2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
27 #include <net/af_unix.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) \
43 per_cpu(avc_cache_stats, get_cpu()).field++; \
47 #define avc_cache_stats_incr(field) do {} while (0)
54 struct av_decision avd
;
59 struct hlist_node list
; /* anchored in avc_cache->slots[i] */
60 struct rcu_head rhead
;
64 struct hlist_head slots
[AVC_CACHE_SLOTS
]; /* head for avc_node->list */
65 spinlock_t slots_lock
[AVC_CACHE_SLOTS
]; /* lock for writes */
66 atomic_t lru_hint
; /* LRU hint for reclaim scan */
67 atomic_t active_nodes
;
68 u32 latest_notif
; /* latest revocation notification */
71 struct avc_callback_node
{
72 int (*callback
) (u32 event
, u32 ssid
, u32 tsid
,
73 u16 tclass
, u32 perms
,
80 struct avc_callback_node
*next
;
83 /* Exported via selinufs */
84 unsigned int avc_cache_threshold
= AVC_DEF_CACHE_THRESHOLD
;
86 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
87 DEFINE_PER_CPU(struct avc_cache_stats
, avc_cache_stats
) = { 0 };
90 static struct avc_cache avc_cache
;
91 static struct avc_callback_node
*avc_callbacks
;
92 static struct kmem_cache
*avc_node_cachep
;
94 static inline int avc_hash(u32 ssid
, u32 tsid
, u16 tclass
)
96 return (ssid
^ (tsid
<<2) ^ (tclass
<<4)) & (AVC_CACHE_SLOTS
- 1);
100 * avc_dump_av - Display an access vector in human-readable form.
101 * @tclass: target security class
104 static void avc_dump_av(struct audit_buffer
*ab
, u16 tclass
, u32 av
)
110 audit_log_format(ab
, " null");
114 perms
= secclass_map
[tclass
-1].perms
;
116 audit_log_format(ab
, " {");
119 while (i
< (sizeof(av
) * 8)) {
120 if ((perm
& av
) && perms
[i
]) {
121 audit_log_format(ab
, " %s", perms
[i
]);
129 audit_log_format(ab
, " 0x%x", av
);
131 audit_log_format(ab
, " }");
135 * avc_dump_query - Display a SID pair and a class in human-readable form.
136 * @ssid: source security identifier
137 * @tsid: target security identifier
138 * @tclass: target security class
140 static void avc_dump_query(struct audit_buffer
*ab
, u32 ssid
, u32 tsid
, u16 tclass
)
146 rc
= security_sid_to_context(ssid
, &scontext
, &scontext_len
);
148 audit_log_format(ab
, "ssid=%d", ssid
);
150 audit_log_format(ab
, "scontext=%s", scontext
);
154 rc
= security_sid_to_context(tsid
, &scontext
, &scontext_len
);
156 audit_log_format(ab
, " tsid=%d", tsid
);
158 audit_log_format(ab
, " tcontext=%s", scontext
);
162 BUG_ON(tclass
>= ARRAY_SIZE(secclass_map
));
163 audit_log_format(ab
, " tclass=%s", secclass_map
[tclass
-1].name
);
167 * avc_init - Initialize the AVC.
169 * Initialize the access vector cache.
171 void __init
avc_init(void)
175 for (i
= 0; i
< AVC_CACHE_SLOTS
; i
++) {
176 INIT_HLIST_HEAD(&avc_cache
.slots
[i
]);
177 spin_lock_init(&avc_cache
.slots_lock
[i
]);
179 atomic_set(&avc_cache
.active_nodes
, 0);
180 atomic_set(&avc_cache
.lru_hint
, 0);
182 avc_node_cachep
= kmem_cache_create("avc_node", sizeof(struct avc_node
),
183 0, SLAB_PANIC
, NULL
);
185 audit_log(current
->audit_context
, GFP_KERNEL
, AUDIT_KERNEL
, "AVC INITIALIZED\n");
188 int avc_get_hash_stats(char *page
)
190 int i
, chain_len
, max_chain_len
, slots_used
;
191 struct avc_node
*node
;
192 struct hlist_head
*head
;
198 for (i
= 0; i
< AVC_CACHE_SLOTS
; i
++) {
199 head
= &avc_cache
.slots
[i
];
200 if (!hlist_empty(head
)) {
201 struct hlist_node
*next
;
205 hlist_for_each_entry_rcu(node
, next
, head
, list
)
207 if (chain_len
> max_chain_len
)
208 max_chain_len
= chain_len
;
214 return scnprintf(page
, PAGE_SIZE
, "entries: %d\nbuckets used: %d/%d\n"
215 "longest chain: %d\n",
216 atomic_read(&avc_cache
.active_nodes
),
217 slots_used
, AVC_CACHE_SLOTS
, max_chain_len
);
220 static void avc_node_free(struct rcu_head
*rhead
)
222 struct avc_node
*node
= container_of(rhead
, struct avc_node
, rhead
);
223 kmem_cache_free(avc_node_cachep
, node
);
224 avc_cache_stats_incr(frees
);
227 static void avc_node_delete(struct avc_node
*node
)
229 hlist_del_rcu(&node
->list
);
230 call_rcu(&node
->rhead
, avc_node_free
);
231 atomic_dec(&avc_cache
.active_nodes
);
234 static void avc_node_kill(struct avc_node
*node
)
236 kmem_cache_free(avc_node_cachep
, node
);
237 avc_cache_stats_incr(frees
);
238 atomic_dec(&avc_cache
.active_nodes
);
241 static void avc_node_replace(struct avc_node
*new, struct avc_node
*old
)
243 hlist_replace_rcu(&old
->list
, &new->list
);
244 call_rcu(&old
->rhead
, avc_node_free
);
245 atomic_dec(&avc_cache
.active_nodes
);
248 static inline int avc_reclaim_node(void)
250 struct avc_node
*node
;
251 int hvalue
, try, ecx
;
253 struct hlist_head
*head
;
254 struct hlist_node
*next
;
257 for (try = 0, ecx
= 0; try < AVC_CACHE_SLOTS
; try++) {
258 hvalue
= atomic_inc_return(&avc_cache
.lru_hint
) & (AVC_CACHE_SLOTS
- 1);
259 head
= &avc_cache
.slots
[hvalue
];
260 lock
= &avc_cache
.slots_lock
[hvalue
];
262 if (!spin_trylock_irqsave(lock
, flags
))
266 hlist_for_each_entry(node
, next
, head
, list
) {
267 avc_node_delete(node
);
268 avc_cache_stats_incr(reclaims
);
270 if (ecx
>= AVC_CACHE_RECLAIM
) {
272 spin_unlock_irqrestore(lock
, flags
);
277 spin_unlock_irqrestore(lock
, flags
);
283 static struct avc_node
*avc_alloc_node(void)
285 struct avc_node
*node
;
287 node
= kmem_cache_zalloc(avc_node_cachep
, GFP_ATOMIC
);
291 INIT_HLIST_NODE(&node
->list
);
292 avc_cache_stats_incr(allocations
);
294 if (atomic_inc_return(&avc_cache
.active_nodes
) > avc_cache_threshold
)
301 static void avc_node_populate(struct avc_node
*node
, u32 ssid
, u32 tsid
, u16 tclass
, struct av_decision
*avd
)
303 node
->ae
.ssid
= ssid
;
304 node
->ae
.tsid
= tsid
;
305 node
->ae
.tclass
= tclass
;
306 memcpy(&node
->ae
.avd
, avd
, sizeof(node
->ae
.avd
));
309 static inline struct avc_node
*avc_search_node(u32 ssid
, u32 tsid
, u16 tclass
)
311 struct avc_node
*node
, *ret
= NULL
;
313 struct hlist_head
*head
;
314 struct hlist_node
*next
;
316 hvalue
= avc_hash(ssid
, tsid
, tclass
);
317 head
= &avc_cache
.slots
[hvalue
];
318 hlist_for_each_entry_rcu(node
, next
, head
, list
) {
319 if (ssid
== node
->ae
.ssid
&&
320 tclass
== node
->ae
.tclass
&&
321 tsid
== node
->ae
.tsid
) {
331 * avc_lookup - Look up an AVC entry.
332 * @ssid: source security identifier
333 * @tsid: target security identifier
334 * @tclass: target security class
336 * Look up an AVC entry that is valid for the
337 * (@ssid, @tsid), interpreting the permissions
338 * based on @tclass. If a valid AVC entry exists,
339 * then this function returns the avc_node.
340 * Otherwise, this function returns NULL.
342 static struct avc_node
*avc_lookup(u32 ssid
, u32 tsid
, u16 tclass
)
344 struct avc_node
*node
;
346 avc_cache_stats_incr(lookups
);
347 node
= avc_search_node(ssid
, tsid
, tclass
);
350 avc_cache_stats_incr(hits
);
352 avc_cache_stats_incr(misses
);
357 static int avc_latest_notif_update(int seqno
, int is_insert
)
360 static DEFINE_SPINLOCK(notif_lock
);
363 spin_lock_irqsave(¬if_lock
, flag
);
365 if (seqno
< avc_cache
.latest_notif
) {
366 printk(KERN_WARNING
"SELinux: avc: seqno %d < latest_notif %d\n",
367 seqno
, avc_cache
.latest_notif
);
371 if (seqno
> avc_cache
.latest_notif
)
372 avc_cache
.latest_notif
= seqno
;
374 spin_unlock_irqrestore(¬if_lock
, flag
);
380 * avc_insert - Insert an AVC entry.
381 * @ssid: source security identifier
382 * @tsid: target security identifier
383 * @tclass: target security class
384 * @avd: resulting av decision
386 * Insert an AVC entry for the SID pair
387 * (@ssid, @tsid) and class @tclass.
388 * The access vectors and the sequence number are
389 * normally provided by the security server in
390 * response to a security_compute_av() call. If the
391 * sequence number @avd->seqno is not less than the latest
392 * revocation notification, then the function copies
393 * the access vectors into a cache entry, returns
394 * avc_node inserted. Otherwise, this function returns NULL.
396 static struct avc_node
*avc_insert(u32 ssid
, u32 tsid
, u16 tclass
, struct av_decision
*avd
)
398 struct avc_node
*pos
, *node
= NULL
;
402 if (avc_latest_notif_update(avd
->seqno
, 1))
405 node
= avc_alloc_node();
407 struct hlist_head
*head
;
408 struct hlist_node
*next
;
411 hvalue
= avc_hash(ssid
, tsid
, tclass
);
412 avc_node_populate(node
, ssid
, tsid
, tclass
, avd
);
414 head
= &avc_cache
.slots
[hvalue
];
415 lock
= &avc_cache
.slots_lock
[hvalue
];
417 spin_lock_irqsave(lock
, flag
);
418 hlist_for_each_entry(pos
, next
, head
, list
) {
419 if (pos
->ae
.ssid
== ssid
&&
420 pos
->ae
.tsid
== tsid
&&
421 pos
->ae
.tclass
== tclass
) {
422 avc_node_replace(node
, pos
);
426 hlist_add_head_rcu(&node
->list
, head
);
428 spin_unlock_irqrestore(lock
, flag
);
435 * avc_audit_pre_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
440 static void avc_audit_pre_callback(struct audit_buffer
*ab
, void *a
)
442 struct common_audit_data
*ad
= a
;
443 audit_log_format(ab
, "avc: %s ",
444 ad
->selinux_audit_data
.denied
? "denied" : "granted");
445 avc_dump_av(ab
, ad
->selinux_audit_data
.tclass
,
446 ad
->selinux_audit_data
.audited
);
447 audit_log_format(ab
, " for ");
451 * avc_audit_post_callback - SELinux specific information
452 * will be called by generic audit code
453 * @ab: the audit buffer
456 static void avc_audit_post_callback(struct audit_buffer
*ab
, void *a
)
458 struct common_audit_data
*ad
= a
;
459 audit_log_format(ab
, " ");
460 avc_dump_query(ab
, ad
->selinux_audit_data
.ssid
,
461 ad
->selinux_audit_data
.tsid
,
462 ad
->selinux_audit_data
.tclass
);
466 * avc_audit - Audit the granting or denial of permissions.
467 * @ssid: source security identifier
468 * @tsid: target security identifier
469 * @tclass: target security class
470 * @requested: requested permissions
471 * @avd: access vector decisions
472 * @result: result from avc_has_perm_noaudit
473 * @a: auxiliary audit data
475 * Audit the granting or denial of permissions in accordance
476 * with the policy. This function is typically called by
477 * avc_has_perm() after a permission check, but can also be
478 * called directly by callers who use avc_has_perm_noaudit()
479 * in order to separate the permission check from the auditing.
480 * For example, this separation is useful when the permission check must
481 * be performed under a lock, to allow the lock to be released
482 * before calling the auditing code.
484 void avc_audit(u32 ssid
, u32 tsid
,
485 u16 tclass
, u32 requested
,
486 struct av_decision
*avd
, int result
, struct common_audit_data
*a
)
488 struct common_audit_data stack_data
;
490 denied
= requested
& ~avd
->allowed
;
492 audited
= denied
& avd
->auditdeny
;
494 * a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in
495 * this field means that ANY denials should NOT be audited if
496 * the policy contains an explicit dontaudit rule for that
497 * permission. Take notice that this is unrelated to the
498 * actual permissions that were denied. As an example lets
502 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
503 * selinux_audit_data.auditdeny & ACCESS == 1
505 * We will NOT audit the denial even though the denied
506 * permission was READ and the auditdeny checks were for
510 a
->selinux_audit_data
.auditdeny
&&
511 !(a
->selinux_audit_data
.auditdeny
& avd
->auditdeny
))
514 audited
= denied
= requested
;
516 audited
= requested
& avd
->auditallow
;
521 COMMON_AUDIT_DATA_INIT(a
, NONE
);
523 a
->selinux_audit_data
.tclass
= tclass
;
524 a
->selinux_audit_data
.requested
= requested
;
525 a
->selinux_audit_data
.ssid
= ssid
;
526 a
->selinux_audit_data
.tsid
= tsid
;
527 a
->selinux_audit_data
.audited
= audited
;
528 a
->selinux_audit_data
.denied
= denied
;
529 a
->lsm_pre_audit
= avc_audit_pre_callback
;
530 a
->lsm_post_audit
= avc_audit_post_callback
;
535 * avc_add_callback - Register a callback for security events.
536 * @callback: callback function
537 * @events: security events
538 * @ssid: source security identifier or %SECSID_WILD
539 * @tsid: target security identifier or %SECSID_WILD
540 * @tclass: target security class
541 * @perms: permissions
543 * Register a callback function for events in the set @events
544 * related to the SID pair (@ssid, @tsid)
545 * and the permissions @perms, interpreting
546 * @perms based on @tclass. Returns %0 on success or
547 * -%ENOMEM if insufficient memory exists to add the callback.
549 int avc_add_callback(int (*callback
)(u32 event
, u32 ssid
, u32 tsid
,
550 u16 tclass
, u32 perms
,
552 u32 events
, u32 ssid
, u32 tsid
,
553 u16 tclass
, u32 perms
)
555 struct avc_callback_node
*c
;
558 c
= kmalloc(sizeof(*c
), GFP_ATOMIC
);
564 c
->callback
= callback
;
569 c
->next
= avc_callbacks
;
575 static inline int avc_sidcmp(u32 x
, u32 y
)
577 return (x
== y
|| x
== SECSID_WILD
|| y
== SECSID_WILD
);
581 * avc_update_node Update an AVC entry
582 * @event : Updating event
583 * @perms : Permission mask bits
584 * @ssid,@tsid,@tclass : identifier of an AVC entry
585 * @seqno : sequence number when decision was made
587 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
588 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
589 * otherwise, this function updates the AVC entry. The original AVC-entry object
590 * will release later by RCU.
592 static int avc_update_node(u32 event
, u32 perms
, u32 ssid
, u32 tsid
, u16 tclass
,
597 struct avc_node
*pos
, *node
, *orig
= NULL
;
598 struct hlist_head
*head
;
599 struct hlist_node
*next
;
602 node
= avc_alloc_node();
608 /* Lock the target slot */
609 hvalue
= avc_hash(ssid
, tsid
, tclass
);
611 head
= &avc_cache
.slots
[hvalue
];
612 lock
= &avc_cache
.slots_lock
[hvalue
];
614 spin_lock_irqsave(lock
, flag
);
616 hlist_for_each_entry(pos
, next
, head
, list
) {
617 if (ssid
== pos
->ae
.ssid
&&
618 tsid
== pos
->ae
.tsid
&&
619 tclass
== pos
->ae
.tclass
&&
620 seqno
== pos
->ae
.avd
.seqno
){
633 * Copy and replace original node.
636 avc_node_populate(node
, ssid
, tsid
, tclass
, &orig
->ae
.avd
);
639 case AVC_CALLBACK_GRANT
:
640 node
->ae
.avd
.allowed
|= perms
;
642 case AVC_CALLBACK_TRY_REVOKE
:
643 case AVC_CALLBACK_REVOKE
:
644 node
->ae
.avd
.allowed
&= ~perms
;
646 case AVC_CALLBACK_AUDITALLOW_ENABLE
:
647 node
->ae
.avd
.auditallow
|= perms
;
649 case AVC_CALLBACK_AUDITALLOW_DISABLE
:
650 node
->ae
.avd
.auditallow
&= ~perms
;
652 case AVC_CALLBACK_AUDITDENY_ENABLE
:
653 node
->ae
.avd
.auditdeny
|= perms
;
655 case AVC_CALLBACK_AUDITDENY_DISABLE
:
656 node
->ae
.avd
.auditdeny
&= ~perms
;
659 avc_node_replace(node
, orig
);
661 spin_unlock_irqrestore(lock
, flag
);
667 * avc_flush - Flush the cache
669 static void avc_flush(void)
671 struct hlist_head
*head
;
672 struct hlist_node
*next
;
673 struct avc_node
*node
;
678 for (i
= 0; i
< AVC_CACHE_SLOTS
; i
++) {
679 head
= &avc_cache
.slots
[i
];
680 lock
= &avc_cache
.slots_lock
[i
];
682 spin_lock_irqsave(lock
, flag
);
684 * With preemptable RCU, the outer spinlock does not
685 * prevent RCU grace periods from ending.
688 hlist_for_each_entry(node
, next
, head
, list
)
689 avc_node_delete(node
);
691 spin_unlock_irqrestore(lock
, flag
);
696 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
697 * @seqno: policy sequence number
699 int avc_ss_reset(u32 seqno
)
701 struct avc_callback_node
*c
;
706 for (c
= avc_callbacks
; c
; c
= c
->next
) {
707 if (c
->events
& AVC_CALLBACK_RESET
) {
708 tmprc
= c
->callback(AVC_CALLBACK_RESET
,
710 /* save the first error encountered for the return
711 value and continue processing the callbacks */
717 avc_latest_notif_update(seqno
, 0);
722 * avc_has_perm_noaudit - Check permissions but perform no auditing.
723 * @ssid: source security identifier
724 * @tsid: target security identifier
725 * @tclass: target security class
726 * @requested: requested permissions, interpreted based on @tclass
727 * @flags: AVC_STRICT or 0
728 * @avd: access vector decisions
730 * Check the AVC to determine whether the @requested permissions are granted
731 * for the SID pair (@ssid, @tsid), interpreting the permissions
732 * based on @tclass, and call the security server on a cache miss to obtain
733 * a new decision and add it to the cache. Return a copy of the decisions
734 * in @avd. Return %0 if all @requested permissions are granted,
735 * -%EACCES if any permissions are denied, or another -errno upon
736 * other errors. This function is typically called by avc_has_perm(),
737 * but may also be called directly to separate permission checking from
738 * auditing, e.g. in cases where a lock must be held for the check but
739 * should be released for the auditing.
741 int avc_has_perm_noaudit(u32 ssid
, u32 tsid
,
742 u16 tclass
, u32 requested
,
744 struct av_decision
*in_avd
)
746 struct avc_node
*node
;
747 struct av_decision avd_entry
, *avd
;
755 node
= avc_lookup(ssid
, tsid
, tclass
);
764 security_compute_av(ssid
, tsid
, tclass
, avd
);
766 node
= avc_insert(ssid
, tsid
, tclass
, avd
);
769 memcpy(in_avd
, &node
->ae
.avd
, sizeof(*in_avd
));
773 denied
= requested
& ~(avd
->allowed
);
776 if (flags
& AVC_STRICT
)
778 else if (!selinux_enforcing
|| (avd
->flags
& AVD_FLAGS_PERMISSIVE
))
779 avc_update_node(AVC_CALLBACK_GRANT
, requested
, ssid
,
780 tsid
, tclass
, avd
->seqno
);
790 * avc_has_perm - Check permissions and perform any appropriate auditing.
791 * @ssid: source security identifier
792 * @tsid: target security identifier
793 * @tclass: target security class
794 * @requested: requested permissions, interpreted based on @tclass
795 * @auditdata: auxiliary audit data
797 * Check the AVC to determine whether the @requested permissions are granted
798 * for the SID pair (@ssid, @tsid), interpreting the permissions
799 * based on @tclass, and call the security server on a cache miss to obtain
800 * a new decision and add it to the cache. Audit the granting or denial of
801 * permissions in accordance with the policy. Return %0 if all @requested
802 * permissions are granted, -%EACCES if any permissions are denied, or
803 * another -errno upon other errors.
805 int avc_has_perm(u32 ssid
, u32 tsid
, u16 tclass
,
806 u32 requested
, struct common_audit_data
*auditdata
)
808 struct av_decision avd
;
811 rc
= avc_has_perm_noaudit(ssid
, tsid
, tclass
, requested
, 0, &avd
);
812 avc_audit(ssid
, tsid
, tclass
, requested
, &avd
, rc
, auditdata
);
816 u32
avc_policy_seqno(void)
818 return avc_cache
.latest_notif
;
821 void avc_disable(void)
824 * If you are looking at this because you have realized that we are
825 * not destroying the avc_node_cachep it might be easy to fix, but
826 * I don't know the memory barrier semantics well enough to know. It's
827 * possible that some other task dereferenced security_ops when
828 * it still pointed to selinux operations. If that is the case it's
829 * possible that it is about to use the avc and is about to need the
830 * avc_node_cachep. I know I could wrap the security.c security_ops call
831 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
832 * the cache and get that memory back.
834 if (avc_node_cachep
) {
836 /* kmem_cache_destroy(avc_node_cachep); */