800_init_eeprom(rt2x00dev);
967 if (retval)
968 return retval;
971 * Initialize hw specifications.
973 retval = rt2800_probe_hw_mode(rt2x00dev);
974 if (retval)
975 return retval;
978 * This device has multiple filters for control frames
979 * and has a separate filter for PS Poll frames.
981 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
982 __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
985 * This device has a pre tbtt interrupt and thus fetches
986 * a new beacon directly prior to transmission.
988 __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
991 * This device requires firmware.
993 if (!rt2x00_is_soc(rt2x00dev))
994 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
995 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
996 __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
997 __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
998 __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
999 if (!modparam_nohwcrypt)
1000 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1001 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1002 __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1005 * Set the rssi offset.
1007 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1009 return 0;
1012 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1013 .tx = rt2x00mac_tx,
1014 .start = rt2x00mac_start,
1015 .stop = rt2x00mac_stop,
1016 .add_interface = rt2x00mac_add_interface,
1017 .remove_interface = rt2x00mac_remove_interface,
1018 .config = rt2x00mac_config,
1019 .configure_filter = rt2x00mac_configure_filter,
1020 .set_key = rt2x00mac_set_key,
1021 .sw_scan_start = rt2x00mac_sw_scan_start,
1022 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1023 .get_stats = rt2x00mac_get_stats,
1024 .get_tkip_seq = rt2800_get_tkip_seq,
1025 .set_rts_threshold = rt2800_set_rts_threshold,
1026 .bss_info_changed = rt2x00mac_bss_info_changed,
1027 .conf_tx = rt2800_conf_tx,
1028 .get_tsf = rt2800_get_tsf,
1029 .rfkill_poll = rt2x00mac_rfkill_poll,
1030 .ampdu_action = rt2800_ampdu_action,
1031 .flush = rt2x00mac_flush,
1032 .get_survey = rt2800_get_survey,
1033 .get_ringparam = rt2x00mac_get_ringparam,
1034 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1037 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1038 .register_read = rt2x00pci_register_read,
1039 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
1040 .register_write = rt2x00pci_register_write,
1041 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1042 .register_multiread = rt2x00pci_register_multiread,
1043 .register_multiwrite = rt2x00pci_register_multiwrite,
1044 .regbusy_read = rt2x00pci_regbusy_read,
1045 .drv_write_firmware = rt2800pci_write_firmware,
1046 .drv_init_registers = rt2800pci_init_registers,
1047 .drv_get_txwi = rt2800pci_get_txwi,
1050 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1051 .irq_handler = rt2800pci_interrupt,
1052 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
1053 .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
1054 .tbtt_tasklet = rt2800pci_tbtt_tasklet,
1055 .rxdone_tasklet = rt2800pci_rxdone_tasklet,
1056 .autowake_tasklet = rt2800pci_autowake_tasklet,
1057 .probe_hw = rt2800pci_probe_hw,
1058 .get_firmware_name = rt2800pci_get_firmware_name,
1059 .check_firmware = rt2800_check_firmware,
1060 .load_firmware = rt2800_load_firmware,
1061 .initialize = rt2x00pci_initialize,
1062 .uninitialize = rt2x00pci_uninitialize,
1063 .get_entry_state = rt2800pci_get_entry_state,
1064 .clear_entry = rt2800pci_clear_entry,
1065 .set_device_state = rt2800pci_set_device_state,
1066 .rfkill_poll = rt2800_rfkill_poll,
1067 .link_stats = rt2800_link_stats,
1068 .reset_tuner = rt2800_reset_tuner,
1069 .link_tuner = rt2800_link_tuner,
1070 .gain_calibration = rt2800_gain_calibration,
1071 .start_queue = rt2800pci_start_queue,
1072 .kick_queue = rt2800pci_kick_queue,
1073 .stop_queue = rt2800pci_stop_queue,
1074 .flush_queue = rt2x00pci_flush_queue,
1075 .write_tx_desc = rt2800pci_write_tx_desc,
1076 .write_tx_data = rt2800_write_tx_data,
1077 .write_beacon = rt2800_write_beacon,
1078 .clear_beacon = rt2800_clear_beacon,
1079 .fill_rxdone = rt2800pci_fill_rxdone,
1080 .config_shared_key = rt2800_config_shared_key,
1081 .config_pairwise_key = rt2800_config_pairwise_key,
1082 .config_filter = rt2800_config_filter,
1083 .config_intf = rt2800_config_intf,
1084 .config_erp = rt2800_config_erp,
1085 .config_ant = rt2800_config_ant,
1086 .config = rt2800_config,
1089 static const struct data_queue_desc rt2800pci_queue_rx = {
1090 .entry_num = 128,
1091 .data_size = AGGREGATION_SIZE,
1092 .desc_size = RXD_DESC_SIZE,
1093 .priv_size = sizeof(struct queue_entry_priv_pci),
1096 static const struct data_queue_desc rt2800pci_queue_tx = {
1097 .entry_num = 64,
1098 .data_size = AGGREGATION_SIZE,
1099 .desc_size = TXD_DESC_SIZE,
1100 .priv_size = sizeof(struct queue_entry_priv_pci),
1103 static const struct data_queue_desc rt2800pci_queue_bcn = {
1104 .entry_num = 8,
1105 .data_size = 0, /* No DMA required for beacons */
1106 .desc_size = TXWI_DESC_SIZE,
1107 .priv_size = sizeof(struct queue_entry_priv_pci),
1110 static const struct rt2x00_ops rt2800pci_ops = {
1111 .name = KBUILD_MODNAME,
1112 .max_sta_intf = 1,
1113 .max_ap_intf = 8,
1114 .eeprom_size = EEPROM_SIZE,
1115 .rf_size = RF_SIZE,
1116 .tx_queues = NUM_TX_QUEUES,
1117 .extra_tx_headroom = TXWI_DESC_SIZE,
1118 .rx = &rt2800pci_queue_rx,
1119 .tx = &rt2800pci_queue_tx,
1120 .bcn = &rt2800pci_queue_bcn,
1121 .lib = &rt2800pci_rt2x00_ops,
1122 .drv = &rt2800pci_rt2800_ops,
1123 .hw = &rt2800pci_mac80211_ops,
1124 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1125 .debugfs = &rt2800_rt2x00debug,
1126 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1130 * RT2800pci module information.
1132 #ifdef CONFIG_PCI
1133 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1134 { PCI_DEVICE(0x1814, 0x0601) },
1135 { PCI_DEVICE(0x1814, 0x0681) },
1136 { PCI_DEVICE(0x1814, 0x0701) },
1137 { PCI_DEVICE(0x1814, 0x0781) },
1138 { PCI_DEVICE(0x1814, 0x3090) },
1139 { PCI_DEVICE(0x1814, 0x3091) },
1140 { PCI_DEVICE(0x1814, 0x3092) },
1141 { PCI_DEVICE(0x1432, 0x7708) },
1142 { PCI_DEVICE(0x1432, 0x7727) },
1143 { PCI_DEVICE(0x1432, 0x7728) },
1144 { PCI_DEVICE(0x1432, 0x7738) },
1145 { PCI_DEVICE(0x1432, 0x7748) },
1146 { PCI_DEVICE(0x1432, 0x7758) },
1147 { PCI_DEVICE(0x1432, 0x7768) },
1148 { PCI_DEVICE(0x1462, 0x891a) },
1149 { PCI_DEVICE(0x1a3b, 0x1059) },
1150 #ifdef CONFIG_RT2800PCI_RT33XX
1151 { PCI_DEVICE(0x1814, 0x3390) },
1152 #endif
1153 #ifdef CONFIG_RT2800PCI_RT35XX
1154 { PCI_DEVICE(0x1432, 0x7711) },
1155 { PCI_DEVICE(0x1432, 0x7722) },
1156 { PCI_DEVICE(0x1814, 0x3060) },
1157 { PCI_DEVICE(0x1814, 0x3062) },
1158 { PCI_DEVICE(0x1814, 0x3562) },
1159 { PCI_DEVICE(0x1814, 0x3592) },
1160 { PCI_DEVICE(0x1814, 0x3593) },
1161 #endif
1162 #ifdef CONFIG_RT2800PCI_RT53XX
1163 { PCI_DEVICE(0x1814, 0x5390) },
1164 { PCI_DEVICE(0x1814, 0x539f) },
1165 #endif
1166 { 0, }
1168 #endif /* CONFIG_PCI */
1170 MODULE_AUTHOR(DRV_PROJECT);
1171 MODULE_VERSION(DRV_VERSION);
1172 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1173 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1174 #ifdef CONFIG_PCI
1175 MODULE_FIRMWARE(FIRMWARE_RT2860);
1176 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1177 #endif /* CONFIG_PCI */
1178 MODULE_LICENSE("GPL");
1180 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1181 static int rt2800soc_probe(struct platform_device *pdev)
1183 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1186 static struct platform_driver rt2800soc_driver = {
1187 .driver = {
1188 .name = "rt2800_wmac",
1189 .owner = THIS_MODULE,
1190 .mod_name = KBUILD_MODNAME,
1192 .probe = rt2800soc_probe,
1193 .remove = __devexit_p(rt2x00soc_remove),
1194 .suspend = rt2x00soc_suspend,
1195 .resume = rt2x00soc_resume,
1197 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1199 #ifdef CONFIG_PCI
1200 static int rt2800pci_probe(struct pci_dev *pci_dev,
1201 const struct pci_device_id *id)
1203 return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1206 static struct pci_driver rt2800pci_driver = {
1207 .name = KBUILD_MODNAME,
1208 .id_table = rt2800pci_device_table,
1209 .probe = rt2800pci_probe,
1210 .remove = __devexit_p(rt2x00pci_remove),
1211 .suspend = rt2x00pci_suspend,
1212 .resume = rt2x00pci_resume,
1214 #endif /* CONFIG_PCI */
1216 static int __init rt2800pci_init(void)
1218 int ret = 0;
1220 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1221 ret = platform_driver_register(&rt2800soc_driver);
1222 if (ret)
1223 return ret;
1224 #endif
1225 #ifdef CONFIG_PCI
1226 ret = pci_register_driver(&rt2800pci_driver);
1227 if (ret) {
1228 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1229 platform_driver_unregister(&rt2800soc_driver);
1230 #endif
1231 return ret;
1233 #endif
1235 return ret;
1238 static void __exit rt2800pci_exit(void)
1240 #ifdef CONFIG_PCI
1241 pci_unregister_driver(&rt2800pci_driver);
1242 #endif
1243 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1244 platform_driver_unregister(&rt2800soc_driver);
1245 #endif
1248 module_init(rt2800pci_init);
1249 module_exit(rt2800pci_exit);