Btrfs: run chunk allocations while we do delayed refs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blob71549d11a09ee90e85f525f298afe2c05d6979a2
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
57 * Control how reservations are dealt with.
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 return (cache->flags & bits) == bits;
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 atomic_inc(&cache->count);
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
163 return 0;
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
206 return ret;
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
223 u64 start, end;
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
264 kfree(logical);
266 return 0;
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
272 struct btrfs_caching_control *ctl;
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
292 static void put_caching_control(struct btrfs_caching_control *ctl)
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
337 return total_added;
340 static noinline void caching_thread(struct btrfs_work *work)
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
437 path->slots[0]++;
439 ret = 0;
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
455 free_excluded_extents(extent_root, block_group);
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
470 DEFINE_WAIT(wait);
471 struct btrfs_fs_info *fs_info = cache->fs_info;
472 struct btrfs_caching_control *caching_ctl;
473 int ret = 0;
475 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 BUG_ON(!caching_ctl);
478 INIT_LIST_HEAD(&caching_ctl->list);
479 mutex_init(&caching_ctl->mutex);
480 init_waitqueue_head(&caching_ctl->wait);
481 caching_ctl->block_group = cache;
482 caching_ctl->progress = cache->key.objectid;
483 atomic_set(&caching_ctl->count, 1);
484 caching_ctl->work.func = caching_thread;
486 spin_lock(&cache->lock);
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
497 * another.
499 while (cache->cached == BTRFS_CACHE_FAST) {
500 struct btrfs_caching_control *ctl;
502 ctl = cache->caching_ctl;
503 atomic_inc(&ctl->count);
504 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 spin_unlock(&cache->lock);
507 schedule();
509 finish_wait(&ctl->wait, &wait);
510 put_caching_control(ctl);
511 spin_lock(&cache->lock);
514 if (cache->cached != BTRFS_CACHE_NO) {
515 spin_unlock(&cache->lock);
516 kfree(caching_ctl);
517 return 0;
519 WARN_ON(cache->caching_ctl);
520 cache->caching_ctl = caching_ctl;
521 cache->cached = BTRFS_CACHE_FAST;
522 spin_unlock(&cache->lock);
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
530 if (trans && (!trans->transaction->in_commit) &&
531 (root && root != root->fs_info->tree_root) &&
532 btrfs_test_opt(root, SPACE_CACHE)) {
533 ret = load_free_space_cache(fs_info, cache);
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
555 } else {
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
581 btrfs_get_block_group(cache);
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585 return ret;
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 struct btrfs_block_group_cache *cache;
596 cache = block_group_cache_tree_search(info, bytenr, 0);
598 return cache;
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
608 struct btrfs_block_group_cache *cache;
610 cache = block_group_cache_tree_search(info, bytenr, 1);
612 return cache;
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
621 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
622 BTRFS_BLOCK_GROUP_METADATA;
624 rcu_read_lock();
625 list_for_each_entry_rcu(found, head, list) {
626 if (found->flags & flags) {
627 rcu_read_unlock();
628 return found;
631 rcu_read_unlock();
632 return NULL;
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 struct list_head *head = &info->space_info;
642 struct btrfs_space_info *found;
644 rcu_read_lock();
645 list_for_each_entry_rcu(found, head, list)
646 found->full = 0;
647 rcu_read_unlock();
650 static u64 div_factor(u64 num, int factor)
652 if (factor == 10)
653 return num;
654 num *= factor;
655 do_div(num, 10);
656 return num;
659 static u64 div_factor_fine(u64 num, int factor)
661 if (factor == 100)
662 return num;
663 num *= factor;
664 do_div(num, 100);
665 return num;
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 u64 search_start, u64 search_hint, int owner)
671 struct btrfs_block_group_cache *cache;
672 u64 used;
673 u64 last = max(search_hint, search_start);
674 u64 group_start = 0;
675 int full_search = 0;
676 int factor = 9;
677 int wrapped = 0;
678 again:
679 while (1) {
680 cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 if (!cache)
682 break;
684 spin_lock(&cache->lock);
685 last = cache->key.objectid + cache->key.offset;
686 used = btrfs_block_group_used(&cache->item);
688 if ((full_search || !cache->ro) &&
689 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 if (used + cache->pinned + cache->reserved <
691 div_factor(cache->key.offset, factor)) {
692 group_start = cache->key.objectid;
693 spin_unlock(&cache->lock);
694 btrfs_put_block_group(cache);
695 goto found;
698 spin_unlock(&cache->lock);
699 btrfs_put_block_group(cache);
700 cond_resched();
702 if (!wrapped) {
703 last = search_start;
704 wrapped = 1;
705 goto again;
707 if (!full_search && factor < 10) {
708 last = search_start;
709 full_search = 1;
710 factor = 10;
711 goto again;
713 found:
714 return group_start;
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 int ret;
721 struct btrfs_key key;
722 struct btrfs_path *path;
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
728 key.objectid = start;
729 key.offset = len;
730 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 0, 0);
733 btrfs_free_path(path);
734 return ret;
738 * helper function to lookup reference count and flags of extent.
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, u64 bytenr,
748 u64 num_bytes, u64 *refs, u64 *flags)
750 struct btrfs_delayed_ref_head *head;
751 struct btrfs_delayed_ref_root *delayed_refs;
752 struct btrfs_path *path;
753 struct btrfs_extent_item *ei;
754 struct extent_buffer *leaf;
755 struct btrfs_key key;
756 u32 item_size;
757 u64 num_refs;
758 u64 extent_flags;
759 int ret;
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
765 key.objectid = bytenr;
766 key.type = BTRFS_EXTENT_ITEM_KEY;
767 key.offset = num_bytes;
768 if (!trans) {
769 path->skip_locking = 1;
770 path->search_commit_root = 1;
772 again:
773 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 &key, path, 0, 0);
775 if (ret < 0)
776 goto out_free;
778 if (ret == 0) {
779 leaf = path->nodes[0];
780 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 if (item_size >= sizeof(*ei)) {
782 ei = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_extent_item);
784 num_refs = btrfs_extent_refs(leaf, ei);
785 extent_flags = btrfs_extent_flags(leaf, ei);
786 } else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0 *ei0;
789 BUG_ON(item_size != sizeof(*ei0));
790 ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 struct btrfs_extent_item_v0);
792 num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 /* FIXME: this isn't correct for data */
794 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 BUG();
797 #endif
799 BUG_ON(num_refs == 0);
800 } else {
801 num_refs = 0;
802 extent_flags = 0;
803 ret = 0;
806 if (!trans)
807 goto out;
809 delayed_refs = &trans->transaction->delayed_refs;
810 spin_lock(&delayed_refs->lock);
811 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (head) {
813 if (!mutex_trylock(&head->mutex)) {
814 atomic_inc(&head->node.refs);
815 spin_unlock(&delayed_refs->lock);
817 btrfs_release_path(path);
820 * Mutex was contended, block until it's released and try
821 * again
823 mutex_lock(&head->mutex);
824 mutex_unlock(&head->mutex);
825 btrfs_put_delayed_ref(&head->node);
826 goto again;
828 if (head->extent_op && head->extent_op->update_flags)
829 extent_flags |= head->extent_op->flags_to_set;
830 else
831 BUG_ON(num_refs == 0);
833 num_refs += head->node.ref_mod;
834 mutex_unlock(&head->mutex);
836 spin_unlock(&delayed_refs->lock);
837 out:
838 WARN_ON(num_refs == 0);
839 if (refs)
840 *refs = num_refs;
841 if (flags)
842 *flags = extent_flags;
843 out_free:
844 btrfs_free_path(path);
845 return ret;
849 * Back reference rules. Back refs have three main goals:
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
880 * When a tree block is COW'd through a tree, there are four cases:
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
900 * Back Reference Key composing:
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
905 * of back refs.
907 * File extents can be referenced by:
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
913 * The extent ref structure for the implicit back refs has fields for:
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
920 * The key offset for the implicit back refs is hash of the first
921 * three fields.
923 * The extent ref structure for the full back refs has field for:
925 * - number of pointers in the tree leaf
927 * The key offset for the implicit back refs is the first byte of
928 * the tree leaf
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
933 * (root_key.objectid, inode objectid, offset in file, 1)
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 * Btree extents can be referenced by:
942 * - Different subvolumes
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
957 struct btrfs_path *path,
958 u64 owner, u32 extra_size)
960 struct btrfs_extent_item *item;
961 struct btrfs_extent_item_v0 *ei0;
962 struct btrfs_extent_ref_v0 *ref0;
963 struct btrfs_tree_block_info *bi;
964 struct extent_buffer *leaf;
965 struct btrfs_key key;
966 struct btrfs_key found_key;
967 u32 new_size = sizeof(*item);
968 u64 refs;
969 int ret;
971 leaf = path->nodes[0];
972 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_extent_item_v0);
977 refs = btrfs_extent_refs_v0(leaf, ei0);
979 if (owner == (u64)-1) {
980 while (1) {
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 return ret;
985 BUG_ON(ret > 0);
986 leaf = path->nodes[0];
988 btrfs_item_key_to_cpu(leaf, &found_key,
989 path->slots[0]);
990 BUG_ON(key.objectid != found_key.objectid);
991 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 path->slots[0]++;
993 continue;
995 ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 struct btrfs_extent_ref_v0);
997 owner = btrfs_ref_objectid_v0(leaf, ref0);
998 break;
1001 btrfs_release_path(path);
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 new_size += sizeof(*bi);
1006 new_size -= sizeof(*ei0);
1007 ret = btrfs_search_slot(trans, root, &key, path,
1008 new_size + extra_size, 1);
1009 if (ret < 0)
1010 return ret;
1011 BUG_ON(ret);
1013 ret = btrfs_extend_item(trans, root, path, new_size);
1015 leaf = path->nodes[0];
1016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 btrfs_set_extent_refs(leaf, item, refs);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf, item, 0);
1020 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 btrfs_set_extent_flags(leaf, item,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 bi = (struct btrfs_tree_block_info *)(item + 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 } else {
1029 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 btrfs_mark_buffer_dirty(leaf);
1032 return 0;
1034 #endif
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 u32 high_crc = ~(u32)0;
1039 u32 low_crc = ~(u32)0;
1040 __le64 lenum;
1042 lenum = cpu_to_le64(root_objectid);
1043 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 lenum = cpu_to_le64(owner);
1045 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 lenum = cpu_to_le64(offset);
1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049 return ((u64)high_crc << 31) ^ (u64)low_crc;
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 struct btrfs_extent_data_ref *ref)
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 btrfs_extent_data_ref_objectid(leaf, ref),
1057 btrfs_extent_data_ref_offset(leaf, ref));
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 struct btrfs_extent_data_ref *ref,
1062 u64 root_objectid, u64 owner, u64 offset)
1064 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 return 0;
1068 return 1;
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 struct btrfs_path *path,
1074 u64 bytenr, u64 parent,
1075 u64 root_objectid,
1076 u64 owner, u64 offset)
1078 struct btrfs_key key;
1079 struct btrfs_extent_data_ref *ref;
1080 struct extent_buffer *leaf;
1081 u32 nritems;
1082 int ret;
1083 int recow;
1084 int err = -ENOENT;
1086 key.objectid = bytenr;
1087 if (parent) {
1088 key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 key.offset = parent;
1090 } else {
1091 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 key.offset = hash_extent_data_ref(root_objectid,
1093 owner, offset);
1095 again:
1096 recow = 0;
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 if (ret < 0) {
1099 err = ret;
1100 goto fail;
1103 if (parent) {
1104 if (!ret)
1105 return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 btrfs_release_path(path);
1109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 if (ret < 0) {
1111 err = ret;
1112 goto fail;
1114 if (!ret)
1115 return 0;
1116 #endif
1117 goto fail;
1120 leaf = path->nodes[0];
1121 nritems = btrfs_header_nritems(leaf);
1122 while (1) {
1123 if (path->slots[0] >= nritems) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret < 0)
1126 err = ret;
1127 if (ret)
1128 goto fail;
1130 leaf = path->nodes[0];
1131 nritems = btrfs_header_nritems(leaf);
1132 recow = 1;
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 if (key.objectid != bytenr ||
1137 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 goto fail;
1140 ref = btrfs_item_ptr(leaf, path->slots[0],
1141 struct btrfs_extent_data_ref);
1143 if (match_extent_data_ref(leaf, ref, root_objectid,
1144 owner, offset)) {
1145 if (recow) {
1146 btrfs_release_path(path);
1147 goto again;
1149 err = 0;
1150 break;
1152 path->slots[0]++;
1154 fail:
1155 return err;
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid, u64 owner,
1163 u64 offset, int refs_to_add)
1165 struct btrfs_key key;
1166 struct extent_buffer *leaf;
1167 u32 size;
1168 u32 num_refs;
1169 int ret;
1171 key.objectid = bytenr;
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 size = sizeof(struct btrfs_shared_data_ref);
1176 } else {
1177 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 key.offset = hash_extent_data_ref(root_objectid,
1179 owner, offset);
1180 size = sizeof(struct btrfs_extent_data_ref);
1183 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 if (ret && ret != -EEXIST)
1185 goto fail;
1187 leaf = path->nodes[0];
1188 if (parent) {
1189 struct btrfs_shared_data_ref *ref;
1190 ref = btrfs_item_ptr(leaf, path->slots[0],
1191 struct btrfs_shared_data_ref);
1192 if (ret == 0) {
1193 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 } else {
1195 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 num_refs += refs_to_add;
1197 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 } else {
1200 struct btrfs_extent_data_ref *ref;
1201 while (ret == -EEXIST) {
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (match_extent_data_ref(leaf, ref, root_objectid,
1205 owner, offset))
1206 break;
1207 btrfs_release_path(path);
1208 key.offset++;
1209 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 size);
1211 if (ret && ret != -EEXIST)
1212 goto fail;
1214 leaf = path->nodes[0];
1216 ref = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_extent_data_ref);
1218 if (ret == 0) {
1219 btrfs_set_extent_data_ref_root(leaf, ref,
1220 root_objectid);
1221 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 } else {
1225 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 num_refs += refs_to_add;
1227 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1230 btrfs_mark_buffer_dirty(leaf);
1231 ret = 0;
1232 fail:
1233 btrfs_release_path(path);
1234 return ret;
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 int refs_to_drop)
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref1 = NULL;
1244 struct btrfs_shared_data_ref *ref2 = NULL;
1245 struct extent_buffer *leaf;
1246 u32 num_refs = 0;
1247 int ret = 0;
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1259 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 struct btrfs_extent_ref_v0 *ref0;
1263 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_extent_ref_v0);
1265 num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 } else {
1268 BUG();
1271 BUG_ON(num_refs < refs_to_drop);
1272 num_refs -= refs_to_drop;
1274 if (num_refs == 0) {
1275 ret = btrfs_del_item(trans, root, path);
1276 } else {
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 else {
1283 struct btrfs_extent_ref_v0 *ref0;
1284 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_ref_v0);
1286 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 #endif
1289 btrfs_mark_buffer_dirty(leaf);
1291 return ret;
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 struct btrfs_extent_inline_ref *iref)
1298 struct btrfs_key key;
1299 struct extent_buffer *leaf;
1300 struct btrfs_extent_data_ref *ref1;
1301 struct btrfs_shared_data_ref *ref2;
1302 u32 num_refs = 0;
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (iref) {
1307 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 BTRFS_EXTENT_DATA_REF_KEY) {
1309 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 } else {
1312 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_data_ref);
1318 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 struct btrfs_shared_data_ref);
1322 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 struct btrfs_extent_ref_v0 *ref0;
1326 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 struct btrfs_extent_ref_v0);
1328 num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 } else {
1331 WARN_ON(1);
1333 return num_refs;
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 u64 bytenr, u64 parent,
1340 u64 root_objectid)
1342 struct btrfs_key key;
1343 int ret;
1345 key.objectid = bytenr;
1346 if (parent) {
1347 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 key.offset = parent;
1349 } else {
1350 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 key.offset = root_objectid;
1354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 if (ret > 0)
1356 ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret == -ENOENT && parent) {
1359 btrfs_release_path(path);
1360 key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 if (ret > 0)
1363 ret = -ENOENT;
1365 #endif
1366 return ret;
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1375 struct btrfs_key key;
1376 int ret;
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1387 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 btrfs_release_path(path);
1389 return ret;
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1394 int type;
1395 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 if (parent > 0)
1397 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 else
1399 type = BTRFS_TREE_BLOCK_REF_KEY;
1400 } else {
1401 if (parent > 0)
1402 type = BTRFS_SHARED_DATA_REF_KEY;
1403 else
1404 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 return type;
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 struct btrfs_key *key)
1413 for (; level < BTRFS_MAX_LEVEL; level++) {
1414 if (!path->nodes[level])
1415 break;
1416 if (path->slots[level] + 1 >=
1417 btrfs_header_nritems(path->nodes[level]))
1418 continue;
1419 if (level == 0)
1420 btrfs_item_key_to_cpu(path->nodes[level], key,
1421 path->slots[level] + 1);
1422 else
1423 btrfs_node_key_to_cpu(path->nodes[level], key,
1424 path->slots[level] + 1);
1425 return 0;
1427 return 1;
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref **ref_ret,
1448 u64 bytenr, u64 num_bytes,
1449 u64 parent, u64 root_objectid,
1450 u64 owner, u64 offset, int insert)
1452 struct btrfs_key key;
1453 struct extent_buffer *leaf;
1454 struct btrfs_extent_item *ei;
1455 struct btrfs_extent_inline_ref *iref;
1456 u64 flags;
1457 u64 item_size;
1458 unsigned long ptr;
1459 unsigned long end;
1460 int extra_size;
1461 int type;
1462 int want;
1463 int ret;
1464 int err = 0;
1466 key.objectid = bytenr;
1467 key.type = BTRFS_EXTENT_ITEM_KEY;
1468 key.offset = num_bytes;
1470 want = extent_ref_type(parent, owner);
1471 if (insert) {
1472 extra_size = btrfs_extent_inline_ref_size(want);
1473 path->keep_locks = 1;
1474 } else
1475 extra_size = -1;
1476 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 if (ret < 0) {
1478 err = ret;
1479 goto out;
1481 BUG_ON(ret);
1483 leaf = path->nodes[0];
1484 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size < sizeof(*ei)) {
1487 if (!insert) {
1488 err = -ENOENT;
1489 goto out;
1491 ret = convert_extent_item_v0(trans, root, path, owner,
1492 extra_size);
1493 if (ret < 0) {
1494 err = ret;
1495 goto out;
1497 leaf = path->nodes[0];
1498 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1500 #endif
1501 BUG_ON(item_size < sizeof(*ei));
1503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 flags = btrfs_extent_flags(leaf, ei);
1506 ptr = (unsigned long)(ei + 1);
1507 end = (unsigned long)ei + item_size;
1509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 ptr += sizeof(struct btrfs_tree_block_info);
1511 BUG_ON(ptr > end);
1512 } else {
1513 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1516 err = -ENOENT;
1517 while (1) {
1518 if (ptr >= end) {
1519 WARN_ON(ptr > end);
1520 break;
1522 iref = (struct btrfs_extent_inline_ref *)ptr;
1523 type = btrfs_extent_inline_ref_type(leaf, iref);
1524 if (want < type)
1525 break;
1526 if (want > type) {
1527 ptr += btrfs_extent_inline_ref_size(type);
1528 continue;
1531 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 struct btrfs_extent_data_ref *dref;
1533 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 if (match_extent_data_ref(leaf, dref, root_objectid,
1535 owner, offset)) {
1536 err = 0;
1537 break;
1539 if (hash_extent_data_ref_item(leaf, dref) <
1540 hash_extent_data_ref(root_objectid, owner, offset))
1541 break;
1542 } else {
1543 u64 ref_offset;
1544 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 if (parent > 0) {
1546 if (parent == ref_offset) {
1547 err = 0;
1548 break;
1550 if (ref_offset < parent)
1551 break;
1552 } else {
1553 if (root_objectid == ref_offset) {
1554 err = 0;
1555 break;
1557 if (ref_offset < root_objectid)
1558 break;
1561 ptr += btrfs_extent_inline_ref_size(type);
1563 if (err == -ENOENT && insert) {
1564 if (item_size + extra_size >=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 err = -EAGAIN;
1567 goto out;
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1575 if (find_next_key(path, 0, &key) == 0 &&
1576 key.objectid == bytenr &&
1577 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 err = -EAGAIN;
1579 goto out;
1582 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 if (insert) {
1585 path->keep_locks = 0;
1586 btrfs_unlock_up_safe(path, 1);
1588 return err;
1592 * helper to add new inline back ref
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 struct btrfs_root *root,
1597 struct btrfs_path *path,
1598 struct btrfs_extent_inline_ref *iref,
1599 u64 parent, u64 root_objectid,
1600 u64 owner, u64 offset, int refs_to_add,
1601 struct btrfs_delayed_extent_op *extent_op)
1603 struct extent_buffer *leaf;
1604 struct btrfs_extent_item *ei;
1605 unsigned long ptr;
1606 unsigned long end;
1607 unsigned long item_offset;
1608 u64 refs;
1609 int size;
1610 int type;
1611 int ret;
1613 leaf = path->nodes[0];
1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 item_offset = (unsigned long)iref - (unsigned long)ei;
1617 type = extent_ref_type(parent, owner);
1618 size = btrfs_extent_inline_ref_size(type);
1620 ret = btrfs_extend_item(trans, root, path, size);
1622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 refs = btrfs_extent_refs(leaf, ei);
1624 refs += refs_to_add;
1625 btrfs_set_extent_refs(leaf, ei, refs);
1626 if (extent_op)
1627 __run_delayed_extent_op(extent_op, leaf, ei);
1629 ptr = (unsigned long)ei + item_offset;
1630 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 if (ptr < end - size)
1632 memmove_extent_buffer(leaf, ptr + size, ptr,
1633 end - size - ptr);
1635 iref = (struct btrfs_extent_inline_ref *)ptr;
1636 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 struct btrfs_extent_data_ref *dref;
1639 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 struct btrfs_shared_data_ref *sref;
1646 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1654 btrfs_mark_buffer_dirty(leaf);
1655 return 0;
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 struct btrfs_path *path,
1661 struct btrfs_extent_inline_ref **ref_ret,
1662 u64 bytenr, u64 num_bytes, u64 parent,
1663 u64 root_objectid, u64 owner, u64 offset)
1665 int ret;
1667 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 bytenr, num_bytes, parent,
1669 root_objectid, owner, offset, 0);
1670 if (ret != -ENOENT)
1671 return ret;
1673 btrfs_release_path(path);
1674 *ref_ret = NULL;
1676 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 root_objectid);
1679 } else {
1680 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 root_objectid, owner, offset);
1683 return ret;
1687 * helper to update/remove inline back ref
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct btrfs_path *path,
1693 struct btrfs_extent_inline_ref *iref,
1694 int refs_to_mod,
1695 struct btrfs_delayed_extent_op *extent_op)
1697 struct extent_buffer *leaf;
1698 struct btrfs_extent_item *ei;
1699 struct btrfs_extent_data_ref *dref = NULL;
1700 struct btrfs_shared_data_ref *sref = NULL;
1701 unsigned long ptr;
1702 unsigned long end;
1703 u32 item_size;
1704 int size;
1705 int type;
1706 int ret;
1707 u64 refs;
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1750 btrfs_mark_buffer_dirty(leaf);
1751 return 0;
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 u64 bytenr, u64 num_bytes, u64 parent,
1759 u64 root_objectid, u64 owner,
1760 u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1763 struct btrfs_extent_inline_ref *iref;
1764 int ret;
1766 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 bytenr, num_bytes, parent,
1768 root_objectid, owner, offset, 1);
1769 if (ret == 0) {
1770 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 ret = update_inline_extent_backref(trans, root, path, iref,
1772 refs_to_add, extent_op);
1773 } else if (ret == -ENOENT) {
1774 ret = setup_inline_extent_backref(trans, root, path, iref,
1775 parent, root_objectid,
1776 owner, offset, refs_to_add,
1777 extent_op);
1779 return ret;
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_path *path,
1785 u64 bytenr, u64 parent, u64 root_objectid,
1786 u64 owner, u64 offset, int refs_to_add)
1788 int ret;
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 BUG_ON(refs_to_add != 1);
1791 ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 parent, root_objectid);
1793 } else {
1794 ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 parent, root_objectid,
1796 owner, offset, refs_to_add);
1798 return ret;
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_path *path,
1804 struct btrfs_extent_inline_ref *iref,
1805 int refs_to_drop, int is_data)
1807 int ret;
1809 BUG_ON(!is_data && refs_to_drop != 1);
1810 if (iref) {
1811 ret = update_inline_extent_backref(trans, root, path, iref,
1812 -refs_to_drop, NULL);
1813 } else if (is_data) {
1814 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 } else {
1816 ret = btrfs_del_item(trans, root, path);
1818 return ret;
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 u64 start, u64 len)
1824 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 u64 num_bytes, u64 *actual_bytes)
1830 int ret;
1831 u64 discarded_bytes = 0;
1832 struct btrfs_bio *bbio = NULL;
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 bytenr, &num_bytes, &bbio, 0);
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break;
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1860 ret = 0;
1862 kfree(bbio);
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1869 return ret;
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root,
1874 u64 bytenr, u64 num_bytes, u64 parent,
1875 u64 root_objectid, u64 owner, u64 offset)
1877 int ret;
1878 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1879 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1881 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1882 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1883 parent, root_objectid, (int)owner,
1884 BTRFS_ADD_DELAYED_REF, NULL);
1885 } else {
1886 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1887 parent, root_objectid, owner, offset,
1888 BTRFS_ADD_DELAYED_REF, NULL);
1890 return ret;
1893 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1894 struct btrfs_root *root,
1895 u64 bytenr, u64 num_bytes,
1896 u64 parent, u64 root_objectid,
1897 u64 owner, u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1900 struct btrfs_path *path;
1901 struct extent_buffer *leaf;
1902 struct btrfs_extent_item *item;
1903 u64 refs;
1904 int ret;
1905 int err = 0;
1907 path = btrfs_alloc_path();
1908 if (!path)
1909 return -ENOMEM;
1911 path->reada = 1;
1912 path->leave_spinning = 1;
1913 /* this will setup the path even if it fails to insert the back ref */
1914 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1915 path, bytenr, num_bytes, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 if (ret == 0)
1919 goto out;
1921 if (ret != -EAGAIN) {
1922 err = ret;
1923 goto out;
1926 leaf = path->nodes[0];
1927 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1928 refs = btrfs_extent_refs(leaf, item);
1929 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1930 if (extent_op)
1931 __run_delayed_extent_op(extent_op, leaf, item);
1933 btrfs_mark_buffer_dirty(leaf);
1934 btrfs_release_path(path);
1936 path->reada = 1;
1937 path->leave_spinning = 1;
1939 /* now insert the actual backref */
1940 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1941 path, bytenr, parent, root_objectid,
1942 owner, offset, refs_to_add);
1943 BUG_ON(ret);
1944 out:
1945 btrfs_free_path(path);
1946 return err;
1949 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1950 struct btrfs_root *root,
1951 struct btrfs_delayed_ref_node *node,
1952 struct btrfs_delayed_extent_op *extent_op,
1953 int insert_reserved)
1955 int ret = 0;
1956 struct btrfs_delayed_data_ref *ref;
1957 struct btrfs_key ins;
1958 u64 parent = 0;
1959 u64 ref_root = 0;
1960 u64 flags = 0;
1962 ins.objectid = node->bytenr;
1963 ins.offset = node->num_bytes;
1964 ins.type = BTRFS_EXTENT_ITEM_KEY;
1966 ref = btrfs_delayed_node_to_data_ref(node);
1967 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1968 parent = ref->parent;
1969 else
1970 ref_root = ref->root;
1972 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1973 if (extent_op) {
1974 BUG_ON(extent_op->update_key);
1975 flags |= extent_op->flags_to_set;
1977 ret = alloc_reserved_file_extent(trans, root,
1978 parent, ref_root, flags,
1979 ref->objectid, ref->offset,
1980 &ins, node->ref_mod);
1981 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1982 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1983 node->num_bytes, parent,
1984 ref_root, ref->objectid,
1985 ref->offset, node->ref_mod,
1986 extent_op);
1987 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1988 ret = __btrfs_free_extent(trans, root, node->bytenr,
1989 node->num_bytes, parent,
1990 ref_root, ref->objectid,
1991 ref->offset, node->ref_mod,
1992 extent_op);
1993 } else {
1994 BUG();
1996 return ret;
1999 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2000 struct extent_buffer *leaf,
2001 struct btrfs_extent_item *ei)
2003 u64 flags = btrfs_extent_flags(leaf, ei);
2004 if (extent_op->update_flags) {
2005 flags |= extent_op->flags_to_set;
2006 btrfs_set_extent_flags(leaf, ei, flags);
2009 if (extent_op->update_key) {
2010 struct btrfs_tree_block_info *bi;
2011 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2012 bi = (struct btrfs_tree_block_info *)(ei + 1);
2013 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2017 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2018 struct btrfs_root *root,
2019 struct btrfs_delayed_ref_node *node,
2020 struct btrfs_delayed_extent_op *extent_op)
2022 struct btrfs_key key;
2023 struct btrfs_path *path;
2024 struct btrfs_extent_item *ei;
2025 struct extent_buffer *leaf;
2026 u32 item_size;
2027 int ret;
2028 int err = 0;
2030 path = btrfs_alloc_path();
2031 if (!path)
2032 return -ENOMEM;
2034 key.objectid = node->bytenr;
2035 key.type = BTRFS_EXTENT_ITEM_KEY;
2036 key.offset = node->num_bytes;
2038 path->reada = 1;
2039 path->leave_spinning = 1;
2040 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2041 path, 0, 1);
2042 if (ret < 0) {
2043 err = ret;
2044 goto out;
2046 if (ret > 0) {
2047 err = -EIO;
2048 goto out;
2051 leaf = path->nodes[0];
2052 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2054 if (item_size < sizeof(*ei)) {
2055 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2056 path, (u64)-1, 0);
2057 if (ret < 0) {
2058 err = ret;
2059 goto out;
2061 leaf = path->nodes[0];
2062 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #endif
2065 BUG_ON(item_size < sizeof(*ei));
2066 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2067 __run_delayed_extent_op(extent_op, leaf, ei);
2069 btrfs_mark_buffer_dirty(leaf);
2070 out:
2071 btrfs_free_path(path);
2072 return err;
2075 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2076 struct btrfs_root *root,
2077 struct btrfs_delayed_ref_node *node,
2078 struct btrfs_delayed_extent_op *extent_op,
2079 int insert_reserved)
2081 int ret = 0;
2082 struct btrfs_delayed_tree_ref *ref;
2083 struct btrfs_key ins;
2084 u64 parent = 0;
2085 u64 ref_root = 0;
2087 ins.objectid = node->bytenr;
2088 ins.offset = node->num_bytes;
2089 ins.type = BTRFS_EXTENT_ITEM_KEY;
2091 ref = btrfs_delayed_node_to_tree_ref(node);
2092 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2093 parent = ref->parent;
2094 else
2095 ref_root = ref->root;
2097 BUG_ON(node->ref_mod != 1);
2098 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2099 BUG_ON(!extent_op || !extent_op->update_flags ||
2100 !extent_op->update_key);
2101 ret = alloc_reserved_tree_block(trans, root,
2102 parent, ref_root,
2103 extent_op->flags_to_set,
2104 &extent_op->key,
2105 ref->level, &ins);
2106 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2107 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2108 node->num_bytes, parent, ref_root,
2109 ref->level, 0, 1, extent_op);
2110 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2111 ret = __btrfs_free_extent(trans, root, node->bytenr,
2112 node->num_bytes, parent, ref_root,
2113 ref->level, 0, 1, extent_op);
2114 } else {
2115 BUG();
2117 return ret;
2120 /* helper function to actually process a single delayed ref entry */
2121 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2122 struct btrfs_root *root,
2123 struct btrfs_delayed_ref_node *node,
2124 struct btrfs_delayed_extent_op *extent_op,
2125 int insert_reserved)
2127 int ret;
2128 if (btrfs_delayed_ref_is_head(node)) {
2129 struct btrfs_delayed_ref_head *head;
2131 * we've hit the end of the chain and we were supposed
2132 * to insert this extent into the tree. But, it got
2133 * deleted before we ever needed to insert it, so all
2134 * we have to do is clean up the accounting
2136 BUG_ON(extent_op);
2137 head = btrfs_delayed_node_to_head(node);
2138 if (insert_reserved) {
2139 btrfs_pin_extent(root, node->bytenr,
2140 node->num_bytes, 1);
2141 if (head->is_data) {
2142 ret = btrfs_del_csums(trans, root,
2143 node->bytenr,
2144 node->num_bytes);
2145 BUG_ON(ret);
2148 mutex_unlock(&head->mutex);
2149 return 0;
2152 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2153 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2154 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2155 insert_reserved);
2156 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2157 node->type == BTRFS_SHARED_DATA_REF_KEY)
2158 ret = run_delayed_data_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else
2161 BUG();
2162 return ret;
2165 static noinline struct btrfs_delayed_ref_node *
2166 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2168 struct rb_node *node;
2169 struct btrfs_delayed_ref_node *ref;
2170 int action = BTRFS_ADD_DELAYED_REF;
2171 again:
2173 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2174 * this prevents ref count from going down to zero when
2175 * there still are pending delayed ref.
2177 node = rb_prev(&head->node.rb_node);
2178 while (1) {
2179 if (!node)
2180 break;
2181 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2182 rb_node);
2183 if (ref->bytenr != head->node.bytenr)
2184 break;
2185 if (ref->action == action)
2186 return ref;
2187 node = rb_prev(node);
2189 if (action == BTRFS_ADD_DELAYED_REF) {
2190 action = BTRFS_DROP_DELAYED_REF;
2191 goto again;
2193 return NULL;
2196 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *root,
2198 struct list_head *cluster)
2200 struct btrfs_delayed_ref_root *delayed_refs;
2201 struct btrfs_delayed_ref_node *ref;
2202 struct btrfs_delayed_ref_head *locked_ref = NULL;
2203 struct btrfs_delayed_extent_op *extent_op;
2204 int ret;
2205 int count = 0;
2206 int must_insert_reserved = 0;
2208 delayed_refs = &trans->transaction->delayed_refs;
2209 while (1) {
2210 if (!locked_ref) {
2211 /* pick a new head ref from the cluster list */
2212 if (list_empty(cluster))
2213 break;
2215 locked_ref = list_entry(cluster->next,
2216 struct btrfs_delayed_ref_head, cluster);
2218 /* grab the lock that says we are going to process
2219 * all the refs for this head */
2220 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2223 * we may have dropped the spin lock to get the head
2224 * mutex lock, and that might have given someone else
2225 * time to free the head. If that's true, it has been
2226 * removed from our list and we can move on.
2228 if (ret == -EAGAIN) {
2229 locked_ref = NULL;
2230 count++;
2231 continue;
2236 * record the must insert reserved flag before we
2237 * drop the spin lock.
2239 must_insert_reserved = locked_ref->must_insert_reserved;
2240 locked_ref->must_insert_reserved = 0;
2242 extent_op = locked_ref->extent_op;
2243 locked_ref->extent_op = NULL;
2246 * locked_ref is the head node, so we have to go one
2247 * node back for any delayed ref updates
2249 ref = select_delayed_ref(locked_ref);
2250 if (!ref) {
2251 /* All delayed refs have been processed, Go ahead
2252 * and send the head node to run_one_delayed_ref,
2253 * so that any accounting fixes can happen
2255 ref = &locked_ref->node;
2257 if (extent_op && must_insert_reserved) {
2258 kfree(extent_op);
2259 extent_op = NULL;
2262 if (extent_op) {
2263 spin_unlock(&delayed_refs->lock);
2265 ret = run_delayed_extent_op(trans, root,
2266 ref, extent_op);
2267 BUG_ON(ret);
2268 kfree(extent_op);
2270 goto next;
2273 list_del_init(&locked_ref->cluster);
2274 locked_ref = NULL;
2277 ref->in_tree = 0;
2278 rb_erase(&ref->rb_node, &delayed_refs->root);
2279 delayed_refs->num_entries--;
2281 spin_unlock(&delayed_refs->lock);
2283 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2284 must_insert_reserved);
2285 BUG_ON(ret);
2287 btrfs_put_delayed_ref(ref);
2288 kfree(extent_op);
2289 count++;
2290 next:
2291 do_chunk_alloc(trans, root->fs_info->extent_root,
2292 2 * 1024 * 1024,
2293 btrfs_get_alloc_profile(root, 0),
2294 CHUNK_ALLOC_NO_FORCE);
2295 cond_resched();
2296 spin_lock(&delayed_refs->lock);
2298 return count;
2302 * this starts processing the delayed reference count updates and
2303 * extent insertions we have queued up so far. count can be
2304 * 0, which means to process everything in the tree at the start
2305 * of the run (but not newly added entries), or it can be some target
2306 * number you'd like to process.
2308 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2309 struct btrfs_root *root, unsigned long count)
2311 struct rb_node *node;
2312 struct btrfs_delayed_ref_root *delayed_refs;
2313 struct btrfs_delayed_ref_node *ref;
2314 struct list_head cluster;
2315 int ret;
2316 int run_all = count == (unsigned long)-1;
2317 int run_most = 0;
2319 if (root == root->fs_info->extent_root)
2320 root = root->fs_info->tree_root;
2322 do_chunk_alloc(trans, root->fs_info->extent_root,
2323 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2324 CHUNK_ALLOC_NO_FORCE);
2326 delayed_refs = &trans->transaction->delayed_refs;
2327 INIT_LIST_HEAD(&cluster);
2328 again:
2329 spin_lock(&delayed_refs->lock);
2330 if (count == 0) {
2331 count = delayed_refs->num_entries * 2;
2332 run_most = 1;
2334 while (1) {
2335 if (!(run_all || run_most) &&
2336 delayed_refs->num_heads_ready < 64)
2337 break;
2340 * go find something we can process in the rbtree. We start at
2341 * the beginning of the tree, and then build a cluster
2342 * of refs to process starting at the first one we are able to
2343 * lock
2345 ret = btrfs_find_ref_cluster(trans, &cluster,
2346 delayed_refs->run_delayed_start);
2347 if (ret)
2348 break;
2350 ret = run_clustered_refs(trans, root, &cluster);
2351 BUG_ON(ret < 0);
2353 count -= min_t(unsigned long, ret, count);
2355 if (count == 0)
2356 break;
2359 if (run_all) {
2360 node = rb_first(&delayed_refs->root);
2361 if (!node)
2362 goto out;
2363 count = (unsigned long)-1;
2365 while (node) {
2366 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2367 rb_node);
2368 if (btrfs_delayed_ref_is_head(ref)) {
2369 struct btrfs_delayed_ref_head *head;
2371 head = btrfs_delayed_node_to_head(ref);
2372 atomic_inc(&ref->refs);
2374 spin_unlock(&delayed_refs->lock);
2376 * Mutex was contended, block until it's
2377 * released and try again
2379 mutex_lock(&head->mutex);
2380 mutex_unlock(&head->mutex);
2382 btrfs_put_delayed_ref(ref);
2383 cond_resched();
2384 goto again;
2386 node = rb_next(node);
2388 spin_unlock(&delayed_refs->lock);
2389 schedule_timeout(1);
2390 goto again;
2392 out:
2393 spin_unlock(&delayed_refs->lock);
2394 return 0;
2397 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2398 struct btrfs_root *root,
2399 u64 bytenr, u64 num_bytes, u64 flags,
2400 int is_data)
2402 struct btrfs_delayed_extent_op *extent_op;
2403 int ret;
2405 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2406 if (!extent_op)
2407 return -ENOMEM;
2409 extent_op->flags_to_set = flags;
2410 extent_op->update_flags = 1;
2411 extent_op->update_key = 0;
2412 extent_op->is_data = is_data ? 1 : 0;
2414 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2415 if (ret)
2416 kfree(extent_op);
2417 return ret;
2420 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root,
2422 struct btrfs_path *path,
2423 u64 objectid, u64 offset, u64 bytenr)
2425 struct btrfs_delayed_ref_head *head;
2426 struct btrfs_delayed_ref_node *ref;
2427 struct btrfs_delayed_data_ref *data_ref;
2428 struct btrfs_delayed_ref_root *delayed_refs;
2429 struct rb_node *node;
2430 int ret = 0;
2432 ret = -ENOENT;
2433 delayed_refs = &trans->transaction->delayed_refs;
2434 spin_lock(&delayed_refs->lock);
2435 head = btrfs_find_delayed_ref_head(trans, bytenr);
2436 if (!head)
2437 goto out;
2439 if (!mutex_trylock(&head->mutex)) {
2440 atomic_inc(&head->node.refs);
2441 spin_unlock(&delayed_refs->lock);
2443 btrfs_release_path(path);
2446 * Mutex was contended, block until it's released and let
2447 * caller try again
2449 mutex_lock(&head->mutex);
2450 mutex_unlock(&head->mutex);
2451 btrfs_put_delayed_ref(&head->node);
2452 return -EAGAIN;
2455 node = rb_prev(&head->node.rb_node);
2456 if (!node)
2457 goto out_unlock;
2459 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2461 if (ref->bytenr != bytenr)
2462 goto out_unlock;
2464 ret = 1;
2465 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2466 goto out_unlock;
2468 data_ref = btrfs_delayed_node_to_data_ref(ref);
2470 node = rb_prev(node);
2471 if (node) {
2472 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2473 if (ref->bytenr == bytenr)
2474 goto out_unlock;
2477 if (data_ref->root != root->root_key.objectid ||
2478 data_ref->objectid != objectid || data_ref->offset != offset)
2479 goto out_unlock;
2481 ret = 0;
2482 out_unlock:
2483 mutex_unlock(&head->mutex);
2484 out:
2485 spin_unlock(&delayed_refs->lock);
2486 return ret;
2489 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2490 struct btrfs_root *root,
2491 struct btrfs_path *path,
2492 u64 objectid, u64 offset, u64 bytenr)
2494 struct btrfs_root *extent_root = root->fs_info->extent_root;
2495 struct extent_buffer *leaf;
2496 struct btrfs_extent_data_ref *ref;
2497 struct btrfs_extent_inline_ref *iref;
2498 struct btrfs_extent_item *ei;
2499 struct btrfs_key key;
2500 u32 item_size;
2501 int ret;
2503 key.objectid = bytenr;
2504 key.offset = (u64)-1;
2505 key.type = BTRFS_EXTENT_ITEM_KEY;
2507 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2508 if (ret < 0)
2509 goto out;
2510 BUG_ON(ret == 0);
2512 ret = -ENOENT;
2513 if (path->slots[0] == 0)
2514 goto out;
2516 path->slots[0]--;
2517 leaf = path->nodes[0];
2518 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2520 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2521 goto out;
2523 ret = 1;
2524 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2525 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2526 if (item_size < sizeof(*ei)) {
2527 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2528 goto out;
2530 #endif
2531 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2533 if (item_size != sizeof(*ei) +
2534 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2535 goto out;
2537 if (btrfs_extent_generation(leaf, ei) <=
2538 btrfs_root_last_snapshot(&root->root_item))
2539 goto out;
2541 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2542 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2543 BTRFS_EXTENT_DATA_REF_KEY)
2544 goto out;
2546 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2547 if (btrfs_extent_refs(leaf, ei) !=
2548 btrfs_extent_data_ref_count(leaf, ref) ||
2549 btrfs_extent_data_ref_root(leaf, ref) !=
2550 root->root_key.objectid ||
2551 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2552 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2553 goto out;
2555 ret = 0;
2556 out:
2557 return ret;
2560 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2561 struct btrfs_root *root,
2562 u64 objectid, u64 offset, u64 bytenr)
2564 struct btrfs_path *path;
2565 int ret;
2566 int ret2;
2568 path = btrfs_alloc_path();
2569 if (!path)
2570 return -ENOENT;
2572 do {
2573 ret = check_committed_ref(trans, root, path, objectid,
2574 offset, bytenr);
2575 if (ret && ret != -ENOENT)
2576 goto out;
2578 ret2 = check_delayed_ref(trans, root, path, objectid,
2579 offset, bytenr);
2580 } while (ret2 == -EAGAIN);
2582 if (ret2 && ret2 != -ENOENT) {
2583 ret = ret2;
2584 goto out;
2587 if (ret != -ENOENT || ret2 != -ENOENT)
2588 ret = 0;
2589 out:
2590 btrfs_free_path(path);
2591 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2592 WARN_ON(ret > 0);
2593 return ret;
2596 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2597 struct btrfs_root *root,
2598 struct extent_buffer *buf,
2599 int full_backref, int inc)
2601 u64 bytenr;
2602 u64 num_bytes;
2603 u64 parent;
2604 u64 ref_root;
2605 u32 nritems;
2606 struct btrfs_key key;
2607 struct btrfs_file_extent_item *fi;
2608 int i;
2609 int level;
2610 int ret = 0;
2611 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2612 u64, u64, u64, u64, u64, u64);
2614 ref_root = btrfs_header_owner(buf);
2615 nritems = btrfs_header_nritems(buf);
2616 level = btrfs_header_level(buf);
2618 if (!root->ref_cows && level == 0)
2619 return 0;
2621 if (inc)
2622 process_func = btrfs_inc_extent_ref;
2623 else
2624 process_func = btrfs_free_extent;
2626 if (full_backref)
2627 parent = buf->start;
2628 else
2629 parent = 0;
2631 for (i = 0; i < nritems; i++) {
2632 if (level == 0) {
2633 btrfs_item_key_to_cpu(buf, &key, i);
2634 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2635 continue;
2636 fi = btrfs_item_ptr(buf, i,
2637 struct btrfs_file_extent_item);
2638 if (btrfs_file_extent_type(buf, fi) ==
2639 BTRFS_FILE_EXTENT_INLINE)
2640 continue;
2641 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2642 if (bytenr == 0)
2643 continue;
2645 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2646 key.offset -= btrfs_file_extent_offset(buf, fi);
2647 ret = process_func(trans, root, bytenr, num_bytes,
2648 parent, ref_root, key.objectid,
2649 key.offset);
2650 if (ret)
2651 goto fail;
2652 } else {
2653 bytenr = btrfs_node_blockptr(buf, i);
2654 num_bytes = btrfs_level_size(root, level - 1);
2655 ret = process_func(trans, root, bytenr, num_bytes,
2656 parent, ref_root, level - 1, 0);
2657 if (ret)
2658 goto fail;
2661 return 0;
2662 fail:
2663 BUG();
2664 return ret;
2667 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2668 struct extent_buffer *buf, int full_backref)
2670 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2673 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2674 struct extent_buffer *buf, int full_backref)
2676 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2679 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct btrfs_path *path,
2682 struct btrfs_block_group_cache *cache)
2684 int ret;
2685 struct btrfs_root *extent_root = root->fs_info->extent_root;
2686 unsigned long bi;
2687 struct extent_buffer *leaf;
2689 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2690 if (ret < 0)
2691 goto fail;
2692 BUG_ON(ret);
2694 leaf = path->nodes[0];
2695 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2696 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2697 btrfs_mark_buffer_dirty(leaf);
2698 btrfs_release_path(path);
2699 fail:
2700 if (ret)
2701 return ret;
2702 return 0;
2706 static struct btrfs_block_group_cache *
2707 next_block_group(struct btrfs_root *root,
2708 struct btrfs_block_group_cache *cache)
2710 struct rb_node *node;
2711 spin_lock(&root->fs_info->block_group_cache_lock);
2712 node = rb_next(&cache->cache_node);
2713 btrfs_put_block_group(cache);
2714 if (node) {
2715 cache = rb_entry(node, struct btrfs_block_group_cache,
2716 cache_node);
2717 btrfs_get_block_group(cache);
2718 } else
2719 cache = NULL;
2720 spin_unlock(&root->fs_info->block_group_cache_lock);
2721 return cache;
2724 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2725 struct btrfs_trans_handle *trans,
2726 struct btrfs_path *path)
2728 struct btrfs_root *root = block_group->fs_info->tree_root;
2729 struct inode *inode = NULL;
2730 u64 alloc_hint = 0;
2731 int dcs = BTRFS_DC_ERROR;
2732 int num_pages = 0;
2733 int retries = 0;
2734 int ret = 0;
2737 * If this block group is smaller than 100 megs don't bother caching the
2738 * block group.
2740 if (block_group->key.offset < (100 * 1024 * 1024)) {
2741 spin_lock(&block_group->lock);
2742 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2743 spin_unlock(&block_group->lock);
2744 return 0;
2747 again:
2748 inode = lookup_free_space_inode(root, block_group, path);
2749 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2750 ret = PTR_ERR(inode);
2751 btrfs_release_path(path);
2752 goto out;
2755 if (IS_ERR(inode)) {
2756 BUG_ON(retries);
2757 retries++;
2759 if (block_group->ro)
2760 goto out_free;
2762 ret = create_free_space_inode(root, trans, block_group, path);
2763 if (ret)
2764 goto out_free;
2765 goto again;
2768 /* We've already setup this transaction, go ahead and exit */
2769 if (block_group->cache_generation == trans->transid &&
2770 i_size_read(inode)) {
2771 dcs = BTRFS_DC_SETUP;
2772 goto out_put;
2776 * We want to set the generation to 0, that way if anything goes wrong
2777 * from here on out we know not to trust this cache when we load up next
2778 * time.
2780 BTRFS_I(inode)->generation = 0;
2781 ret = btrfs_update_inode(trans, root, inode);
2782 WARN_ON(ret);
2784 if (i_size_read(inode) > 0) {
2785 ret = btrfs_truncate_free_space_cache(root, trans, path,
2786 inode);
2787 if (ret)
2788 goto out_put;
2791 spin_lock(&block_group->lock);
2792 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2793 /* We're not cached, don't bother trying to write stuff out */
2794 dcs = BTRFS_DC_WRITTEN;
2795 spin_unlock(&block_group->lock);
2796 goto out_put;
2798 spin_unlock(&block_group->lock);
2800 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2801 if (!num_pages)
2802 num_pages = 1;
2805 * Just to make absolutely sure we have enough space, we're going to
2806 * preallocate 12 pages worth of space for each block group. In
2807 * practice we ought to use at most 8, but we need extra space so we can
2808 * add our header and have a terminator between the extents and the
2809 * bitmaps.
2811 num_pages *= 16;
2812 num_pages *= PAGE_CACHE_SIZE;
2814 ret = btrfs_check_data_free_space(inode, num_pages);
2815 if (ret)
2816 goto out_put;
2818 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2819 num_pages, num_pages,
2820 &alloc_hint);
2821 if (!ret)
2822 dcs = BTRFS_DC_SETUP;
2823 btrfs_free_reserved_data_space(inode, num_pages);
2825 out_put:
2826 iput(inode);
2827 out_free:
2828 btrfs_release_path(path);
2829 out:
2830 spin_lock(&block_group->lock);
2831 if (!ret && dcs == BTRFS_DC_SETUP)
2832 block_group->cache_generation = trans->transid;
2833 block_group->disk_cache_state = dcs;
2834 spin_unlock(&block_group->lock);
2836 return ret;
2839 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2840 struct btrfs_root *root)
2842 struct btrfs_block_group_cache *cache;
2843 int err = 0;
2844 struct btrfs_path *path;
2845 u64 last = 0;
2847 path = btrfs_alloc_path();
2848 if (!path)
2849 return -ENOMEM;
2851 again:
2852 while (1) {
2853 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2854 while (cache) {
2855 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2856 break;
2857 cache = next_block_group(root, cache);
2859 if (!cache) {
2860 if (last == 0)
2861 break;
2862 last = 0;
2863 continue;
2865 err = cache_save_setup(cache, trans, path);
2866 last = cache->key.objectid + cache->key.offset;
2867 btrfs_put_block_group(cache);
2870 while (1) {
2871 if (last == 0) {
2872 err = btrfs_run_delayed_refs(trans, root,
2873 (unsigned long)-1);
2874 BUG_ON(err);
2877 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2878 while (cache) {
2879 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2880 btrfs_put_block_group(cache);
2881 goto again;
2884 if (cache->dirty)
2885 break;
2886 cache = next_block_group(root, cache);
2888 if (!cache) {
2889 if (last == 0)
2890 break;
2891 last = 0;
2892 continue;
2895 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2896 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2897 cache->dirty = 0;
2898 last = cache->key.objectid + cache->key.offset;
2900 err = write_one_cache_group(trans, root, path, cache);
2901 BUG_ON(err);
2902 btrfs_put_block_group(cache);
2905 while (1) {
2907 * I don't think this is needed since we're just marking our
2908 * preallocated extent as written, but just in case it can't
2909 * hurt.
2911 if (last == 0) {
2912 err = btrfs_run_delayed_refs(trans, root,
2913 (unsigned long)-1);
2914 BUG_ON(err);
2917 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2918 while (cache) {
2920 * Really this shouldn't happen, but it could if we
2921 * couldn't write the entire preallocated extent and
2922 * splitting the extent resulted in a new block.
2924 if (cache->dirty) {
2925 btrfs_put_block_group(cache);
2926 goto again;
2928 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2929 break;
2930 cache = next_block_group(root, cache);
2932 if (!cache) {
2933 if (last == 0)
2934 break;
2935 last = 0;
2936 continue;
2939 btrfs_write_out_cache(root, trans, cache, path);
2942 * If we didn't have an error then the cache state is still
2943 * NEED_WRITE, so we can set it to WRITTEN.
2945 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2946 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2947 last = cache->key.objectid + cache->key.offset;
2948 btrfs_put_block_group(cache);
2951 btrfs_free_path(path);
2952 return 0;
2955 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2957 struct btrfs_block_group_cache *block_group;
2958 int readonly = 0;
2960 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2961 if (!block_group || block_group->ro)
2962 readonly = 1;
2963 if (block_group)
2964 btrfs_put_block_group(block_group);
2965 return readonly;
2968 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2969 u64 total_bytes, u64 bytes_used,
2970 struct btrfs_space_info **space_info)
2972 struct btrfs_space_info *found;
2973 int i;
2974 int factor;
2976 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2977 BTRFS_BLOCK_GROUP_RAID10))
2978 factor = 2;
2979 else
2980 factor = 1;
2982 found = __find_space_info(info, flags);
2983 if (found) {
2984 spin_lock(&found->lock);
2985 found->total_bytes += total_bytes;
2986 found->disk_total += total_bytes * factor;
2987 found->bytes_used += bytes_used;
2988 found->disk_used += bytes_used * factor;
2989 found->full = 0;
2990 spin_unlock(&found->lock);
2991 *space_info = found;
2992 return 0;
2994 found = kzalloc(sizeof(*found), GFP_NOFS);
2995 if (!found)
2996 return -ENOMEM;
2998 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2999 INIT_LIST_HEAD(&found->block_groups[i]);
3000 init_rwsem(&found->groups_sem);
3001 spin_lock_init(&found->lock);
3002 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3003 BTRFS_BLOCK_GROUP_SYSTEM |
3004 BTRFS_BLOCK_GROUP_METADATA);
3005 found->total_bytes = total_bytes;
3006 found->disk_total = total_bytes * factor;
3007 found->bytes_used = bytes_used;
3008 found->disk_used = bytes_used * factor;
3009 found->bytes_pinned = 0;
3010 found->bytes_reserved = 0;
3011 found->bytes_readonly = 0;
3012 found->bytes_may_use = 0;
3013 found->full = 0;
3014 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3015 found->chunk_alloc = 0;
3016 found->flush = 0;
3017 init_waitqueue_head(&found->wait);
3018 *space_info = found;
3019 list_add_rcu(&found->list, &info->space_info);
3020 return 0;
3023 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3025 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3026 BTRFS_BLOCK_GROUP_RAID1 |
3027 BTRFS_BLOCK_GROUP_RAID10 |
3028 BTRFS_BLOCK_GROUP_DUP);
3029 if (extra_flags) {
3030 if (flags & BTRFS_BLOCK_GROUP_DATA)
3031 fs_info->avail_data_alloc_bits |= extra_flags;
3032 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3033 fs_info->avail_metadata_alloc_bits |= extra_flags;
3034 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3035 fs_info->avail_system_alloc_bits |= extra_flags;
3039 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3042 * we add in the count of missing devices because we want
3043 * to make sure that any RAID levels on a degraded FS
3044 * continue to be honored.
3046 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3047 root->fs_info->fs_devices->missing_devices;
3049 if (num_devices == 1)
3050 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3051 if (num_devices < 4)
3052 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3054 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3055 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3056 BTRFS_BLOCK_GROUP_RAID10))) {
3057 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3060 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3061 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3062 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3065 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3066 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3067 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3068 (flags & BTRFS_BLOCK_GROUP_DUP)))
3069 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3070 return flags;
3073 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3075 if (flags & BTRFS_BLOCK_GROUP_DATA)
3076 flags |= root->fs_info->avail_data_alloc_bits &
3077 root->fs_info->data_alloc_profile;
3078 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3079 flags |= root->fs_info->avail_system_alloc_bits &
3080 root->fs_info->system_alloc_profile;
3081 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3082 flags |= root->fs_info->avail_metadata_alloc_bits &
3083 root->fs_info->metadata_alloc_profile;
3084 return btrfs_reduce_alloc_profile(root, flags);
3087 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3089 u64 flags;
3091 if (data)
3092 flags = BTRFS_BLOCK_GROUP_DATA;
3093 else if (root == root->fs_info->chunk_root)
3094 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3095 else
3096 flags = BTRFS_BLOCK_GROUP_METADATA;
3098 return get_alloc_profile(root, flags);
3101 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3103 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3104 BTRFS_BLOCK_GROUP_DATA);
3108 * This will check the space that the inode allocates from to make sure we have
3109 * enough space for bytes.
3111 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3113 struct btrfs_space_info *data_sinfo;
3114 struct btrfs_root *root = BTRFS_I(inode)->root;
3115 u64 used;
3116 int ret = 0, committed = 0, alloc_chunk = 1;
3118 /* make sure bytes are sectorsize aligned */
3119 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3121 if (root == root->fs_info->tree_root ||
3122 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3123 alloc_chunk = 0;
3124 committed = 1;
3127 data_sinfo = BTRFS_I(inode)->space_info;
3128 if (!data_sinfo)
3129 goto alloc;
3131 again:
3132 /* make sure we have enough space to handle the data first */
3133 spin_lock(&data_sinfo->lock);
3134 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3135 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3136 data_sinfo->bytes_may_use;
3138 if (used + bytes > data_sinfo->total_bytes) {
3139 struct btrfs_trans_handle *trans;
3142 * if we don't have enough free bytes in this space then we need
3143 * to alloc a new chunk.
3145 if (!data_sinfo->full && alloc_chunk) {
3146 u64 alloc_target;
3148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3149 spin_unlock(&data_sinfo->lock);
3150 alloc:
3151 alloc_target = btrfs_get_alloc_profile(root, 1);
3152 trans = btrfs_join_transaction(root);
3153 if (IS_ERR(trans))
3154 return PTR_ERR(trans);
3156 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3157 bytes + 2 * 1024 * 1024,
3158 alloc_target,
3159 CHUNK_ALLOC_NO_FORCE);
3160 btrfs_end_transaction(trans, root);
3161 if (ret < 0) {
3162 if (ret != -ENOSPC)
3163 return ret;
3164 else
3165 goto commit_trans;
3168 if (!data_sinfo) {
3169 btrfs_set_inode_space_info(root, inode);
3170 data_sinfo = BTRFS_I(inode)->space_info;
3172 goto again;
3176 * If we have less pinned bytes than we want to allocate then
3177 * don't bother committing the transaction, it won't help us.
3179 if (data_sinfo->bytes_pinned < bytes)
3180 committed = 1;
3181 spin_unlock(&data_sinfo->lock);
3183 /* commit the current transaction and try again */
3184 commit_trans:
3185 if (!committed &&
3186 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3187 committed = 1;
3188 trans = btrfs_join_transaction(root);
3189 if (IS_ERR(trans))
3190 return PTR_ERR(trans);
3191 ret = btrfs_commit_transaction(trans, root);
3192 if (ret)
3193 return ret;
3194 goto again;
3197 return -ENOSPC;
3199 data_sinfo->bytes_may_use += bytes;
3200 spin_unlock(&data_sinfo->lock);
3202 return 0;
3206 * Called if we need to clear a data reservation for this inode.
3208 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3210 struct btrfs_root *root = BTRFS_I(inode)->root;
3211 struct btrfs_space_info *data_sinfo;
3213 /* make sure bytes are sectorsize aligned */
3214 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3216 data_sinfo = BTRFS_I(inode)->space_info;
3217 spin_lock(&data_sinfo->lock);
3218 data_sinfo->bytes_may_use -= bytes;
3219 spin_unlock(&data_sinfo->lock);
3222 static void force_metadata_allocation(struct btrfs_fs_info *info)
3224 struct list_head *head = &info->space_info;
3225 struct btrfs_space_info *found;
3227 rcu_read_lock();
3228 list_for_each_entry_rcu(found, head, list) {
3229 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3230 found->force_alloc = CHUNK_ALLOC_FORCE;
3232 rcu_read_unlock();
3235 static int should_alloc_chunk(struct btrfs_root *root,
3236 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3237 int force)
3239 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3240 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3241 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3242 u64 thresh;
3244 if (force == CHUNK_ALLOC_FORCE)
3245 return 1;
3248 * We need to take into account the global rsv because for all intents
3249 * and purposes it's used space. Don't worry about locking the
3250 * global_rsv, it doesn't change except when the transaction commits.
3252 num_allocated += global_rsv->size;
3255 * in limited mode, we want to have some free space up to
3256 * about 1% of the FS size.
3258 if (force == CHUNK_ALLOC_LIMITED) {
3259 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3260 thresh = max_t(u64, 64 * 1024 * 1024,
3261 div_factor_fine(thresh, 1));
3263 if (num_bytes - num_allocated < thresh)
3264 return 1;
3268 * we have two similar checks here, one based on percentage
3269 * and once based on a hard number of 256MB. The idea
3270 * is that if we have a good amount of free
3271 * room, don't allocate a chunk. A good mount is
3272 * less than 80% utilized of the chunks we have allocated,
3273 * or more than 256MB free
3275 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3276 return 0;
3278 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3279 return 0;
3281 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3283 /* 256MB or 5% of the FS */
3284 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3286 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3287 return 0;
3288 return 1;
3291 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *extent_root, u64 alloc_bytes,
3293 u64 flags, int force)
3295 struct btrfs_space_info *space_info;
3296 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3297 int wait_for_alloc = 0;
3298 int ret = 0;
3300 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3302 space_info = __find_space_info(extent_root->fs_info, flags);
3303 if (!space_info) {
3304 ret = update_space_info(extent_root->fs_info, flags,
3305 0, 0, &space_info);
3306 BUG_ON(ret);
3308 BUG_ON(!space_info);
3310 again:
3311 spin_lock(&space_info->lock);
3312 if (space_info->force_alloc)
3313 force = space_info->force_alloc;
3314 if (space_info->full) {
3315 spin_unlock(&space_info->lock);
3316 return 0;
3319 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3320 spin_unlock(&space_info->lock);
3321 return 0;
3322 } else if (space_info->chunk_alloc) {
3323 wait_for_alloc = 1;
3324 } else {
3325 space_info->chunk_alloc = 1;
3328 spin_unlock(&space_info->lock);
3330 mutex_lock(&fs_info->chunk_mutex);
3333 * The chunk_mutex is held throughout the entirety of a chunk
3334 * allocation, so once we've acquired the chunk_mutex we know that the
3335 * other guy is done and we need to recheck and see if we should
3336 * allocate.
3338 if (wait_for_alloc) {
3339 mutex_unlock(&fs_info->chunk_mutex);
3340 wait_for_alloc = 0;
3341 goto again;
3345 * If we have mixed data/metadata chunks we want to make sure we keep
3346 * allocating mixed chunks instead of individual chunks.
3348 if (btrfs_mixed_space_info(space_info))
3349 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3352 * if we're doing a data chunk, go ahead and make sure that
3353 * we keep a reasonable number of metadata chunks allocated in the
3354 * FS as well.
3356 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3357 fs_info->data_chunk_allocations++;
3358 if (!(fs_info->data_chunk_allocations %
3359 fs_info->metadata_ratio))
3360 force_metadata_allocation(fs_info);
3363 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3364 if (ret < 0 && ret != -ENOSPC)
3365 goto out;
3367 spin_lock(&space_info->lock);
3368 if (ret)
3369 space_info->full = 1;
3370 else
3371 ret = 1;
3373 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3374 space_info->chunk_alloc = 0;
3375 spin_unlock(&space_info->lock);
3376 out:
3377 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3378 return ret;
3382 * shrink metadata reservation for delalloc
3384 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3385 bool wait_ordered)
3387 struct btrfs_block_rsv *block_rsv;
3388 struct btrfs_space_info *space_info;
3389 struct btrfs_trans_handle *trans;
3390 u64 reserved;
3391 u64 max_reclaim;
3392 u64 reclaimed = 0;
3393 long time_left;
3394 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3395 int loops = 0;
3396 unsigned long progress;
3398 trans = (struct btrfs_trans_handle *)current->journal_info;
3399 block_rsv = &root->fs_info->delalloc_block_rsv;
3400 space_info = block_rsv->space_info;
3402 smp_mb();
3403 reserved = space_info->bytes_may_use;
3404 progress = space_info->reservation_progress;
3406 if (reserved == 0)
3407 return 0;
3409 smp_mb();
3410 if (root->fs_info->delalloc_bytes == 0) {
3411 if (trans)
3412 return 0;
3413 btrfs_wait_ordered_extents(root, 0, 0);
3414 return 0;
3417 max_reclaim = min(reserved, to_reclaim);
3418 nr_pages = max_t(unsigned long, nr_pages,
3419 max_reclaim >> PAGE_CACHE_SHIFT);
3420 while (loops < 1024) {
3421 /* have the flusher threads jump in and do some IO */
3422 smp_mb();
3423 nr_pages = min_t(unsigned long, nr_pages,
3424 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3425 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3426 WB_REASON_FS_FREE_SPACE);
3428 spin_lock(&space_info->lock);
3429 if (reserved > space_info->bytes_may_use)
3430 reclaimed += reserved - space_info->bytes_may_use;
3431 reserved = space_info->bytes_may_use;
3432 spin_unlock(&space_info->lock);
3434 loops++;
3436 if (reserved == 0 || reclaimed >= max_reclaim)
3437 break;
3439 if (trans && trans->transaction->blocked)
3440 return -EAGAIN;
3442 if (wait_ordered && !trans) {
3443 btrfs_wait_ordered_extents(root, 0, 0);
3444 } else {
3445 time_left = schedule_timeout_interruptible(1);
3447 /* We were interrupted, exit */
3448 if (time_left)
3449 break;
3452 /* we've kicked the IO a few times, if anything has been freed,
3453 * exit. There is no sense in looping here for a long time
3454 * when we really need to commit the transaction, or there are
3455 * just too many writers without enough free space
3458 if (loops > 3) {
3459 smp_mb();
3460 if (progress != space_info->reservation_progress)
3461 break;
3466 return reclaimed >= to_reclaim;
3470 * maybe_commit_transaction - possibly commit the transaction if its ok to
3471 * @root - the root we're allocating for
3472 * @bytes - the number of bytes we want to reserve
3473 * @force - force the commit
3475 * This will check to make sure that committing the transaction will actually
3476 * get us somewhere and then commit the transaction if it does. Otherwise it
3477 * will return -ENOSPC.
3479 static int may_commit_transaction(struct btrfs_root *root,
3480 struct btrfs_space_info *space_info,
3481 u64 bytes, int force)
3483 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3484 struct btrfs_trans_handle *trans;
3486 trans = (struct btrfs_trans_handle *)current->journal_info;
3487 if (trans)
3488 return -EAGAIN;
3490 if (force)
3491 goto commit;
3493 /* See if there is enough pinned space to make this reservation */
3494 spin_lock(&space_info->lock);
3495 if (space_info->bytes_pinned >= bytes) {
3496 spin_unlock(&space_info->lock);
3497 goto commit;
3499 spin_unlock(&space_info->lock);
3502 * See if there is some space in the delayed insertion reservation for
3503 * this reservation.
3505 if (space_info != delayed_rsv->space_info)
3506 return -ENOSPC;
3508 spin_lock(&delayed_rsv->lock);
3509 if (delayed_rsv->size < bytes) {
3510 spin_unlock(&delayed_rsv->lock);
3511 return -ENOSPC;
3513 spin_unlock(&delayed_rsv->lock);
3515 commit:
3516 trans = btrfs_join_transaction(root);
3517 if (IS_ERR(trans))
3518 return -ENOSPC;
3520 return btrfs_commit_transaction(trans, root);
3524 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3525 * @root - the root we're allocating for
3526 * @block_rsv - the block_rsv we're allocating for
3527 * @orig_bytes - the number of bytes we want
3528 * @flush - wether or not we can flush to make our reservation
3530 * This will reserve orgi_bytes number of bytes from the space info associated
3531 * with the block_rsv. If there is not enough space it will make an attempt to
3532 * flush out space to make room. It will do this by flushing delalloc if
3533 * possible or committing the transaction. If flush is 0 then no attempts to
3534 * regain reservations will be made and this will fail if there is not enough
3535 * space already.
3537 static int reserve_metadata_bytes(struct btrfs_root *root,
3538 struct btrfs_block_rsv *block_rsv,
3539 u64 orig_bytes, int flush)
3541 struct btrfs_space_info *space_info = block_rsv->space_info;
3542 u64 used;
3543 u64 num_bytes = orig_bytes;
3544 int retries = 0;
3545 int ret = 0;
3546 bool committed = false;
3547 bool flushing = false;
3548 bool wait_ordered = false;
3550 again:
3551 ret = 0;
3552 spin_lock(&space_info->lock);
3554 * We only want to wait if somebody other than us is flushing and we are
3555 * actually alloed to flush.
3557 while (flush && !flushing && space_info->flush) {
3558 spin_unlock(&space_info->lock);
3560 * If we have a trans handle we can't wait because the flusher
3561 * may have to commit the transaction, which would mean we would
3562 * deadlock since we are waiting for the flusher to finish, but
3563 * hold the current transaction open.
3565 if (current->journal_info)
3566 return -EAGAIN;
3567 ret = wait_event_interruptible(space_info->wait,
3568 !space_info->flush);
3569 /* Must have been interrupted, return */
3570 if (ret)
3571 return -EINTR;
3573 spin_lock(&space_info->lock);
3576 ret = -ENOSPC;
3577 used = space_info->bytes_used + space_info->bytes_reserved +
3578 space_info->bytes_pinned + space_info->bytes_readonly +
3579 space_info->bytes_may_use;
3582 * The idea here is that we've not already over-reserved the block group
3583 * then we can go ahead and save our reservation first and then start
3584 * flushing if we need to. Otherwise if we've already overcommitted
3585 * lets start flushing stuff first and then come back and try to make
3586 * our reservation.
3588 if (used <= space_info->total_bytes) {
3589 if (used + orig_bytes <= space_info->total_bytes) {
3590 space_info->bytes_may_use += orig_bytes;
3591 ret = 0;
3592 } else {
3594 * Ok set num_bytes to orig_bytes since we aren't
3595 * overocmmitted, this way we only try and reclaim what
3596 * we need.
3598 num_bytes = orig_bytes;
3600 } else {
3602 * Ok we're over committed, set num_bytes to the overcommitted
3603 * amount plus the amount of bytes that we need for this
3604 * reservation.
3606 wait_ordered = true;
3607 num_bytes = used - space_info->total_bytes +
3608 (orig_bytes * (retries + 1));
3611 if (ret) {
3612 u64 profile = btrfs_get_alloc_profile(root, 0);
3613 u64 avail;
3616 * If we have a lot of space that's pinned, don't bother doing
3617 * the overcommit dance yet and just commit the transaction.
3619 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3620 do_div(avail, 10);
3621 if (space_info->bytes_pinned >= avail && flush && !committed) {
3622 space_info->flush = 1;
3623 flushing = true;
3624 spin_unlock(&space_info->lock);
3625 ret = may_commit_transaction(root, space_info,
3626 orig_bytes, 1);
3627 if (ret)
3628 goto out;
3629 committed = true;
3630 goto again;
3633 spin_lock(&root->fs_info->free_chunk_lock);
3634 avail = root->fs_info->free_chunk_space;
3637 * If we have dup, raid1 or raid10 then only half of the free
3638 * space is actually useable.
3640 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3641 BTRFS_BLOCK_GROUP_RAID1 |
3642 BTRFS_BLOCK_GROUP_RAID10))
3643 avail >>= 1;
3646 * If we aren't flushing don't let us overcommit too much, say
3647 * 1/8th of the space. If we can flush, let it overcommit up to
3648 * 1/2 of the space.
3650 if (flush)
3651 avail >>= 3;
3652 else
3653 avail >>= 1;
3654 spin_unlock(&root->fs_info->free_chunk_lock);
3656 if (used + num_bytes < space_info->total_bytes + avail) {
3657 space_info->bytes_may_use += orig_bytes;
3658 ret = 0;
3659 } else {
3660 wait_ordered = true;
3665 * Couldn't make our reservation, save our place so while we're trying
3666 * to reclaim space we can actually use it instead of somebody else
3667 * stealing it from us.
3669 if (ret && flush) {
3670 flushing = true;
3671 space_info->flush = 1;
3674 spin_unlock(&space_info->lock);
3676 if (!ret || !flush)
3677 goto out;
3680 * We do synchronous shrinking since we don't actually unreserve
3681 * metadata until after the IO is completed.
3683 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3684 if (ret < 0)
3685 goto out;
3687 ret = 0;
3690 * So if we were overcommitted it's possible that somebody else flushed
3691 * out enough space and we simply didn't have enough space to reclaim,
3692 * so go back around and try again.
3694 if (retries < 2) {
3695 wait_ordered = true;
3696 retries++;
3697 goto again;
3700 ret = -ENOSPC;
3701 if (committed)
3702 goto out;
3704 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3705 if (!ret) {
3706 committed = true;
3707 goto again;
3710 out:
3711 if (flushing) {
3712 spin_lock(&space_info->lock);
3713 space_info->flush = 0;
3714 wake_up_all(&space_info->wait);
3715 spin_unlock(&space_info->lock);
3717 return ret;
3720 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3721 struct btrfs_root *root)
3723 struct btrfs_block_rsv *block_rsv = NULL;
3725 if (root->ref_cows || root == root->fs_info->csum_root)
3726 block_rsv = trans->block_rsv;
3728 if (!block_rsv)
3729 block_rsv = root->block_rsv;
3731 if (!block_rsv)
3732 block_rsv = &root->fs_info->empty_block_rsv;
3734 return block_rsv;
3737 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3738 u64 num_bytes)
3740 int ret = -ENOSPC;
3741 spin_lock(&block_rsv->lock);
3742 if (block_rsv->reserved >= num_bytes) {
3743 block_rsv->reserved -= num_bytes;
3744 if (block_rsv->reserved < block_rsv->size)
3745 block_rsv->full = 0;
3746 ret = 0;
3748 spin_unlock(&block_rsv->lock);
3749 return ret;
3752 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3753 u64 num_bytes, int update_size)
3755 spin_lock(&block_rsv->lock);
3756 block_rsv->reserved += num_bytes;
3757 if (update_size)
3758 block_rsv->size += num_bytes;
3759 else if (block_rsv->reserved >= block_rsv->size)
3760 block_rsv->full = 1;
3761 spin_unlock(&block_rsv->lock);
3764 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3765 struct btrfs_block_rsv *dest, u64 num_bytes)
3767 struct btrfs_space_info *space_info = block_rsv->space_info;
3769 spin_lock(&block_rsv->lock);
3770 if (num_bytes == (u64)-1)
3771 num_bytes = block_rsv->size;
3772 block_rsv->size -= num_bytes;
3773 if (block_rsv->reserved >= block_rsv->size) {
3774 num_bytes = block_rsv->reserved - block_rsv->size;
3775 block_rsv->reserved = block_rsv->size;
3776 block_rsv->full = 1;
3777 } else {
3778 num_bytes = 0;
3780 spin_unlock(&block_rsv->lock);
3782 if (num_bytes > 0) {
3783 if (dest) {
3784 spin_lock(&dest->lock);
3785 if (!dest->full) {
3786 u64 bytes_to_add;
3788 bytes_to_add = dest->size - dest->reserved;
3789 bytes_to_add = min(num_bytes, bytes_to_add);
3790 dest->reserved += bytes_to_add;
3791 if (dest->reserved >= dest->size)
3792 dest->full = 1;
3793 num_bytes -= bytes_to_add;
3795 spin_unlock(&dest->lock);
3797 if (num_bytes) {
3798 spin_lock(&space_info->lock);
3799 space_info->bytes_may_use -= num_bytes;
3800 space_info->reservation_progress++;
3801 spin_unlock(&space_info->lock);
3806 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3807 struct btrfs_block_rsv *dst, u64 num_bytes)
3809 int ret;
3811 ret = block_rsv_use_bytes(src, num_bytes);
3812 if (ret)
3813 return ret;
3815 block_rsv_add_bytes(dst, num_bytes, 1);
3816 return 0;
3819 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3821 memset(rsv, 0, sizeof(*rsv));
3822 spin_lock_init(&rsv->lock);
3825 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3827 struct btrfs_block_rsv *block_rsv;
3828 struct btrfs_fs_info *fs_info = root->fs_info;
3830 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3831 if (!block_rsv)
3832 return NULL;
3834 btrfs_init_block_rsv(block_rsv);
3835 block_rsv->space_info = __find_space_info(fs_info,
3836 BTRFS_BLOCK_GROUP_METADATA);
3837 return block_rsv;
3840 void btrfs_free_block_rsv(struct btrfs_root *root,
3841 struct btrfs_block_rsv *rsv)
3843 btrfs_block_rsv_release(root, rsv, (u64)-1);
3844 kfree(rsv);
3847 static inline int __block_rsv_add(struct btrfs_root *root,
3848 struct btrfs_block_rsv *block_rsv,
3849 u64 num_bytes, int flush)
3851 int ret;
3853 if (num_bytes == 0)
3854 return 0;
3856 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3857 if (!ret) {
3858 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3859 return 0;
3862 return ret;
3865 int btrfs_block_rsv_add(struct btrfs_root *root,
3866 struct btrfs_block_rsv *block_rsv,
3867 u64 num_bytes)
3869 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3872 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3873 struct btrfs_block_rsv *block_rsv,
3874 u64 num_bytes)
3876 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3879 int btrfs_block_rsv_check(struct btrfs_root *root,
3880 struct btrfs_block_rsv *block_rsv, int min_factor)
3882 u64 num_bytes = 0;
3883 int ret = -ENOSPC;
3885 if (!block_rsv)
3886 return 0;
3888 spin_lock(&block_rsv->lock);
3889 num_bytes = div_factor(block_rsv->size, min_factor);
3890 if (block_rsv->reserved >= num_bytes)
3891 ret = 0;
3892 spin_unlock(&block_rsv->lock);
3894 return ret;
3897 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
3898 struct btrfs_block_rsv *block_rsv,
3899 u64 min_reserved, int flush)
3901 u64 num_bytes = 0;
3902 int ret = -ENOSPC;
3904 if (!block_rsv)
3905 return 0;
3907 spin_lock(&block_rsv->lock);
3908 num_bytes = min_reserved;
3909 if (block_rsv->reserved >= num_bytes)
3910 ret = 0;
3911 else
3912 num_bytes -= block_rsv->reserved;
3913 spin_unlock(&block_rsv->lock);
3915 if (!ret)
3916 return 0;
3918 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3919 if (!ret) {
3920 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3921 return 0;
3924 return ret;
3927 int btrfs_block_rsv_refill(struct btrfs_root *root,
3928 struct btrfs_block_rsv *block_rsv,
3929 u64 min_reserved)
3931 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
3934 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
3935 struct btrfs_block_rsv *block_rsv,
3936 u64 min_reserved)
3938 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
3941 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3942 struct btrfs_block_rsv *dst_rsv,
3943 u64 num_bytes)
3945 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3948 void btrfs_block_rsv_release(struct btrfs_root *root,
3949 struct btrfs_block_rsv *block_rsv,
3950 u64 num_bytes)
3952 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3953 if (global_rsv->full || global_rsv == block_rsv ||
3954 block_rsv->space_info != global_rsv->space_info)
3955 global_rsv = NULL;
3956 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3960 * helper to calculate size of global block reservation.
3961 * the desired value is sum of space used by extent tree,
3962 * checksum tree and root tree
3964 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3966 struct btrfs_space_info *sinfo;
3967 u64 num_bytes;
3968 u64 meta_used;
3969 u64 data_used;
3970 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
3972 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3973 spin_lock(&sinfo->lock);
3974 data_used = sinfo->bytes_used;
3975 spin_unlock(&sinfo->lock);
3977 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3978 spin_lock(&sinfo->lock);
3979 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3980 data_used = 0;
3981 meta_used = sinfo->bytes_used;
3982 spin_unlock(&sinfo->lock);
3984 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3985 csum_size * 2;
3986 num_bytes += div64_u64(data_used + meta_used, 50);
3988 if (num_bytes * 3 > meta_used)
3989 num_bytes = div64_u64(meta_used, 3);
3991 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3994 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3996 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3997 struct btrfs_space_info *sinfo = block_rsv->space_info;
3998 u64 num_bytes;
4000 num_bytes = calc_global_metadata_size(fs_info);
4002 spin_lock(&block_rsv->lock);
4003 spin_lock(&sinfo->lock);
4005 block_rsv->size = num_bytes;
4007 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4008 sinfo->bytes_reserved + sinfo->bytes_readonly +
4009 sinfo->bytes_may_use;
4011 if (sinfo->total_bytes > num_bytes) {
4012 num_bytes = sinfo->total_bytes - num_bytes;
4013 block_rsv->reserved += num_bytes;
4014 sinfo->bytes_may_use += num_bytes;
4017 if (block_rsv->reserved >= block_rsv->size) {
4018 num_bytes = block_rsv->reserved - block_rsv->size;
4019 sinfo->bytes_may_use -= num_bytes;
4020 sinfo->reservation_progress++;
4021 block_rsv->reserved = block_rsv->size;
4022 block_rsv->full = 1;
4025 spin_unlock(&sinfo->lock);
4026 spin_unlock(&block_rsv->lock);
4029 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4031 struct btrfs_space_info *space_info;
4033 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4034 fs_info->chunk_block_rsv.space_info = space_info;
4036 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4037 fs_info->global_block_rsv.space_info = space_info;
4038 fs_info->delalloc_block_rsv.space_info = space_info;
4039 fs_info->trans_block_rsv.space_info = space_info;
4040 fs_info->empty_block_rsv.space_info = space_info;
4041 fs_info->delayed_block_rsv.space_info = space_info;
4043 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4044 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4045 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4046 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4047 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4049 update_global_block_rsv(fs_info);
4052 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4054 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
4055 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4056 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4057 WARN_ON(fs_info->trans_block_rsv.size > 0);
4058 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4059 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4060 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4061 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4062 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4065 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4066 struct btrfs_root *root)
4068 if (!trans->bytes_reserved)
4069 return;
4071 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4072 trans->bytes_reserved = 0;
4075 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4076 struct inode *inode)
4078 struct btrfs_root *root = BTRFS_I(inode)->root;
4079 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4080 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4083 * We need to hold space in order to delete our orphan item once we've
4084 * added it, so this takes the reservation so we can release it later
4085 * when we are truly done with the orphan item.
4087 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4088 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4091 void btrfs_orphan_release_metadata(struct inode *inode)
4093 struct btrfs_root *root = BTRFS_I(inode)->root;
4094 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4095 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4098 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4099 struct btrfs_pending_snapshot *pending)
4101 struct btrfs_root *root = pending->root;
4102 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4103 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4105 * two for root back/forward refs, two for directory entries
4106 * and one for root of the snapshot.
4108 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4109 dst_rsv->space_info = src_rsv->space_info;
4110 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4114 * drop_outstanding_extent - drop an outstanding extent
4115 * @inode: the inode we're dropping the extent for
4117 * This is called when we are freeing up an outstanding extent, either called
4118 * after an error or after an extent is written. This will return the number of
4119 * reserved extents that need to be freed. This must be called with
4120 * BTRFS_I(inode)->lock held.
4122 static unsigned drop_outstanding_extent(struct inode *inode)
4124 unsigned drop_inode_space = 0;
4125 unsigned dropped_extents = 0;
4127 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4128 BTRFS_I(inode)->outstanding_extents--;
4130 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4131 BTRFS_I(inode)->delalloc_meta_reserved) {
4132 drop_inode_space = 1;
4133 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4137 * If we have more or the same amount of outsanding extents than we have
4138 * reserved then we need to leave the reserved extents count alone.
4140 if (BTRFS_I(inode)->outstanding_extents >=
4141 BTRFS_I(inode)->reserved_extents)
4142 return drop_inode_space;
4144 dropped_extents = BTRFS_I(inode)->reserved_extents -
4145 BTRFS_I(inode)->outstanding_extents;
4146 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4147 return dropped_extents + drop_inode_space;
4151 * calc_csum_metadata_size - return the amount of metada space that must be
4152 * reserved/free'd for the given bytes.
4153 * @inode: the inode we're manipulating
4154 * @num_bytes: the number of bytes in question
4155 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4157 * This adjusts the number of csum_bytes in the inode and then returns the
4158 * correct amount of metadata that must either be reserved or freed. We
4159 * calculate how many checksums we can fit into one leaf and then divide the
4160 * number of bytes that will need to be checksumed by this value to figure out
4161 * how many checksums will be required. If we are adding bytes then the number
4162 * may go up and we will return the number of additional bytes that must be
4163 * reserved. If it is going down we will return the number of bytes that must
4164 * be freed.
4166 * This must be called with BTRFS_I(inode)->lock held.
4168 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4169 int reserve)
4171 struct btrfs_root *root = BTRFS_I(inode)->root;
4172 u64 csum_size;
4173 int num_csums_per_leaf;
4174 int num_csums;
4175 int old_csums;
4177 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4178 BTRFS_I(inode)->csum_bytes == 0)
4179 return 0;
4181 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4182 if (reserve)
4183 BTRFS_I(inode)->csum_bytes += num_bytes;
4184 else
4185 BTRFS_I(inode)->csum_bytes -= num_bytes;
4186 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4187 num_csums_per_leaf = (int)div64_u64(csum_size,
4188 sizeof(struct btrfs_csum_item) +
4189 sizeof(struct btrfs_disk_key));
4190 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4191 num_csums = num_csums + num_csums_per_leaf - 1;
4192 num_csums = num_csums / num_csums_per_leaf;
4194 old_csums = old_csums + num_csums_per_leaf - 1;
4195 old_csums = old_csums / num_csums_per_leaf;
4197 /* No change, no need to reserve more */
4198 if (old_csums == num_csums)
4199 return 0;
4201 if (reserve)
4202 return btrfs_calc_trans_metadata_size(root,
4203 num_csums - old_csums);
4205 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4208 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4210 struct btrfs_root *root = BTRFS_I(inode)->root;
4211 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4212 u64 to_reserve = 0;
4213 u64 csum_bytes;
4214 unsigned nr_extents = 0;
4215 int extra_reserve = 0;
4216 int flush = 1;
4217 int ret;
4219 /* Need to be holding the i_mutex here if we aren't free space cache */
4220 if (btrfs_is_free_space_inode(root, inode))
4221 flush = 0;
4222 else
4223 WARN_ON(!mutex_is_locked(&inode->i_mutex));
4225 if (flush && btrfs_transaction_in_commit(root->fs_info))
4226 schedule_timeout(1);
4228 num_bytes = ALIGN(num_bytes, root->sectorsize);
4230 spin_lock(&BTRFS_I(inode)->lock);
4231 BTRFS_I(inode)->outstanding_extents++;
4233 if (BTRFS_I(inode)->outstanding_extents >
4234 BTRFS_I(inode)->reserved_extents)
4235 nr_extents = BTRFS_I(inode)->outstanding_extents -
4236 BTRFS_I(inode)->reserved_extents;
4239 * Add an item to reserve for updating the inode when we complete the
4240 * delalloc io.
4242 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4243 nr_extents++;
4244 extra_reserve = 1;
4247 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4248 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4249 csum_bytes = BTRFS_I(inode)->csum_bytes;
4250 spin_unlock(&BTRFS_I(inode)->lock);
4252 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4253 if (ret) {
4254 u64 to_free = 0;
4255 unsigned dropped;
4257 spin_lock(&BTRFS_I(inode)->lock);
4258 dropped = drop_outstanding_extent(inode);
4260 * If the inodes csum_bytes is the same as the original
4261 * csum_bytes then we know we haven't raced with any free()ers
4262 * so we can just reduce our inodes csum bytes and carry on.
4263 * Otherwise we have to do the normal free thing to account for
4264 * the case that the free side didn't free up its reserve
4265 * because of this outstanding reservation.
4267 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4268 calc_csum_metadata_size(inode, num_bytes, 0);
4269 else
4270 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4271 spin_unlock(&BTRFS_I(inode)->lock);
4272 if (dropped)
4273 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4275 if (to_free)
4276 btrfs_block_rsv_release(root, block_rsv, to_free);
4277 return ret;
4280 spin_lock(&BTRFS_I(inode)->lock);
4281 if (extra_reserve) {
4282 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4283 nr_extents--;
4285 BTRFS_I(inode)->reserved_extents += nr_extents;
4286 spin_unlock(&BTRFS_I(inode)->lock);
4288 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4290 return 0;
4294 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4295 * @inode: the inode to release the reservation for
4296 * @num_bytes: the number of bytes we're releasing
4298 * This will release the metadata reservation for an inode. This can be called
4299 * once we complete IO for a given set of bytes to release their metadata
4300 * reservations.
4302 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4304 struct btrfs_root *root = BTRFS_I(inode)->root;
4305 u64 to_free = 0;
4306 unsigned dropped;
4308 num_bytes = ALIGN(num_bytes, root->sectorsize);
4309 spin_lock(&BTRFS_I(inode)->lock);
4310 dropped = drop_outstanding_extent(inode);
4312 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4313 spin_unlock(&BTRFS_I(inode)->lock);
4314 if (dropped > 0)
4315 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4317 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4318 to_free);
4322 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4323 * @inode: inode we're writing to
4324 * @num_bytes: the number of bytes we want to allocate
4326 * This will do the following things
4328 * o reserve space in the data space info for num_bytes
4329 * o reserve space in the metadata space info based on number of outstanding
4330 * extents and how much csums will be needed
4331 * o add to the inodes ->delalloc_bytes
4332 * o add it to the fs_info's delalloc inodes list.
4334 * This will return 0 for success and -ENOSPC if there is no space left.
4336 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4338 int ret;
4340 ret = btrfs_check_data_free_space(inode, num_bytes);
4341 if (ret)
4342 return ret;
4344 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4345 if (ret) {
4346 btrfs_free_reserved_data_space(inode, num_bytes);
4347 return ret;
4350 return 0;
4354 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4355 * @inode: inode we're releasing space for
4356 * @num_bytes: the number of bytes we want to free up
4358 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4359 * called in the case that we don't need the metadata AND data reservations
4360 * anymore. So if there is an error or we insert an inline extent.
4362 * This function will release the metadata space that was not used and will
4363 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4364 * list if there are no delalloc bytes left.
4366 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4368 btrfs_delalloc_release_metadata(inode, num_bytes);
4369 btrfs_free_reserved_data_space(inode, num_bytes);
4372 static int update_block_group(struct btrfs_trans_handle *trans,
4373 struct btrfs_root *root,
4374 u64 bytenr, u64 num_bytes, int alloc)
4376 struct btrfs_block_group_cache *cache = NULL;
4377 struct btrfs_fs_info *info = root->fs_info;
4378 u64 total = num_bytes;
4379 u64 old_val;
4380 u64 byte_in_group;
4381 int factor;
4383 /* block accounting for super block */
4384 spin_lock(&info->delalloc_lock);
4385 old_val = btrfs_super_bytes_used(info->super_copy);
4386 if (alloc)
4387 old_val += num_bytes;
4388 else
4389 old_val -= num_bytes;
4390 btrfs_set_super_bytes_used(info->super_copy, old_val);
4391 spin_unlock(&info->delalloc_lock);
4393 while (total) {
4394 cache = btrfs_lookup_block_group(info, bytenr);
4395 if (!cache)
4396 return -1;
4397 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4398 BTRFS_BLOCK_GROUP_RAID1 |
4399 BTRFS_BLOCK_GROUP_RAID10))
4400 factor = 2;
4401 else
4402 factor = 1;
4404 * If this block group has free space cache written out, we
4405 * need to make sure to load it if we are removing space. This
4406 * is because we need the unpinning stage to actually add the
4407 * space back to the block group, otherwise we will leak space.
4409 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4410 cache_block_group(cache, trans, NULL, 1);
4412 byte_in_group = bytenr - cache->key.objectid;
4413 WARN_ON(byte_in_group > cache->key.offset);
4415 spin_lock(&cache->space_info->lock);
4416 spin_lock(&cache->lock);
4418 if (btrfs_test_opt(root, SPACE_CACHE) &&
4419 cache->disk_cache_state < BTRFS_DC_CLEAR)
4420 cache->disk_cache_state = BTRFS_DC_CLEAR;
4422 cache->dirty = 1;
4423 old_val = btrfs_block_group_used(&cache->item);
4424 num_bytes = min(total, cache->key.offset - byte_in_group);
4425 if (alloc) {
4426 old_val += num_bytes;
4427 btrfs_set_block_group_used(&cache->item, old_val);
4428 cache->reserved -= num_bytes;
4429 cache->space_info->bytes_reserved -= num_bytes;
4430 cache->space_info->bytes_used += num_bytes;
4431 cache->space_info->disk_used += num_bytes * factor;
4432 spin_unlock(&cache->lock);
4433 spin_unlock(&cache->space_info->lock);
4434 } else {
4435 old_val -= num_bytes;
4436 btrfs_set_block_group_used(&cache->item, old_val);
4437 cache->pinned += num_bytes;
4438 cache->space_info->bytes_pinned += num_bytes;
4439 cache->space_info->bytes_used -= num_bytes;
4440 cache->space_info->disk_used -= num_bytes * factor;
4441 spin_unlock(&cache->lock);
4442 spin_unlock(&cache->space_info->lock);
4444 set_extent_dirty(info->pinned_extents,
4445 bytenr, bytenr + num_bytes - 1,
4446 GFP_NOFS | __GFP_NOFAIL);
4448 btrfs_put_block_group(cache);
4449 total -= num_bytes;
4450 bytenr += num_bytes;
4452 return 0;
4455 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4457 struct btrfs_block_group_cache *cache;
4458 u64 bytenr;
4460 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4461 if (!cache)
4462 return 0;
4464 bytenr = cache->key.objectid;
4465 btrfs_put_block_group(cache);
4467 return bytenr;
4470 static int pin_down_extent(struct btrfs_root *root,
4471 struct btrfs_block_group_cache *cache,
4472 u64 bytenr, u64 num_bytes, int reserved)
4474 spin_lock(&cache->space_info->lock);
4475 spin_lock(&cache->lock);
4476 cache->pinned += num_bytes;
4477 cache->space_info->bytes_pinned += num_bytes;
4478 if (reserved) {
4479 cache->reserved -= num_bytes;
4480 cache->space_info->bytes_reserved -= num_bytes;
4482 spin_unlock(&cache->lock);
4483 spin_unlock(&cache->space_info->lock);
4485 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4486 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4487 return 0;
4491 * this function must be called within transaction
4493 int btrfs_pin_extent(struct btrfs_root *root,
4494 u64 bytenr, u64 num_bytes, int reserved)
4496 struct btrfs_block_group_cache *cache;
4498 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4499 BUG_ON(!cache);
4501 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4503 btrfs_put_block_group(cache);
4504 return 0;
4508 * this function must be called within transaction
4510 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4511 struct btrfs_root *root,
4512 u64 bytenr, u64 num_bytes)
4514 struct btrfs_block_group_cache *cache;
4516 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4517 BUG_ON(!cache);
4520 * pull in the free space cache (if any) so that our pin
4521 * removes the free space from the cache. We have load_only set
4522 * to one because the slow code to read in the free extents does check
4523 * the pinned extents.
4525 cache_block_group(cache, trans, root, 1);
4527 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4529 /* remove us from the free space cache (if we're there at all) */
4530 btrfs_remove_free_space(cache, bytenr, num_bytes);
4531 btrfs_put_block_group(cache);
4532 return 0;
4536 * btrfs_update_reserved_bytes - update the block_group and space info counters
4537 * @cache: The cache we are manipulating
4538 * @num_bytes: The number of bytes in question
4539 * @reserve: One of the reservation enums
4541 * This is called by the allocator when it reserves space, or by somebody who is
4542 * freeing space that was never actually used on disk. For example if you
4543 * reserve some space for a new leaf in transaction A and before transaction A
4544 * commits you free that leaf, you call this with reserve set to 0 in order to
4545 * clear the reservation.
4547 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4548 * ENOSPC accounting. For data we handle the reservation through clearing the
4549 * delalloc bits in the io_tree. We have to do this since we could end up
4550 * allocating less disk space for the amount of data we have reserved in the
4551 * case of compression.
4553 * If this is a reservation and the block group has become read only we cannot
4554 * make the reservation and return -EAGAIN, otherwise this function always
4555 * succeeds.
4557 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4558 u64 num_bytes, int reserve)
4560 struct btrfs_space_info *space_info = cache->space_info;
4561 int ret = 0;
4562 spin_lock(&space_info->lock);
4563 spin_lock(&cache->lock);
4564 if (reserve != RESERVE_FREE) {
4565 if (cache->ro) {
4566 ret = -EAGAIN;
4567 } else {
4568 cache->reserved += num_bytes;
4569 space_info->bytes_reserved += num_bytes;
4570 if (reserve == RESERVE_ALLOC) {
4571 BUG_ON(space_info->bytes_may_use < num_bytes);
4572 space_info->bytes_may_use -= num_bytes;
4575 } else {
4576 if (cache->ro)
4577 space_info->bytes_readonly += num_bytes;
4578 cache->reserved -= num_bytes;
4579 space_info->bytes_reserved -= num_bytes;
4580 space_info->reservation_progress++;
4582 spin_unlock(&cache->lock);
4583 spin_unlock(&space_info->lock);
4584 return ret;
4587 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4588 struct btrfs_root *root)
4590 struct btrfs_fs_info *fs_info = root->fs_info;
4591 struct btrfs_caching_control *next;
4592 struct btrfs_caching_control *caching_ctl;
4593 struct btrfs_block_group_cache *cache;
4595 down_write(&fs_info->extent_commit_sem);
4597 list_for_each_entry_safe(caching_ctl, next,
4598 &fs_info->caching_block_groups, list) {
4599 cache = caching_ctl->block_group;
4600 if (block_group_cache_done(cache)) {
4601 cache->last_byte_to_unpin = (u64)-1;
4602 list_del_init(&caching_ctl->list);
4603 put_caching_control(caching_ctl);
4604 } else {
4605 cache->last_byte_to_unpin = caching_ctl->progress;
4609 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4610 fs_info->pinned_extents = &fs_info->freed_extents[1];
4611 else
4612 fs_info->pinned_extents = &fs_info->freed_extents[0];
4614 up_write(&fs_info->extent_commit_sem);
4616 update_global_block_rsv(fs_info);
4617 return 0;
4620 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4622 struct btrfs_fs_info *fs_info = root->fs_info;
4623 struct btrfs_block_group_cache *cache = NULL;
4624 u64 len;
4626 while (start <= end) {
4627 if (!cache ||
4628 start >= cache->key.objectid + cache->key.offset) {
4629 if (cache)
4630 btrfs_put_block_group(cache);
4631 cache = btrfs_lookup_block_group(fs_info, start);
4632 BUG_ON(!cache);
4635 len = cache->key.objectid + cache->key.offset - start;
4636 len = min(len, end + 1 - start);
4638 if (start < cache->last_byte_to_unpin) {
4639 len = min(len, cache->last_byte_to_unpin - start);
4640 btrfs_add_free_space(cache, start, len);
4643 start += len;
4645 spin_lock(&cache->space_info->lock);
4646 spin_lock(&cache->lock);
4647 cache->pinned -= len;
4648 cache->space_info->bytes_pinned -= len;
4649 if (cache->ro)
4650 cache->space_info->bytes_readonly += len;
4651 spin_unlock(&cache->lock);
4652 spin_unlock(&cache->space_info->lock);
4655 if (cache)
4656 btrfs_put_block_group(cache);
4657 return 0;
4660 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4661 struct btrfs_root *root)
4663 struct btrfs_fs_info *fs_info = root->fs_info;
4664 struct extent_io_tree *unpin;
4665 u64 start;
4666 u64 end;
4667 int ret;
4669 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4670 unpin = &fs_info->freed_extents[1];
4671 else
4672 unpin = &fs_info->freed_extents[0];
4674 while (1) {
4675 ret = find_first_extent_bit(unpin, 0, &start, &end,
4676 EXTENT_DIRTY);
4677 if (ret)
4678 break;
4680 if (btrfs_test_opt(root, DISCARD))
4681 ret = btrfs_discard_extent(root, start,
4682 end + 1 - start, NULL);
4684 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4685 unpin_extent_range(root, start, end);
4686 cond_resched();
4689 return 0;
4692 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4693 struct btrfs_root *root,
4694 u64 bytenr, u64 num_bytes, u64 parent,
4695 u64 root_objectid, u64 owner_objectid,
4696 u64 owner_offset, int refs_to_drop,
4697 struct btrfs_delayed_extent_op *extent_op)
4699 struct btrfs_key key;
4700 struct btrfs_path *path;
4701 struct btrfs_fs_info *info = root->fs_info;
4702 struct btrfs_root *extent_root = info->extent_root;
4703 struct extent_buffer *leaf;
4704 struct btrfs_extent_item *ei;
4705 struct btrfs_extent_inline_ref *iref;
4706 int ret;
4707 int is_data;
4708 int extent_slot = 0;
4709 int found_extent = 0;
4710 int num_to_del = 1;
4711 u32 item_size;
4712 u64 refs;
4714 path = btrfs_alloc_path();
4715 if (!path)
4716 return -ENOMEM;
4718 path->reada = 1;
4719 path->leave_spinning = 1;
4721 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4722 BUG_ON(!is_data && refs_to_drop != 1);
4724 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4725 bytenr, num_bytes, parent,
4726 root_objectid, owner_objectid,
4727 owner_offset);
4728 if (ret == 0) {
4729 extent_slot = path->slots[0];
4730 while (extent_slot >= 0) {
4731 btrfs_item_key_to_cpu(path->nodes[0], &key,
4732 extent_slot);
4733 if (key.objectid != bytenr)
4734 break;
4735 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4736 key.offset == num_bytes) {
4737 found_extent = 1;
4738 break;
4740 if (path->slots[0] - extent_slot > 5)
4741 break;
4742 extent_slot--;
4744 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4745 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4746 if (found_extent && item_size < sizeof(*ei))
4747 found_extent = 0;
4748 #endif
4749 if (!found_extent) {
4750 BUG_ON(iref);
4751 ret = remove_extent_backref(trans, extent_root, path,
4752 NULL, refs_to_drop,
4753 is_data);
4754 BUG_ON(ret);
4755 btrfs_release_path(path);
4756 path->leave_spinning = 1;
4758 key.objectid = bytenr;
4759 key.type = BTRFS_EXTENT_ITEM_KEY;
4760 key.offset = num_bytes;
4762 ret = btrfs_search_slot(trans, extent_root,
4763 &key, path, -1, 1);
4764 if (ret) {
4765 printk(KERN_ERR "umm, got %d back from search"
4766 ", was looking for %llu\n", ret,
4767 (unsigned long long)bytenr);
4768 if (ret > 0)
4769 btrfs_print_leaf(extent_root,
4770 path->nodes[0]);
4772 BUG_ON(ret);
4773 extent_slot = path->slots[0];
4775 } else {
4776 btrfs_print_leaf(extent_root, path->nodes[0]);
4777 WARN_ON(1);
4778 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4779 "parent %llu root %llu owner %llu offset %llu\n",
4780 (unsigned long long)bytenr,
4781 (unsigned long long)parent,
4782 (unsigned long long)root_objectid,
4783 (unsigned long long)owner_objectid,
4784 (unsigned long long)owner_offset);
4787 leaf = path->nodes[0];
4788 item_size = btrfs_item_size_nr(leaf, extent_slot);
4789 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4790 if (item_size < sizeof(*ei)) {
4791 BUG_ON(found_extent || extent_slot != path->slots[0]);
4792 ret = convert_extent_item_v0(trans, extent_root, path,
4793 owner_objectid, 0);
4794 BUG_ON(ret < 0);
4796 btrfs_release_path(path);
4797 path->leave_spinning = 1;
4799 key.objectid = bytenr;
4800 key.type = BTRFS_EXTENT_ITEM_KEY;
4801 key.offset = num_bytes;
4803 ret = btrfs_search_slot(trans, extent_root, &key, path,
4804 -1, 1);
4805 if (ret) {
4806 printk(KERN_ERR "umm, got %d back from search"
4807 ", was looking for %llu\n", ret,
4808 (unsigned long long)bytenr);
4809 btrfs_print_leaf(extent_root, path->nodes[0]);
4811 BUG_ON(ret);
4812 extent_slot = path->slots[0];
4813 leaf = path->nodes[0];
4814 item_size = btrfs_item_size_nr(leaf, extent_slot);
4816 #endif
4817 BUG_ON(item_size < sizeof(*ei));
4818 ei = btrfs_item_ptr(leaf, extent_slot,
4819 struct btrfs_extent_item);
4820 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4821 struct btrfs_tree_block_info *bi;
4822 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4823 bi = (struct btrfs_tree_block_info *)(ei + 1);
4824 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4827 refs = btrfs_extent_refs(leaf, ei);
4828 BUG_ON(refs < refs_to_drop);
4829 refs -= refs_to_drop;
4831 if (refs > 0) {
4832 if (extent_op)
4833 __run_delayed_extent_op(extent_op, leaf, ei);
4835 * In the case of inline back ref, reference count will
4836 * be updated by remove_extent_backref
4838 if (iref) {
4839 BUG_ON(!found_extent);
4840 } else {
4841 btrfs_set_extent_refs(leaf, ei, refs);
4842 btrfs_mark_buffer_dirty(leaf);
4844 if (found_extent) {
4845 ret = remove_extent_backref(trans, extent_root, path,
4846 iref, refs_to_drop,
4847 is_data);
4848 BUG_ON(ret);
4850 } else {
4851 if (found_extent) {
4852 BUG_ON(is_data && refs_to_drop !=
4853 extent_data_ref_count(root, path, iref));
4854 if (iref) {
4855 BUG_ON(path->slots[0] != extent_slot);
4856 } else {
4857 BUG_ON(path->slots[0] != extent_slot + 1);
4858 path->slots[0] = extent_slot;
4859 num_to_del = 2;
4863 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4864 num_to_del);
4865 BUG_ON(ret);
4866 btrfs_release_path(path);
4868 if (is_data) {
4869 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4870 BUG_ON(ret);
4871 } else {
4872 invalidate_mapping_pages(info->btree_inode->i_mapping,
4873 bytenr >> PAGE_CACHE_SHIFT,
4874 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4877 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4878 BUG_ON(ret);
4880 btrfs_free_path(path);
4881 return ret;
4885 * when we free an block, it is possible (and likely) that we free the last
4886 * delayed ref for that extent as well. This searches the delayed ref tree for
4887 * a given extent, and if there are no other delayed refs to be processed, it
4888 * removes it from the tree.
4890 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4891 struct btrfs_root *root, u64 bytenr)
4893 struct btrfs_delayed_ref_head *head;
4894 struct btrfs_delayed_ref_root *delayed_refs;
4895 struct btrfs_delayed_ref_node *ref;
4896 struct rb_node *node;
4897 int ret = 0;
4899 delayed_refs = &trans->transaction->delayed_refs;
4900 spin_lock(&delayed_refs->lock);
4901 head = btrfs_find_delayed_ref_head(trans, bytenr);
4902 if (!head)
4903 goto out;
4905 node = rb_prev(&head->node.rb_node);
4906 if (!node)
4907 goto out;
4909 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4911 /* there are still entries for this ref, we can't drop it */
4912 if (ref->bytenr == bytenr)
4913 goto out;
4915 if (head->extent_op) {
4916 if (!head->must_insert_reserved)
4917 goto out;
4918 kfree(head->extent_op);
4919 head->extent_op = NULL;
4923 * waiting for the lock here would deadlock. If someone else has it
4924 * locked they are already in the process of dropping it anyway
4926 if (!mutex_trylock(&head->mutex))
4927 goto out;
4930 * at this point we have a head with no other entries. Go
4931 * ahead and process it.
4933 head->node.in_tree = 0;
4934 rb_erase(&head->node.rb_node, &delayed_refs->root);
4936 delayed_refs->num_entries--;
4939 * we don't take a ref on the node because we're removing it from the
4940 * tree, so we just steal the ref the tree was holding.
4942 delayed_refs->num_heads--;
4943 if (list_empty(&head->cluster))
4944 delayed_refs->num_heads_ready--;
4946 list_del_init(&head->cluster);
4947 spin_unlock(&delayed_refs->lock);
4949 BUG_ON(head->extent_op);
4950 if (head->must_insert_reserved)
4951 ret = 1;
4953 mutex_unlock(&head->mutex);
4954 btrfs_put_delayed_ref(&head->node);
4955 return ret;
4956 out:
4957 spin_unlock(&delayed_refs->lock);
4958 return 0;
4961 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4962 struct btrfs_root *root,
4963 struct extent_buffer *buf,
4964 u64 parent, int last_ref)
4966 struct btrfs_block_group_cache *cache = NULL;
4967 int ret;
4969 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4970 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4971 parent, root->root_key.objectid,
4972 btrfs_header_level(buf),
4973 BTRFS_DROP_DELAYED_REF, NULL);
4974 BUG_ON(ret);
4977 if (!last_ref)
4978 return;
4980 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4982 if (btrfs_header_generation(buf) == trans->transid) {
4983 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4984 ret = check_ref_cleanup(trans, root, buf->start);
4985 if (!ret)
4986 goto out;
4989 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4990 pin_down_extent(root, cache, buf->start, buf->len, 1);
4991 goto out;
4994 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4996 btrfs_add_free_space(cache, buf->start, buf->len);
4997 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4999 out:
5001 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5002 * anymore.
5004 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5005 btrfs_put_block_group(cache);
5008 int btrfs_free_extent(struct btrfs_trans_handle *trans,
5009 struct btrfs_root *root,
5010 u64 bytenr, u64 num_bytes, u64 parent,
5011 u64 root_objectid, u64 owner, u64 offset)
5013 int ret;
5016 * tree log blocks never actually go into the extent allocation
5017 * tree, just update pinning info and exit early.
5019 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5020 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5021 /* unlocks the pinned mutex */
5022 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5023 ret = 0;
5024 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5025 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
5026 parent, root_objectid, (int)owner,
5027 BTRFS_DROP_DELAYED_REF, NULL);
5028 BUG_ON(ret);
5029 } else {
5030 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
5031 parent, root_objectid, owner,
5032 offset, BTRFS_DROP_DELAYED_REF, NULL);
5033 BUG_ON(ret);
5035 return ret;
5038 static u64 stripe_align(struct btrfs_root *root, u64 val)
5040 u64 mask = ((u64)root->stripesize - 1);
5041 u64 ret = (val + mask) & ~mask;
5042 return ret;
5046 * when we wait for progress in the block group caching, its because
5047 * our allocation attempt failed at least once. So, we must sleep
5048 * and let some progress happen before we try again.
5050 * This function will sleep at least once waiting for new free space to
5051 * show up, and then it will check the block group free space numbers
5052 * for our min num_bytes. Another option is to have it go ahead
5053 * and look in the rbtree for a free extent of a given size, but this
5054 * is a good start.
5056 static noinline int
5057 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5058 u64 num_bytes)
5060 struct btrfs_caching_control *caching_ctl;
5061 DEFINE_WAIT(wait);
5063 caching_ctl = get_caching_control(cache);
5064 if (!caching_ctl)
5065 return 0;
5067 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5068 (cache->free_space_ctl->free_space >= num_bytes));
5070 put_caching_control(caching_ctl);
5071 return 0;
5074 static noinline int
5075 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5077 struct btrfs_caching_control *caching_ctl;
5078 DEFINE_WAIT(wait);
5080 caching_ctl = get_caching_control(cache);
5081 if (!caching_ctl)
5082 return 0;
5084 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5086 put_caching_control(caching_ctl);
5087 return 0;
5090 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5092 int index;
5093 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5094 index = 0;
5095 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5096 index = 1;
5097 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5098 index = 2;
5099 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5100 index = 3;
5101 else
5102 index = 4;
5103 return index;
5106 enum btrfs_loop_type {
5107 LOOP_FIND_IDEAL = 0,
5108 LOOP_CACHING_NOWAIT = 1,
5109 LOOP_CACHING_WAIT = 2,
5110 LOOP_ALLOC_CHUNK = 3,
5111 LOOP_NO_EMPTY_SIZE = 4,
5115 * walks the btree of allocated extents and find a hole of a given size.
5116 * The key ins is changed to record the hole:
5117 * ins->objectid == block start
5118 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5119 * ins->offset == number of blocks
5120 * Any available blocks before search_start are skipped.
5122 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5123 struct btrfs_root *orig_root,
5124 u64 num_bytes, u64 empty_size,
5125 u64 search_start, u64 search_end,
5126 u64 hint_byte, struct btrfs_key *ins,
5127 u64 data)
5129 int ret = 0;
5130 struct btrfs_root *root = orig_root->fs_info->extent_root;
5131 struct btrfs_free_cluster *last_ptr = NULL;
5132 struct btrfs_block_group_cache *block_group = NULL;
5133 struct btrfs_block_group_cache *used_block_group;
5134 int empty_cluster = 2 * 1024 * 1024;
5135 int allowed_chunk_alloc = 0;
5136 int done_chunk_alloc = 0;
5137 struct btrfs_space_info *space_info;
5138 int loop = 0;
5139 int index = 0;
5140 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5141 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5142 bool found_uncached_bg = false;
5143 bool failed_cluster_refill = false;
5144 bool failed_alloc = false;
5145 bool use_cluster = true;
5146 bool have_caching_bg = false;
5147 u64 ideal_cache_percent = 0;
5148 u64 ideal_cache_offset = 0;
5150 WARN_ON(num_bytes < root->sectorsize);
5151 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5152 ins->objectid = 0;
5153 ins->offset = 0;
5155 space_info = __find_space_info(root->fs_info, data);
5156 if (!space_info) {
5157 printk(KERN_ERR "No space info for %llu\n", data);
5158 return -ENOSPC;
5162 * If the space info is for both data and metadata it means we have a
5163 * small filesystem and we can't use the clustering stuff.
5165 if (btrfs_mixed_space_info(space_info))
5166 use_cluster = false;
5168 if (orig_root->ref_cows || empty_size)
5169 allowed_chunk_alloc = 1;
5171 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5172 last_ptr = &root->fs_info->meta_alloc_cluster;
5173 if (!btrfs_test_opt(root, SSD))
5174 empty_cluster = 64 * 1024;
5177 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5178 btrfs_test_opt(root, SSD)) {
5179 last_ptr = &root->fs_info->data_alloc_cluster;
5182 if (last_ptr) {
5183 spin_lock(&last_ptr->lock);
5184 if (last_ptr->block_group)
5185 hint_byte = last_ptr->window_start;
5186 spin_unlock(&last_ptr->lock);
5189 search_start = max(search_start, first_logical_byte(root, 0));
5190 search_start = max(search_start, hint_byte);
5192 if (!last_ptr)
5193 empty_cluster = 0;
5195 if (search_start == hint_byte) {
5196 ideal_cache:
5197 block_group = btrfs_lookup_block_group(root->fs_info,
5198 search_start);
5199 used_block_group = block_group;
5201 * we don't want to use the block group if it doesn't match our
5202 * allocation bits, or if its not cached.
5204 * However if we are re-searching with an ideal block group
5205 * picked out then we don't care that the block group is cached.
5207 if (block_group && block_group_bits(block_group, data) &&
5208 (block_group->cached != BTRFS_CACHE_NO ||
5209 search_start == ideal_cache_offset)) {
5210 down_read(&space_info->groups_sem);
5211 if (list_empty(&block_group->list) ||
5212 block_group->ro) {
5214 * someone is removing this block group,
5215 * we can't jump into the have_block_group
5216 * target because our list pointers are not
5217 * valid
5219 btrfs_put_block_group(block_group);
5220 up_read(&space_info->groups_sem);
5221 } else {
5222 index = get_block_group_index(block_group);
5223 goto have_block_group;
5225 } else if (block_group) {
5226 btrfs_put_block_group(block_group);
5229 search:
5230 have_caching_bg = false;
5231 down_read(&space_info->groups_sem);
5232 list_for_each_entry(block_group, &space_info->block_groups[index],
5233 list) {
5234 u64 offset;
5235 int cached;
5237 used_block_group = block_group;
5238 btrfs_get_block_group(block_group);
5239 search_start = block_group->key.objectid;
5242 * this can happen if we end up cycling through all the
5243 * raid types, but we want to make sure we only allocate
5244 * for the proper type.
5246 if (!block_group_bits(block_group, data)) {
5247 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5248 BTRFS_BLOCK_GROUP_RAID1 |
5249 BTRFS_BLOCK_GROUP_RAID10;
5252 * if they asked for extra copies and this block group
5253 * doesn't provide them, bail. This does allow us to
5254 * fill raid0 from raid1.
5256 if ((data & extra) && !(block_group->flags & extra))
5257 goto loop;
5260 have_block_group:
5261 cached = block_group_cache_done(block_group);
5262 if (unlikely(!cached)) {
5263 u64 free_percent;
5265 found_uncached_bg = true;
5266 ret = cache_block_group(block_group, trans,
5267 orig_root, 1);
5268 if (block_group->cached == BTRFS_CACHE_FINISHED)
5269 goto alloc;
5271 free_percent = btrfs_block_group_used(&block_group->item);
5272 free_percent *= 100;
5273 free_percent = div64_u64(free_percent,
5274 block_group->key.offset);
5275 free_percent = 100 - free_percent;
5276 if (free_percent > ideal_cache_percent &&
5277 likely(!block_group->ro)) {
5278 ideal_cache_offset = block_group->key.objectid;
5279 ideal_cache_percent = free_percent;
5283 * The caching workers are limited to 2 threads, so we
5284 * can queue as much work as we care to.
5286 if (loop > LOOP_FIND_IDEAL) {
5287 ret = cache_block_group(block_group, trans,
5288 orig_root, 0);
5289 BUG_ON(ret);
5293 * If loop is set for cached only, try the next block
5294 * group.
5296 if (loop == LOOP_FIND_IDEAL)
5297 goto loop;
5300 alloc:
5301 if (unlikely(block_group->ro))
5302 goto loop;
5304 spin_lock(&block_group->free_space_ctl->tree_lock);
5305 if (cached &&
5306 block_group->free_space_ctl->free_space <
5307 num_bytes + empty_cluster + empty_size) {
5308 spin_unlock(&block_group->free_space_ctl->tree_lock);
5309 goto loop;
5311 spin_unlock(&block_group->free_space_ctl->tree_lock);
5314 * Ok we want to try and use the cluster allocator, so
5315 * lets look there
5317 if (last_ptr) {
5319 * the refill lock keeps out other
5320 * people trying to start a new cluster
5322 spin_lock(&last_ptr->refill_lock);
5323 used_block_group = last_ptr->block_group;
5324 if (used_block_group != block_group &&
5325 (!used_block_group ||
5326 used_block_group->ro ||
5327 !block_group_bits(used_block_group, data))) {
5328 used_block_group = block_group;
5329 goto refill_cluster;
5332 if (used_block_group != block_group)
5333 btrfs_get_block_group(used_block_group);
5335 offset = btrfs_alloc_from_cluster(used_block_group,
5336 last_ptr, num_bytes, used_block_group->key.objectid);
5337 if (offset) {
5338 /* we have a block, we're done */
5339 spin_unlock(&last_ptr->refill_lock);
5340 goto checks;
5343 WARN_ON(last_ptr->block_group != used_block_group);
5344 if (used_block_group != block_group) {
5345 btrfs_put_block_group(used_block_group);
5346 used_block_group = block_group;
5348 refill_cluster:
5349 BUG_ON(used_block_group != block_group);
5350 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5351 * set up a new clusters, so lets just skip it
5352 * and let the allocator find whatever block
5353 * it can find. If we reach this point, we
5354 * will have tried the cluster allocator
5355 * plenty of times and not have found
5356 * anything, so we are likely way too
5357 * fragmented for the clustering stuff to find
5358 * anything. */
5359 if (loop >= LOOP_NO_EMPTY_SIZE) {
5360 spin_unlock(&last_ptr->refill_lock);
5361 goto unclustered_alloc;
5365 * this cluster didn't work out, free it and
5366 * start over
5368 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5370 /* allocate a cluster in this block group */
5371 ret = btrfs_find_space_cluster(trans, root,
5372 block_group, last_ptr,
5373 search_start, num_bytes,
5374 empty_cluster + empty_size);
5375 if (ret == 0) {
5377 * now pull our allocation out of this
5378 * cluster
5380 offset = btrfs_alloc_from_cluster(block_group,
5381 last_ptr, num_bytes,
5382 search_start);
5383 if (offset) {
5384 /* we found one, proceed */
5385 spin_unlock(&last_ptr->refill_lock);
5386 goto checks;
5388 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5389 && !failed_cluster_refill) {
5390 spin_unlock(&last_ptr->refill_lock);
5392 failed_cluster_refill = true;
5393 wait_block_group_cache_progress(block_group,
5394 num_bytes + empty_cluster + empty_size);
5395 goto have_block_group;
5399 * at this point we either didn't find a cluster
5400 * or we weren't able to allocate a block from our
5401 * cluster. Free the cluster we've been trying
5402 * to use, and go to the next block group
5404 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5405 spin_unlock(&last_ptr->refill_lock);
5406 goto loop;
5409 unclustered_alloc:
5410 offset = btrfs_find_space_for_alloc(block_group, search_start,
5411 num_bytes, empty_size);
5413 * If we didn't find a chunk, and we haven't failed on this
5414 * block group before, and this block group is in the middle of
5415 * caching and we are ok with waiting, then go ahead and wait
5416 * for progress to be made, and set failed_alloc to true.
5418 * If failed_alloc is true then we've already waited on this
5419 * block group once and should move on to the next block group.
5421 if (!offset && !failed_alloc && !cached &&
5422 loop > LOOP_CACHING_NOWAIT) {
5423 wait_block_group_cache_progress(block_group,
5424 num_bytes + empty_size);
5425 failed_alloc = true;
5426 goto have_block_group;
5427 } else if (!offset) {
5428 if (!cached)
5429 have_caching_bg = true;
5430 goto loop;
5432 checks:
5433 search_start = stripe_align(root, offset);
5434 /* move on to the next group */
5435 if (search_start + num_bytes >= search_end) {
5436 btrfs_add_free_space(used_block_group, offset, num_bytes);
5437 goto loop;
5440 /* move on to the next group */
5441 if (search_start + num_bytes >
5442 used_block_group->key.objectid + used_block_group->key.offset) {
5443 btrfs_add_free_space(used_block_group, offset, num_bytes);
5444 goto loop;
5447 ins->objectid = search_start;
5448 ins->offset = num_bytes;
5450 if (offset < search_start)
5451 btrfs_add_free_space(used_block_group, offset,
5452 search_start - offset);
5453 BUG_ON(offset > search_start);
5455 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5456 alloc_type);
5457 if (ret == -EAGAIN) {
5458 btrfs_add_free_space(used_block_group, offset, num_bytes);
5459 goto loop;
5462 /* we are all good, lets return */
5463 ins->objectid = search_start;
5464 ins->offset = num_bytes;
5466 if (offset < search_start)
5467 btrfs_add_free_space(used_block_group, offset,
5468 search_start - offset);
5469 BUG_ON(offset > search_start);
5470 if (used_block_group != block_group)
5471 btrfs_put_block_group(used_block_group);
5472 btrfs_put_block_group(block_group);
5473 break;
5474 loop:
5475 failed_cluster_refill = false;
5476 failed_alloc = false;
5477 BUG_ON(index != get_block_group_index(block_group));
5478 if (used_block_group != block_group)
5479 btrfs_put_block_group(used_block_group);
5480 btrfs_put_block_group(block_group);
5482 up_read(&space_info->groups_sem);
5484 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5485 goto search;
5487 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5488 goto search;
5490 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5491 * for them to make caching progress. Also
5492 * determine the best possible bg to cache
5493 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5494 * caching kthreads as we move along
5495 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5496 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5497 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5498 * again
5500 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5501 index = 0;
5502 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5503 found_uncached_bg = false;
5504 loop++;
5505 if (!ideal_cache_percent)
5506 goto search;
5509 * 1 of the following 2 things have happened so far
5511 * 1) We found an ideal block group for caching that
5512 * is mostly full and will cache quickly, so we might
5513 * as well wait for it.
5515 * 2) We searched for cached only and we didn't find
5516 * anything, and we didn't start any caching kthreads
5517 * either, so chances are we will loop through and
5518 * start a couple caching kthreads, and then come back
5519 * around and just wait for them. This will be slower
5520 * because we will have 2 caching kthreads reading at
5521 * the same time when we could have just started one
5522 * and waited for it to get far enough to give us an
5523 * allocation, so go ahead and go to the wait caching
5524 * loop.
5526 loop = LOOP_CACHING_WAIT;
5527 search_start = ideal_cache_offset;
5528 ideal_cache_percent = 0;
5529 goto ideal_cache;
5530 } else if (loop == LOOP_FIND_IDEAL) {
5532 * Didn't find a uncached bg, wait on anything we find
5533 * next.
5535 loop = LOOP_CACHING_WAIT;
5536 goto search;
5539 loop++;
5541 if (loop == LOOP_ALLOC_CHUNK) {
5542 if (allowed_chunk_alloc) {
5543 ret = do_chunk_alloc(trans, root, num_bytes +
5544 2 * 1024 * 1024, data,
5545 CHUNK_ALLOC_LIMITED);
5546 allowed_chunk_alloc = 0;
5547 if (ret == 1)
5548 done_chunk_alloc = 1;
5549 } else if (!done_chunk_alloc &&
5550 space_info->force_alloc ==
5551 CHUNK_ALLOC_NO_FORCE) {
5552 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5556 * We didn't allocate a chunk, go ahead and drop the
5557 * empty size and loop again.
5559 if (!done_chunk_alloc)
5560 loop = LOOP_NO_EMPTY_SIZE;
5563 if (loop == LOOP_NO_EMPTY_SIZE) {
5564 empty_size = 0;
5565 empty_cluster = 0;
5568 goto search;
5569 } else if (!ins->objectid) {
5570 ret = -ENOSPC;
5571 } else if (ins->objectid) {
5572 ret = 0;
5575 return ret;
5578 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5579 int dump_block_groups)
5581 struct btrfs_block_group_cache *cache;
5582 int index = 0;
5584 spin_lock(&info->lock);
5585 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5586 (unsigned long long)info->flags,
5587 (unsigned long long)(info->total_bytes - info->bytes_used -
5588 info->bytes_pinned - info->bytes_reserved -
5589 info->bytes_readonly),
5590 (info->full) ? "" : "not ");
5591 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5592 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5593 (unsigned long long)info->total_bytes,
5594 (unsigned long long)info->bytes_used,
5595 (unsigned long long)info->bytes_pinned,
5596 (unsigned long long)info->bytes_reserved,
5597 (unsigned long long)info->bytes_may_use,
5598 (unsigned long long)info->bytes_readonly);
5599 spin_unlock(&info->lock);
5601 if (!dump_block_groups)
5602 return;
5604 down_read(&info->groups_sem);
5605 again:
5606 list_for_each_entry(cache, &info->block_groups[index], list) {
5607 spin_lock(&cache->lock);
5608 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5609 "%llu pinned %llu reserved\n",
5610 (unsigned long long)cache->key.objectid,
5611 (unsigned long long)cache->key.offset,
5612 (unsigned long long)btrfs_block_group_used(&cache->item),
5613 (unsigned long long)cache->pinned,
5614 (unsigned long long)cache->reserved);
5615 btrfs_dump_free_space(cache, bytes);
5616 spin_unlock(&cache->lock);
5618 if (++index < BTRFS_NR_RAID_TYPES)
5619 goto again;
5620 up_read(&info->groups_sem);
5623 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5624 struct btrfs_root *root,
5625 u64 num_bytes, u64 min_alloc_size,
5626 u64 empty_size, u64 hint_byte,
5627 u64 search_end, struct btrfs_key *ins,
5628 u64 data)
5630 int ret;
5631 u64 search_start = 0;
5633 data = btrfs_get_alloc_profile(root, data);
5634 again:
5636 * the only place that sets empty_size is btrfs_realloc_node, which
5637 * is not called recursively on allocations
5639 if (empty_size || root->ref_cows)
5640 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5641 num_bytes + 2 * 1024 * 1024, data,
5642 CHUNK_ALLOC_NO_FORCE);
5644 WARN_ON(num_bytes < root->sectorsize);
5645 ret = find_free_extent(trans, root, num_bytes, empty_size,
5646 search_start, search_end, hint_byte,
5647 ins, data);
5649 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5650 num_bytes = num_bytes >> 1;
5651 num_bytes = num_bytes & ~(root->sectorsize - 1);
5652 num_bytes = max(num_bytes, min_alloc_size);
5653 do_chunk_alloc(trans, root->fs_info->extent_root,
5654 num_bytes, data, CHUNK_ALLOC_FORCE);
5655 goto again;
5657 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5658 struct btrfs_space_info *sinfo;
5660 sinfo = __find_space_info(root->fs_info, data);
5661 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5662 "wanted %llu\n", (unsigned long long)data,
5663 (unsigned long long)num_bytes);
5664 dump_space_info(sinfo, num_bytes, 1);
5667 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5669 return ret;
5672 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5673 u64 start, u64 len, int pin)
5675 struct btrfs_block_group_cache *cache;
5676 int ret = 0;
5678 cache = btrfs_lookup_block_group(root->fs_info, start);
5679 if (!cache) {
5680 printk(KERN_ERR "Unable to find block group for %llu\n",
5681 (unsigned long long)start);
5682 return -ENOSPC;
5685 if (btrfs_test_opt(root, DISCARD))
5686 ret = btrfs_discard_extent(root, start, len, NULL);
5688 if (pin)
5689 pin_down_extent(root, cache, start, len, 1);
5690 else {
5691 btrfs_add_free_space(cache, start, len);
5692 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5694 btrfs_put_block_group(cache);
5696 trace_btrfs_reserved_extent_free(root, start, len);
5698 return ret;
5701 int btrfs_free_reserved_extent(struct btrfs_root *root,
5702 u64 start, u64 len)
5704 return __btrfs_free_reserved_extent(root, start, len, 0);
5707 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5708 u64 start, u64 len)
5710 return __btrfs_free_reserved_extent(root, start, len, 1);
5713 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5714 struct btrfs_root *root,
5715 u64 parent, u64 root_objectid,
5716 u64 flags, u64 owner, u64 offset,
5717 struct btrfs_key *ins, int ref_mod)
5719 int ret;
5720 struct btrfs_fs_info *fs_info = root->fs_info;
5721 struct btrfs_extent_item *extent_item;
5722 struct btrfs_extent_inline_ref *iref;
5723 struct btrfs_path *path;
5724 struct extent_buffer *leaf;
5725 int type;
5726 u32 size;
5728 if (parent > 0)
5729 type = BTRFS_SHARED_DATA_REF_KEY;
5730 else
5731 type = BTRFS_EXTENT_DATA_REF_KEY;
5733 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5735 path = btrfs_alloc_path();
5736 if (!path)
5737 return -ENOMEM;
5739 path->leave_spinning = 1;
5740 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5741 ins, size);
5742 BUG_ON(ret);
5744 leaf = path->nodes[0];
5745 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5746 struct btrfs_extent_item);
5747 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5748 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5749 btrfs_set_extent_flags(leaf, extent_item,
5750 flags | BTRFS_EXTENT_FLAG_DATA);
5752 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5753 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5754 if (parent > 0) {
5755 struct btrfs_shared_data_ref *ref;
5756 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5757 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5758 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5759 } else {
5760 struct btrfs_extent_data_ref *ref;
5761 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5762 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5763 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5764 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5765 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5768 btrfs_mark_buffer_dirty(path->nodes[0]);
5769 btrfs_free_path(path);
5771 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5772 if (ret) {
5773 printk(KERN_ERR "btrfs update block group failed for %llu "
5774 "%llu\n", (unsigned long long)ins->objectid,
5775 (unsigned long long)ins->offset);
5776 BUG();
5778 return ret;
5781 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5782 struct btrfs_root *root,
5783 u64 parent, u64 root_objectid,
5784 u64 flags, struct btrfs_disk_key *key,
5785 int level, struct btrfs_key *ins)
5787 int ret;
5788 struct btrfs_fs_info *fs_info = root->fs_info;
5789 struct btrfs_extent_item *extent_item;
5790 struct btrfs_tree_block_info *block_info;
5791 struct btrfs_extent_inline_ref *iref;
5792 struct btrfs_path *path;
5793 struct extent_buffer *leaf;
5794 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5796 path = btrfs_alloc_path();
5797 if (!path)
5798 return -ENOMEM;
5800 path->leave_spinning = 1;
5801 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5802 ins, size);
5803 BUG_ON(ret);
5805 leaf = path->nodes[0];
5806 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5807 struct btrfs_extent_item);
5808 btrfs_set_extent_refs(leaf, extent_item, 1);
5809 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5810 btrfs_set_extent_flags(leaf, extent_item,
5811 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5812 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5814 btrfs_set_tree_block_key(leaf, block_info, key);
5815 btrfs_set_tree_block_level(leaf, block_info, level);
5817 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5818 if (parent > 0) {
5819 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5820 btrfs_set_extent_inline_ref_type(leaf, iref,
5821 BTRFS_SHARED_BLOCK_REF_KEY);
5822 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5823 } else {
5824 btrfs_set_extent_inline_ref_type(leaf, iref,
5825 BTRFS_TREE_BLOCK_REF_KEY);
5826 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5829 btrfs_mark_buffer_dirty(leaf);
5830 btrfs_free_path(path);
5832 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5833 if (ret) {
5834 printk(KERN_ERR "btrfs update block group failed for %llu "
5835 "%llu\n", (unsigned long long)ins->objectid,
5836 (unsigned long long)ins->offset);
5837 BUG();
5839 return ret;
5842 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5843 struct btrfs_root *root,
5844 u64 root_objectid, u64 owner,
5845 u64 offset, struct btrfs_key *ins)
5847 int ret;
5849 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5851 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5852 0, root_objectid, owner, offset,
5853 BTRFS_ADD_DELAYED_EXTENT, NULL);
5854 return ret;
5858 * this is used by the tree logging recovery code. It records that
5859 * an extent has been allocated and makes sure to clear the free
5860 * space cache bits as well
5862 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5863 struct btrfs_root *root,
5864 u64 root_objectid, u64 owner, u64 offset,
5865 struct btrfs_key *ins)
5867 int ret;
5868 struct btrfs_block_group_cache *block_group;
5869 struct btrfs_caching_control *caching_ctl;
5870 u64 start = ins->objectid;
5871 u64 num_bytes = ins->offset;
5873 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5874 cache_block_group(block_group, trans, NULL, 0);
5875 caching_ctl = get_caching_control(block_group);
5877 if (!caching_ctl) {
5878 BUG_ON(!block_group_cache_done(block_group));
5879 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5880 BUG_ON(ret);
5881 } else {
5882 mutex_lock(&caching_ctl->mutex);
5884 if (start >= caching_ctl->progress) {
5885 ret = add_excluded_extent(root, start, num_bytes);
5886 BUG_ON(ret);
5887 } else if (start + num_bytes <= caching_ctl->progress) {
5888 ret = btrfs_remove_free_space(block_group,
5889 start, num_bytes);
5890 BUG_ON(ret);
5891 } else {
5892 num_bytes = caching_ctl->progress - start;
5893 ret = btrfs_remove_free_space(block_group,
5894 start, num_bytes);
5895 BUG_ON(ret);
5897 start = caching_ctl->progress;
5898 num_bytes = ins->objectid + ins->offset -
5899 caching_ctl->progress;
5900 ret = add_excluded_extent(root, start, num_bytes);
5901 BUG_ON(ret);
5904 mutex_unlock(&caching_ctl->mutex);
5905 put_caching_control(caching_ctl);
5908 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5909 RESERVE_ALLOC_NO_ACCOUNT);
5910 BUG_ON(ret);
5911 btrfs_put_block_group(block_group);
5912 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5913 0, owner, offset, ins, 1);
5914 return ret;
5917 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5918 struct btrfs_root *root,
5919 u64 bytenr, u32 blocksize,
5920 int level)
5922 struct extent_buffer *buf;
5924 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5925 if (!buf)
5926 return ERR_PTR(-ENOMEM);
5927 btrfs_set_header_generation(buf, trans->transid);
5928 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5929 btrfs_tree_lock(buf);
5930 clean_tree_block(trans, root, buf);
5932 btrfs_set_lock_blocking(buf);
5933 btrfs_set_buffer_uptodate(buf);
5935 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5937 * we allow two log transactions at a time, use different
5938 * EXENT bit to differentiate dirty pages.
5940 if (root->log_transid % 2 == 0)
5941 set_extent_dirty(&root->dirty_log_pages, buf->start,
5942 buf->start + buf->len - 1, GFP_NOFS);
5943 else
5944 set_extent_new(&root->dirty_log_pages, buf->start,
5945 buf->start + buf->len - 1, GFP_NOFS);
5946 } else {
5947 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5948 buf->start + buf->len - 1, GFP_NOFS);
5950 trans->blocks_used++;
5951 /* this returns a buffer locked for blocking */
5952 return buf;
5955 static struct btrfs_block_rsv *
5956 use_block_rsv(struct btrfs_trans_handle *trans,
5957 struct btrfs_root *root, u32 blocksize)
5959 struct btrfs_block_rsv *block_rsv;
5960 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5961 int ret;
5963 block_rsv = get_block_rsv(trans, root);
5965 if (block_rsv->size == 0) {
5966 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5968 * If we couldn't reserve metadata bytes try and use some from
5969 * the global reserve.
5971 if (ret && block_rsv != global_rsv) {
5972 ret = block_rsv_use_bytes(global_rsv, blocksize);
5973 if (!ret)
5974 return global_rsv;
5975 return ERR_PTR(ret);
5976 } else if (ret) {
5977 return ERR_PTR(ret);
5979 return block_rsv;
5982 ret = block_rsv_use_bytes(block_rsv, blocksize);
5983 if (!ret)
5984 return block_rsv;
5985 if (ret) {
5986 static DEFINE_RATELIMIT_STATE(_rs,
5987 DEFAULT_RATELIMIT_INTERVAL,
5988 /*DEFAULT_RATELIMIT_BURST*/ 2);
5989 if (__ratelimit(&_rs)) {
5990 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
5991 WARN_ON(1);
5993 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5994 if (!ret) {
5995 return block_rsv;
5996 } else if (ret && block_rsv != global_rsv) {
5997 ret = block_rsv_use_bytes(global_rsv, blocksize);
5998 if (!ret)
5999 return global_rsv;
6003 return ERR_PTR(-ENOSPC);
6006 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
6008 block_rsv_add_bytes(block_rsv, blocksize, 0);
6009 block_rsv_release_bytes(block_rsv, NULL, 0);
6013 * finds a free extent and does all the dirty work required for allocation
6014 * returns the key for the extent through ins, and a tree buffer for
6015 * the first block of the extent through buf.
6017 * returns the tree buffer or NULL.
6019 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6020 struct btrfs_root *root, u32 blocksize,
6021 u64 parent, u64 root_objectid,
6022 struct btrfs_disk_key *key, int level,
6023 u64 hint, u64 empty_size)
6025 struct btrfs_key ins;
6026 struct btrfs_block_rsv *block_rsv;
6027 struct extent_buffer *buf;
6028 u64 flags = 0;
6029 int ret;
6032 block_rsv = use_block_rsv(trans, root, blocksize);
6033 if (IS_ERR(block_rsv))
6034 return ERR_CAST(block_rsv);
6036 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6037 empty_size, hint, (u64)-1, &ins, 0);
6038 if (ret) {
6039 unuse_block_rsv(block_rsv, blocksize);
6040 return ERR_PTR(ret);
6043 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6044 blocksize, level);
6045 BUG_ON(IS_ERR(buf));
6047 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6048 if (parent == 0)
6049 parent = ins.objectid;
6050 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6051 } else
6052 BUG_ON(parent > 0);
6054 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6055 struct btrfs_delayed_extent_op *extent_op;
6056 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6057 BUG_ON(!extent_op);
6058 if (key)
6059 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6060 else
6061 memset(&extent_op->key, 0, sizeof(extent_op->key));
6062 extent_op->flags_to_set = flags;
6063 extent_op->update_key = 1;
6064 extent_op->update_flags = 1;
6065 extent_op->is_data = 0;
6067 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
6068 ins.offset, parent, root_objectid,
6069 level, BTRFS_ADD_DELAYED_EXTENT,
6070 extent_op);
6071 BUG_ON(ret);
6073 return buf;
6076 struct walk_control {
6077 u64 refs[BTRFS_MAX_LEVEL];
6078 u64 flags[BTRFS_MAX_LEVEL];
6079 struct btrfs_key update_progress;
6080 int stage;
6081 int level;
6082 int shared_level;
6083 int update_ref;
6084 int keep_locks;
6085 int reada_slot;
6086 int reada_count;
6089 #define DROP_REFERENCE 1
6090 #define UPDATE_BACKREF 2
6092 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6093 struct btrfs_root *root,
6094 struct walk_control *wc,
6095 struct btrfs_path *path)
6097 u64 bytenr;
6098 u64 generation;
6099 u64 refs;
6100 u64 flags;
6101 u32 nritems;
6102 u32 blocksize;
6103 struct btrfs_key key;
6104 struct extent_buffer *eb;
6105 int ret;
6106 int slot;
6107 int nread = 0;
6109 if (path->slots[wc->level] < wc->reada_slot) {
6110 wc->reada_count = wc->reada_count * 2 / 3;
6111 wc->reada_count = max(wc->reada_count, 2);
6112 } else {
6113 wc->reada_count = wc->reada_count * 3 / 2;
6114 wc->reada_count = min_t(int, wc->reada_count,
6115 BTRFS_NODEPTRS_PER_BLOCK(root));
6118 eb = path->nodes[wc->level];
6119 nritems = btrfs_header_nritems(eb);
6120 blocksize = btrfs_level_size(root, wc->level - 1);
6122 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6123 if (nread >= wc->reada_count)
6124 break;
6126 cond_resched();
6127 bytenr = btrfs_node_blockptr(eb, slot);
6128 generation = btrfs_node_ptr_generation(eb, slot);
6130 if (slot == path->slots[wc->level])
6131 goto reada;
6133 if (wc->stage == UPDATE_BACKREF &&
6134 generation <= root->root_key.offset)
6135 continue;
6137 /* We don't lock the tree block, it's OK to be racy here */
6138 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6139 &refs, &flags);
6140 BUG_ON(ret);
6141 BUG_ON(refs == 0);
6143 if (wc->stage == DROP_REFERENCE) {
6144 if (refs == 1)
6145 goto reada;
6147 if (wc->level == 1 &&
6148 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6149 continue;
6150 if (!wc->update_ref ||
6151 generation <= root->root_key.offset)
6152 continue;
6153 btrfs_node_key_to_cpu(eb, &key, slot);
6154 ret = btrfs_comp_cpu_keys(&key,
6155 &wc->update_progress);
6156 if (ret < 0)
6157 continue;
6158 } else {
6159 if (wc->level == 1 &&
6160 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6161 continue;
6163 reada:
6164 ret = readahead_tree_block(root, bytenr, blocksize,
6165 generation);
6166 if (ret)
6167 break;
6168 nread++;
6170 wc->reada_slot = slot;
6174 * hepler to process tree block while walking down the tree.
6176 * when wc->stage == UPDATE_BACKREF, this function updates
6177 * back refs for pointers in the block.
6179 * NOTE: return value 1 means we should stop walking down.
6181 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6182 struct btrfs_root *root,
6183 struct btrfs_path *path,
6184 struct walk_control *wc, int lookup_info)
6186 int level = wc->level;
6187 struct extent_buffer *eb = path->nodes[level];
6188 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6189 int ret;
6191 if (wc->stage == UPDATE_BACKREF &&
6192 btrfs_header_owner(eb) != root->root_key.objectid)
6193 return 1;
6196 * when reference count of tree block is 1, it won't increase
6197 * again. once full backref flag is set, we never clear it.
6199 if (lookup_info &&
6200 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6201 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6202 BUG_ON(!path->locks[level]);
6203 ret = btrfs_lookup_extent_info(trans, root,
6204 eb->start, eb->len,
6205 &wc->refs[level],
6206 &wc->flags[level]);
6207 BUG_ON(ret);
6208 BUG_ON(wc->refs[level] == 0);
6211 if (wc->stage == DROP_REFERENCE) {
6212 if (wc->refs[level] > 1)
6213 return 1;
6215 if (path->locks[level] && !wc->keep_locks) {
6216 btrfs_tree_unlock_rw(eb, path->locks[level]);
6217 path->locks[level] = 0;
6219 return 0;
6222 /* wc->stage == UPDATE_BACKREF */
6223 if (!(wc->flags[level] & flag)) {
6224 BUG_ON(!path->locks[level]);
6225 ret = btrfs_inc_ref(trans, root, eb, 1);
6226 BUG_ON(ret);
6227 ret = btrfs_dec_ref(trans, root, eb, 0);
6228 BUG_ON(ret);
6229 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6230 eb->len, flag, 0);
6231 BUG_ON(ret);
6232 wc->flags[level] |= flag;
6236 * the block is shared by multiple trees, so it's not good to
6237 * keep the tree lock
6239 if (path->locks[level] && level > 0) {
6240 btrfs_tree_unlock_rw(eb, path->locks[level]);
6241 path->locks[level] = 0;
6243 return 0;
6247 * hepler to process tree block pointer.
6249 * when wc->stage == DROP_REFERENCE, this function checks
6250 * reference count of the block pointed to. if the block
6251 * is shared and we need update back refs for the subtree
6252 * rooted at the block, this function changes wc->stage to
6253 * UPDATE_BACKREF. if the block is shared and there is no
6254 * need to update back, this function drops the reference
6255 * to the block.
6257 * NOTE: return value 1 means we should stop walking down.
6259 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6260 struct btrfs_root *root,
6261 struct btrfs_path *path,
6262 struct walk_control *wc, int *lookup_info)
6264 u64 bytenr;
6265 u64 generation;
6266 u64 parent;
6267 u32 blocksize;
6268 struct btrfs_key key;
6269 struct extent_buffer *next;
6270 int level = wc->level;
6271 int reada = 0;
6272 int ret = 0;
6274 generation = btrfs_node_ptr_generation(path->nodes[level],
6275 path->slots[level]);
6277 * if the lower level block was created before the snapshot
6278 * was created, we know there is no need to update back refs
6279 * for the subtree
6281 if (wc->stage == UPDATE_BACKREF &&
6282 generation <= root->root_key.offset) {
6283 *lookup_info = 1;
6284 return 1;
6287 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6288 blocksize = btrfs_level_size(root, level - 1);
6290 next = btrfs_find_tree_block(root, bytenr, blocksize);
6291 if (!next) {
6292 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6293 if (!next)
6294 return -ENOMEM;
6295 reada = 1;
6297 btrfs_tree_lock(next);
6298 btrfs_set_lock_blocking(next);
6300 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6301 &wc->refs[level - 1],
6302 &wc->flags[level - 1]);
6303 BUG_ON(ret);
6304 BUG_ON(wc->refs[level - 1] == 0);
6305 *lookup_info = 0;
6307 if (wc->stage == DROP_REFERENCE) {
6308 if (wc->refs[level - 1] > 1) {
6309 if (level == 1 &&
6310 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6311 goto skip;
6313 if (!wc->update_ref ||
6314 generation <= root->root_key.offset)
6315 goto skip;
6317 btrfs_node_key_to_cpu(path->nodes[level], &key,
6318 path->slots[level]);
6319 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6320 if (ret < 0)
6321 goto skip;
6323 wc->stage = UPDATE_BACKREF;
6324 wc->shared_level = level - 1;
6326 } else {
6327 if (level == 1 &&
6328 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6329 goto skip;
6332 if (!btrfs_buffer_uptodate(next, generation)) {
6333 btrfs_tree_unlock(next);
6334 free_extent_buffer(next);
6335 next = NULL;
6336 *lookup_info = 1;
6339 if (!next) {
6340 if (reada && level == 1)
6341 reada_walk_down(trans, root, wc, path);
6342 next = read_tree_block(root, bytenr, blocksize, generation);
6343 if (!next)
6344 return -EIO;
6345 btrfs_tree_lock(next);
6346 btrfs_set_lock_blocking(next);
6349 level--;
6350 BUG_ON(level != btrfs_header_level(next));
6351 path->nodes[level] = next;
6352 path->slots[level] = 0;
6353 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6354 wc->level = level;
6355 if (wc->level == 1)
6356 wc->reada_slot = 0;
6357 return 0;
6358 skip:
6359 wc->refs[level - 1] = 0;
6360 wc->flags[level - 1] = 0;
6361 if (wc->stage == DROP_REFERENCE) {
6362 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6363 parent = path->nodes[level]->start;
6364 } else {
6365 BUG_ON(root->root_key.objectid !=
6366 btrfs_header_owner(path->nodes[level]));
6367 parent = 0;
6370 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6371 root->root_key.objectid, level - 1, 0);
6372 BUG_ON(ret);
6374 btrfs_tree_unlock(next);
6375 free_extent_buffer(next);
6376 *lookup_info = 1;
6377 return 1;
6381 * hepler to process tree block while walking up the tree.
6383 * when wc->stage == DROP_REFERENCE, this function drops
6384 * reference count on the block.
6386 * when wc->stage == UPDATE_BACKREF, this function changes
6387 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6388 * to UPDATE_BACKREF previously while processing the block.
6390 * NOTE: return value 1 means we should stop walking up.
6392 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6393 struct btrfs_root *root,
6394 struct btrfs_path *path,
6395 struct walk_control *wc)
6397 int ret;
6398 int level = wc->level;
6399 struct extent_buffer *eb = path->nodes[level];
6400 u64 parent = 0;
6402 if (wc->stage == UPDATE_BACKREF) {
6403 BUG_ON(wc->shared_level < level);
6404 if (level < wc->shared_level)
6405 goto out;
6407 ret = find_next_key(path, level + 1, &wc->update_progress);
6408 if (ret > 0)
6409 wc->update_ref = 0;
6411 wc->stage = DROP_REFERENCE;
6412 wc->shared_level = -1;
6413 path->slots[level] = 0;
6416 * check reference count again if the block isn't locked.
6417 * we should start walking down the tree again if reference
6418 * count is one.
6420 if (!path->locks[level]) {
6421 BUG_ON(level == 0);
6422 btrfs_tree_lock(eb);
6423 btrfs_set_lock_blocking(eb);
6424 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6426 ret = btrfs_lookup_extent_info(trans, root,
6427 eb->start, eb->len,
6428 &wc->refs[level],
6429 &wc->flags[level]);
6430 BUG_ON(ret);
6431 BUG_ON(wc->refs[level] == 0);
6432 if (wc->refs[level] == 1) {
6433 btrfs_tree_unlock_rw(eb, path->locks[level]);
6434 return 1;
6439 /* wc->stage == DROP_REFERENCE */
6440 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6442 if (wc->refs[level] == 1) {
6443 if (level == 0) {
6444 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6445 ret = btrfs_dec_ref(trans, root, eb, 1);
6446 else
6447 ret = btrfs_dec_ref(trans, root, eb, 0);
6448 BUG_ON(ret);
6450 /* make block locked assertion in clean_tree_block happy */
6451 if (!path->locks[level] &&
6452 btrfs_header_generation(eb) == trans->transid) {
6453 btrfs_tree_lock(eb);
6454 btrfs_set_lock_blocking(eb);
6455 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6457 clean_tree_block(trans, root, eb);
6460 if (eb == root->node) {
6461 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6462 parent = eb->start;
6463 else
6464 BUG_ON(root->root_key.objectid !=
6465 btrfs_header_owner(eb));
6466 } else {
6467 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6468 parent = path->nodes[level + 1]->start;
6469 else
6470 BUG_ON(root->root_key.objectid !=
6471 btrfs_header_owner(path->nodes[level + 1]));
6474 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6475 out:
6476 wc->refs[level] = 0;
6477 wc->flags[level] = 0;
6478 return 0;
6481 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6482 struct btrfs_root *root,
6483 struct btrfs_path *path,
6484 struct walk_control *wc)
6486 int level = wc->level;
6487 int lookup_info = 1;
6488 int ret;
6490 while (level >= 0) {
6491 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6492 if (ret > 0)
6493 break;
6495 if (level == 0)
6496 break;
6498 if (path->slots[level] >=
6499 btrfs_header_nritems(path->nodes[level]))
6500 break;
6502 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6503 if (ret > 0) {
6504 path->slots[level]++;
6505 continue;
6506 } else if (ret < 0)
6507 return ret;
6508 level = wc->level;
6510 return 0;
6513 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6514 struct btrfs_root *root,
6515 struct btrfs_path *path,
6516 struct walk_control *wc, int max_level)
6518 int level = wc->level;
6519 int ret;
6521 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6522 while (level < max_level && path->nodes[level]) {
6523 wc->level = level;
6524 if (path->slots[level] + 1 <
6525 btrfs_header_nritems(path->nodes[level])) {
6526 path->slots[level]++;
6527 return 0;
6528 } else {
6529 ret = walk_up_proc(trans, root, path, wc);
6530 if (ret > 0)
6531 return 0;
6533 if (path->locks[level]) {
6534 btrfs_tree_unlock_rw(path->nodes[level],
6535 path->locks[level]);
6536 path->locks[level] = 0;
6538 free_extent_buffer(path->nodes[level]);
6539 path->nodes[level] = NULL;
6540 level++;
6543 return 1;
6547 * drop a subvolume tree.
6549 * this function traverses the tree freeing any blocks that only
6550 * referenced by the tree.
6552 * when a shared tree block is found. this function decreases its
6553 * reference count by one. if update_ref is true, this function
6554 * also make sure backrefs for the shared block and all lower level
6555 * blocks are properly updated.
6557 void btrfs_drop_snapshot(struct btrfs_root *root,
6558 struct btrfs_block_rsv *block_rsv, int update_ref)
6560 struct btrfs_path *path;
6561 struct btrfs_trans_handle *trans;
6562 struct btrfs_root *tree_root = root->fs_info->tree_root;
6563 struct btrfs_root_item *root_item = &root->root_item;
6564 struct walk_control *wc;
6565 struct btrfs_key key;
6566 int err = 0;
6567 int ret;
6568 int level;
6570 path = btrfs_alloc_path();
6571 if (!path) {
6572 err = -ENOMEM;
6573 goto out;
6576 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6577 if (!wc) {
6578 btrfs_free_path(path);
6579 err = -ENOMEM;
6580 goto out;
6583 trans = btrfs_start_transaction(tree_root, 0);
6584 BUG_ON(IS_ERR(trans));
6586 if (block_rsv)
6587 trans->block_rsv = block_rsv;
6589 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6590 level = btrfs_header_level(root->node);
6591 path->nodes[level] = btrfs_lock_root_node(root);
6592 btrfs_set_lock_blocking(path->nodes[level]);
6593 path->slots[level] = 0;
6594 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6595 memset(&wc->update_progress, 0,
6596 sizeof(wc->update_progress));
6597 } else {
6598 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6599 memcpy(&wc->update_progress, &key,
6600 sizeof(wc->update_progress));
6602 level = root_item->drop_level;
6603 BUG_ON(level == 0);
6604 path->lowest_level = level;
6605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6606 path->lowest_level = 0;
6607 if (ret < 0) {
6608 err = ret;
6609 goto out_free;
6611 WARN_ON(ret > 0);
6614 * unlock our path, this is safe because only this
6615 * function is allowed to delete this snapshot
6617 btrfs_unlock_up_safe(path, 0);
6619 level = btrfs_header_level(root->node);
6620 while (1) {
6621 btrfs_tree_lock(path->nodes[level]);
6622 btrfs_set_lock_blocking(path->nodes[level]);
6624 ret = btrfs_lookup_extent_info(trans, root,
6625 path->nodes[level]->start,
6626 path->nodes[level]->len,
6627 &wc->refs[level],
6628 &wc->flags[level]);
6629 BUG_ON(ret);
6630 BUG_ON(wc->refs[level] == 0);
6632 if (level == root_item->drop_level)
6633 break;
6635 btrfs_tree_unlock(path->nodes[level]);
6636 WARN_ON(wc->refs[level] != 1);
6637 level--;
6641 wc->level = level;
6642 wc->shared_level = -1;
6643 wc->stage = DROP_REFERENCE;
6644 wc->update_ref = update_ref;
6645 wc->keep_locks = 0;
6646 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6648 while (1) {
6649 ret = walk_down_tree(trans, root, path, wc);
6650 if (ret < 0) {
6651 err = ret;
6652 break;
6655 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6656 if (ret < 0) {
6657 err = ret;
6658 break;
6661 if (ret > 0) {
6662 BUG_ON(wc->stage != DROP_REFERENCE);
6663 break;
6666 if (wc->stage == DROP_REFERENCE) {
6667 level = wc->level;
6668 btrfs_node_key(path->nodes[level],
6669 &root_item->drop_progress,
6670 path->slots[level]);
6671 root_item->drop_level = level;
6674 BUG_ON(wc->level == 0);
6675 if (btrfs_should_end_transaction(trans, tree_root)) {
6676 ret = btrfs_update_root(trans, tree_root,
6677 &root->root_key,
6678 root_item);
6679 BUG_ON(ret);
6681 btrfs_end_transaction_throttle(trans, tree_root);
6682 trans = btrfs_start_transaction(tree_root, 0);
6683 BUG_ON(IS_ERR(trans));
6684 if (block_rsv)
6685 trans->block_rsv = block_rsv;
6688 btrfs_release_path(path);
6689 BUG_ON(err);
6691 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6692 BUG_ON(ret);
6694 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6695 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6696 NULL, NULL);
6697 BUG_ON(ret < 0);
6698 if (ret > 0) {
6699 /* if we fail to delete the orphan item this time
6700 * around, it'll get picked up the next time.
6702 * The most common failure here is just -ENOENT.
6704 btrfs_del_orphan_item(trans, tree_root,
6705 root->root_key.objectid);
6709 if (root->in_radix) {
6710 btrfs_free_fs_root(tree_root->fs_info, root);
6711 } else {
6712 free_extent_buffer(root->node);
6713 free_extent_buffer(root->commit_root);
6714 kfree(root);
6716 out_free:
6717 btrfs_end_transaction_throttle(trans, tree_root);
6718 kfree(wc);
6719 btrfs_free_path(path);
6720 out:
6721 if (err)
6722 btrfs_std_error(root->fs_info, err);
6723 return;
6727 * drop subtree rooted at tree block 'node'.
6729 * NOTE: this function will unlock and release tree block 'node'
6731 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6732 struct btrfs_root *root,
6733 struct extent_buffer *node,
6734 struct extent_buffer *parent)
6736 struct btrfs_path *path;
6737 struct walk_control *wc;
6738 int level;
6739 int parent_level;
6740 int ret = 0;
6741 int wret;
6743 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6745 path = btrfs_alloc_path();
6746 if (!path)
6747 return -ENOMEM;
6749 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6750 if (!wc) {
6751 btrfs_free_path(path);
6752 return -ENOMEM;
6755 btrfs_assert_tree_locked(parent);
6756 parent_level = btrfs_header_level(parent);
6757 extent_buffer_get(parent);
6758 path->nodes[parent_level] = parent;
6759 path->slots[parent_level] = btrfs_header_nritems(parent);
6761 btrfs_assert_tree_locked(node);
6762 level = btrfs_header_level(node);
6763 path->nodes[level] = node;
6764 path->slots[level] = 0;
6765 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6767 wc->refs[parent_level] = 1;
6768 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6769 wc->level = level;
6770 wc->shared_level = -1;
6771 wc->stage = DROP_REFERENCE;
6772 wc->update_ref = 0;
6773 wc->keep_locks = 1;
6774 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6776 while (1) {
6777 wret = walk_down_tree(trans, root, path, wc);
6778 if (wret < 0) {
6779 ret = wret;
6780 break;
6783 wret = walk_up_tree(trans, root, path, wc, parent_level);
6784 if (wret < 0)
6785 ret = wret;
6786 if (wret != 0)
6787 break;
6790 kfree(wc);
6791 btrfs_free_path(path);
6792 return ret;
6795 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6797 u64 num_devices;
6798 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6799 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6802 * we add in the count of missing devices because we want
6803 * to make sure that any RAID levels on a degraded FS
6804 * continue to be honored.
6806 num_devices = root->fs_info->fs_devices->rw_devices +
6807 root->fs_info->fs_devices->missing_devices;
6809 if (num_devices == 1) {
6810 stripped |= BTRFS_BLOCK_GROUP_DUP;
6811 stripped = flags & ~stripped;
6813 /* turn raid0 into single device chunks */
6814 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6815 return stripped;
6817 /* turn mirroring into duplication */
6818 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6819 BTRFS_BLOCK_GROUP_RAID10))
6820 return stripped | BTRFS_BLOCK_GROUP_DUP;
6821 return flags;
6822 } else {
6823 /* they already had raid on here, just return */
6824 if (flags & stripped)
6825 return flags;
6827 stripped |= BTRFS_BLOCK_GROUP_DUP;
6828 stripped = flags & ~stripped;
6830 /* switch duplicated blocks with raid1 */
6831 if (flags & BTRFS_BLOCK_GROUP_DUP)
6832 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6834 /* turn single device chunks into raid0 */
6835 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6837 return flags;
6840 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6842 struct btrfs_space_info *sinfo = cache->space_info;
6843 u64 num_bytes;
6844 u64 min_allocable_bytes;
6845 int ret = -ENOSPC;
6849 * We need some metadata space and system metadata space for
6850 * allocating chunks in some corner cases until we force to set
6851 * it to be readonly.
6853 if ((sinfo->flags &
6854 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6855 !force)
6856 min_allocable_bytes = 1 * 1024 * 1024;
6857 else
6858 min_allocable_bytes = 0;
6860 spin_lock(&sinfo->lock);
6861 spin_lock(&cache->lock);
6863 if (cache->ro) {
6864 ret = 0;
6865 goto out;
6868 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6869 cache->bytes_super - btrfs_block_group_used(&cache->item);
6871 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6872 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6873 min_allocable_bytes <= sinfo->total_bytes) {
6874 sinfo->bytes_readonly += num_bytes;
6875 cache->ro = 1;
6876 ret = 0;
6878 out:
6879 spin_unlock(&cache->lock);
6880 spin_unlock(&sinfo->lock);
6881 return ret;
6884 int btrfs_set_block_group_ro(struct btrfs_root *root,
6885 struct btrfs_block_group_cache *cache)
6888 struct btrfs_trans_handle *trans;
6889 u64 alloc_flags;
6890 int ret;
6892 BUG_ON(cache->ro);
6894 trans = btrfs_join_transaction(root);
6895 BUG_ON(IS_ERR(trans));
6897 alloc_flags = update_block_group_flags(root, cache->flags);
6898 if (alloc_flags != cache->flags)
6899 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6900 CHUNK_ALLOC_FORCE);
6902 ret = set_block_group_ro(cache, 0);
6903 if (!ret)
6904 goto out;
6905 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6906 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6907 CHUNK_ALLOC_FORCE);
6908 if (ret < 0)
6909 goto out;
6910 ret = set_block_group_ro(cache, 0);
6911 out:
6912 btrfs_end_transaction(trans, root);
6913 return ret;
6916 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6917 struct btrfs_root *root, u64 type)
6919 u64 alloc_flags = get_alloc_profile(root, type);
6920 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6921 CHUNK_ALLOC_FORCE);
6925 * helper to account the unused space of all the readonly block group in the
6926 * list. takes mirrors into account.
6928 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6930 struct btrfs_block_group_cache *block_group;
6931 u64 free_bytes = 0;
6932 int factor;
6934 list_for_each_entry(block_group, groups_list, list) {
6935 spin_lock(&block_group->lock);
6937 if (!block_group->ro) {
6938 spin_unlock(&block_group->lock);
6939 continue;
6942 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6943 BTRFS_BLOCK_GROUP_RAID10 |
6944 BTRFS_BLOCK_GROUP_DUP))
6945 factor = 2;
6946 else
6947 factor = 1;
6949 free_bytes += (block_group->key.offset -
6950 btrfs_block_group_used(&block_group->item)) *
6951 factor;
6953 spin_unlock(&block_group->lock);
6956 return free_bytes;
6960 * helper to account the unused space of all the readonly block group in the
6961 * space_info. takes mirrors into account.
6963 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6965 int i;
6966 u64 free_bytes = 0;
6968 spin_lock(&sinfo->lock);
6970 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6971 if (!list_empty(&sinfo->block_groups[i]))
6972 free_bytes += __btrfs_get_ro_block_group_free_space(
6973 &sinfo->block_groups[i]);
6975 spin_unlock(&sinfo->lock);
6977 return free_bytes;
6980 int btrfs_set_block_group_rw(struct btrfs_root *root,
6981 struct btrfs_block_group_cache *cache)
6983 struct btrfs_space_info *sinfo = cache->space_info;
6984 u64 num_bytes;
6986 BUG_ON(!cache->ro);
6988 spin_lock(&sinfo->lock);
6989 spin_lock(&cache->lock);
6990 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6991 cache->bytes_super - btrfs_block_group_used(&cache->item);
6992 sinfo->bytes_readonly -= num_bytes;
6993 cache->ro = 0;
6994 spin_unlock(&cache->lock);
6995 spin_unlock(&sinfo->lock);
6996 return 0;
7000 * checks to see if its even possible to relocate this block group.
7002 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7003 * ok to go ahead and try.
7005 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7007 struct btrfs_block_group_cache *block_group;
7008 struct btrfs_space_info *space_info;
7009 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7010 struct btrfs_device *device;
7011 u64 min_free;
7012 u64 dev_min = 1;
7013 u64 dev_nr = 0;
7014 int index;
7015 int full = 0;
7016 int ret = 0;
7018 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7020 /* odd, couldn't find the block group, leave it alone */
7021 if (!block_group)
7022 return -1;
7024 min_free = btrfs_block_group_used(&block_group->item);
7026 /* no bytes used, we're good */
7027 if (!min_free)
7028 goto out;
7030 space_info = block_group->space_info;
7031 spin_lock(&space_info->lock);
7033 full = space_info->full;
7036 * if this is the last block group we have in this space, we can't
7037 * relocate it unless we're able to allocate a new chunk below.
7039 * Otherwise, we need to make sure we have room in the space to handle
7040 * all of the extents from this block group. If we can, we're good
7042 if ((space_info->total_bytes != block_group->key.offset) &&
7043 (space_info->bytes_used + space_info->bytes_reserved +
7044 space_info->bytes_pinned + space_info->bytes_readonly +
7045 min_free < space_info->total_bytes)) {
7046 spin_unlock(&space_info->lock);
7047 goto out;
7049 spin_unlock(&space_info->lock);
7052 * ok we don't have enough space, but maybe we have free space on our
7053 * devices to allocate new chunks for relocation, so loop through our
7054 * alloc devices and guess if we have enough space. However, if we
7055 * were marked as full, then we know there aren't enough chunks, and we
7056 * can just return.
7058 ret = -1;
7059 if (full)
7060 goto out;
7063 * index:
7064 * 0: raid10
7065 * 1: raid1
7066 * 2: dup
7067 * 3: raid0
7068 * 4: single
7070 index = get_block_group_index(block_group);
7071 if (index == 0) {
7072 dev_min = 4;
7073 /* Divide by 2 */
7074 min_free >>= 1;
7075 } else if (index == 1) {
7076 dev_min = 2;
7077 } else if (index == 2) {
7078 /* Multiply by 2 */
7079 min_free <<= 1;
7080 } else if (index == 3) {
7081 dev_min = fs_devices->rw_devices;
7082 do_div(min_free, dev_min);
7085 mutex_lock(&root->fs_info->chunk_mutex);
7086 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7087 u64 dev_offset;
7090 * check to make sure we can actually find a chunk with enough
7091 * space to fit our block group in.
7093 if (device->total_bytes > device->bytes_used + min_free) {
7094 ret = find_free_dev_extent(NULL, device, min_free,
7095 &dev_offset, NULL);
7096 if (!ret)
7097 dev_nr++;
7099 if (dev_nr >= dev_min)
7100 break;
7102 ret = -1;
7105 mutex_unlock(&root->fs_info->chunk_mutex);
7106 out:
7107 btrfs_put_block_group(block_group);
7108 return ret;
7111 static int find_first_block_group(struct btrfs_root *root,
7112 struct btrfs_path *path, struct btrfs_key *key)
7114 int ret = 0;
7115 struct btrfs_key found_key;
7116 struct extent_buffer *leaf;
7117 int slot;
7119 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7120 if (ret < 0)
7121 goto out;
7123 while (1) {
7124 slot = path->slots[0];
7125 leaf = path->nodes[0];
7126 if (slot >= btrfs_header_nritems(leaf)) {
7127 ret = btrfs_next_leaf(root, path);
7128 if (ret == 0)
7129 continue;
7130 if (ret < 0)
7131 goto out;
7132 break;
7134 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7136 if (found_key.objectid >= key->objectid &&
7137 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7138 ret = 0;
7139 goto out;
7141 path->slots[0]++;
7143 out:
7144 return ret;
7147 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7149 struct btrfs_block_group_cache *block_group;
7150 u64 last = 0;
7152 while (1) {
7153 struct inode *inode;
7155 block_group = btrfs_lookup_first_block_group(info, last);
7156 while (block_group) {
7157 spin_lock(&block_group->lock);
7158 if (block_group->iref)
7159 break;
7160 spin_unlock(&block_group->lock);
7161 block_group = next_block_group(info->tree_root,
7162 block_group);
7164 if (!block_group) {
7165 if (last == 0)
7166 break;
7167 last = 0;
7168 continue;
7171 inode = block_group->inode;
7172 block_group->iref = 0;
7173 block_group->inode = NULL;
7174 spin_unlock(&block_group->lock);
7175 iput(inode);
7176 last = block_group->key.objectid + block_group->key.offset;
7177 btrfs_put_block_group(block_group);
7181 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7183 struct btrfs_block_group_cache *block_group;
7184 struct btrfs_space_info *space_info;
7185 struct btrfs_caching_control *caching_ctl;
7186 struct rb_node *n;
7188 down_write(&info->extent_commit_sem);
7189 while (!list_empty(&info->caching_block_groups)) {
7190 caching_ctl = list_entry(info->caching_block_groups.next,
7191 struct btrfs_caching_control, list);
7192 list_del(&caching_ctl->list);
7193 put_caching_control(caching_ctl);
7195 up_write(&info->extent_commit_sem);
7197 spin_lock(&info->block_group_cache_lock);
7198 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7199 block_group = rb_entry(n, struct btrfs_block_group_cache,
7200 cache_node);
7201 rb_erase(&block_group->cache_node,
7202 &info->block_group_cache_tree);
7203 spin_unlock(&info->block_group_cache_lock);
7205 down_write(&block_group->space_info->groups_sem);
7206 list_del(&block_group->list);
7207 up_write(&block_group->space_info->groups_sem);
7209 if (block_group->cached == BTRFS_CACHE_STARTED)
7210 wait_block_group_cache_done(block_group);
7213 * We haven't cached this block group, which means we could
7214 * possibly have excluded extents on this block group.
7216 if (block_group->cached == BTRFS_CACHE_NO)
7217 free_excluded_extents(info->extent_root, block_group);
7219 btrfs_remove_free_space_cache(block_group);
7220 btrfs_put_block_group(block_group);
7222 spin_lock(&info->block_group_cache_lock);
7224 spin_unlock(&info->block_group_cache_lock);
7226 /* now that all the block groups are freed, go through and
7227 * free all the space_info structs. This is only called during
7228 * the final stages of unmount, and so we know nobody is
7229 * using them. We call synchronize_rcu() once before we start,
7230 * just to be on the safe side.
7232 synchronize_rcu();
7234 release_global_block_rsv(info);
7236 while(!list_empty(&info->space_info)) {
7237 space_info = list_entry(info->space_info.next,
7238 struct btrfs_space_info,
7239 list);
7240 if (space_info->bytes_pinned > 0 ||
7241 space_info->bytes_reserved > 0 ||
7242 space_info->bytes_may_use > 0) {
7243 WARN_ON(1);
7244 dump_space_info(space_info, 0, 0);
7246 list_del(&space_info->list);
7247 kfree(space_info);
7249 return 0;
7252 static void __link_block_group(struct btrfs_space_info *space_info,
7253 struct btrfs_block_group_cache *cache)
7255 int index = get_block_group_index(cache);
7257 down_write(&space_info->groups_sem);
7258 list_add_tail(&cache->list, &space_info->block_groups[index]);
7259 up_write(&space_info->groups_sem);
7262 int btrfs_read_block_groups(struct btrfs_root *root)
7264 struct btrfs_path *path;
7265 int ret;
7266 struct btrfs_block_group_cache *cache;
7267 struct btrfs_fs_info *info = root->fs_info;
7268 struct btrfs_space_info *space_info;
7269 struct btrfs_key key;
7270 struct btrfs_key found_key;
7271 struct extent_buffer *leaf;
7272 int need_clear = 0;
7273 u64 cache_gen;
7275 root = info->extent_root;
7276 key.objectid = 0;
7277 key.offset = 0;
7278 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7279 path = btrfs_alloc_path();
7280 if (!path)
7281 return -ENOMEM;
7282 path->reada = 1;
7284 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7285 if (btrfs_test_opt(root, SPACE_CACHE) &&
7286 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7287 need_clear = 1;
7288 if (btrfs_test_opt(root, CLEAR_CACHE))
7289 need_clear = 1;
7291 while (1) {
7292 ret = find_first_block_group(root, path, &key);
7293 if (ret > 0)
7294 break;
7295 if (ret != 0)
7296 goto error;
7297 leaf = path->nodes[0];
7298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7299 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7300 if (!cache) {
7301 ret = -ENOMEM;
7302 goto error;
7304 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7305 GFP_NOFS);
7306 if (!cache->free_space_ctl) {
7307 kfree(cache);
7308 ret = -ENOMEM;
7309 goto error;
7312 atomic_set(&cache->count, 1);
7313 spin_lock_init(&cache->lock);
7314 cache->fs_info = info;
7315 INIT_LIST_HEAD(&cache->list);
7316 INIT_LIST_HEAD(&cache->cluster_list);
7318 if (need_clear)
7319 cache->disk_cache_state = BTRFS_DC_CLEAR;
7321 read_extent_buffer(leaf, &cache->item,
7322 btrfs_item_ptr_offset(leaf, path->slots[0]),
7323 sizeof(cache->item));
7324 memcpy(&cache->key, &found_key, sizeof(found_key));
7326 key.objectid = found_key.objectid + found_key.offset;
7327 btrfs_release_path(path);
7328 cache->flags = btrfs_block_group_flags(&cache->item);
7329 cache->sectorsize = root->sectorsize;
7331 btrfs_init_free_space_ctl(cache);
7334 * We need to exclude the super stripes now so that the space
7335 * info has super bytes accounted for, otherwise we'll think
7336 * we have more space than we actually do.
7338 exclude_super_stripes(root, cache);
7341 * check for two cases, either we are full, and therefore
7342 * don't need to bother with the caching work since we won't
7343 * find any space, or we are empty, and we can just add all
7344 * the space in and be done with it. This saves us _alot_ of
7345 * time, particularly in the full case.
7347 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7348 cache->last_byte_to_unpin = (u64)-1;
7349 cache->cached = BTRFS_CACHE_FINISHED;
7350 free_excluded_extents(root, cache);
7351 } else if (btrfs_block_group_used(&cache->item) == 0) {
7352 cache->last_byte_to_unpin = (u64)-1;
7353 cache->cached = BTRFS_CACHE_FINISHED;
7354 add_new_free_space(cache, root->fs_info,
7355 found_key.objectid,
7356 found_key.objectid +
7357 found_key.offset);
7358 free_excluded_extents(root, cache);
7361 ret = update_space_info(info, cache->flags, found_key.offset,
7362 btrfs_block_group_used(&cache->item),
7363 &space_info);
7364 BUG_ON(ret);
7365 cache->space_info = space_info;
7366 spin_lock(&cache->space_info->lock);
7367 cache->space_info->bytes_readonly += cache->bytes_super;
7368 spin_unlock(&cache->space_info->lock);
7370 __link_block_group(space_info, cache);
7372 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7373 BUG_ON(ret);
7375 set_avail_alloc_bits(root->fs_info, cache->flags);
7376 if (btrfs_chunk_readonly(root, cache->key.objectid))
7377 set_block_group_ro(cache, 1);
7380 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7381 if (!(get_alloc_profile(root, space_info->flags) &
7382 (BTRFS_BLOCK_GROUP_RAID10 |
7383 BTRFS_BLOCK_GROUP_RAID1 |
7384 BTRFS_BLOCK_GROUP_DUP)))
7385 continue;
7387 * avoid allocating from un-mirrored block group if there are
7388 * mirrored block groups.
7390 list_for_each_entry(cache, &space_info->block_groups[3], list)
7391 set_block_group_ro(cache, 1);
7392 list_for_each_entry(cache, &space_info->block_groups[4], list)
7393 set_block_group_ro(cache, 1);
7396 init_global_block_rsv(info);
7397 ret = 0;
7398 error:
7399 btrfs_free_path(path);
7400 return ret;
7403 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7404 struct btrfs_root *root, u64 bytes_used,
7405 u64 type, u64 chunk_objectid, u64 chunk_offset,
7406 u64 size)
7408 int ret;
7409 struct btrfs_root *extent_root;
7410 struct btrfs_block_group_cache *cache;
7412 extent_root = root->fs_info->extent_root;
7414 root->fs_info->last_trans_log_full_commit = trans->transid;
7416 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7417 if (!cache)
7418 return -ENOMEM;
7419 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7420 GFP_NOFS);
7421 if (!cache->free_space_ctl) {
7422 kfree(cache);
7423 return -ENOMEM;
7426 cache->key.objectid = chunk_offset;
7427 cache->key.offset = size;
7428 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7429 cache->sectorsize = root->sectorsize;
7430 cache->fs_info = root->fs_info;
7432 atomic_set(&cache->count, 1);
7433 spin_lock_init(&cache->lock);
7434 INIT_LIST_HEAD(&cache->list);
7435 INIT_LIST_HEAD(&cache->cluster_list);
7437 btrfs_init_free_space_ctl(cache);
7439 btrfs_set_block_group_used(&cache->item, bytes_used);
7440 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7441 cache->flags = type;
7442 btrfs_set_block_group_flags(&cache->item, type);
7444 cache->last_byte_to_unpin = (u64)-1;
7445 cache->cached = BTRFS_CACHE_FINISHED;
7446 exclude_super_stripes(root, cache);
7448 add_new_free_space(cache, root->fs_info, chunk_offset,
7449 chunk_offset + size);
7451 free_excluded_extents(root, cache);
7453 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7454 &cache->space_info);
7455 BUG_ON(ret);
7457 spin_lock(&cache->space_info->lock);
7458 cache->space_info->bytes_readonly += cache->bytes_super;
7459 spin_unlock(&cache->space_info->lock);
7461 __link_block_group(cache->space_info, cache);
7463 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7464 BUG_ON(ret);
7466 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7467 sizeof(cache->item));
7468 BUG_ON(ret);
7470 set_avail_alloc_bits(extent_root->fs_info, type);
7472 return 0;
7475 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7476 struct btrfs_root *root, u64 group_start)
7478 struct btrfs_path *path;
7479 struct btrfs_block_group_cache *block_group;
7480 struct btrfs_free_cluster *cluster;
7481 struct btrfs_root *tree_root = root->fs_info->tree_root;
7482 struct btrfs_key key;
7483 struct inode *inode;
7484 int ret;
7485 int factor;
7487 root = root->fs_info->extent_root;
7489 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7490 BUG_ON(!block_group);
7491 BUG_ON(!block_group->ro);
7494 * Free the reserved super bytes from this block group before
7495 * remove it.
7497 free_excluded_extents(root, block_group);
7499 memcpy(&key, &block_group->key, sizeof(key));
7500 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7501 BTRFS_BLOCK_GROUP_RAID1 |
7502 BTRFS_BLOCK_GROUP_RAID10))
7503 factor = 2;
7504 else
7505 factor = 1;
7507 /* make sure this block group isn't part of an allocation cluster */
7508 cluster = &root->fs_info->data_alloc_cluster;
7509 spin_lock(&cluster->refill_lock);
7510 btrfs_return_cluster_to_free_space(block_group, cluster);
7511 spin_unlock(&cluster->refill_lock);
7514 * make sure this block group isn't part of a metadata
7515 * allocation cluster
7517 cluster = &root->fs_info->meta_alloc_cluster;
7518 spin_lock(&cluster->refill_lock);
7519 btrfs_return_cluster_to_free_space(block_group, cluster);
7520 spin_unlock(&cluster->refill_lock);
7522 path = btrfs_alloc_path();
7523 if (!path) {
7524 ret = -ENOMEM;
7525 goto out;
7528 inode = lookup_free_space_inode(tree_root, block_group, path);
7529 if (!IS_ERR(inode)) {
7530 ret = btrfs_orphan_add(trans, inode);
7531 BUG_ON(ret);
7532 clear_nlink(inode);
7533 /* One for the block groups ref */
7534 spin_lock(&block_group->lock);
7535 if (block_group->iref) {
7536 block_group->iref = 0;
7537 block_group->inode = NULL;
7538 spin_unlock(&block_group->lock);
7539 iput(inode);
7540 } else {
7541 spin_unlock(&block_group->lock);
7543 /* One for our lookup ref */
7544 btrfs_add_delayed_iput(inode);
7547 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7548 key.offset = block_group->key.objectid;
7549 key.type = 0;
7551 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7552 if (ret < 0)
7553 goto out;
7554 if (ret > 0)
7555 btrfs_release_path(path);
7556 if (ret == 0) {
7557 ret = btrfs_del_item(trans, tree_root, path);
7558 if (ret)
7559 goto out;
7560 btrfs_release_path(path);
7563 spin_lock(&root->fs_info->block_group_cache_lock);
7564 rb_erase(&block_group->cache_node,
7565 &root->fs_info->block_group_cache_tree);
7566 spin_unlock(&root->fs_info->block_group_cache_lock);
7568 down_write(&block_group->space_info->groups_sem);
7570 * we must use list_del_init so people can check to see if they
7571 * are still on the list after taking the semaphore
7573 list_del_init(&block_group->list);
7574 up_write(&block_group->space_info->groups_sem);
7576 if (block_group->cached == BTRFS_CACHE_STARTED)
7577 wait_block_group_cache_done(block_group);
7579 btrfs_remove_free_space_cache(block_group);
7581 spin_lock(&block_group->space_info->lock);
7582 block_group->space_info->total_bytes -= block_group->key.offset;
7583 block_group->space_info->bytes_readonly -= block_group->key.offset;
7584 block_group->space_info->disk_total -= block_group->key.offset * factor;
7585 spin_unlock(&block_group->space_info->lock);
7587 memcpy(&key, &block_group->key, sizeof(key));
7589 btrfs_clear_space_info_full(root->fs_info);
7591 btrfs_put_block_group(block_group);
7592 btrfs_put_block_group(block_group);
7594 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7595 if (ret > 0)
7596 ret = -EIO;
7597 if (ret < 0)
7598 goto out;
7600 ret = btrfs_del_item(trans, root, path);
7601 out:
7602 btrfs_free_path(path);
7603 return ret;
7606 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7608 struct btrfs_space_info *space_info;
7609 struct btrfs_super_block *disk_super;
7610 u64 features;
7611 u64 flags;
7612 int mixed = 0;
7613 int ret;
7615 disk_super = fs_info->super_copy;
7616 if (!btrfs_super_root(disk_super))
7617 return 1;
7619 features = btrfs_super_incompat_flags(disk_super);
7620 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7621 mixed = 1;
7623 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7624 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7625 if (ret)
7626 goto out;
7628 if (mixed) {
7629 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7630 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7631 } else {
7632 flags = BTRFS_BLOCK_GROUP_METADATA;
7633 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7634 if (ret)
7635 goto out;
7637 flags = BTRFS_BLOCK_GROUP_DATA;
7638 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7640 out:
7641 return ret;
7644 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7646 return unpin_extent_range(root, start, end);
7649 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7650 u64 num_bytes, u64 *actual_bytes)
7652 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7655 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7657 struct btrfs_fs_info *fs_info = root->fs_info;
7658 struct btrfs_block_group_cache *cache = NULL;
7659 u64 group_trimmed;
7660 u64 start;
7661 u64 end;
7662 u64 trimmed = 0;
7663 int ret = 0;
7665 cache = btrfs_lookup_block_group(fs_info, range->start);
7667 while (cache) {
7668 if (cache->key.objectid >= (range->start + range->len)) {
7669 btrfs_put_block_group(cache);
7670 break;
7673 start = max(range->start, cache->key.objectid);
7674 end = min(range->start + range->len,
7675 cache->key.objectid + cache->key.offset);
7677 if (end - start >= range->minlen) {
7678 if (!block_group_cache_done(cache)) {
7679 ret = cache_block_group(cache, NULL, root, 0);
7680 if (!ret)
7681 wait_block_group_cache_done(cache);
7683 ret = btrfs_trim_block_group(cache,
7684 &group_trimmed,
7685 start,
7686 end,
7687 range->minlen);
7689 trimmed += group_trimmed;
7690 if (ret) {
7691 btrfs_put_block_group(cache);
7692 break;
7696 cache = next_block_group(fs_info->tree_root, cache);
7699 range->len = trimmed;
7700 return ret;