drm/i915: Avoid taking the mutex for dropping the refcnt upon creation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob942e4b351cdd9617b8c22f63333f8df86611fa9b
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
115 i915_gem_check_is_wedged(struct drm_device *dev)
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
178 drm_i915_private_t *dev_priv = dev->dev_private;
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
189 dev_priv->mm.gtt_total = end - start;
191 return 0;
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
198 struct drm_i915_gem_init *args = data;
199 int ret;
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
205 return ret;
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
223 return 0;
228 * Creates a new mm object and returns a handle to it.
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
239 args->size = roundup(args->size, PAGE_SIZE);
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
258 args->handle = handle;
259 return 0;
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
268 char __iomem *vaddr;
269 int unwritten;
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272 if (vaddr == NULL)
273 return -ENOMEM;
274 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
275 kunmap_atomic(vaddr, KM_USER0);
277 if (unwritten)
278 return -EFAULT;
280 return 0;
283 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
285 drm_i915_private_t *dev_priv = obj->dev->dev_private;
286 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
288 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
289 obj_priv->tiling_mode != I915_TILING_NONE;
292 static inline void
293 slow_shmem_copy(struct page *dst_page,
294 int dst_offset,
295 struct page *src_page,
296 int src_offset,
297 int length)
299 char *dst_vaddr, *src_vaddr;
301 dst_vaddr = kmap(dst_page);
302 src_vaddr = kmap(src_page);
304 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
306 kunmap(src_page);
307 kunmap(dst_page);
310 static inline void
311 slow_shmem_bit17_copy(struct page *gpu_page,
312 int gpu_offset,
313 struct page *cpu_page,
314 int cpu_offset,
315 int length,
316 int is_read)
318 char *gpu_vaddr, *cpu_vaddr;
320 /* Use the unswizzled path if this page isn't affected. */
321 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
322 if (is_read)
323 return slow_shmem_copy(cpu_page, cpu_offset,
324 gpu_page, gpu_offset, length);
325 else
326 return slow_shmem_copy(gpu_page, gpu_offset,
327 cpu_page, cpu_offset, length);
330 gpu_vaddr = kmap(gpu_page);
331 cpu_vaddr = kmap(cpu_page);
333 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
334 * XORing with the other bits (A9 for Y, A9 and A10 for X)
336 while (length > 0) {
337 int cacheline_end = ALIGN(gpu_offset + 1, 64);
338 int this_length = min(cacheline_end - gpu_offset, length);
339 int swizzled_gpu_offset = gpu_offset ^ 64;
341 if (is_read) {
342 memcpy(cpu_vaddr + cpu_offset,
343 gpu_vaddr + swizzled_gpu_offset,
344 this_length);
345 } else {
346 memcpy(gpu_vaddr + swizzled_gpu_offset,
347 cpu_vaddr + cpu_offset,
348 this_length);
350 cpu_offset += this_length;
351 gpu_offset += this_length;
352 length -= this_length;
355 kunmap(cpu_page);
356 kunmap(gpu_page);
360 * This is the fast shmem pread path, which attempts to copy_from_user directly
361 * from the backing pages of the object to the user's address space. On a
362 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
364 static int
365 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
366 struct drm_i915_gem_pread *args,
367 struct drm_file *file_priv)
369 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
370 ssize_t remain;
371 loff_t offset, page_base;
372 char __user *user_data;
373 int page_offset, page_length;
374 int ret;
376 user_data = (char __user *) (uintptr_t) args->data_ptr;
377 remain = args->size;
379 ret = i915_mutex_lock_interruptible(dev);
380 if (ret)
381 return ret;
383 ret = i915_gem_object_get_pages(obj, 0);
384 if (ret != 0)
385 goto fail_unlock;
387 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
388 args->size);
389 if (ret != 0)
390 goto fail_put_pages;
392 obj_priv = to_intel_bo(obj);
393 offset = args->offset;
395 while (remain > 0) {
396 /* Operation in this page
398 * page_base = page offset within aperture
399 * page_offset = offset within page
400 * page_length = bytes to copy for this page
402 page_base = (offset & ~(PAGE_SIZE-1));
403 page_offset = offset & (PAGE_SIZE-1);
404 page_length = remain;
405 if ((page_offset + remain) > PAGE_SIZE)
406 page_length = PAGE_SIZE - page_offset;
408 ret = fast_shmem_read(obj_priv->pages,
409 page_base, page_offset,
410 user_data, page_length);
411 if (ret)
412 goto fail_put_pages;
414 remain -= page_length;
415 user_data += page_length;
416 offset += page_length;
419 fail_put_pages:
420 i915_gem_object_put_pages(obj);
421 fail_unlock:
422 mutex_unlock(&dev->struct_mutex);
424 return ret;
427 static int
428 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
430 int ret;
432 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
434 /* If we've insufficient memory to map in the pages, attempt
435 * to make some space by throwing out some old buffers.
437 if (ret == -ENOMEM) {
438 struct drm_device *dev = obj->dev;
440 ret = i915_gem_evict_something(dev, obj->size,
441 i915_gem_get_gtt_alignment(obj));
442 if (ret)
443 return ret;
445 ret = i915_gem_object_get_pages(obj, 0);
448 return ret;
452 * This is the fallback shmem pread path, which allocates temporary storage
453 * in kernel space to copy_to_user into outside of the struct_mutex, so we
454 * can copy out of the object's backing pages while holding the struct mutex
455 * and not take page faults.
457 static int
458 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
459 struct drm_i915_gem_pread *args,
460 struct drm_file *file_priv)
462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
463 struct mm_struct *mm = current->mm;
464 struct page **user_pages;
465 ssize_t remain;
466 loff_t offset, pinned_pages, i;
467 loff_t first_data_page, last_data_page, num_pages;
468 int shmem_page_index, shmem_page_offset;
469 int data_page_index, data_page_offset;
470 int page_length;
471 int ret;
472 uint64_t data_ptr = args->data_ptr;
473 int do_bit17_swizzling;
475 remain = args->size;
477 /* Pin the user pages containing the data. We can't fault while
478 * holding the struct mutex, yet we want to hold it while
479 * dereferencing the user data.
481 first_data_page = data_ptr / PAGE_SIZE;
482 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
483 num_pages = last_data_page - first_data_page + 1;
485 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
486 if (user_pages == NULL)
487 return -ENOMEM;
489 down_read(&mm->mmap_sem);
490 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
491 num_pages, 1, 0, user_pages, NULL);
492 up_read(&mm->mmap_sem);
493 if (pinned_pages < num_pages) {
494 ret = -EFAULT;
495 goto fail_put_user_pages;
498 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
500 ret = i915_mutex_lock_interruptible(dev);
501 if (ret)
502 goto fail_put_user_pages;
504 ret = i915_gem_object_get_pages_or_evict(obj);
505 if (ret)
506 goto fail_unlock;
508 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
509 args->size);
510 if (ret != 0)
511 goto fail_put_pages;
513 obj_priv = to_intel_bo(obj);
514 offset = args->offset;
516 while (remain > 0) {
517 /* Operation in this page
519 * shmem_page_index = page number within shmem file
520 * shmem_page_offset = offset within page in shmem file
521 * data_page_index = page number in get_user_pages return
522 * data_page_offset = offset with data_page_index page.
523 * page_length = bytes to copy for this page
525 shmem_page_index = offset / PAGE_SIZE;
526 shmem_page_offset = offset & ~PAGE_MASK;
527 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
528 data_page_offset = data_ptr & ~PAGE_MASK;
530 page_length = remain;
531 if ((shmem_page_offset + page_length) > PAGE_SIZE)
532 page_length = PAGE_SIZE - shmem_page_offset;
533 if ((data_page_offset + page_length) > PAGE_SIZE)
534 page_length = PAGE_SIZE - data_page_offset;
536 if (do_bit17_swizzling) {
537 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
538 shmem_page_offset,
539 user_pages[data_page_index],
540 data_page_offset,
541 page_length,
543 } else {
544 slow_shmem_copy(user_pages[data_page_index],
545 data_page_offset,
546 obj_priv->pages[shmem_page_index],
547 shmem_page_offset,
548 page_length);
551 remain -= page_length;
552 data_ptr += page_length;
553 offset += page_length;
556 fail_put_pages:
557 i915_gem_object_put_pages(obj);
558 fail_unlock:
559 mutex_unlock(&dev->struct_mutex);
560 fail_put_user_pages:
561 for (i = 0; i < pinned_pages; i++) {
562 SetPageDirty(user_pages[i]);
563 page_cache_release(user_pages[i]);
565 drm_free_large(user_pages);
567 return ret;
571 * Reads data from the object referenced by handle.
573 * On error, the contents of *data are undefined.
576 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
577 struct drm_file *file_priv)
579 struct drm_i915_gem_pread *args = data;
580 struct drm_gem_object *obj;
581 struct drm_i915_gem_object *obj_priv;
582 int ret = 0;
584 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
585 if (obj == NULL)
586 return -ENOENT;
587 obj_priv = to_intel_bo(obj);
589 /* Bounds check source. */
590 if (args->offset > obj->size || args->size > obj->size - args->offset) {
591 ret = -EINVAL;
592 goto out;
595 if (args->size == 0)
596 goto out;
598 if (!access_ok(VERIFY_WRITE,
599 (char __user *)(uintptr_t)args->data_ptr,
600 args->size)) {
601 ret = -EFAULT;
602 goto out;
605 if (i915_gem_object_needs_bit17_swizzle(obj)) {
606 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
607 } else {
608 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
609 if (ret != 0)
610 ret = i915_gem_shmem_pread_slow(dev, obj, args,
611 file_priv);
614 out:
615 drm_gem_object_unreference_unlocked(obj);
616 return ret;
619 /* This is the fast write path which cannot handle
620 * page faults in the source data
623 static inline int
624 fast_user_write(struct io_mapping *mapping,
625 loff_t page_base, int page_offset,
626 char __user *user_data,
627 int length)
629 char *vaddr_atomic;
630 unsigned long unwritten;
632 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
633 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
634 user_data, length);
635 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
636 if (unwritten)
637 return -EFAULT;
638 return 0;
641 /* Here's the write path which can sleep for
642 * page faults
645 static inline void
646 slow_kernel_write(struct io_mapping *mapping,
647 loff_t gtt_base, int gtt_offset,
648 struct page *user_page, int user_offset,
649 int length)
651 char __iomem *dst_vaddr;
652 char *src_vaddr;
654 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
655 src_vaddr = kmap(user_page);
657 memcpy_toio(dst_vaddr + gtt_offset,
658 src_vaddr + user_offset,
659 length);
661 kunmap(user_page);
662 io_mapping_unmap(dst_vaddr);
665 static inline int
666 fast_shmem_write(struct page **pages,
667 loff_t page_base, int page_offset,
668 char __user *data,
669 int length)
671 char __iomem *vaddr;
672 unsigned long unwritten;
674 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
675 if (vaddr == NULL)
676 return -ENOMEM;
677 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
678 kunmap_atomic(vaddr, KM_USER0);
680 if (unwritten)
681 return -EFAULT;
682 return 0;
686 * This is the fast pwrite path, where we copy the data directly from the
687 * user into the GTT, uncached.
689 static int
690 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
691 struct drm_i915_gem_pwrite *args,
692 struct drm_file *file_priv)
694 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
695 drm_i915_private_t *dev_priv = dev->dev_private;
696 ssize_t remain;
697 loff_t offset, page_base;
698 char __user *user_data;
699 int page_offset, page_length;
700 int ret;
702 user_data = (char __user *) (uintptr_t) args->data_ptr;
703 remain = args->size;
705 ret = i915_mutex_lock_interruptible(dev);
706 if (ret)
707 return ret;
709 ret = i915_gem_object_pin(obj, 0);
710 if (ret) {
711 mutex_unlock(&dev->struct_mutex);
712 return ret;
714 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
715 if (ret)
716 goto fail;
718 obj_priv = to_intel_bo(obj);
719 offset = obj_priv->gtt_offset + args->offset;
721 while (remain > 0) {
722 /* Operation in this page
724 * page_base = page offset within aperture
725 * page_offset = offset within page
726 * page_length = bytes to copy for this page
728 page_base = (offset & ~(PAGE_SIZE-1));
729 page_offset = offset & (PAGE_SIZE-1);
730 page_length = remain;
731 if ((page_offset + remain) > PAGE_SIZE)
732 page_length = PAGE_SIZE - page_offset;
734 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
735 page_offset, user_data, page_length);
737 /* If we get a fault while copying data, then (presumably) our
738 * source page isn't available. Return the error and we'll
739 * retry in the slow path.
741 if (ret)
742 goto fail;
744 remain -= page_length;
745 user_data += page_length;
746 offset += page_length;
749 fail:
750 i915_gem_object_unpin(obj);
751 mutex_unlock(&dev->struct_mutex);
753 return ret;
757 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
758 * the memory and maps it using kmap_atomic for copying.
760 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
761 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
763 static int
764 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file_priv)
768 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
769 drm_i915_private_t *dev_priv = dev->dev_private;
770 ssize_t remain;
771 loff_t gtt_page_base, offset;
772 loff_t first_data_page, last_data_page, num_pages;
773 loff_t pinned_pages, i;
774 struct page **user_pages;
775 struct mm_struct *mm = current->mm;
776 int gtt_page_offset, data_page_offset, data_page_index, page_length;
777 int ret;
778 uint64_t data_ptr = args->data_ptr;
780 remain = args->size;
782 /* Pin the user pages containing the data. We can't fault while
783 * holding the struct mutex, and all of the pwrite implementations
784 * want to hold it while dereferencing the user data.
786 first_data_page = data_ptr / PAGE_SIZE;
787 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
788 num_pages = last_data_page - first_data_page + 1;
790 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
791 if (user_pages == NULL)
792 return -ENOMEM;
794 down_read(&mm->mmap_sem);
795 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
796 num_pages, 0, 0, user_pages, NULL);
797 up_read(&mm->mmap_sem);
798 if (pinned_pages < num_pages) {
799 ret = -EFAULT;
800 goto out_unpin_pages;
803 ret = i915_mutex_lock_interruptible(dev);
804 if (ret)
805 goto out_unpin_pages;
807 ret = i915_gem_object_pin(obj, 0);
808 if (ret)
809 goto out_unlock;
811 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
812 if (ret)
813 goto out_unpin_object;
815 obj_priv = to_intel_bo(obj);
816 offset = obj_priv->gtt_offset + args->offset;
818 while (remain > 0) {
819 /* Operation in this page
821 * gtt_page_base = page offset within aperture
822 * gtt_page_offset = offset within page in aperture
823 * data_page_index = page number in get_user_pages return
824 * data_page_offset = offset with data_page_index page.
825 * page_length = bytes to copy for this page
827 gtt_page_base = offset & PAGE_MASK;
828 gtt_page_offset = offset & ~PAGE_MASK;
829 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
830 data_page_offset = data_ptr & ~PAGE_MASK;
832 page_length = remain;
833 if ((gtt_page_offset + page_length) > PAGE_SIZE)
834 page_length = PAGE_SIZE - gtt_page_offset;
835 if ((data_page_offset + page_length) > PAGE_SIZE)
836 page_length = PAGE_SIZE - data_page_offset;
838 slow_kernel_write(dev_priv->mm.gtt_mapping,
839 gtt_page_base, gtt_page_offset,
840 user_pages[data_page_index],
841 data_page_offset,
842 page_length);
844 remain -= page_length;
845 offset += page_length;
846 data_ptr += page_length;
849 out_unpin_object:
850 i915_gem_object_unpin(obj);
851 out_unlock:
852 mutex_unlock(&dev->struct_mutex);
853 out_unpin_pages:
854 for (i = 0; i < pinned_pages; i++)
855 page_cache_release(user_pages[i]);
856 drm_free_large(user_pages);
858 return ret;
862 * This is the fast shmem pwrite path, which attempts to directly
863 * copy_from_user into the kmapped pages backing the object.
865 static int
866 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file_priv)
870 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
871 ssize_t remain;
872 loff_t offset, page_base;
873 char __user *user_data;
874 int page_offset, page_length;
875 int ret;
877 user_data = (char __user *) (uintptr_t) args->data_ptr;
878 remain = args->size;
880 ret = i915_mutex_lock_interruptible(dev);
881 if (ret)
882 return ret;
884 ret = i915_gem_object_get_pages(obj, 0);
885 if (ret != 0)
886 goto fail_unlock;
888 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
889 if (ret != 0)
890 goto fail_put_pages;
892 obj_priv = to_intel_bo(obj);
893 offset = args->offset;
894 obj_priv->dirty = 1;
896 while (remain > 0) {
897 /* Operation in this page
899 * page_base = page offset within aperture
900 * page_offset = offset within page
901 * page_length = bytes to copy for this page
903 page_base = (offset & ~(PAGE_SIZE-1));
904 page_offset = offset & (PAGE_SIZE-1);
905 page_length = remain;
906 if ((page_offset + remain) > PAGE_SIZE)
907 page_length = PAGE_SIZE - page_offset;
909 ret = fast_shmem_write(obj_priv->pages,
910 page_base, page_offset,
911 user_data, page_length);
912 if (ret)
913 goto fail_put_pages;
915 remain -= page_length;
916 user_data += page_length;
917 offset += page_length;
920 fail_put_pages:
921 i915_gem_object_put_pages(obj);
922 fail_unlock:
923 mutex_unlock(&dev->struct_mutex);
925 return ret;
929 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
930 * the memory and maps it using kmap_atomic for copying.
932 * This avoids taking mmap_sem for faulting on the user's address while the
933 * struct_mutex is held.
935 static int
936 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
937 struct drm_i915_gem_pwrite *args,
938 struct drm_file *file_priv)
940 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
941 struct mm_struct *mm = current->mm;
942 struct page **user_pages;
943 ssize_t remain;
944 loff_t offset, pinned_pages, i;
945 loff_t first_data_page, last_data_page, num_pages;
946 int shmem_page_index, shmem_page_offset;
947 int data_page_index, data_page_offset;
948 int page_length;
949 int ret;
950 uint64_t data_ptr = args->data_ptr;
951 int do_bit17_swizzling;
953 remain = args->size;
955 /* Pin the user pages containing the data. We can't fault while
956 * holding the struct mutex, and all of the pwrite implementations
957 * want to hold it while dereferencing the user data.
959 first_data_page = data_ptr / PAGE_SIZE;
960 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
961 num_pages = last_data_page - first_data_page + 1;
963 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
964 if (user_pages == NULL)
965 return -ENOMEM;
967 down_read(&mm->mmap_sem);
968 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
969 num_pages, 0, 0, user_pages, NULL);
970 up_read(&mm->mmap_sem);
971 if (pinned_pages < num_pages) {
972 ret = -EFAULT;
973 goto fail_put_user_pages;
976 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
978 ret = i915_mutex_lock_interruptible(dev);
979 if (ret)
980 goto fail_put_user_pages;
982 ret = i915_gem_object_get_pages_or_evict(obj);
983 if (ret)
984 goto fail_unlock;
986 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
987 if (ret != 0)
988 goto fail_put_pages;
990 obj_priv = to_intel_bo(obj);
991 offset = args->offset;
992 obj_priv->dirty = 1;
994 while (remain > 0) {
995 /* Operation in this page
997 * shmem_page_index = page number within shmem file
998 * shmem_page_offset = offset within page in shmem file
999 * data_page_index = page number in get_user_pages return
1000 * data_page_offset = offset with data_page_index page.
1001 * page_length = bytes to copy for this page
1003 shmem_page_index = offset / PAGE_SIZE;
1004 shmem_page_offset = offset & ~PAGE_MASK;
1005 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1006 data_page_offset = data_ptr & ~PAGE_MASK;
1008 page_length = remain;
1009 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1010 page_length = PAGE_SIZE - shmem_page_offset;
1011 if ((data_page_offset + page_length) > PAGE_SIZE)
1012 page_length = PAGE_SIZE - data_page_offset;
1014 if (do_bit17_swizzling) {
1015 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1016 shmem_page_offset,
1017 user_pages[data_page_index],
1018 data_page_offset,
1019 page_length,
1021 } else {
1022 slow_shmem_copy(obj_priv->pages[shmem_page_index],
1023 shmem_page_offset,
1024 user_pages[data_page_index],
1025 data_page_offset,
1026 page_length);
1029 remain -= page_length;
1030 data_ptr += page_length;
1031 offset += page_length;
1034 fail_put_pages:
1035 i915_gem_object_put_pages(obj);
1036 fail_unlock:
1037 mutex_unlock(&dev->struct_mutex);
1038 fail_put_user_pages:
1039 for (i = 0; i < pinned_pages; i++)
1040 page_cache_release(user_pages[i]);
1041 drm_free_large(user_pages);
1043 return ret;
1047 * Writes data to the object referenced by handle.
1049 * On error, the contents of the buffer that were to be modified are undefined.
1052 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1053 struct drm_file *file_priv)
1055 struct drm_i915_gem_pwrite *args = data;
1056 struct drm_gem_object *obj;
1057 struct drm_i915_gem_object *obj_priv;
1058 int ret = 0;
1060 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1061 if (obj == NULL)
1062 return -ENOENT;
1063 obj_priv = to_intel_bo(obj);
1065 /* Bounds check destination. */
1066 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1067 ret = -EINVAL;
1068 goto out;
1071 if (args->size == 0)
1072 goto out;
1074 if (!access_ok(VERIFY_READ,
1075 (char __user *)(uintptr_t)args->data_ptr,
1076 args->size)) {
1077 ret = -EFAULT;
1078 goto out;
1081 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1082 * it would end up going through the fenced access, and we'll get
1083 * different detiling behavior between reading and writing.
1084 * pread/pwrite currently are reading and writing from the CPU
1085 * perspective, requiring manual detiling by the client.
1087 if (obj_priv->phys_obj)
1088 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1089 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1090 obj_priv->gtt_space &&
1091 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1092 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1093 if (ret == -EFAULT) {
1094 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1095 file_priv);
1097 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1098 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1099 } else {
1100 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1101 if (ret == -EFAULT) {
1102 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1103 file_priv);
1107 #if WATCH_PWRITE
1108 if (ret)
1109 DRM_INFO("pwrite failed %d\n", ret);
1110 #endif
1112 out:
1113 drm_gem_object_unreference_unlocked(obj);
1114 return ret;
1118 * Called when user space prepares to use an object with the CPU, either
1119 * through the mmap ioctl's mapping or a GTT mapping.
1122 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1123 struct drm_file *file_priv)
1125 struct drm_i915_private *dev_priv = dev->dev_private;
1126 struct drm_i915_gem_set_domain *args = data;
1127 struct drm_gem_object *obj;
1128 struct drm_i915_gem_object *obj_priv;
1129 uint32_t read_domains = args->read_domains;
1130 uint32_t write_domain = args->write_domain;
1131 int ret;
1133 if (!(dev->driver->driver_features & DRIVER_GEM))
1134 return -ENODEV;
1136 /* Only handle setting domains to types used by the CPU. */
1137 if (write_domain & I915_GEM_GPU_DOMAINS)
1138 return -EINVAL;
1140 if (read_domains & I915_GEM_GPU_DOMAINS)
1141 return -EINVAL;
1143 /* Having something in the write domain implies it's in the read
1144 * domain, and only that read domain. Enforce that in the request.
1146 if (write_domain != 0 && read_domains != write_domain)
1147 return -EINVAL;
1149 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1150 if (obj == NULL)
1151 return -ENOENT;
1152 obj_priv = to_intel_bo(obj);
1154 ret = i915_mutex_lock_interruptible(dev);
1155 if (ret) {
1156 drm_gem_object_unreference_unlocked(obj);
1157 return ret;
1160 intel_mark_busy(dev, obj);
1162 if (read_domains & I915_GEM_DOMAIN_GTT) {
1163 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1165 /* Update the LRU on the fence for the CPU access that's
1166 * about to occur.
1168 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1169 struct drm_i915_fence_reg *reg =
1170 &dev_priv->fence_regs[obj_priv->fence_reg];
1171 list_move_tail(&reg->lru_list,
1172 &dev_priv->mm.fence_list);
1175 /* Silently promote "you're not bound, there was nothing to do"
1176 * to success, since the client was just asking us to
1177 * make sure everything was done.
1179 if (ret == -EINVAL)
1180 ret = 0;
1181 } else {
1182 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1185 /* Maintain LRU order of "inactive" objects */
1186 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1187 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1189 drm_gem_object_unreference(obj);
1190 mutex_unlock(&dev->struct_mutex);
1191 return ret;
1195 * Called when user space has done writes to this buffer
1198 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1199 struct drm_file *file_priv)
1201 struct drm_i915_gem_sw_finish *args = data;
1202 struct drm_gem_object *obj;
1203 int ret = 0;
1205 if (!(dev->driver->driver_features & DRIVER_GEM))
1206 return -ENODEV;
1208 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1209 if (obj == NULL)
1210 return -ENOENT;
1212 ret = i915_mutex_lock_interruptible(dev);
1213 if (ret) {
1214 drm_gem_object_unreference_unlocked(obj);
1215 return ret;
1218 /* Pinned buffers may be scanout, so flush the cache */
1219 if (to_intel_bo(obj)->pin_count)
1220 i915_gem_object_flush_cpu_write_domain(obj);
1222 drm_gem_object_unreference(obj);
1223 mutex_unlock(&dev->struct_mutex);
1224 return ret;
1228 * Maps the contents of an object, returning the address it is mapped
1229 * into.
1231 * While the mapping holds a reference on the contents of the object, it doesn't
1232 * imply a ref on the object itself.
1235 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1236 struct drm_file *file_priv)
1238 struct drm_i915_gem_mmap *args = data;
1239 struct drm_gem_object *obj;
1240 loff_t offset;
1241 unsigned long addr;
1243 if (!(dev->driver->driver_features & DRIVER_GEM))
1244 return -ENODEV;
1246 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1247 if (obj == NULL)
1248 return -ENOENT;
1250 offset = args->offset;
1252 down_write(&current->mm->mmap_sem);
1253 addr = do_mmap(obj->filp, 0, args->size,
1254 PROT_READ | PROT_WRITE, MAP_SHARED,
1255 args->offset);
1256 up_write(&current->mm->mmap_sem);
1257 drm_gem_object_unreference_unlocked(obj);
1258 if (IS_ERR((void *)addr))
1259 return addr;
1261 args->addr_ptr = (uint64_t) addr;
1263 return 0;
1267 * i915_gem_fault - fault a page into the GTT
1268 * vma: VMA in question
1269 * vmf: fault info
1271 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1272 * from userspace. The fault handler takes care of binding the object to
1273 * the GTT (if needed), allocating and programming a fence register (again,
1274 * only if needed based on whether the old reg is still valid or the object
1275 * is tiled) and inserting a new PTE into the faulting process.
1277 * Note that the faulting process may involve evicting existing objects
1278 * from the GTT and/or fence registers to make room. So performance may
1279 * suffer if the GTT working set is large or there are few fence registers
1280 * left.
1282 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1284 struct drm_gem_object *obj = vma->vm_private_data;
1285 struct drm_device *dev = obj->dev;
1286 drm_i915_private_t *dev_priv = dev->dev_private;
1287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1288 pgoff_t page_offset;
1289 unsigned long pfn;
1290 int ret = 0;
1291 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1293 /* We don't use vmf->pgoff since that has the fake offset */
1294 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1295 PAGE_SHIFT;
1297 /* Now bind it into the GTT if needed */
1298 mutex_lock(&dev->struct_mutex);
1299 if (!obj_priv->gtt_space) {
1300 ret = i915_gem_object_bind_to_gtt(obj, 0);
1301 if (ret)
1302 goto unlock;
1304 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1305 if (ret)
1306 goto unlock;
1309 /* Need a new fence register? */
1310 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1311 ret = i915_gem_object_get_fence_reg(obj, true);
1312 if (ret)
1313 goto unlock;
1316 if (i915_gem_object_is_inactive(obj_priv))
1317 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1319 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1320 page_offset;
1322 /* Finally, remap it using the new GTT offset */
1323 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1324 unlock:
1325 mutex_unlock(&dev->struct_mutex);
1327 switch (ret) {
1328 case 0:
1329 case -ERESTARTSYS:
1330 return VM_FAULT_NOPAGE;
1331 case -ENOMEM:
1332 case -EAGAIN:
1333 return VM_FAULT_OOM;
1334 default:
1335 return VM_FAULT_SIGBUS;
1340 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1341 * @obj: obj in question
1343 * GEM memory mapping works by handing back to userspace a fake mmap offset
1344 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1345 * up the object based on the offset and sets up the various memory mapping
1346 * structures.
1348 * This routine allocates and attaches a fake offset for @obj.
1350 static int
1351 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1353 struct drm_device *dev = obj->dev;
1354 struct drm_gem_mm *mm = dev->mm_private;
1355 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1356 struct drm_map_list *list;
1357 struct drm_local_map *map;
1358 int ret = 0;
1360 /* Set the object up for mmap'ing */
1361 list = &obj->map_list;
1362 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1363 if (!list->map)
1364 return -ENOMEM;
1366 map = list->map;
1367 map->type = _DRM_GEM;
1368 map->size = obj->size;
1369 map->handle = obj;
1371 /* Get a DRM GEM mmap offset allocated... */
1372 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1373 obj->size / PAGE_SIZE, 0, 0);
1374 if (!list->file_offset_node) {
1375 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1376 ret = -ENOSPC;
1377 goto out_free_list;
1380 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1381 obj->size / PAGE_SIZE, 0);
1382 if (!list->file_offset_node) {
1383 ret = -ENOMEM;
1384 goto out_free_list;
1387 list->hash.key = list->file_offset_node->start;
1388 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1389 if (ret) {
1390 DRM_ERROR("failed to add to map hash\n");
1391 goto out_free_mm;
1394 /* By now we should be all set, any drm_mmap request on the offset
1395 * below will get to our mmap & fault handler */
1396 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1398 return 0;
1400 out_free_mm:
1401 drm_mm_put_block(list->file_offset_node);
1402 out_free_list:
1403 kfree(list->map);
1405 return ret;
1409 * i915_gem_release_mmap - remove physical page mappings
1410 * @obj: obj in question
1412 * Preserve the reservation of the mmapping with the DRM core code, but
1413 * relinquish ownership of the pages back to the system.
1415 * It is vital that we remove the page mapping if we have mapped a tiled
1416 * object through the GTT and then lose the fence register due to
1417 * resource pressure. Similarly if the object has been moved out of the
1418 * aperture, than pages mapped into userspace must be revoked. Removing the
1419 * mapping will then trigger a page fault on the next user access, allowing
1420 * fixup by i915_gem_fault().
1422 void
1423 i915_gem_release_mmap(struct drm_gem_object *obj)
1425 struct drm_device *dev = obj->dev;
1426 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1428 if (dev->dev_mapping)
1429 unmap_mapping_range(dev->dev_mapping,
1430 obj_priv->mmap_offset, obj->size, 1);
1433 static void
1434 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1436 struct drm_device *dev = obj->dev;
1437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1438 struct drm_gem_mm *mm = dev->mm_private;
1439 struct drm_map_list *list;
1441 list = &obj->map_list;
1442 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1444 if (list->file_offset_node) {
1445 drm_mm_put_block(list->file_offset_node);
1446 list->file_offset_node = NULL;
1449 if (list->map) {
1450 kfree(list->map);
1451 list->map = NULL;
1454 obj_priv->mmap_offset = 0;
1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459 * @obj: object to check
1461 * Return the required GTT alignment for an object, taking into account
1462 * potential fence register mapping if needed.
1464 static uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1467 struct drm_device *dev = obj->dev;
1468 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1469 int start, i;
1472 * Minimum alignment is 4k (GTT page size), but might be greater
1473 * if a fence register is needed for the object.
1475 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1476 return 4096;
1479 * Previous chips need to be aligned to the size of the smallest
1480 * fence register that can contain the object.
1482 if (INTEL_INFO(dev)->gen == 3)
1483 start = 1024*1024;
1484 else
1485 start = 512*1024;
1487 for (i = start; i < obj->size; i <<= 1)
1490 return i;
1494 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1495 * @dev: DRM device
1496 * @data: GTT mapping ioctl data
1497 * @file_priv: GEM object info
1499 * Simply returns the fake offset to userspace so it can mmap it.
1500 * The mmap call will end up in drm_gem_mmap(), which will set things
1501 * up so we can get faults in the handler above.
1503 * The fault handler will take care of binding the object into the GTT
1504 * (since it may have been evicted to make room for something), allocating
1505 * a fence register, and mapping the appropriate aperture address into
1506 * userspace.
1509 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1510 struct drm_file *file_priv)
1512 struct drm_i915_gem_mmap_gtt *args = data;
1513 struct drm_gem_object *obj;
1514 struct drm_i915_gem_object *obj_priv;
1515 int ret;
1517 if (!(dev->driver->driver_features & DRIVER_GEM))
1518 return -ENODEV;
1520 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1521 if (obj == NULL)
1522 return -ENOENT;
1524 ret = i915_mutex_lock_interruptible(dev);
1525 if (ret) {
1526 drm_gem_object_unreference_unlocked(obj);
1527 return ret;
1530 obj_priv = to_intel_bo(obj);
1532 if (obj_priv->madv != I915_MADV_WILLNEED) {
1533 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1534 drm_gem_object_unreference(obj);
1535 mutex_unlock(&dev->struct_mutex);
1536 return -EINVAL;
1540 if (!obj_priv->mmap_offset) {
1541 ret = i915_gem_create_mmap_offset(obj);
1542 if (ret) {
1543 drm_gem_object_unreference(obj);
1544 mutex_unlock(&dev->struct_mutex);
1545 return ret;
1549 args->offset = obj_priv->mmap_offset;
1552 * Pull it into the GTT so that we have a page list (makes the
1553 * initial fault faster and any subsequent flushing possible).
1555 if (!obj_priv->agp_mem) {
1556 ret = i915_gem_object_bind_to_gtt(obj, 0);
1557 if (ret) {
1558 drm_gem_object_unreference(obj);
1559 mutex_unlock(&dev->struct_mutex);
1560 return ret;
1564 drm_gem_object_unreference(obj);
1565 mutex_unlock(&dev->struct_mutex);
1567 return 0;
1570 static void
1571 i915_gem_object_put_pages(struct drm_gem_object *obj)
1573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1574 int page_count = obj->size / PAGE_SIZE;
1575 int i;
1577 BUG_ON(obj_priv->pages_refcount == 0);
1578 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1580 if (--obj_priv->pages_refcount != 0)
1581 return;
1583 if (obj_priv->tiling_mode != I915_TILING_NONE)
1584 i915_gem_object_save_bit_17_swizzle(obj);
1586 if (obj_priv->madv == I915_MADV_DONTNEED)
1587 obj_priv->dirty = 0;
1589 for (i = 0; i < page_count; i++) {
1590 if (obj_priv->dirty)
1591 set_page_dirty(obj_priv->pages[i]);
1593 if (obj_priv->madv == I915_MADV_WILLNEED)
1594 mark_page_accessed(obj_priv->pages[i]);
1596 page_cache_release(obj_priv->pages[i]);
1598 obj_priv->dirty = 0;
1600 drm_free_large(obj_priv->pages);
1601 obj_priv->pages = NULL;
1604 static uint32_t
1605 i915_gem_next_request_seqno(struct drm_device *dev,
1606 struct intel_ring_buffer *ring)
1608 drm_i915_private_t *dev_priv = dev->dev_private;
1610 ring->outstanding_lazy_request = true;
1611 return dev_priv->next_seqno;
1614 static void
1615 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1616 struct intel_ring_buffer *ring)
1618 struct drm_device *dev = obj->dev;
1619 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1620 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1622 BUG_ON(ring == NULL);
1623 obj_priv->ring = ring;
1625 /* Add a reference if we're newly entering the active list. */
1626 if (!obj_priv->active) {
1627 drm_gem_object_reference(obj);
1628 obj_priv->active = 1;
1631 /* Move from whatever list we were on to the tail of execution. */
1632 list_move_tail(&obj_priv->list, &ring->active_list);
1633 obj_priv->last_rendering_seqno = seqno;
1636 static void
1637 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1639 struct drm_device *dev = obj->dev;
1640 drm_i915_private_t *dev_priv = dev->dev_private;
1641 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1643 BUG_ON(!obj_priv->active);
1644 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1645 obj_priv->last_rendering_seqno = 0;
1648 /* Immediately discard the backing storage */
1649 static void
1650 i915_gem_object_truncate(struct drm_gem_object *obj)
1652 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1653 struct inode *inode;
1655 /* Our goal here is to return as much of the memory as
1656 * is possible back to the system as we are called from OOM.
1657 * To do this we must instruct the shmfs to drop all of its
1658 * backing pages, *now*. Here we mirror the actions taken
1659 * when by shmem_delete_inode() to release the backing store.
1661 inode = obj->filp->f_path.dentry->d_inode;
1662 truncate_inode_pages(inode->i_mapping, 0);
1663 if (inode->i_op->truncate_range)
1664 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1666 obj_priv->madv = __I915_MADV_PURGED;
1669 static inline int
1670 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1672 return obj_priv->madv == I915_MADV_DONTNEED;
1675 static void
1676 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1678 struct drm_device *dev = obj->dev;
1679 drm_i915_private_t *dev_priv = dev->dev_private;
1680 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1682 if (obj_priv->pin_count != 0)
1683 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1684 else
1685 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1687 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1689 obj_priv->last_rendering_seqno = 0;
1690 obj_priv->ring = NULL;
1691 if (obj_priv->active) {
1692 obj_priv->active = 0;
1693 drm_gem_object_unreference(obj);
1695 WARN_ON(i915_verify_lists(dev));
1698 static void
1699 i915_gem_process_flushing_list(struct drm_device *dev,
1700 uint32_t flush_domains,
1701 struct intel_ring_buffer *ring)
1703 drm_i915_private_t *dev_priv = dev->dev_private;
1704 struct drm_i915_gem_object *obj_priv, *next;
1706 list_for_each_entry_safe(obj_priv, next,
1707 &dev_priv->mm.gpu_write_list,
1708 gpu_write_list) {
1709 struct drm_gem_object *obj = &obj_priv->base;
1711 if (obj->write_domain & flush_domains &&
1712 obj_priv->ring == ring) {
1713 uint32_t old_write_domain = obj->write_domain;
1715 obj->write_domain = 0;
1716 list_del_init(&obj_priv->gpu_write_list);
1717 i915_gem_object_move_to_active(obj, ring);
1719 /* update the fence lru list */
1720 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1721 struct drm_i915_fence_reg *reg =
1722 &dev_priv->fence_regs[obj_priv->fence_reg];
1723 list_move_tail(&reg->lru_list,
1724 &dev_priv->mm.fence_list);
1727 trace_i915_gem_object_change_domain(obj,
1728 obj->read_domains,
1729 old_write_domain);
1734 uint32_t
1735 i915_add_request(struct drm_device *dev,
1736 struct drm_file *file,
1737 struct drm_i915_gem_request *request,
1738 struct intel_ring_buffer *ring)
1740 drm_i915_private_t *dev_priv = dev->dev_private;
1741 struct drm_i915_file_private *file_priv = NULL;
1742 uint32_t seqno;
1743 int was_empty;
1745 if (file != NULL)
1746 file_priv = file->driver_priv;
1748 if (request == NULL) {
1749 request = kzalloc(sizeof(*request), GFP_KERNEL);
1750 if (request == NULL)
1751 return 0;
1754 seqno = ring->add_request(dev, ring, 0);
1755 ring->outstanding_lazy_request = false;
1757 request->seqno = seqno;
1758 request->ring = ring;
1759 request->emitted_jiffies = jiffies;
1760 was_empty = list_empty(&ring->request_list);
1761 list_add_tail(&request->list, &ring->request_list);
1763 if (file_priv) {
1764 spin_lock(&file_priv->mm.lock);
1765 request->file_priv = file_priv;
1766 list_add_tail(&request->client_list,
1767 &file_priv->mm.request_list);
1768 spin_unlock(&file_priv->mm.lock);
1771 if (!dev_priv->mm.suspended) {
1772 mod_timer(&dev_priv->hangcheck_timer,
1773 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1774 if (was_empty)
1775 queue_delayed_work(dev_priv->wq,
1776 &dev_priv->mm.retire_work, HZ);
1778 return seqno;
1782 * Command execution barrier
1784 * Ensures that all commands in the ring are finished
1785 * before signalling the CPU
1787 static void
1788 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1790 uint32_t flush_domains = 0;
1792 /* The sampler always gets flushed on i965 (sigh) */
1793 if (INTEL_INFO(dev)->gen >= 4)
1794 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1796 ring->flush(dev, ring,
1797 I915_GEM_DOMAIN_COMMAND, flush_domains);
1800 static inline void
1801 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1803 struct drm_i915_file_private *file_priv = request->file_priv;
1805 if (!file_priv)
1806 return;
1808 spin_lock(&file_priv->mm.lock);
1809 list_del(&request->client_list);
1810 request->file_priv = NULL;
1811 spin_unlock(&file_priv->mm.lock);
1814 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1815 struct intel_ring_buffer *ring)
1817 while (!list_empty(&ring->request_list)) {
1818 struct drm_i915_gem_request *request;
1820 request = list_first_entry(&ring->request_list,
1821 struct drm_i915_gem_request,
1822 list);
1824 list_del(&request->list);
1825 i915_gem_request_remove_from_client(request);
1826 kfree(request);
1829 while (!list_empty(&ring->active_list)) {
1830 struct drm_i915_gem_object *obj_priv;
1832 obj_priv = list_first_entry(&ring->active_list,
1833 struct drm_i915_gem_object,
1834 list);
1836 obj_priv->base.write_domain = 0;
1837 list_del_init(&obj_priv->gpu_write_list);
1838 i915_gem_object_move_to_inactive(&obj_priv->base);
1842 void i915_gem_reset(struct drm_device *dev)
1844 struct drm_i915_private *dev_priv = dev->dev_private;
1845 struct drm_i915_gem_object *obj_priv;
1846 int i;
1848 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1849 if (HAS_BSD(dev))
1850 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1852 /* Remove anything from the flushing lists. The GPU cache is likely
1853 * to be lost on reset along with the data, so simply move the
1854 * lost bo to the inactive list.
1856 while (!list_empty(&dev_priv->mm.flushing_list)) {
1857 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1858 struct drm_i915_gem_object,
1859 list);
1861 obj_priv->base.write_domain = 0;
1862 list_del_init(&obj_priv->gpu_write_list);
1863 i915_gem_object_move_to_inactive(&obj_priv->base);
1866 /* Move everything out of the GPU domains to ensure we do any
1867 * necessary invalidation upon reuse.
1869 list_for_each_entry(obj_priv,
1870 &dev_priv->mm.inactive_list,
1871 list)
1873 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1876 /* The fence registers are invalidated so clear them out */
1877 for (i = 0; i < 16; i++) {
1878 struct drm_i915_fence_reg *reg;
1880 reg = &dev_priv->fence_regs[i];
1881 if (!reg->obj)
1882 continue;
1884 i915_gem_clear_fence_reg(reg->obj);
1889 * This function clears the request list as sequence numbers are passed.
1891 static void
1892 i915_gem_retire_requests_ring(struct drm_device *dev,
1893 struct intel_ring_buffer *ring)
1895 drm_i915_private_t *dev_priv = dev->dev_private;
1896 uint32_t seqno;
1898 if (!ring->status_page.page_addr ||
1899 list_empty(&ring->request_list))
1900 return;
1902 WARN_ON(i915_verify_lists(dev));
1904 seqno = ring->get_seqno(dev, ring);
1905 while (!list_empty(&ring->request_list)) {
1906 struct drm_i915_gem_request *request;
1908 request = list_first_entry(&ring->request_list,
1909 struct drm_i915_gem_request,
1910 list);
1912 if (!i915_seqno_passed(seqno, request->seqno))
1913 break;
1915 trace_i915_gem_request_retire(dev, request->seqno);
1917 list_del(&request->list);
1918 i915_gem_request_remove_from_client(request);
1919 kfree(request);
1922 /* Move any buffers on the active list that are no longer referenced
1923 * by the ringbuffer to the flushing/inactive lists as appropriate.
1925 while (!list_empty(&ring->active_list)) {
1926 struct drm_gem_object *obj;
1927 struct drm_i915_gem_object *obj_priv;
1929 obj_priv = list_first_entry(&ring->active_list,
1930 struct drm_i915_gem_object,
1931 list);
1933 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1934 break;
1936 obj = &obj_priv->base;
1937 if (obj->write_domain != 0)
1938 i915_gem_object_move_to_flushing(obj);
1939 else
1940 i915_gem_object_move_to_inactive(obj);
1943 if (unlikely (dev_priv->trace_irq_seqno &&
1944 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1945 ring->user_irq_put(dev, ring);
1946 dev_priv->trace_irq_seqno = 0;
1949 WARN_ON(i915_verify_lists(dev));
1952 void
1953 i915_gem_retire_requests(struct drm_device *dev)
1955 drm_i915_private_t *dev_priv = dev->dev_private;
1957 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1958 struct drm_i915_gem_object *obj_priv, *tmp;
1960 /* We must be careful that during unbind() we do not
1961 * accidentally infinitely recurse into retire requests.
1962 * Currently:
1963 * retire -> free -> unbind -> wait -> retire_ring
1965 list_for_each_entry_safe(obj_priv, tmp,
1966 &dev_priv->mm.deferred_free_list,
1967 list)
1968 i915_gem_free_object_tail(&obj_priv->base);
1971 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1972 if (HAS_BSD(dev))
1973 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1976 static void
1977 i915_gem_retire_work_handler(struct work_struct *work)
1979 drm_i915_private_t *dev_priv;
1980 struct drm_device *dev;
1982 dev_priv = container_of(work, drm_i915_private_t,
1983 mm.retire_work.work);
1984 dev = dev_priv->dev;
1986 /* Come back later if the device is busy... */
1987 if (!mutex_trylock(&dev->struct_mutex)) {
1988 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1989 return;
1992 i915_gem_retire_requests(dev);
1994 if (!dev_priv->mm.suspended &&
1995 (!list_empty(&dev_priv->render_ring.request_list) ||
1996 (HAS_BSD(dev) &&
1997 !list_empty(&dev_priv->bsd_ring.request_list))))
1998 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 mutex_unlock(&dev->struct_mutex);
2003 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2004 bool interruptible, struct intel_ring_buffer *ring)
2006 drm_i915_private_t *dev_priv = dev->dev_private;
2007 u32 ier;
2008 int ret = 0;
2010 BUG_ON(seqno == 0);
2012 if (atomic_read(&dev_priv->mm.wedged))
2013 return -EAGAIN;
2015 if (ring->outstanding_lazy_request) {
2016 seqno = i915_add_request(dev, NULL, NULL, ring);
2017 if (seqno == 0)
2018 return -ENOMEM;
2020 BUG_ON(seqno == dev_priv->next_seqno);
2022 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2023 if (HAS_PCH_SPLIT(dev))
2024 ier = I915_READ(DEIER) | I915_READ(GTIER);
2025 else
2026 ier = I915_READ(IER);
2027 if (!ier) {
2028 DRM_ERROR("something (likely vbetool) disabled "
2029 "interrupts, re-enabling\n");
2030 i915_driver_irq_preinstall(dev);
2031 i915_driver_irq_postinstall(dev);
2034 trace_i915_gem_request_wait_begin(dev, seqno);
2036 ring->waiting_gem_seqno = seqno;
2037 ring->user_irq_get(dev, ring);
2038 if (interruptible)
2039 ret = wait_event_interruptible(ring->irq_queue,
2040 i915_seqno_passed(
2041 ring->get_seqno(dev, ring), seqno)
2042 || atomic_read(&dev_priv->mm.wedged));
2043 else
2044 wait_event(ring->irq_queue,
2045 i915_seqno_passed(
2046 ring->get_seqno(dev, ring), seqno)
2047 || atomic_read(&dev_priv->mm.wedged));
2049 ring->user_irq_put(dev, ring);
2050 ring->waiting_gem_seqno = 0;
2052 trace_i915_gem_request_wait_end(dev, seqno);
2054 if (atomic_read(&dev_priv->mm.wedged))
2055 ret = -EAGAIN;
2057 if (ret && ret != -ERESTARTSYS)
2058 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2059 __func__, ret, seqno, ring->get_seqno(dev, ring),
2060 dev_priv->next_seqno);
2062 /* Directly dispatch request retiring. While we have the work queue
2063 * to handle this, the waiter on a request often wants an associated
2064 * buffer to have made it to the inactive list, and we would need
2065 * a separate wait queue to handle that.
2067 if (ret == 0)
2068 i915_gem_retire_requests_ring(dev, ring);
2070 return ret;
2074 * Waits for a sequence number to be signaled, and cleans up the
2075 * request and object lists appropriately for that event.
2077 static int
2078 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2079 struct intel_ring_buffer *ring)
2081 return i915_do_wait_request(dev, seqno, 1, ring);
2084 static void
2085 i915_gem_flush_ring(struct drm_device *dev,
2086 struct drm_file *file_priv,
2087 struct intel_ring_buffer *ring,
2088 uint32_t invalidate_domains,
2089 uint32_t flush_domains)
2091 ring->flush(dev, ring, invalidate_domains, flush_domains);
2092 i915_gem_process_flushing_list(dev, flush_domains, ring);
2095 static void
2096 i915_gem_flush(struct drm_device *dev,
2097 struct drm_file *file_priv,
2098 uint32_t invalidate_domains,
2099 uint32_t flush_domains,
2100 uint32_t flush_rings)
2102 drm_i915_private_t *dev_priv = dev->dev_private;
2104 if (flush_domains & I915_GEM_DOMAIN_CPU)
2105 drm_agp_chipset_flush(dev);
2107 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2108 if (flush_rings & RING_RENDER)
2109 i915_gem_flush_ring(dev, file_priv,
2110 &dev_priv->render_ring,
2111 invalidate_domains, flush_domains);
2112 if (flush_rings & RING_BSD)
2113 i915_gem_flush_ring(dev, file_priv,
2114 &dev_priv->bsd_ring,
2115 invalidate_domains, flush_domains);
2120 * Ensures that all rendering to the object has completed and the object is
2121 * safe to unbind from the GTT or access from the CPU.
2123 static int
2124 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2125 bool interruptible)
2127 struct drm_device *dev = obj->dev;
2128 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2129 int ret;
2131 /* This function only exists to support waiting for existing rendering,
2132 * not for emitting required flushes.
2134 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2136 /* If there is rendering queued on the buffer being evicted, wait for
2137 * it.
2139 if (obj_priv->active) {
2140 ret = i915_do_wait_request(dev,
2141 obj_priv->last_rendering_seqno,
2142 interruptible,
2143 obj_priv->ring);
2144 if (ret)
2145 return ret;
2148 return 0;
2152 * Unbinds an object from the GTT aperture.
2155 i915_gem_object_unbind(struct drm_gem_object *obj)
2157 struct drm_device *dev = obj->dev;
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2160 int ret = 0;
2162 if (obj_priv->gtt_space == NULL)
2163 return 0;
2165 if (obj_priv->pin_count != 0) {
2166 DRM_ERROR("Attempting to unbind pinned buffer\n");
2167 return -EINVAL;
2170 /* blow away mappings if mapped through GTT */
2171 i915_gem_release_mmap(obj);
2173 /* Move the object to the CPU domain to ensure that
2174 * any possible CPU writes while it's not in the GTT
2175 * are flushed when we go to remap it. This will
2176 * also ensure that all pending GPU writes are finished
2177 * before we unbind.
2179 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2180 if (ret == -ERESTARTSYS)
2181 return ret;
2182 /* Continue on if we fail due to EIO, the GPU is hung so we
2183 * should be safe and we need to cleanup or else we might
2184 * cause memory corruption through use-after-free.
2186 if (ret) {
2187 i915_gem_clflush_object(obj);
2188 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2191 /* release the fence reg _after_ flushing */
2192 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2193 i915_gem_clear_fence_reg(obj);
2195 drm_unbind_agp(obj_priv->agp_mem);
2196 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2198 i915_gem_object_put_pages(obj);
2199 BUG_ON(obj_priv->pages_refcount);
2201 i915_gem_info_remove_gtt(dev_priv, obj->size);
2202 list_del_init(&obj_priv->list);
2204 drm_mm_put_block(obj_priv->gtt_space);
2205 obj_priv->gtt_space = NULL;
2207 if (i915_gem_object_is_purgeable(obj_priv))
2208 i915_gem_object_truncate(obj);
2210 trace_i915_gem_object_unbind(obj);
2212 return ret;
2215 static int i915_ring_idle(struct drm_device *dev,
2216 struct intel_ring_buffer *ring)
2218 i915_gem_flush_ring(dev, NULL, ring,
2219 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2220 return i915_wait_request(dev,
2221 i915_gem_next_request_seqno(dev, ring),
2222 ring);
2226 i915_gpu_idle(struct drm_device *dev)
2228 drm_i915_private_t *dev_priv = dev->dev_private;
2229 bool lists_empty;
2230 int ret;
2232 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2233 list_empty(&dev_priv->render_ring.active_list) &&
2234 (!HAS_BSD(dev) ||
2235 list_empty(&dev_priv->bsd_ring.active_list)));
2236 if (lists_empty)
2237 return 0;
2239 /* Flush everything onto the inactive list. */
2240 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2241 if (ret)
2242 return ret;
2244 if (HAS_BSD(dev)) {
2245 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2246 if (ret)
2247 return ret;
2250 return 0;
2253 static int
2254 i915_gem_object_get_pages(struct drm_gem_object *obj,
2255 gfp_t gfpmask)
2257 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2258 int page_count, i;
2259 struct address_space *mapping;
2260 struct inode *inode;
2261 struct page *page;
2263 BUG_ON(obj_priv->pages_refcount
2264 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2266 if (obj_priv->pages_refcount++ != 0)
2267 return 0;
2269 /* Get the list of pages out of our struct file. They'll be pinned
2270 * at this point until we release them.
2272 page_count = obj->size / PAGE_SIZE;
2273 BUG_ON(obj_priv->pages != NULL);
2274 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2275 if (obj_priv->pages == NULL) {
2276 obj_priv->pages_refcount--;
2277 return -ENOMEM;
2280 inode = obj->filp->f_path.dentry->d_inode;
2281 mapping = inode->i_mapping;
2282 for (i = 0; i < page_count; i++) {
2283 page = read_cache_page_gfp(mapping, i,
2284 GFP_HIGHUSER |
2285 __GFP_COLD |
2286 __GFP_RECLAIMABLE |
2287 gfpmask);
2288 if (IS_ERR(page))
2289 goto err_pages;
2291 obj_priv->pages[i] = page;
2294 if (obj_priv->tiling_mode != I915_TILING_NONE)
2295 i915_gem_object_do_bit_17_swizzle(obj);
2297 return 0;
2299 err_pages:
2300 while (i--)
2301 page_cache_release(obj_priv->pages[i]);
2303 drm_free_large(obj_priv->pages);
2304 obj_priv->pages = NULL;
2305 obj_priv->pages_refcount--;
2306 return PTR_ERR(page);
2309 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2311 struct drm_gem_object *obj = reg->obj;
2312 struct drm_device *dev = obj->dev;
2313 drm_i915_private_t *dev_priv = dev->dev_private;
2314 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2315 int regnum = obj_priv->fence_reg;
2316 uint64_t val;
2318 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2319 0xfffff000) << 32;
2320 val |= obj_priv->gtt_offset & 0xfffff000;
2321 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2322 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2324 if (obj_priv->tiling_mode == I915_TILING_Y)
2325 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2326 val |= I965_FENCE_REG_VALID;
2328 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2331 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2333 struct drm_gem_object *obj = reg->obj;
2334 struct drm_device *dev = obj->dev;
2335 drm_i915_private_t *dev_priv = dev->dev_private;
2336 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2337 int regnum = obj_priv->fence_reg;
2338 uint64_t val;
2340 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2341 0xfffff000) << 32;
2342 val |= obj_priv->gtt_offset & 0xfffff000;
2343 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2344 if (obj_priv->tiling_mode == I915_TILING_Y)
2345 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2346 val |= I965_FENCE_REG_VALID;
2348 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2351 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2353 struct drm_gem_object *obj = reg->obj;
2354 struct drm_device *dev = obj->dev;
2355 drm_i915_private_t *dev_priv = dev->dev_private;
2356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2357 int regnum = obj_priv->fence_reg;
2358 int tile_width;
2359 uint32_t fence_reg, val;
2360 uint32_t pitch_val;
2362 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2363 (obj_priv->gtt_offset & (obj->size - 1))) {
2364 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2365 __func__, obj_priv->gtt_offset, obj->size);
2366 return;
2369 if (obj_priv->tiling_mode == I915_TILING_Y &&
2370 HAS_128_BYTE_Y_TILING(dev))
2371 tile_width = 128;
2372 else
2373 tile_width = 512;
2375 /* Note: pitch better be a power of two tile widths */
2376 pitch_val = obj_priv->stride / tile_width;
2377 pitch_val = ffs(pitch_val) - 1;
2379 if (obj_priv->tiling_mode == I915_TILING_Y &&
2380 HAS_128_BYTE_Y_TILING(dev))
2381 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2382 else
2383 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2385 val = obj_priv->gtt_offset;
2386 if (obj_priv->tiling_mode == I915_TILING_Y)
2387 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2388 val |= I915_FENCE_SIZE_BITS(obj->size);
2389 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2390 val |= I830_FENCE_REG_VALID;
2392 if (regnum < 8)
2393 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2394 else
2395 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2396 I915_WRITE(fence_reg, val);
2399 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2401 struct drm_gem_object *obj = reg->obj;
2402 struct drm_device *dev = obj->dev;
2403 drm_i915_private_t *dev_priv = dev->dev_private;
2404 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2405 int regnum = obj_priv->fence_reg;
2406 uint32_t val;
2407 uint32_t pitch_val;
2408 uint32_t fence_size_bits;
2410 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2411 (obj_priv->gtt_offset & (obj->size - 1))) {
2412 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2413 __func__, obj_priv->gtt_offset);
2414 return;
2417 pitch_val = obj_priv->stride / 128;
2418 pitch_val = ffs(pitch_val) - 1;
2419 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2421 val = obj_priv->gtt_offset;
2422 if (obj_priv->tiling_mode == I915_TILING_Y)
2423 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2424 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2425 WARN_ON(fence_size_bits & ~0x00000f00);
2426 val |= fence_size_bits;
2427 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2428 val |= I830_FENCE_REG_VALID;
2430 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2433 static int i915_find_fence_reg(struct drm_device *dev,
2434 bool interruptible)
2436 struct drm_i915_fence_reg *reg = NULL;
2437 struct drm_i915_gem_object *obj_priv = NULL;
2438 struct drm_i915_private *dev_priv = dev->dev_private;
2439 struct drm_gem_object *obj = NULL;
2440 int i, avail, ret;
2442 /* First try to find a free reg */
2443 avail = 0;
2444 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2445 reg = &dev_priv->fence_regs[i];
2446 if (!reg->obj)
2447 return i;
2449 obj_priv = to_intel_bo(reg->obj);
2450 if (!obj_priv->pin_count)
2451 avail++;
2454 if (avail == 0)
2455 return -ENOSPC;
2457 /* None available, try to steal one or wait for a user to finish */
2458 i = I915_FENCE_REG_NONE;
2459 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2460 lru_list) {
2461 obj = reg->obj;
2462 obj_priv = to_intel_bo(obj);
2464 if (obj_priv->pin_count)
2465 continue;
2467 /* found one! */
2468 i = obj_priv->fence_reg;
2469 break;
2472 BUG_ON(i == I915_FENCE_REG_NONE);
2474 /* We only have a reference on obj from the active list. put_fence_reg
2475 * might drop that one, causing a use-after-free in it. So hold a
2476 * private reference to obj like the other callers of put_fence_reg
2477 * (set_tiling ioctl) do. */
2478 drm_gem_object_reference(obj);
2479 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2480 drm_gem_object_unreference(obj);
2481 if (ret != 0)
2482 return ret;
2484 return i;
2488 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2489 * @obj: object to map through a fence reg
2491 * When mapping objects through the GTT, userspace wants to be able to write
2492 * to them without having to worry about swizzling if the object is tiled.
2494 * This function walks the fence regs looking for a free one for @obj,
2495 * stealing one if it can't find any.
2497 * It then sets up the reg based on the object's properties: address, pitch
2498 * and tiling format.
2501 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2502 bool interruptible)
2504 struct drm_device *dev = obj->dev;
2505 struct drm_i915_private *dev_priv = dev->dev_private;
2506 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2507 struct drm_i915_fence_reg *reg = NULL;
2508 int ret;
2510 /* Just update our place in the LRU if our fence is getting used. */
2511 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2512 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2513 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2514 return 0;
2517 switch (obj_priv->tiling_mode) {
2518 case I915_TILING_NONE:
2519 WARN(1, "allocating a fence for non-tiled object?\n");
2520 break;
2521 case I915_TILING_X:
2522 if (!obj_priv->stride)
2523 return -EINVAL;
2524 WARN((obj_priv->stride & (512 - 1)),
2525 "object 0x%08x is X tiled but has non-512B pitch\n",
2526 obj_priv->gtt_offset);
2527 break;
2528 case I915_TILING_Y:
2529 if (!obj_priv->stride)
2530 return -EINVAL;
2531 WARN((obj_priv->stride & (128 - 1)),
2532 "object 0x%08x is Y tiled but has non-128B pitch\n",
2533 obj_priv->gtt_offset);
2534 break;
2537 ret = i915_find_fence_reg(dev, interruptible);
2538 if (ret < 0)
2539 return ret;
2541 obj_priv->fence_reg = ret;
2542 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2543 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2545 reg->obj = obj;
2547 switch (INTEL_INFO(dev)->gen) {
2548 case 6:
2549 sandybridge_write_fence_reg(reg);
2550 break;
2551 case 5:
2552 case 4:
2553 i965_write_fence_reg(reg);
2554 break;
2555 case 3:
2556 i915_write_fence_reg(reg);
2557 break;
2558 case 2:
2559 i830_write_fence_reg(reg);
2560 break;
2563 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2564 obj_priv->tiling_mode);
2566 return 0;
2570 * i915_gem_clear_fence_reg - clear out fence register info
2571 * @obj: object to clear
2573 * Zeroes out the fence register itself and clears out the associated
2574 * data structures in dev_priv and obj_priv.
2576 static void
2577 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2579 struct drm_device *dev = obj->dev;
2580 drm_i915_private_t *dev_priv = dev->dev_private;
2581 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2582 struct drm_i915_fence_reg *reg =
2583 &dev_priv->fence_regs[obj_priv->fence_reg];
2584 uint32_t fence_reg;
2586 switch (INTEL_INFO(dev)->gen) {
2587 case 6:
2588 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2589 (obj_priv->fence_reg * 8), 0);
2590 break;
2591 case 5:
2592 case 4:
2593 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2594 break;
2595 case 3:
2596 if (obj_priv->fence_reg >= 8)
2597 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2598 else
2599 case 2:
2600 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2602 I915_WRITE(fence_reg, 0);
2603 break;
2606 reg->obj = NULL;
2607 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2608 list_del_init(&reg->lru_list);
2612 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2613 * to the buffer to finish, and then resets the fence register.
2614 * @obj: tiled object holding a fence register.
2615 * @bool: whether the wait upon the fence is interruptible
2617 * Zeroes out the fence register itself and clears out the associated
2618 * data structures in dev_priv and obj_priv.
2621 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2622 bool interruptible)
2624 struct drm_device *dev = obj->dev;
2625 struct drm_i915_private *dev_priv = dev->dev_private;
2626 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2627 struct drm_i915_fence_reg *reg;
2629 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2630 return 0;
2632 /* If we've changed tiling, GTT-mappings of the object
2633 * need to re-fault to ensure that the correct fence register
2634 * setup is in place.
2636 i915_gem_release_mmap(obj);
2638 /* On the i915, GPU access to tiled buffers is via a fence,
2639 * therefore we must wait for any outstanding access to complete
2640 * before clearing the fence.
2642 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2643 if (reg->gpu) {
2644 int ret;
2646 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2647 if (ret)
2648 return ret;
2650 ret = i915_gem_object_wait_rendering(obj, interruptible);
2651 if (ret)
2652 return ret;
2654 reg->gpu = false;
2657 i915_gem_object_flush_gtt_write_domain(obj);
2658 i915_gem_clear_fence_reg(obj);
2660 return 0;
2664 * Finds free space in the GTT aperture and binds the object there.
2666 static int
2667 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2669 struct drm_device *dev = obj->dev;
2670 drm_i915_private_t *dev_priv = dev->dev_private;
2671 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2672 struct drm_mm_node *free_space;
2673 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2674 int ret;
2676 if (obj_priv->madv != I915_MADV_WILLNEED) {
2677 DRM_ERROR("Attempting to bind a purgeable object\n");
2678 return -EINVAL;
2681 if (alignment == 0)
2682 alignment = i915_gem_get_gtt_alignment(obj);
2683 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2684 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2685 return -EINVAL;
2688 /* If the object is bigger than the entire aperture, reject it early
2689 * before evicting everything in a vain attempt to find space.
2691 if (obj->size > dev_priv->mm.gtt_total) {
2692 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2693 return -E2BIG;
2696 search_free:
2697 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2698 obj->size, alignment, 0);
2699 if (free_space != NULL) {
2700 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2701 alignment);
2702 if (obj_priv->gtt_space != NULL)
2703 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2705 if (obj_priv->gtt_space == NULL) {
2706 /* If the gtt is empty and we're still having trouble
2707 * fitting our object in, we're out of memory.
2709 ret = i915_gem_evict_something(dev, obj->size, alignment);
2710 if (ret)
2711 return ret;
2713 goto search_free;
2716 ret = i915_gem_object_get_pages(obj, gfpmask);
2717 if (ret) {
2718 drm_mm_put_block(obj_priv->gtt_space);
2719 obj_priv->gtt_space = NULL;
2721 if (ret == -ENOMEM) {
2722 /* first try to clear up some space from the GTT */
2723 ret = i915_gem_evict_something(dev, obj->size,
2724 alignment);
2725 if (ret) {
2726 /* now try to shrink everyone else */
2727 if (gfpmask) {
2728 gfpmask = 0;
2729 goto search_free;
2732 return ret;
2735 goto search_free;
2738 return ret;
2741 /* Create an AGP memory structure pointing at our pages, and bind it
2742 * into the GTT.
2744 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2745 obj_priv->pages,
2746 obj->size >> PAGE_SHIFT,
2747 obj_priv->gtt_offset,
2748 obj_priv->agp_type);
2749 if (obj_priv->agp_mem == NULL) {
2750 i915_gem_object_put_pages(obj);
2751 drm_mm_put_block(obj_priv->gtt_space);
2752 obj_priv->gtt_space = NULL;
2754 ret = i915_gem_evict_something(dev, obj->size, alignment);
2755 if (ret)
2756 return ret;
2758 goto search_free;
2761 /* keep track of bounds object by adding it to the inactive list */
2762 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2763 i915_gem_info_add_gtt(dev_priv, obj->size);
2765 /* Assert that the object is not currently in any GPU domain. As it
2766 * wasn't in the GTT, there shouldn't be any way it could have been in
2767 * a GPU cache
2769 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2770 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2772 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2774 return 0;
2777 void
2778 i915_gem_clflush_object(struct drm_gem_object *obj)
2780 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2782 /* If we don't have a page list set up, then we're not pinned
2783 * to GPU, and we can ignore the cache flush because it'll happen
2784 * again at bind time.
2786 if (obj_priv->pages == NULL)
2787 return;
2789 trace_i915_gem_object_clflush(obj);
2791 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2794 /** Flushes any GPU write domain for the object if it's dirty. */
2795 static int
2796 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2797 bool pipelined)
2799 struct drm_device *dev = obj->dev;
2800 uint32_t old_write_domain;
2802 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2803 return 0;
2805 /* Queue the GPU write cache flushing we need. */
2806 old_write_domain = obj->write_domain;
2807 i915_gem_flush_ring(dev, NULL,
2808 to_intel_bo(obj)->ring,
2809 0, obj->write_domain);
2810 BUG_ON(obj->write_domain);
2812 trace_i915_gem_object_change_domain(obj,
2813 obj->read_domains,
2814 old_write_domain);
2816 if (pipelined)
2817 return 0;
2819 return i915_gem_object_wait_rendering(obj, true);
2822 /** Flushes the GTT write domain for the object if it's dirty. */
2823 static void
2824 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2826 uint32_t old_write_domain;
2828 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2829 return;
2831 /* No actual flushing is required for the GTT write domain. Writes
2832 * to it immediately go to main memory as far as we know, so there's
2833 * no chipset flush. It also doesn't land in render cache.
2835 old_write_domain = obj->write_domain;
2836 obj->write_domain = 0;
2838 trace_i915_gem_object_change_domain(obj,
2839 obj->read_domains,
2840 old_write_domain);
2843 /** Flushes the CPU write domain for the object if it's dirty. */
2844 static void
2845 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2847 struct drm_device *dev = obj->dev;
2848 uint32_t old_write_domain;
2850 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2851 return;
2853 i915_gem_clflush_object(obj);
2854 drm_agp_chipset_flush(dev);
2855 old_write_domain = obj->write_domain;
2856 obj->write_domain = 0;
2858 trace_i915_gem_object_change_domain(obj,
2859 obj->read_domains,
2860 old_write_domain);
2864 * Moves a single object to the GTT read, and possibly write domain.
2866 * This function returns when the move is complete, including waiting on
2867 * flushes to occur.
2870 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2872 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2873 uint32_t old_write_domain, old_read_domains;
2874 int ret;
2876 /* Not valid to be called on unbound objects. */
2877 if (obj_priv->gtt_space == NULL)
2878 return -EINVAL;
2880 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2881 if (ret != 0)
2882 return ret;
2884 i915_gem_object_flush_cpu_write_domain(obj);
2886 if (write) {
2887 ret = i915_gem_object_wait_rendering(obj, true);
2888 if (ret)
2889 return ret;
2892 old_write_domain = obj->write_domain;
2893 old_read_domains = obj->read_domains;
2895 /* It should now be out of any other write domains, and we can update
2896 * the domain values for our changes.
2898 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2899 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2900 if (write) {
2901 obj->read_domains = I915_GEM_DOMAIN_GTT;
2902 obj->write_domain = I915_GEM_DOMAIN_GTT;
2903 obj_priv->dirty = 1;
2906 trace_i915_gem_object_change_domain(obj,
2907 old_read_domains,
2908 old_write_domain);
2910 return 0;
2914 * Prepare buffer for display plane. Use uninterruptible for possible flush
2915 * wait, as in modesetting process we're not supposed to be interrupted.
2918 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2919 bool pipelined)
2921 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2922 uint32_t old_read_domains;
2923 int ret;
2925 /* Not valid to be called on unbound objects. */
2926 if (obj_priv->gtt_space == NULL)
2927 return -EINVAL;
2929 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2930 if (ret)
2931 return ret;
2933 /* Currently, we are always called from an non-interruptible context. */
2934 if (!pipelined) {
2935 ret = i915_gem_object_wait_rendering(obj, false);
2936 if (ret)
2937 return ret;
2940 i915_gem_object_flush_cpu_write_domain(obj);
2942 old_read_domains = obj->read_domains;
2943 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2945 trace_i915_gem_object_change_domain(obj,
2946 old_read_domains,
2947 obj->write_domain);
2949 return 0;
2953 * Moves a single object to the CPU read, and possibly write domain.
2955 * This function returns when the move is complete, including waiting on
2956 * flushes to occur.
2958 static int
2959 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2961 uint32_t old_write_domain, old_read_domains;
2962 int ret;
2964 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2965 if (ret != 0)
2966 return ret;
2968 i915_gem_object_flush_gtt_write_domain(obj);
2970 /* If we have a partially-valid cache of the object in the CPU,
2971 * finish invalidating it and free the per-page flags.
2973 i915_gem_object_set_to_full_cpu_read_domain(obj);
2975 if (write) {
2976 ret = i915_gem_object_wait_rendering(obj, true);
2977 if (ret)
2978 return ret;
2981 old_write_domain = obj->write_domain;
2982 old_read_domains = obj->read_domains;
2984 /* Flush the CPU cache if it's still invalid. */
2985 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2986 i915_gem_clflush_object(obj);
2988 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2991 /* It should now be out of any other write domains, and we can update
2992 * the domain values for our changes.
2994 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2996 /* If we're writing through the CPU, then the GPU read domains will
2997 * need to be invalidated at next use.
2999 if (write) {
3000 obj->read_domains = I915_GEM_DOMAIN_CPU;
3001 obj->write_domain = I915_GEM_DOMAIN_CPU;
3004 trace_i915_gem_object_change_domain(obj,
3005 old_read_domains,
3006 old_write_domain);
3008 return 0;
3012 * Set the next domain for the specified object. This
3013 * may not actually perform the necessary flushing/invaliding though,
3014 * as that may want to be batched with other set_domain operations
3016 * This is (we hope) the only really tricky part of gem. The goal
3017 * is fairly simple -- track which caches hold bits of the object
3018 * and make sure they remain coherent. A few concrete examples may
3019 * help to explain how it works. For shorthand, we use the notation
3020 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3021 * a pair of read and write domain masks.
3023 * Case 1: the batch buffer
3025 * 1. Allocated
3026 * 2. Written by CPU
3027 * 3. Mapped to GTT
3028 * 4. Read by GPU
3029 * 5. Unmapped from GTT
3030 * 6. Freed
3032 * Let's take these a step at a time
3034 * 1. Allocated
3035 * Pages allocated from the kernel may still have
3036 * cache contents, so we set them to (CPU, CPU) always.
3037 * 2. Written by CPU (using pwrite)
3038 * The pwrite function calls set_domain (CPU, CPU) and
3039 * this function does nothing (as nothing changes)
3040 * 3. Mapped by GTT
3041 * This function asserts that the object is not
3042 * currently in any GPU-based read or write domains
3043 * 4. Read by GPU
3044 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3045 * As write_domain is zero, this function adds in the
3046 * current read domains (CPU+COMMAND, 0).
3047 * flush_domains is set to CPU.
3048 * invalidate_domains is set to COMMAND
3049 * clflush is run to get data out of the CPU caches
3050 * then i915_dev_set_domain calls i915_gem_flush to
3051 * emit an MI_FLUSH and drm_agp_chipset_flush
3052 * 5. Unmapped from GTT
3053 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3054 * flush_domains and invalidate_domains end up both zero
3055 * so no flushing/invalidating happens
3056 * 6. Freed
3057 * yay, done
3059 * Case 2: The shared render buffer
3061 * 1. Allocated
3062 * 2. Mapped to GTT
3063 * 3. Read/written by GPU
3064 * 4. set_domain to (CPU,CPU)
3065 * 5. Read/written by CPU
3066 * 6. Read/written by GPU
3068 * 1. Allocated
3069 * Same as last example, (CPU, CPU)
3070 * 2. Mapped to GTT
3071 * Nothing changes (assertions find that it is not in the GPU)
3072 * 3. Read/written by GPU
3073 * execbuffer calls set_domain (RENDER, RENDER)
3074 * flush_domains gets CPU
3075 * invalidate_domains gets GPU
3076 * clflush (obj)
3077 * MI_FLUSH and drm_agp_chipset_flush
3078 * 4. set_domain (CPU, CPU)
3079 * flush_domains gets GPU
3080 * invalidate_domains gets CPU
3081 * wait_rendering (obj) to make sure all drawing is complete.
3082 * This will include an MI_FLUSH to get the data from GPU
3083 * to memory
3084 * clflush (obj) to invalidate the CPU cache
3085 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3086 * 5. Read/written by CPU
3087 * cache lines are loaded and dirtied
3088 * 6. Read written by GPU
3089 * Same as last GPU access
3091 * Case 3: The constant buffer
3093 * 1. Allocated
3094 * 2. Written by CPU
3095 * 3. Read by GPU
3096 * 4. Updated (written) by CPU again
3097 * 5. Read by GPU
3099 * 1. Allocated
3100 * (CPU, CPU)
3101 * 2. Written by CPU
3102 * (CPU, CPU)
3103 * 3. Read by GPU
3104 * (CPU+RENDER, 0)
3105 * flush_domains = CPU
3106 * invalidate_domains = RENDER
3107 * clflush (obj)
3108 * MI_FLUSH
3109 * drm_agp_chipset_flush
3110 * 4. Updated (written) by CPU again
3111 * (CPU, CPU)
3112 * flush_domains = 0 (no previous write domain)
3113 * invalidate_domains = 0 (no new read domains)
3114 * 5. Read by GPU
3115 * (CPU+RENDER, 0)
3116 * flush_domains = CPU
3117 * invalidate_domains = RENDER
3118 * clflush (obj)
3119 * MI_FLUSH
3120 * drm_agp_chipset_flush
3122 static void
3123 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3125 struct drm_device *dev = obj->dev;
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3128 uint32_t invalidate_domains = 0;
3129 uint32_t flush_domains = 0;
3130 uint32_t old_read_domains;
3132 intel_mark_busy(dev, obj);
3135 * If the object isn't moving to a new write domain,
3136 * let the object stay in multiple read domains
3138 if (obj->pending_write_domain == 0)
3139 obj->pending_read_domains |= obj->read_domains;
3140 else
3141 obj_priv->dirty = 1;
3144 * Flush the current write domain if
3145 * the new read domains don't match. Invalidate
3146 * any read domains which differ from the old
3147 * write domain
3149 if (obj->write_domain &&
3150 obj->write_domain != obj->pending_read_domains) {
3151 flush_domains |= obj->write_domain;
3152 invalidate_domains |=
3153 obj->pending_read_domains & ~obj->write_domain;
3156 * Invalidate any read caches which may have
3157 * stale data. That is, any new read domains.
3159 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3160 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3161 i915_gem_clflush_object(obj);
3163 old_read_domains = obj->read_domains;
3165 /* The actual obj->write_domain will be updated with
3166 * pending_write_domain after we emit the accumulated flush for all
3167 * of our domain changes in execbuffers (which clears objects'
3168 * write_domains). So if we have a current write domain that we
3169 * aren't changing, set pending_write_domain to that.
3171 if (flush_domains == 0 && obj->pending_write_domain == 0)
3172 obj->pending_write_domain = obj->write_domain;
3173 obj->read_domains = obj->pending_read_domains;
3175 dev->invalidate_domains |= invalidate_domains;
3176 dev->flush_domains |= flush_domains;
3177 if (obj_priv->ring)
3178 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3180 trace_i915_gem_object_change_domain(obj,
3181 old_read_domains,
3182 obj->write_domain);
3186 * Moves the object from a partially CPU read to a full one.
3188 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3189 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3191 static void
3192 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3194 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3196 if (!obj_priv->page_cpu_valid)
3197 return;
3199 /* If we're partially in the CPU read domain, finish moving it in.
3201 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3202 int i;
3204 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3205 if (obj_priv->page_cpu_valid[i])
3206 continue;
3207 drm_clflush_pages(obj_priv->pages + i, 1);
3211 /* Free the page_cpu_valid mappings which are now stale, whether
3212 * or not we've got I915_GEM_DOMAIN_CPU.
3214 kfree(obj_priv->page_cpu_valid);
3215 obj_priv->page_cpu_valid = NULL;
3219 * Set the CPU read domain on a range of the object.
3221 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3222 * not entirely valid. The page_cpu_valid member of the object flags which
3223 * pages have been flushed, and will be respected by
3224 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3225 * of the whole object.
3227 * This function returns when the move is complete, including waiting on
3228 * flushes to occur.
3230 static int
3231 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3232 uint64_t offset, uint64_t size)
3234 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3235 uint32_t old_read_domains;
3236 int i, ret;
3238 if (offset == 0 && size == obj->size)
3239 return i915_gem_object_set_to_cpu_domain(obj, 0);
3241 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3242 if (ret != 0)
3243 return ret;
3244 i915_gem_object_flush_gtt_write_domain(obj);
3246 /* If we're already fully in the CPU read domain, we're done. */
3247 if (obj_priv->page_cpu_valid == NULL &&
3248 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3249 return 0;
3251 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3252 * newly adding I915_GEM_DOMAIN_CPU
3254 if (obj_priv->page_cpu_valid == NULL) {
3255 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3256 GFP_KERNEL);
3257 if (obj_priv->page_cpu_valid == NULL)
3258 return -ENOMEM;
3259 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3260 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3262 /* Flush the cache on any pages that are still invalid from the CPU's
3263 * perspective.
3265 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3266 i++) {
3267 if (obj_priv->page_cpu_valid[i])
3268 continue;
3270 drm_clflush_pages(obj_priv->pages + i, 1);
3272 obj_priv->page_cpu_valid[i] = 1;
3275 /* It should now be out of any other write domains, and we can update
3276 * the domain values for our changes.
3278 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3280 old_read_domains = obj->read_domains;
3281 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3283 trace_i915_gem_object_change_domain(obj,
3284 old_read_domains,
3285 obj->write_domain);
3287 return 0;
3291 * Pin an object to the GTT and evaluate the relocations landing in it.
3293 static int
3294 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3295 struct drm_file *file_priv,
3296 struct drm_i915_gem_exec_object2 *entry)
3298 struct drm_device *dev = obj->dev;
3299 drm_i915_private_t *dev_priv = dev->dev_private;
3300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3301 struct drm_i915_gem_relocation_entry __user *user_relocs;
3302 int i, ret;
3303 bool need_fence;
3305 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3306 obj_priv->tiling_mode != I915_TILING_NONE;
3308 /* Check fence reg constraints and rebind if necessary */
3309 if (need_fence &&
3310 !i915_gem_object_fence_offset_ok(obj,
3311 obj_priv->tiling_mode)) {
3312 ret = i915_gem_object_unbind(obj);
3313 if (ret)
3314 return ret;
3317 /* Choose the GTT offset for our buffer and put it there. */
3318 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3319 if (ret)
3320 return ret;
3323 * Pre-965 chips need a fence register set up in order to
3324 * properly handle blits to/from tiled surfaces.
3326 if (need_fence) {
3327 ret = i915_gem_object_get_fence_reg(obj, true);
3328 if (ret != 0) {
3329 i915_gem_object_unpin(obj);
3330 return ret;
3333 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
3336 entry->offset = obj_priv->gtt_offset;
3338 /* Apply the relocations, using the GTT aperture to avoid cache
3339 * flushing requirements.
3341 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3342 for (i = 0; i < entry->relocation_count; i++) {
3343 struct drm_i915_gem_relocation_entry reloc;
3344 struct drm_gem_object *target_obj;
3345 struct drm_i915_gem_object *target_obj_priv;
3347 ret = __copy_from_user_inatomic(&reloc,
3348 user_relocs+i,
3349 sizeof(reloc));
3350 if (ret) {
3351 i915_gem_object_unpin(obj);
3352 return -EFAULT;
3355 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3356 reloc.target_handle);
3357 if (target_obj == NULL) {
3358 i915_gem_object_unpin(obj);
3359 return -ENOENT;
3361 target_obj_priv = to_intel_bo(target_obj);
3363 #if WATCH_RELOC
3364 DRM_INFO("%s: obj %p offset %08x target %d "
3365 "read %08x write %08x gtt %08x "
3366 "presumed %08x delta %08x\n",
3367 __func__,
3368 obj,
3369 (int) reloc.offset,
3370 (int) reloc.target_handle,
3371 (int) reloc.read_domains,
3372 (int) reloc.write_domain,
3373 (int) target_obj_priv->gtt_offset,
3374 (int) reloc.presumed_offset,
3375 reloc.delta);
3376 #endif
3378 /* The target buffer should have appeared before us in the
3379 * exec_object list, so it should have a GTT space bound by now.
3381 if (target_obj_priv->gtt_space == NULL) {
3382 DRM_ERROR("No GTT space found for object %d\n",
3383 reloc.target_handle);
3384 drm_gem_object_unreference(target_obj);
3385 i915_gem_object_unpin(obj);
3386 return -EINVAL;
3389 /* Validate that the target is in a valid r/w GPU domain */
3390 if (reloc.write_domain & (reloc.write_domain - 1)) {
3391 DRM_ERROR("reloc with multiple write domains: "
3392 "obj %p target %d offset %d "
3393 "read %08x write %08x",
3394 obj, reloc.target_handle,
3395 (int) reloc.offset,
3396 reloc.read_domains,
3397 reloc.write_domain);
3398 drm_gem_object_unreference(target_obj);
3399 i915_gem_object_unpin(obj);
3400 return -EINVAL;
3402 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3403 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3404 DRM_ERROR("reloc with read/write CPU domains: "
3405 "obj %p target %d offset %d "
3406 "read %08x write %08x",
3407 obj, reloc.target_handle,
3408 (int) reloc.offset,
3409 reloc.read_domains,
3410 reloc.write_domain);
3411 drm_gem_object_unreference(target_obj);
3412 i915_gem_object_unpin(obj);
3413 return -EINVAL;
3415 if (reloc.write_domain && target_obj->pending_write_domain &&
3416 reloc.write_domain != target_obj->pending_write_domain) {
3417 DRM_ERROR("Write domain conflict: "
3418 "obj %p target %d offset %d "
3419 "new %08x old %08x\n",
3420 obj, reloc.target_handle,
3421 (int) reloc.offset,
3422 reloc.write_domain,
3423 target_obj->pending_write_domain);
3424 drm_gem_object_unreference(target_obj);
3425 i915_gem_object_unpin(obj);
3426 return -EINVAL;
3429 target_obj->pending_read_domains |= reloc.read_domains;
3430 target_obj->pending_write_domain |= reloc.write_domain;
3432 /* If the relocation already has the right value in it, no
3433 * more work needs to be done.
3435 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3436 drm_gem_object_unreference(target_obj);
3437 continue;
3440 /* Check that the relocation address is valid... */
3441 if (reloc.offset > obj->size - 4) {
3442 DRM_ERROR("Relocation beyond object bounds: "
3443 "obj %p target %d offset %d size %d.\n",
3444 obj, reloc.target_handle,
3445 (int) reloc.offset, (int) obj->size);
3446 drm_gem_object_unreference(target_obj);
3447 i915_gem_object_unpin(obj);
3448 return -EINVAL;
3450 if (reloc.offset & 3) {
3451 DRM_ERROR("Relocation not 4-byte aligned: "
3452 "obj %p target %d offset %d.\n",
3453 obj, reloc.target_handle,
3454 (int) reloc.offset);
3455 drm_gem_object_unreference(target_obj);
3456 i915_gem_object_unpin(obj);
3457 return -EINVAL;
3460 /* and points to somewhere within the target object. */
3461 if (reloc.delta >= target_obj->size) {
3462 DRM_ERROR("Relocation beyond target object bounds: "
3463 "obj %p target %d delta %d size %d.\n",
3464 obj, reloc.target_handle,
3465 (int) reloc.delta, (int) target_obj->size);
3466 drm_gem_object_unreference(target_obj);
3467 i915_gem_object_unpin(obj);
3468 return -EINVAL;
3471 reloc.delta += target_obj_priv->gtt_offset;
3472 if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
3473 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3474 char *vaddr;
3476 vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3477 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3478 kunmap_atomic(vaddr, KM_USER0);
3479 } else {
3480 uint32_t __iomem *reloc_entry;
3481 void __iomem *reloc_page;
3482 int ret;
3484 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3485 if (ret) {
3486 drm_gem_object_unreference(target_obj);
3487 i915_gem_object_unpin(obj);
3488 return ret;
3491 /* Map the page containing the relocation we're going to perform. */
3492 reloc.offset += obj_priv->gtt_offset;
3493 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3494 reloc.offset & PAGE_MASK,
3495 KM_USER0);
3496 reloc_entry = (uint32_t __iomem *)
3497 (reloc_page + (reloc.offset & ~PAGE_MASK));
3498 iowrite32(reloc.delta, reloc_entry);
3499 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3502 drm_gem_object_unreference(target_obj);
3505 return 0;
3508 /* Throttle our rendering by waiting until the ring has completed our requests
3509 * emitted over 20 msec ago.
3511 * Note that if we were to use the current jiffies each time around the loop,
3512 * we wouldn't escape the function with any frames outstanding if the time to
3513 * render a frame was over 20ms.
3515 * This should get us reasonable parallelism between CPU and GPU but also
3516 * relatively low latency when blocking on a particular request to finish.
3518 static int
3519 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3521 struct drm_i915_private *dev_priv = dev->dev_private;
3522 struct drm_i915_file_private *file_priv = file->driver_priv;
3523 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3524 struct drm_i915_gem_request *request;
3525 struct intel_ring_buffer *ring = NULL;
3526 u32 seqno = 0;
3527 int ret;
3529 spin_lock(&file_priv->mm.lock);
3530 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3531 if (time_after_eq(request->emitted_jiffies, recent_enough))
3532 break;
3534 ring = request->ring;
3535 seqno = request->seqno;
3537 spin_unlock(&file_priv->mm.lock);
3539 if (seqno == 0)
3540 return 0;
3542 ret = 0;
3543 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3544 /* And wait for the seqno passing without holding any locks and
3545 * causing extra latency for others. This is safe as the irq
3546 * generation is designed to be run atomically and so is
3547 * lockless.
3549 ring->user_irq_get(dev, ring);
3550 ret = wait_event_interruptible(ring->irq_queue,
3551 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3552 || atomic_read(&dev_priv->mm.wedged));
3553 ring->user_irq_put(dev, ring);
3555 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3556 ret = -EIO;
3559 if (ret == 0)
3560 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3562 return ret;
3565 static int
3566 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3567 uint64_t exec_offset)
3569 uint32_t exec_start, exec_len;
3571 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3572 exec_len = (uint32_t) exec->batch_len;
3574 if ((exec_start | exec_len) & 0x7)
3575 return -EINVAL;
3577 if (!exec_start)
3578 return -EINVAL;
3580 return 0;
3583 static int
3584 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3585 int count)
3587 int i;
3589 for (i = 0; i < count; i++) {
3590 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3591 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3593 if (!access_ok(VERIFY_READ, ptr, length))
3594 return -EFAULT;
3596 if (fault_in_pages_readable(ptr, length))
3597 return -EFAULT;
3600 return 0;
3603 static int
3604 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3605 struct drm_file *file_priv,
3606 struct drm_i915_gem_execbuffer2 *args,
3607 struct drm_i915_gem_exec_object2 *exec_list)
3609 drm_i915_private_t *dev_priv = dev->dev_private;
3610 struct drm_gem_object **object_list = NULL;
3611 struct drm_gem_object *batch_obj;
3612 struct drm_i915_gem_object *obj_priv;
3613 struct drm_clip_rect *cliprects = NULL;
3614 struct drm_i915_gem_request *request = NULL;
3615 int ret, i, pinned = 0;
3616 uint64_t exec_offset;
3617 int pin_tries, flips;
3619 struct intel_ring_buffer *ring = NULL;
3621 ret = i915_gem_check_is_wedged(dev);
3622 if (ret)
3623 return ret;
3625 ret = validate_exec_list(exec_list, args->buffer_count);
3626 if (ret)
3627 return ret;
3629 #if WATCH_EXEC
3630 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3631 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3632 #endif
3633 if (args->flags & I915_EXEC_BSD) {
3634 if (!HAS_BSD(dev)) {
3635 DRM_ERROR("execbuf with wrong flag\n");
3636 return -EINVAL;
3638 ring = &dev_priv->bsd_ring;
3639 } else {
3640 ring = &dev_priv->render_ring;
3643 if (args->buffer_count < 1) {
3644 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3645 return -EINVAL;
3647 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3648 if (object_list == NULL) {
3649 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3650 args->buffer_count);
3651 ret = -ENOMEM;
3652 goto pre_mutex_err;
3655 if (args->num_cliprects != 0) {
3656 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3657 GFP_KERNEL);
3658 if (cliprects == NULL) {
3659 ret = -ENOMEM;
3660 goto pre_mutex_err;
3663 ret = copy_from_user(cliprects,
3664 (struct drm_clip_rect __user *)
3665 (uintptr_t) args->cliprects_ptr,
3666 sizeof(*cliprects) * args->num_cliprects);
3667 if (ret != 0) {
3668 DRM_ERROR("copy %d cliprects failed: %d\n",
3669 args->num_cliprects, ret);
3670 ret = -EFAULT;
3671 goto pre_mutex_err;
3675 request = kzalloc(sizeof(*request), GFP_KERNEL);
3676 if (request == NULL) {
3677 ret = -ENOMEM;
3678 goto pre_mutex_err;
3681 ret = i915_mutex_lock_interruptible(dev);
3682 if (ret)
3683 goto pre_mutex_err;
3685 if (dev_priv->mm.suspended) {
3686 mutex_unlock(&dev->struct_mutex);
3687 ret = -EBUSY;
3688 goto pre_mutex_err;
3691 /* Look up object handles */
3692 for (i = 0; i < args->buffer_count; i++) {
3693 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3694 exec_list[i].handle);
3695 if (object_list[i] == NULL) {
3696 DRM_ERROR("Invalid object handle %d at index %d\n",
3697 exec_list[i].handle, i);
3698 /* prevent error path from reading uninitialized data */
3699 args->buffer_count = i + 1;
3700 ret = -ENOENT;
3701 goto err;
3704 obj_priv = to_intel_bo(object_list[i]);
3705 if (obj_priv->in_execbuffer) {
3706 DRM_ERROR("Object %p appears more than once in object list\n",
3707 object_list[i]);
3708 /* prevent error path from reading uninitialized data */
3709 args->buffer_count = i + 1;
3710 ret = -EINVAL;
3711 goto err;
3713 obj_priv->in_execbuffer = true;
3716 /* Pin and relocate */
3717 for (pin_tries = 0; ; pin_tries++) {
3718 ret = 0;
3720 for (i = 0; i < args->buffer_count; i++) {
3721 object_list[i]->pending_read_domains = 0;
3722 object_list[i]->pending_write_domain = 0;
3723 ret = i915_gem_object_pin_and_relocate(object_list[i],
3724 file_priv,
3725 &exec_list[i]);
3726 if (ret)
3727 break;
3728 pinned = i + 1;
3730 /* success */
3731 if (ret == 0)
3732 break;
3734 /* error other than GTT full, or we've already tried again */
3735 if (ret != -ENOSPC || pin_tries >= 1) {
3736 if (ret != -ERESTARTSYS) {
3737 unsigned long long total_size = 0;
3738 int num_fences = 0;
3739 for (i = 0; i < args->buffer_count; i++) {
3740 obj_priv = to_intel_bo(object_list[i]);
3742 total_size += object_list[i]->size;
3743 num_fences +=
3744 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3745 obj_priv->tiling_mode != I915_TILING_NONE;
3747 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3748 pinned+1, args->buffer_count,
3749 total_size, num_fences,
3750 ret);
3751 DRM_ERROR("%u objects [%u pinned, %u GTT], "
3752 "%zu object bytes [%zu pinned], "
3753 "%zu /%zu gtt bytes\n",
3754 dev_priv->mm.object_count,
3755 dev_priv->mm.pin_count,
3756 dev_priv->mm.gtt_count,
3757 dev_priv->mm.object_memory,
3758 dev_priv->mm.pin_memory,
3759 dev_priv->mm.gtt_memory,
3760 dev_priv->mm.gtt_total);
3762 goto err;
3765 /* unpin all of our buffers */
3766 for (i = 0; i < pinned; i++)
3767 i915_gem_object_unpin(object_list[i]);
3768 pinned = 0;
3770 /* evict everyone we can from the aperture */
3771 ret = i915_gem_evict_everything(dev);
3772 if (ret && ret != -ENOSPC)
3773 goto err;
3776 /* Set the pending read domains for the batch buffer to COMMAND */
3777 batch_obj = object_list[args->buffer_count-1];
3778 if (batch_obj->pending_write_domain) {
3779 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3780 ret = -EINVAL;
3781 goto err;
3783 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3785 /* Sanity check the batch buffer, prior to moving objects */
3786 exec_offset = exec_list[args->buffer_count - 1].offset;
3787 ret = i915_gem_check_execbuffer (args, exec_offset);
3788 if (ret != 0) {
3789 DRM_ERROR("execbuf with invalid offset/length\n");
3790 goto err;
3793 /* Zero the global flush/invalidate flags. These
3794 * will be modified as new domains are computed
3795 * for each object
3797 dev->invalidate_domains = 0;
3798 dev->flush_domains = 0;
3799 dev_priv->mm.flush_rings = 0;
3801 for (i = 0; i < args->buffer_count; i++) {
3802 struct drm_gem_object *obj = object_list[i];
3804 /* Compute new gpu domains and update invalidate/flush */
3805 i915_gem_object_set_to_gpu_domain(obj);
3808 if (dev->invalidate_domains | dev->flush_domains) {
3809 #if WATCH_EXEC
3810 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3811 __func__,
3812 dev->invalidate_domains,
3813 dev->flush_domains);
3814 #endif
3815 i915_gem_flush(dev, file_priv,
3816 dev->invalidate_domains,
3817 dev->flush_domains,
3818 dev_priv->mm.flush_rings);
3821 for (i = 0; i < args->buffer_count; i++) {
3822 struct drm_gem_object *obj = object_list[i];
3823 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3824 uint32_t old_write_domain = obj->write_domain;
3826 obj->write_domain = obj->pending_write_domain;
3827 if (obj->write_domain)
3828 list_move_tail(&obj_priv->gpu_write_list,
3829 &dev_priv->mm.gpu_write_list);
3831 trace_i915_gem_object_change_domain(obj,
3832 obj->read_domains,
3833 old_write_domain);
3836 #if WATCH_COHERENCY
3837 for (i = 0; i < args->buffer_count; i++) {
3838 i915_gem_object_check_coherency(object_list[i],
3839 exec_list[i].handle);
3841 #endif
3843 #if WATCH_EXEC
3844 i915_gem_dump_object(batch_obj,
3845 args->batch_len,
3846 __func__,
3847 ~0);
3848 #endif
3850 /* Check for any pending flips. As we only maintain a flip queue depth
3851 * of 1, we can simply insert a WAIT for the next display flip prior
3852 * to executing the batch and avoid stalling the CPU.
3854 flips = 0;
3855 for (i = 0; i < args->buffer_count; i++) {
3856 if (object_list[i]->write_domain)
3857 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3859 if (flips) {
3860 int plane, flip_mask;
3862 for (plane = 0; flips >> plane; plane++) {
3863 if (((flips >> plane) & 1) == 0)
3864 continue;
3866 if (plane)
3867 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3868 else
3869 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3871 intel_ring_begin(dev, ring, 2);
3872 intel_ring_emit(dev, ring,
3873 MI_WAIT_FOR_EVENT | flip_mask);
3874 intel_ring_emit(dev, ring, MI_NOOP);
3875 intel_ring_advance(dev, ring);
3879 /* Exec the batchbuffer */
3880 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3881 cliprects, exec_offset);
3882 if (ret) {
3883 DRM_ERROR("dispatch failed %d\n", ret);
3884 goto err;
3888 * Ensure that the commands in the batch buffer are
3889 * finished before the interrupt fires
3891 i915_retire_commands(dev, ring);
3893 for (i = 0; i < args->buffer_count; i++) {
3894 struct drm_gem_object *obj = object_list[i];
3895 obj_priv = to_intel_bo(obj);
3897 i915_gem_object_move_to_active(obj, ring);
3900 i915_add_request(dev, file_priv, request, ring);
3901 request = NULL;
3903 err:
3904 for (i = 0; i < pinned; i++)
3905 i915_gem_object_unpin(object_list[i]);
3907 for (i = 0; i < args->buffer_count; i++) {
3908 if (object_list[i]) {
3909 obj_priv = to_intel_bo(object_list[i]);
3910 obj_priv->in_execbuffer = false;
3912 drm_gem_object_unreference(object_list[i]);
3915 mutex_unlock(&dev->struct_mutex);
3917 pre_mutex_err:
3918 drm_free_large(object_list);
3919 kfree(cliprects);
3920 kfree(request);
3922 return ret;
3926 * Legacy execbuffer just creates an exec2 list from the original exec object
3927 * list array and passes it to the real function.
3930 i915_gem_execbuffer(struct drm_device *dev, void *data,
3931 struct drm_file *file_priv)
3933 struct drm_i915_gem_execbuffer *args = data;
3934 struct drm_i915_gem_execbuffer2 exec2;
3935 struct drm_i915_gem_exec_object *exec_list = NULL;
3936 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3937 int ret, i;
3939 #if WATCH_EXEC
3940 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3941 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3942 #endif
3944 if (args->buffer_count < 1) {
3945 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3946 return -EINVAL;
3949 /* Copy in the exec list from userland */
3950 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3951 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3952 if (exec_list == NULL || exec2_list == NULL) {
3953 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3954 args->buffer_count);
3955 drm_free_large(exec_list);
3956 drm_free_large(exec2_list);
3957 return -ENOMEM;
3959 ret = copy_from_user(exec_list,
3960 (struct drm_i915_relocation_entry __user *)
3961 (uintptr_t) args->buffers_ptr,
3962 sizeof(*exec_list) * args->buffer_count);
3963 if (ret != 0) {
3964 DRM_ERROR("copy %d exec entries failed %d\n",
3965 args->buffer_count, ret);
3966 drm_free_large(exec_list);
3967 drm_free_large(exec2_list);
3968 return -EFAULT;
3971 for (i = 0; i < args->buffer_count; i++) {
3972 exec2_list[i].handle = exec_list[i].handle;
3973 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3974 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3975 exec2_list[i].alignment = exec_list[i].alignment;
3976 exec2_list[i].offset = exec_list[i].offset;
3977 if (INTEL_INFO(dev)->gen < 4)
3978 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3979 else
3980 exec2_list[i].flags = 0;
3983 exec2.buffers_ptr = args->buffers_ptr;
3984 exec2.buffer_count = args->buffer_count;
3985 exec2.batch_start_offset = args->batch_start_offset;
3986 exec2.batch_len = args->batch_len;
3987 exec2.DR1 = args->DR1;
3988 exec2.DR4 = args->DR4;
3989 exec2.num_cliprects = args->num_cliprects;
3990 exec2.cliprects_ptr = args->cliprects_ptr;
3991 exec2.flags = I915_EXEC_RENDER;
3993 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3994 if (!ret) {
3995 /* Copy the new buffer offsets back to the user's exec list. */
3996 for (i = 0; i < args->buffer_count; i++)
3997 exec_list[i].offset = exec2_list[i].offset;
3998 /* ... and back out to userspace */
3999 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4000 (uintptr_t) args->buffers_ptr,
4001 exec_list,
4002 sizeof(*exec_list) * args->buffer_count);
4003 if (ret) {
4004 ret = -EFAULT;
4005 DRM_ERROR("failed to copy %d exec entries "
4006 "back to user (%d)\n",
4007 args->buffer_count, ret);
4011 drm_free_large(exec_list);
4012 drm_free_large(exec2_list);
4013 return ret;
4017 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4018 struct drm_file *file_priv)
4020 struct drm_i915_gem_execbuffer2 *args = data;
4021 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4022 int ret;
4024 #if WATCH_EXEC
4025 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4026 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4027 #endif
4029 if (args->buffer_count < 1) {
4030 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4031 return -EINVAL;
4034 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4035 if (exec2_list == NULL) {
4036 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4037 args->buffer_count);
4038 return -ENOMEM;
4040 ret = copy_from_user(exec2_list,
4041 (struct drm_i915_relocation_entry __user *)
4042 (uintptr_t) args->buffers_ptr,
4043 sizeof(*exec2_list) * args->buffer_count);
4044 if (ret != 0) {
4045 DRM_ERROR("copy %d exec entries failed %d\n",
4046 args->buffer_count, ret);
4047 drm_free_large(exec2_list);
4048 return -EFAULT;
4051 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4052 if (!ret) {
4053 /* Copy the new buffer offsets back to the user's exec list. */
4054 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4055 (uintptr_t) args->buffers_ptr,
4056 exec2_list,
4057 sizeof(*exec2_list) * args->buffer_count);
4058 if (ret) {
4059 ret = -EFAULT;
4060 DRM_ERROR("failed to copy %d exec entries "
4061 "back to user (%d)\n",
4062 args->buffer_count, ret);
4066 drm_free_large(exec2_list);
4067 return ret;
4071 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4073 struct drm_device *dev = obj->dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4076 int ret;
4078 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4079 WARN_ON(i915_verify_lists(dev));
4081 if (obj_priv->gtt_space != NULL) {
4082 if (alignment == 0)
4083 alignment = i915_gem_get_gtt_alignment(obj);
4084 if (obj_priv->gtt_offset & (alignment - 1)) {
4085 WARN(obj_priv->pin_count,
4086 "bo is already pinned with incorrect alignment:"
4087 " offset=%x, req.alignment=%x\n",
4088 obj_priv->gtt_offset, alignment);
4089 ret = i915_gem_object_unbind(obj);
4090 if (ret)
4091 return ret;
4095 if (obj_priv->gtt_space == NULL) {
4096 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4097 if (ret)
4098 return ret;
4101 obj_priv->pin_count++;
4103 /* If the object is not active and not pending a flush,
4104 * remove it from the inactive list
4106 if (obj_priv->pin_count == 1) {
4107 i915_gem_info_add_pin(dev_priv, obj->size);
4108 if (!obj_priv->active)
4109 list_move_tail(&obj_priv->list,
4110 &dev_priv->mm.pinned_list);
4113 WARN_ON(i915_verify_lists(dev));
4114 return 0;
4117 void
4118 i915_gem_object_unpin(struct drm_gem_object *obj)
4120 struct drm_device *dev = obj->dev;
4121 drm_i915_private_t *dev_priv = dev->dev_private;
4122 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4124 WARN_ON(i915_verify_lists(dev));
4125 obj_priv->pin_count--;
4126 BUG_ON(obj_priv->pin_count < 0);
4127 BUG_ON(obj_priv->gtt_space == NULL);
4129 /* If the object is no longer pinned, and is
4130 * neither active nor being flushed, then stick it on
4131 * the inactive list
4133 if (obj_priv->pin_count == 0) {
4134 if (!obj_priv->active)
4135 list_move_tail(&obj_priv->list,
4136 &dev_priv->mm.inactive_list);
4137 i915_gem_info_remove_pin(dev_priv, obj->size);
4139 WARN_ON(i915_verify_lists(dev));
4143 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4144 struct drm_file *file_priv)
4146 struct drm_i915_gem_pin *args = data;
4147 struct drm_gem_object *obj;
4148 struct drm_i915_gem_object *obj_priv;
4149 int ret;
4151 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4152 if (obj == NULL) {
4153 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4154 args->handle);
4155 return -ENOENT;
4157 obj_priv = to_intel_bo(obj);
4159 ret = i915_mutex_lock_interruptible(dev);
4160 if (ret) {
4161 drm_gem_object_unreference_unlocked(obj);
4162 return ret;
4165 if (obj_priv->madv != I915_MADV_WILLNEED) {
4166 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4167 drm_gem_object_unreference(obj);
4168 mutex_unlock(&dev->struct_mutex);
4169 return -EINVAL;
4172 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4173 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4174 args->handle);
4175 drm_gem_object_unreference(obj);
4176 mutex_unlock(&dev->struct_mutex);
4177 return -EINVAL;
4180 obj_priv->user_pin_count++;
4181 obj_priv->pin_filp = file_priv;
4182 if (obj_priv->user_pin_count == 1) {
4183 ret = i915_gem_object_pin(obj, args->alignment);
4184 if (ret != 0) {
4185 drm_gem_object_unreference(obj);
4186 mutex_unlock(&dev->struct_mutex);
4187 return ret;
4191 /* XXX - flush the CPU caches for pinned objects
4192 * as the X server doesn't manage domains yet
4194 i915_gem_object_flush_cpu_write_domain(obj);
4195 args->offset = obj_priv->gtt_offset;
4196 drm_gem_object_unreference(obj);
4197 mutex_unlock(&dev->struct_mutex);
4199 return 0;
4203 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4204 struct drm_file *file_priv)
4206 struct drm_i915_gem_pin *args = data;
4207 struct drm_gem_object *obj;
4208 struct drm_i915_gem_object *obj_priv;
4209 int ret;
4211 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4212 if (obj == NULL) {
4213 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4214 args->handle);
4215 return -ENOENT;
4218 obj_priv = to_intel_bo(obj);
4220 ret = i915_mutex_lock_interruptible(dev);
4221 if (ret) {
4222 drm_gem_object_unreference_unlocked(obj);
4223 return ret;
4226 if (obj_priv->pin_filp != file_priv) {
4227 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4228 args->handle);
4229 drm_gem_object_unreference(obj);
4230 mutex_unlock(&dev->struct_mutex);
4231 return -EINVAL;
4233 obj_priv->user_pin_count--;
4234 if (obj_priv->user_pin_count == 0) {
4235 obj_priv->pin_filp = NULL;
4236 i915_gem_object_unpin(obj);
4239 drm_gem_object_unreference(obj);
4240 mutex_unlock(&dev->struct_mutex);
4241 return 0;
4245 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4246 struct drm_file *file_priv)
4248 struct drm_i915_gem_busy *args = data;
4249 struct drm_gem_object *obj;
4250 struct drm_i915_gem_object *obj_priv;
4251 int ret;
4253 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4254 if (obj == NULL) {
4255 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4256 args->handle);
4257 return -ENOENT;
4260 ret = i915_mutex_lock_interruptible(dev);
4261 if (ret) {
4262 drm_gem_object_unreference_unlocked(obj);
4263 return ret;
4266 /* Count all active objects as busy, even if they are currently not used
4267 * by the gpu. Users of this interface expect objects to eventually
4268 * become non-busy without any further actions, therefore emit any
4269 * necessary flushes here.
4271 obj_priv = to_intel_bo(obj);
4272 args->busy = obj_priv->active;
4273 if (args->busy) {
4274 /* Unconditionally flush objects, even when the gpu still uses this
4275 * object. Userspace calling this function indicates that it wants to
4276 * use this buffer rather sooner than later, so issuing the required
4277 * flush earlier is beneficial.
4279 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4280 i915_gem_flush_ring(dev, file_priv,
4281 obj_priv->ring,
4282 0, obj->write_domain);
4284 /* Update the active list for the hardware's current position.
4285 * Otherwise this only updates on a delayed timer or when irqs
4286 * are actually unmasked, and our working set ends up being
4287 * larger than required.
4289 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4291 args->busy = obj_priv->active;
4294 drm_gem_object_unreference(obj);
4295 mutex_unlock(&dev->struct_mutex);
4296 return 0;
4300 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4301 struct drm_file *file_priv)
4303 return i915_gem_ring_throttle(dev, file_priv);
4307 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4308 struct drm_file *file_priv)
4310 struct drm_i915_gem_madvise *args = data;
4311 struct drm_gem_object *obj;
4312 struct drm_i915_gem_object *obj_priv;
4313 int ret;
4315 switch (args->madv) {
4316 case I915_MADV_DONTNEED:
4317 case I915_MADV_WILLNEED:
4318 break;
4319 default:
4320 return -EINVAL;
4323 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4324 if (obj == NULL) {
4325 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4326 args->handle);
4327 return -ENOENT;
4329 obj_priv = to_intel_bo(obj);
4331 ret = i915_mutex_lock_interruptible(dev);
4332 if (ret) {
4333 drm_gem_object_unreference_unlocked(obj);
4334 return ret;
4337 if (obj_priv->pin_count) {
4338 drm_gem_object_unreference(obj);
4339 mutex_unlock(&dev->struct_mutex);
4341 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4342 return -EINVAL;
4345 if (obj_priv->madv != __I915_MADV_PURGED)
4346 obj_priv->madv = args->madv;
4348 /* if the object is no longer bound, discard its backing storage */
4349 if (i915_gem_object_is_purgeable(obj_priv) &&
4350 obj_priv->gtt_space == NULL)
4351 i915_gem_object_truncate(obj);
4353 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4355 drm_gem_object_unreference(obj);
4356 mutex_unlock(&dev->struct_mutex);
4358 return 0;
4361 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4362 size_t size)
4364 struct drm_i915_private *dev_priv = dev->dev_private;
4365 struct drm_i915_gem_object *obj;
4367 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4368 if (obj == NULL)
4369 return NULL;
4371 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4372 kfree(obj);
4373 return NULL;
4376 i915_gem_info_add_obj(dev_priv, size);
4378 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4379 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4381 obj->agp_type = AGP_USER_MEMORY;
4382 obj->base.driver_private = NULL;
4383 obj->fence_reg = I915_FENCE_REG_NONE;
4384 INIT_LIST_HEAD(&obj->list);
4385 INIT_LIST_HEAD(&obj->gpu_write_list);
4386 obj->madv = I915_MADV_WILLNEED;
4388 return &obj->base;
4391 int i915_gem_init_object(struct drm_gem_object *obj)
4393 BUG();
4395 return 0;
4398 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4400 struct drm_device *dev = obj->dev;
4401 drm_i915_private_t *dev_priv = dev->dev_private;
4402 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4403 int ret;
4405 ret = i915_gem_object_unbind(obj);
4406 if (ret == -ERESTARTSYS) {
4407 list_move(&obj_priv->list,
4408 &dev_priv->mm.deferred_free_list);
4409 return;
4412 if (obj_priv->mmap_offset)
4413 i915_gem_free_mmap_offset(obj);
4415 drm_gem_object_release(obj);
4416 i915_gem_info_remove_obj(dev_priv, obj->size);
4418 kfree(obj_priv->page_cpu_valid);
4419 kfree(obj_priv->bit_17);
4420 kfree(obj_priv);
4423 void i915_gem_free_object(struct drm_gem_object *obj)
4425 struct drm_device *dev = obj->dev;
4426 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4428 trace_i915_gem_object_destroy(obj);
4430 while (obj_priv->pin_count > 0)
4431 i915_gem_object_unpin(obj);
4433 if (obj_priv->phys_obj)
4434 i915_gem_detach_phys_object(dev, obj);
4436 i915_gem_free_object_tail(obj);
4440 i915_gem_idle(struct drm_device *dev)
4442 drm_i915_private_t *dev_priv = dev->dev_private;
4443 int ret;
4445 mutex_lock(&dev->struct_mutex);
4447 if (dev_priv->mm.suspended ||
4448 (dev_priv->render_ring.gem_object == NULL) ||
4449 (HAS_BSD(dev) &&
4450 dev_priv->bsd_ring.gem_object == NULL)) {
4451 mutex_unlock(&dev->struct_mutex);
4452 return 0;
4455 ret = i915_gpu_idle(dev);
4456 if (ret) {
4457 mutex_unlock(&dev->struct_mutex);
4458 return ret;
4461 /* Under UMS, be paranoid and evict. */
4462 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4463 ret = i915_gem_evict_inactive(dev);
4464 if (ret) {
4465 mutex_unlock(&dev->struct_mutex);
4466 return ret;
4470 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4471 * We need to replace this with a semaphore, or something.
4472 * And not confound mm.suspended!
4474 dev_priv->mm.suspended = 1;
4475 del_timer_sync(&dev_priv->hangcheck_timer);
4477 i915_kernel_lost_context(dev);
4478 i915_gem_cleanup_ringbuffer(dev);
4480 mutex_unlock(&dev->struct_mutex);
4482 /* Cancel the retire work handler, which should be idle now. */
4483 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4485 return 0;
4489 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4490 * over cache flushing.
4492 static int
4493 i915_gem_init_pipe_control(struct drm_device *dev)
4495 drm_i915_private_t *dev_priv = dev->dev_private;
4496 struct drm_gem_object *obj;
4497 struct drm_i915_gem_object *obj_priv;
4498 int ret;
4500 obj = i915_gem_alloc_object(dev, 4096);
4501 if (obj == NULL) {
4502 DRM_ERROR("Failed to allocate seqno page\n");
4503 ret = -ENOMEM;
4504 goto err;
4506 obj_priv = to_intel_bo(obj);
4507 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4509 ret = i915_gem_object_pin(obj, 4096);
4510 if (ret)
4511 goto err_unref;
4513 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4514 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4515 if (dev_priv->seqno_page == NULL)
4516 goto err_unpin;
4518 dev_priv->seqno_obj = obj;
4519 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4521 return 0;
4523 err_unpin:
4524 i915_gem_object_unpin(obj);
4525 err_unref:
4526 drm_gem_object_unreference(obj);
4527 err:
4528 return ret;
4532 static void
4533 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4535 drm_i915_private_t *dev_priv = dev->dev_private;
4536 struct drm_gem_object *obj;
4537 struct drm_i915_gem_object *obj_priv;
4539 obj = dev_priv->seqno_obj;
4540 obj_priv = to_intel_bo(obj);
4541 kunmap(obj_priv->pages[0]);
4542 i915_gem_object_unpin(obj);
4543 drm_gem_object_unreference(obj);
4544 dev_priv->seqno_obj = NULL;
4546 dev_priv->seqno_page = NULL;
4550 i915_gem_init_ringbuffer(struct drm_device *dev)
4552 drm_i915_private_t *dev_priv = dev->dev_private;
4553 int ret;
4555 if (HAS_PIPE_CONTROL(dev)) {
4556 ret = i915_gem_init_pipe_control(dev);
4557 if (ret)
4558 return ret;
4561 ret = intel_init_render_ring_buffer(dev);
4562 if (ret)
4563 goto cleanup_pipe_control;
4565 if (HAS_BSD(dev)) {
4566 ret = intel_init_bsd_ring_buffer(dev);
4567 if (ret)
4568 goto cleanup_render_ring;
4571 dev_priv->next_seqno = 1;
4573 return 0;
4575 cleanup_render_ring:
4576 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4577 cleanup_pipe_control:
4578 if (HAS_PIPE_CONTROL(dev))
4579 i915_gem_cleanup_pipe_control(dev);
4580 return ret;
4583 void
4584 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4586 drm_i915_private_t *dev_priv = dev->dev_private;
4588 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4589 if (HAS_BSD(dev))
4590 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4591 if (HAS_PIPE_CONTROL(dev))
4592 i915_gem_cleanup_pipe_control(dev);
4596 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4597 struct drm_file *file_priv)
4599 drm_i915_private_t *dev_priv = dev->dev_private;
4600 int ret;
4602 if (drm_core_check_feature(dev, DRIVER_MODESET))
4603 return 0;
4605 if (atomic_read(&dev_priv->mm.wedged)) {
4606 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4607 atomic_set(&dev_priv->mm.wedged, 0);
4610 mutex_lock(&dev->struct_mutex);
4611 dev_priv->mm.suspended = 0;
4613 ret = i915_gem_init_ringbuffer(dev);
4614 if (ret != 0) {
4615 mutex_unlock(&dev->struct_mutex);
4616 return ret;
4619 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4620 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4621 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4622 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4623 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4624 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4625 mutex_unlock(&dev->struct_mutex);
4627 ret = drm_irq_install(dev);
4628 if (ret)
4629 goto cleanup_ringbuffer;
4631 return 0;
4633 cleanup_ringbuffer:
4634 mutex_lock(&dev->struct_mutex);
4635 i915_gem_cleanup_ringbuffer(dev);
4636 dev_priv->mm.suspended = 1;
4637 mutex_unlock(&dev->struct_mutex);
4639 return ret;
4643 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4644 struct drm_file *file_priv)
4646 if (drm_core_check_feature(dev, DRIVER_MODESET))
4647 return 0;
4649 drm_irq_uninstall(dev);
4650 return i915_gem_idle(dev);
4653 void
4654 i915_gem_lastclose(struct drm_device *dev)
4656 int ret;
4658 if (drm_core_check_feature(dev, DRIVER_MODESET))
4659 return;
4661 ret = i915_gem_idle(dev);
4662 if (ret)
4663 DRM_ERROR("failed to idle hardware: %d\n", ret);
4666 void
4667 i915_gem_load(struct drm_device *dev)
4669 int i;
4670 drm_i915_private_t *dev_priv = dev->dev_private;
4672 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4673 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4674 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4675 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4676 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4677 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4678 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4679 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4680 if (HAS_BSD(dev)) {
4681 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4682 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4684 for (i = 0; i < 16; i++)
4685 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4686 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4687 i915_gem_retire_work_handler);
4688 init_completion(&dev_priv->error_completion);
4689 spin_lock(&shrink_list_lock);
4690 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4691 spin_unlock(&shrink_list_lock);
4693 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4694 if (IS_GEN3(dev)) {
4695 u32 tmp = I915_READ(MI_ARB_STATE);
4696 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4697 /* arb state is a masked write, so set bit + bit in mask */
4698 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4699 I915_WRITE(MI_ARB_STATE, tmp);
4703 /* Old X drivers will take 0-2 for front, back, depth buffers */
4704 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4705 dev_priv->fence_reg_start = 3;
4707 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4708 dev_priv->num_fence_regs = 16;
4709 else
4710 dev_priv->num_fence_regs = 8;
4712 /* Initialize fence registers to zero */
4713 switch (INTEL_INFO(dev)->gen) {
4714 case 6:
4715 for (i = 0; i < 16; i++)
4716 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4717 break;
4718 case 5:
4719 case 4:
4720 for (i = 0; i < 16; i++)
4721 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4722 break;
4723 case 3:
4724 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4725 for (i = 0; i < 8; i++)
4726 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4727 case 2:
4728 for (i = 0; i < 8; i++)
4729 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4730 break;
4732 i915_gem_detect_bit_6_swizzle(dev);
4733 init_waitqueue_head(&dev_priv->pending_flip_queue);
4737 * Create a physically contiguous memory object for this object
4738 * e.g. for cursor + overlay regs
4740 static int i915_gem_init_phys_object(struct drm_device *dev,
4741 int id, int size, int align)
4743 drm_i915_private_t *dev_priv = dev->dev_private;
4744 struct drm_i915_gem_phys_object *phys_obj;
4745 int ret;
4747 if (dev_priv->mm.phys_objs[id - 1] || !size)
4748 return 0;
4750 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4751 if (!phys_obj)
4752 return -ENOMEM;
4754 phys_obj->id = id;
4756 phys_obj->handle = drm_pci_alloc(dev, size, align);
4757 if (!phys_obj->handle) {
4758 ret = -ENOMEM;
4759 goto kfree_obj;
4761 #ifdef CONFIG_X86
4762 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4763 #endif
4765 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4767 return 0;
4768 kfree_obj:
4769 kfree(phys_obj);
4770 return ret;
4773 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4775 drm_i915_private_t *dev_priv = dev->dev_private;
4776 struct drm_i915_gem_phys_object *phys_obj;
4778 if (!dev_priv->mm.phys_objs[id - 1])
4779 return;
4781 phys_obj = dev_priv->mm.phys_objs[id - 1];
4782 if (phys_obj->cur_obj) {
4783 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4786 #ifdef CONFIG_X86
4787 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4788 #endif
4789 drm_pci_free(dev, phys_obj->handle);
4790 kfree(phys_obj);
4791 dev_priv->mm.phys_objs[id - 1] = NULL;
4794 void i915_gem_free_all_phys_object(struct drm_device *dev)
4796 int i;
4798 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4799 i915_gem_free_phys_object(dev, i);
4802 void i915_gem_detach_phys_object(struct drm_device *dev,
4803 struct drm_gem_object *obj)
4805 struct drm_i915_gem_object *obj_priv;
4806 int i;
4807 int ret;
4808 int page_count;
4810 obj_priv = to_intel_bo(obj);
4811 if (!obj_priv->phys_obj)
4812 return;
4814 ret = i915_gem_object_get_pages(obj, 0);
4815 if (ret)
4816 goto out;
4818 page_count = obj->size / PAGE_SIZE;
4820 for (i = 0; i < page_count; i++) {
4821 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4822 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4824 memcpy(dst, src, PAGE_SIZE);
4825 kunmap_atomic(dst, KM_USER0);
4827 drm_clflush_pages(obj_priv->pages, page_count);
4828 drm_agp_chipset_flush(dev);
4830 i915_gem_object_put_pages(obj);
4831 out:
4832 obj_priv->phys_obj->cur_obj = NULL;
4833 obj_priv->phys_obj = NULL;
4837 i915_gem_attach_phys_object(struct drm_device *dev,
4838 struct drm_gem_object *obj,
4839 int id,
4840 int align)
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_object *obj_priv;
4844 int ret = 0;
4845 int page_count;
4846 int i;
4848 if (id > I915_MAX_PHYS_OBJECT)
4849 return -EINVAL;
4851 obj_priv = to_intel_bo(obj);
4853 if (obj_priv->phys_obj) {
4854 if (obj_priv->phys_obj->id == id)
4855 return 0;
4856 i915_gem_detach_phys_object(dev, obj);
4859 /* create a new object */
4860 if (!dev_priv->mm.phys_objs[id - 1]) {
4861 ret = i915_gem_init_phys_object(dev, id,
4862 obj->size, align);
4863 if (ret) {
4864 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4865 goto out;
4869 /* bind to the object */
4870 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4871 obj_priv->phys_obj->cur_obj = obj;
4873 ret = i915_gem_object_get_pages(obj, 0);
4874 if (ret) {
4875 DRM_ERROR("failed to get page list\n");
4876 goto out;
4879 page_count = obj->size / PAGE_SIZE;
4881 for (i = 0; i < page_count; i++) {
4882 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4883 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4885 memcpy(dst, src, PAGE_SIZE);
4886 kunmap_atomic(src, KM_USER0);
4889 i915_gem_object_put_pages(obj);
4891 return 0;
4892 out:
4893 return ret;
4896 static int
4897 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4898 struct drm_i915_gem_pwrite *args,
4899 struct drm_file *file_priv)
4901 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4902 void *obj_addr;
4903 int ret;
4904 char __user *user_data;
4906 user_data = (char __user *) (uintptr_t) args->data_ptr;
4907 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4909 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4910 ret = copy_from_user(obj_addr, user_data, args->size);
4911 if (ret)
4912 return -EFAULT;
4914 drm_agp_chipset_flush(dev);
4915 return 0;
4918 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4920 struct drm_i915_file_private *file_priv = file->driver_priv;
4922 /* Clean up our request list when the client is going away, so that
4923 * later retire_requests won't dereference our soon-to-be-gone
4924 * file_priv.
4926 spin_lock(&file_priv->mm.lock);
4927 while (!list_empty(&file_priv->mm.request_list)) {
4928 struct drm_i915_gem_request *request;
4930 request = list_first_entry(&file_priv->mm.request_list,
4931 struct drm_i915_gem_request,
4932 client_list);
4933 list_del(&request->client_list);
4934 request->file_priv = NULL;
4936 spin_unlock(&file_priv->mm.lock);
4939 static int
4940 i915_gpu_is_active(struct drm_device *dev)
4942 drm_i915_private_t *dev_priv = dev->dev_private;
4943 int lists_empty;
4945 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4946 list_empty(&dev_priv->render_ring.active_list);
4947 if (HAS_BSD(dev))
4948 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4950 return !lists_empty;
4953 static int
4954 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4956 drm_i915_private_t *dev_priv, *next_dev;
4957 struct drm_i915_gem_object *obj_priv, *next_obj;
4958 int cnt = 0;
4959 int would_deadlock = 1;
4961 /* "fast-path" to count number of available objects */
4962 if (nr_to_scan == 0) {
4963 spin_lock(&shrink_list_lock);
4964 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4965 struct drm_device *dev = dev_priv->dev;
4967 if (mutex_trylock(&dev->struct_mutex)) {
4968 list_for_each_entry(obj_priv,
4969 &dev_priv->mm.inactive_list,
4970 list)
4971 cnt++;
4972 mutex_unlock(&dev->struct_mutex);
4975 spin_unlock(&shrink_list_lock);
4977 return (cnt / 100) * sysctl_vfs_cache_pressure;
4980 spin_lock(&shrink_list_lock);
4982 rescan:
4983 /* first scan for clean buffers */
4984 list_for_each_entry_safe(dev_priv, next_dev,
4985 &shrink_list, mm.shrink_list) {
4986 struct drm_device *dev = dev_priv->dev;
4988 if (! mutex_trylock(&dev->struct_mutex))
4989 continue;
4991 spin_unlock(&shrink_list_lock);
4992 i915_gem_retire_requests(dev);
4994 list_for_each_entry_safe(obj_priv, next_obj,
4995 &dev_priv->mm.inactive_list,
4996 list) {
4997 if (i915_gem_object_is_purgeable(obj_priv)) {
4998 i915_gem_object_unbind(&obj_priv->base);
4999 if (--nr_to_scan <= 0)
5000 break;
5004 spin_lock(&shrink_list_lock);
5005 mutex_unlock(&dev->struct_mutex);
5007 would_deadlock = 0;
5009 if (nr_to_scan <= 0)
5010 break;
5013 /* second pass, evict/count anything still on the inactive list */
5014 list_for_each_entry_safe(dev_priv, next_dev,
5015 &shrink_list, mm.shrink_list) {
5016 struct drm_device *dev = dev_priv->dev;
5018 if (! mutex_trylock(&dev->struct_mutex))
5019 continue;
5021 spin_unlock(&shrink_list_lock);
5023 list_for_each_entry_safe(obj_priv, next_obj,
5024 &dev_priv->mm.inactive_list,
5025 list) {
5026 if (nr_to_scan > 0) {
5027 i915_gem_object_unbind(&obj_priv->base);
5028 nr_to_scan--;
5029 } else
5030 cnt++;
5033 spin_lock(&shrink_list_lock);
5034 mutex_unlock(&dev->struct_mutex);
5036 would_deadlock = 0;
5039 if (nr_to_scan) {
5040 int active = 0;
5043 * We are desperate for pages, so as a last resort, wait
5044 * for the GPU to finish and discard whatever we can.
5045 * This has a dramatic impact to reduce the number of
5046 * OOM-killer events whilst running the GPU aggressively.
5048 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5049 struct drm_device *dev = dev_priv->dev;
5051 if (!mutex_trylock(&dev->struct_mutex))
5052 continue;
5054 spin_unlock(&shrink_list_lock);
5056 if (i915_gpu_is_active(dev)) {
5057 i915_gpu_idle(dev);
5058 active++;
5061 spin_lock(&shrink_list_lock);
5062 mutex_unlock(&dev->struct_mutex);
5065 if (active)
5066 goto rescan;
5069 spin_unlock(&shrink_list_lock);
5071 if (would_deadlock)
5072 return -1;
5073 else if (cnt > 0)
5074 return (cnt / 100) * sysctl_vfs_cache_pressure;
5075 else
5076 return 0;
5079 static struct shrinker shrinker = {
5080 .shrink = i915_gem_shrink,
5081 .seeks = DEFAULT_SEEKS,
5084 __init void
5085 i915_gem_shrinker_init(void)
5087 register_shrinker(&shrinker);
5090 __exit void
5091 i915_gem_shrinker_exit(void)
5093 unregister_shrinker(&shrinker);