2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 #include "xfs_trace.h"
55 kmem_zone_t
*xfs_ifork_zone
;
56 kmem_zone_t
*xfs_inode_zone
;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
65 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
66 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
67 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
71 * Make sure that the extents in the given memory buffer
81 xfs_bmbt_rec_host_t rec
;
84 for (i
= 0; i
< nrecs
; i
++) {
85 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
86 rec
.l0
= get_unaligned(&ep
->l0
);
87 rec
.l1
= get_unaligned(&ep
->l1
);
88 xfs_bmbt_get_all(&rec
, &irec
);
89 if (fmt
== XFS_EXTFMT_NOSTATE
)
90 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
94 #define xfs_validate_extents(ifp, nrecs, fmt)
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
111 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
113 for (i
= 0; i
< j
; i
++) {
114 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
115 i
* mp
->m_sb
.sb_inodesize
);
116 if (!dip
->di_next_unlinked
) {
117 xfs_fs_cmn_err(CE_ALERT
, mp
,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 ASSERT(dip
->di_next_unlinked
);
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
135 struct xfs_imap
*imap
,
145 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
146 (int)imap
->im_len
, buf_flags
, &bp
);
148 if (error
!= EAGAIN
) {
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error
, mp
->m_fsname
);
154 ASSERT(buf_flags
& XBF_TRYLOCK
);
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
165 #else /* usual case */
169 for (i
= 0; i
< ni
; i
++) {
173 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
174 (i
<< mp
->m_sb
.sb_inodelog
));
175 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
176 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
177 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
178 XFS_ERRTAG_ITOBP_INOTOBP
,
179 XFS_RANDOM_ITOBP_INOTOBP
))) {
180 if (iget_flags
& XFS_IGET_BULKSTAT
) {
181 xfs_trans_brelse(tp
, bp
);
182 return XFS_ERROR(EINVAL
);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH
, mp
, dip
);
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
191 (unsigned long long)imap
->im_blkno
, i
,
192 be16_to_cpu(dip
->di_magic
));
194 xfs_trans_brelse(tp
, bp
);
195 return XFS_ERROR(EFSCORRUPTED
);
199 xfs_inobp_check(mp
, bp
);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
233 struct xfs_imap imap
;
238 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
242 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
246 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
248 *offset
= imap
.im_boffset
;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
281 ASSERT(ip
->i_imap
.im_blkno
!= 0);
283 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
288 ASSERT(buf_flags
& XBF_TRYLOCK
);
294 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
313 xfs_attr_shortform_t
*atp
;
317 ip
->i_df
.if_ext_max
=
318 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
321 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
322 be16_to_cpu(dip
->di_anextents
) >
323 be64_to_cpu(dip
->di_nblocks
))) {
324 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip
->i_ino
,
327 (int)(be32_to_cpu(dip
->di_nextents
) +
328 be16_to_cpu(dip
->di_anextents
)),
330 be64_to_cpu(dip
->di_nblocks
));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
333 return XFS_ERROR(EFSCORRUPTED
);
336 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
337 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip
->i_ino
,
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
343 return XFS_ERROR(EFSCORRUPTED
);
346 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
347 !ip
->i_mount
->m_rtdev_targp
)) {
348 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
349 "corrupt dinode %Lu, has realtime flag set.",
351 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
353 return XFS_ERROR(EFSCORRUPTED
);
356 switch (ip
->i_d
.di_mode
& S_IFMT
) {
361 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
362 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
364 return XFS_ERROR(EFSCORRUPTED
);
368 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
374 switch (dip
->di_format
) {
375 case XFS_DINODE_FMT_LOCAL
:
377 * no local regular files yet
379 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
380 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
382 "(local format for regular file).",
383 (unsigned long long) ip
->i_ino
);
384 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
387 return XFS_ERROR(EFSCORRUPTED
);
390 di_size
= be64_to_cpu(dip
->di_size
);
391 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
392 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
394 "(bad size %Ld for local inode).",
395 (unsigned long long) ip
->i_ino
,
396 (long long) di_size
);
397 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
400 return XFS_ERROR(EFSCORRUPTED
);
404 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
406 case XFS_DINODE_FMT_EXTENTS
:
407 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
409 case XFS_DINODE_FMT_BTREE
:
410 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
413 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
415 return XFS_ERROR(EFSCORRUPTED
);
420 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
421 return XFS_ERROR(EFSCORRUPTED
);
426 if (!XFS_DFORK_Q(dip
))
428 ASSERT(ip
->i_afp
== NULL
);
429 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
430 ip
->i_afp
->if_ext_max
=
431 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
432 switch (dip
->di_aformat
) {
433 case XFS_DINODE_FMT_LOCAL
:
434 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
435 size
= be16_to_cpu(atp
->hdr
.totsize
);
437 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
438 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
440 "(bad attr fork size %Ld).",
441 (unsigned long long) ip
->i_ino
,
443 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
446 return XFS_ERROR(EFSCORRUPTED
);
449 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
451 case XFS_DINODE_FMT_EXTENTS
:
452 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
454 case XFS_DINODE_FMT_BTREE
:
455 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
458 error
= XFS_ERROR(EFSCORRUPTED
);
462 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
464 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
470 * The file is in-lined in the on-disk inode.
471 * If it fits into if_inline_data, then copy
472 * it there, otherwise allocate a buffer for it
473 * and copy the data there. Either way, set
474 * if_data to point at the data.
475 * If we allocate a buffer for the data, make
476 * sure that its size is a multiple of 4 and
477 * record the real size in i_real_bytes.
490 * If the size is unreasonable, then something
491 * is wrong and we just bail out rather than crash in
492 * kmem_alloc() or memcpy() below.
494 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
495 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
497 "(bad size %d for local fork, size = %d).",
498 (unsigned long long) ip
->i_ino
, size
,
499 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
500 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
502 return XFS_ERROR(EFSCORRUPTED
);
504 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
507 ifp
->if_u1
.if_data
= NULL
;
508 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
509 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
511 real_size
= roundup(size
, 4);
512 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
514 ifp
->if_bytes
= size
;
515 ifp
->if_real_bytes
= real_size
;
517 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
518 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
519 ifp
->if_flags
|= XFS_IFINLINE
;
524 * The file consists of a set of extents all
525 * of which fit into the on-disk inode.
526 * If there are few enough extents to fit into
527 * the if_inline_ext, then copy them there.
528 * Otherwise allocate a buffer for them and copy
529 * them into it. Either way, set if_extents
530 * to point at the extents.
544 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
545 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
546 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
549 * If the number of extents is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
554 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
555 "corrupt inode %Lu ((a)extents = %d).",
556 (unsigned long long) ip
->i_ino
, nex
);
557 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
559 return XFS_ERROR(EFSCORRUPTED
);
562 ifp
->if_real_bytes
= 0;
564 ifp
->if_u1
.if_extents
= NULL
;
565 else if (nex
<= XFS_INLINE_EXTS
)
566 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
568 xfs_iext_add(ifp
, 0, nex
);
570 ifp
->if_bytes
= size
;
572 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
573 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
574 for (i
= 0; i
< nex
; i
++, dp
++) {
575 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
576 ep
->l0
= get_unaligned_be64(&dp
->l0
);
577 ep
->l1
= get_unaligned_be64(&dp
->l1
);
579 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
580 if (whichfork
!= XFS_DATA_FORK
||
581 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
582 if (unlikely(xfs_check_nostate_extents(
584 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
587 return XFS_ERROR(EFSCORRUPTED
);
590 ifp
->if_flags
|= XFS_IFEXTENTS
;
595 * The file has too many extents to fit into
596 * the inode, so they are in B-tree format.
597 * Allocate a buffer for the root of the B-tree
598 * and copy the root into it. The i_extents
599 * field will remain NULL until all of the
600 * extents are read in (when they are needed).
608 xfs_bmdr_block_t
*dfp
;
614 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
615 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
616 size
= XFS_BMAP_BROOT_SPACE(dfp
);
617 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
620 * blow out if -- fork has less extents than can fit in
621 * fork (fork shouldn't be a btree format), root btree
622 * block has more records than can fit into the fork,
623 * or the number of extents is greater than the number of
626 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
627 || XFS_BMDR_SPACE_CALC(nrecs
) >
628 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
629 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
630 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
631 "corrupt inode %Lu (btree).",
632 (unsigned long long) ip
->i_ino
);
633 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
635 return XFS_ERROR(EFSCORRUPTED
);
638 ifp
->if_broot_bytes
= size
;
639 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
640 ASSERT(ifp
->if_broot
!= NULL
);
642 * Copy and convert from the on-disk structure
643 * to the in-memory structure.
645 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
646 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
647 ifp
->if_broot
, size
);
648 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
649 ifp
->if_flags
|= XFS_IFBROOT
;
655 xfs_dinode_from_disk(
659 to
->di_magic
= be16_to_cpu(from
->di_magic
);
660 to
->di_mode
= be16_to_cpu(from
->di_mode
);
661 to
->di_version
= from
->di_version
;
662 to
->di_format
= from
->di_format
;
663 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
664 to
->di_uid
= be32_to_cpu(from
->di_uid
);
665 to
->di_gid
= be32_to_cpu(from
->di_gid
);
666 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
667 to
->di_projid
= be16_to_cpu(from
->di_projid
);
668 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
669 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
670 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
671 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
672 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
673 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
674 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
675 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
676 to
->di_size
= be64_to_cpu(from
->di_size
);
677 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
678 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
679 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
680 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
681 to
->di_forkoff
= from
->di_forkoff
;
682 to
->di_aformat
= from
->di_aformat
;
683 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
684 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
685 to
->di_flags
= be16_to_cpu(from
->di_flags
);
686 to
->di_gen
= be32_to_cpu(from
->di_gen
);
692 xfs_icdinode_t
*from
)
694 to
->di_magic
= cpu_to_be16(from
->di_magic
);
695 to
->di_mode
= cpu_to_be16(from
->di_mode
);
696 to
->di_version
= from
->di_version
;
697 to
->di_format
= from
->di_format
;
698 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
699 to
->di_uid
= cpu_to_be32(from
->di_uid
);
700 to
->di_gid
= cpu_to_be32(from
->di_gid
);
701 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
702 to
->di_projid
= cpu_to_be16(from
->di_projid
);
703 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
704 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
705 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
706 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
707 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
708 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
709 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
710 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
711 to
->di_size
= cpu_to_be64(from
->di_size
);
712 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
713 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
714 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
715 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
716 to
->di_forkoff
= from
->di_forkoff
;
717 to
->di_aformat
= from
->di_aformat
;
718 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
719 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
720 to
->di_flags
= cpu_to_be16(from
->di_flags
);
721 to
->di_gen
= cpu_to_be32(from
->di_gen
);
730 if (di_flags
& XFS_DIFLAG_ANY
) {
731 if (di_flags
& XFS_DIFLAG_REALTIME
)
732 flags
|= XFS_XFLAG_REALTIME
;
733 if (di_flags
& XFS_DIFLAG_PREALLOC
)
734 flags
|= XFS_XFLAG_PREALLOC
;
735 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
736 flags
|= XFS_XFLAG_IMMUTABLE
;
737 if (di_flags
& XFS_DIFLAG_APPEND
)
738 flags
|= XFS_XFLAG_APPEND
;
739 if (di_flags
& XFS_DIFLAG_SYNC
)
740 flags
|= XFS_XFLAG_SYNC
;
741 if (di_flags
& XFS_DIFLAG_NOATIME
)
742 flags
|= XFS_XFLAG_NOATIME
;
743 if (di_flags
& XFS_DIFLAG_NODUMP
)
744 flags
|= XFS_XFLAG_NODUMP
;
745 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
746 flags
|= XFS_XFLAG_RTINHERIT
;
747 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
748 flags
|= XFS_XFLAG_PROJINHERIT
;
749 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
750 flags
|= XFS_XFLAG_NOSYMLINKS
;
751 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
752 flags
|= XFS_XFLAG_EXTSIZE
;
753 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
754 flags
|= XFS_XFLAG_EXTSZINHERIT
;
755 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
756 flags
|= XFS_XFLAG_NODEFRAG
;
757 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
758 flags
|= XFS_XFLAG_FILESTREAM
;
768 xfs_icdinode_t
*dic
= &ip
->i_d
;
770 return _xfs_dic2xflags(dic
->di_flags
) |
771 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
778 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
779 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
783 * Read the disk inode attributes into the in-core inode structure.
798 * Fill in the location information in the in-core inode.
800 ip
->i_imap
.im_blkno
= bno
;
801 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
804 ASSERT(bno
== 0 || bno
== ip
->i_imap
.im_blkno
);
807 * Get pointers to the on-disk inode and the buffer containing it.
809 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
810 XBF_LOCK
, iget_flags
);
813 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
816 * If we got something that isn't an inode it means someone
817 * (nfs or dmi) has a stale handle.
819 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
821 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
822 "dip->di_magic (0x%x) != "
823 "XFS_DINODE_MAGIC (0x%x)",
824 be16_to_cpu(dip
->di_magic
),
827 error
= XFS_ERROR(EINVAL
);
832 * If the on-disk inode is already linked to a directory
833 * entry, copy all of the inode into the in-core inode.
834 * xfs_iformat() handles copying in the inode format
835 * specific information.
836 * Otherwise, just get the truly permanent information.
839 xfs_dinode_from_disk(&ip
->i_d
, dip
);
840 error
= xfs_iformat(ip
, dip
);
843 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
844 "xfs_iformat() returned error %d",
850 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
851 ip
->i_d
.di_version
= dip
->di_version
;
852 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
853 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
855 * Make sure to pull in the mode here as well in
856 * case the inode is released without being used.
857 * This ensures that xfs_inactive() will see that
858 * the inode is already free and not try to mess
859 * with the uninitialized part of it.
863 * Initialize the per-fork minima and maxima for a new
864 * inode here. xfs_iformat will do it for old inodes.
866 ip
->i_df
.if_ext_max
=
867 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
871 * The inode format changed when we moved the link count and
872 * made it 32 bits long. If this is an old format inode,
873 * convert it in memory to look like a new one. If it gets
874 * flushed to disk we will convert back before flushing or
875 * logging it. We zero out the new projid field and the old link
876 * count field. We'll handle clearing the pad field (the remains
877 * of the old uuid field) when we actually convert the inode to
878 * the new format. We don't change the version number so that we
879 * can distinguish this from a real new format inode.
881 if (ip
->i_d
.di_version
== 1) {
882 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
883 ip
->i_d
.di_onlink
= 0;
884 ip
->i_d
.di_projid
= 0;
887 ip
->i_delayed_blks
= 0;
888 ip
->i_size
= ip
->i_d
.di_size
;
891 * Mark the buffer containing the inode as something to keep
892 * around for a while. This helps to keep recently accessed
893 * meta-data in-core longer.
895 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
898 * Use xfs_trans_brelse() to release the buffer containing the
899 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 * in xfs_itobp() above. If tp is NULL, this is just a normal
901 * brelse(). If we're within a transaction, then xfs_trans_brelse()
902 * will only release the buffer if it is not dirty within the
903 * transaction. It will be OK to release the buffer in this case,
904 * because inodes on disk are never destroyed and we will be
905 * locking the new in-core inode before putting it in the hash
906 * table where other processes can find it. Thus we don't have
907 * to worry about the inode being changed just because we released
911 xfs_trans_brelse(tp
, bp
);
916 * Read in extents from a btree-format inode.
917 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
927 xfs_extnum_t nextents
;
930 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
931 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
933 return XFS_ERROR(EFSCORRUPTED
);
935 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
936 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
937 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
940 * We know that the size is valid (it's checked in iformat_btree)
942 ifp
->if_lastex
= NULLEXTNUM
;
943 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
944 ifp
->if_flags
|= XFS_IFEXTENTS
;
945 xfs_iext_add(ifp
, 0, nextents
);
946 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
948 xfs_iext_destroy(ifp
);
949 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
952 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
957 * Allocate an inode on disk and return a copy of its in-core version.
958 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
959 * appropriately within the inode. The uid and gid for the inode are
960 * set according to the contents of the given cred structure.
962 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963 * has a free inode available, call xfs_iget()
964 * to obtain the in-core version of the allocated inode. Finally,
965 * fill in the inode and log its initial contents. In this case,
966 * ialloc_context would be set to NULL and call_again set to false.
968 * If xfs_dialloc() does not have an available inode,
969 * it will replenish its supply by doing an allocation. Since we can
970 * only do one allocation within a transaction without deadlocks, we
971 * must commit the current transaction before returning the inode itself.
972 * In this case, therefore, we will set call_again to true and return.
973 * The caller should then commit the current transaction, start a new
974 * transaction, and call xfs_ialloc() again to actually get the inode.
976 * To ensure that some other process does not grab the inode that
977 * was allocated during the first call to xfs_ialloc(), this routine
978 * also returns the [locked] bp pointing to the head of the freelist
979 * as ialloc_context. The caller should hold this buffer across
980 * the commit and pass it back into this routine on the second call.
982 * If we are allocating quota inodes, we do not have a parent inode
983 * to attach to or associate with (i.e. pip == NULL) because they
984 * are not linked into the directory structure - they are attached
985 * directly to the superblock - and so have no parent.
997 xfs_buf_t
**ialloc_context
,
998 boolean_t
*call_again
,
1006 int filestreams
= 0;
1009 * Call the space management code to pick
1010 * the on-disk inode to be allocated.
1012 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1013 ialloc_context
, call_again
, &ino
);
1016 if (*call_again
|| ino
== NULLFSINO
) {
1020 ASSERT(*ialloc_context
== NULL
);
1023 * Get the in-core inode with the lock held exclusively.
1024 * This is because we're setting fields here we need
1025 * to prevent others from looking at until we're done.
1027 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1028 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1033 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1034 ip
->i_d
.di_onlink
= 0;
1035 ip
->i_d
.di_nlink
= nlink
;
1036 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1037 ip
->i_d
.di_uid
= current_fsuid();
1038 ip
->i_d
.di_gid
= current_fsgid();
1039 ip
->i_d
.di_projid
= prid
;
1040 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1043 * If the superblock version is up to where we support new format
1044 * inodes and this is currently an old format inode, then change
1045 * the inode version number now. This way we only do the conversion
1046 * here rather than here and in the flush/logging code.
1048 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1049 ip
->i_d
.di_version
== 1) {
1050 ip
->i_d
.di_version
= 2;
1052 * We've already zeroed the old link count, the projid field,
1053 * and the pad field.
1058 * Project ids won't be stored on disk if we are using a version 1 inode.
1060 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1061 xfs_bump_ino_vers2(tp
, ip
);
1063 if (pip
&& XFS_INHERIT_GID(pip
)) {
1064 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1065 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1066 ip
->i_d
.di_mode
|= S_ISGID
;
1071 * If the group ID of the new file does not match the effective group
1072 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 * (and only if the irix_sgid_inherit compatibility variable is set).
1075 if ((irix_sgid_inherit
) &&
1076 (ip
->i_d
.di_mode
& S_ISGID
) &&
1077 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1078 ip
->i_d
.di_mode
&= ~S_ISGID
;
1081 ip
->i_d
.di_size
= 0;
1083 ip
->i_d
.di_nextents
= 0;
1084 ASSERT(ip
->i_d
.di_nblocks
== 0);
1087 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1088 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1089 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1090 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1093 * di_gen will have been taken care of in xfs_iread.
1095 ip
->i_d
.di_extsize
= 0;
1096 ip
->i_d
.di_dmevmask
= 0;
1097 ip
->i_d
.di_dmstate
= 0;
1098 ip
->i_d
.di_flags
= 0;
1099 flags
= XFS_ILOG_CORE
;
1100 switch (mode
& S_IFMT
) {
1105 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1106 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1107 ip
->i_df
.if_flags
= 0;
1108 flags
|= XFS_ILOG_DEV
;
1112 * we can't set up filestreams until after the VFS inode
1113 * is set up properly.
1115 if (pip
&& xfs_inode_is_filestream(pip
))
1119 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1122 if ((mode
& S_IFMT
) == S_IFDIR
) {
1123 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1124 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1125 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1126 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1127 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1129 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1130 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1131 di_flags
|= XFS_DIFLAG_REALTIME
;
1132 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1133 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1134 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1137 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1138 xfs_inherit_noatime
)
1139 di_flags
|= XFS_DIFLAG_NOATIME
;
1140 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1142 di_flags
|= XFS_DIFLAG_NODUMP
;
1143 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1145 di_flags
|= XFS_DIFLAG_SYNC
;
1146 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1147 xfs_inherit_nosymlinks
)
1148 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1149 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1150 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1151 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1152 xfs_inherit_nodefrag
)
1153 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1154 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1155 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1156 ip
->i_d
.di_flags
|= di_flags
;
1160 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1161 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1162 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1163 ip
->i_df
.if_u1
.if_extents
= NULL
;
1169 * Attribute fork settings for new inode.
1171 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1172 ip
->i_d
.di_anextents
= 0;
1175 * Log the new values stuffed into the inode.
1177 xfs_trans_log_inode(tp
, ip
, flags
);
1179 /* now that we have an i_mode we can setup inode ops and unlock */
1180 xfs_setup_inode(ip
);
1182 /* now we have set up the vfs inode we can associate the filestream */
1184 error
= xfs_filestream_associate(pip
, ip
);
1188 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1196 * Check to make sure that there are no blocks allocated to the
1197 * file beyond the size of the file. We don't check this for
1198 * files with fixed size extents or real time extents, but we
1199 * at least do it for regular files.
1208 xfs_fileoff_t map_first
;
1210 xfs_bmbt_irec_t imaps
[2];
1212 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1215 if (XFS_IS_REALTIME_INODE(ip
))
1218 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1222 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1224 * The filesystem could be shutting down, so bmapi may return
1227 if (xfs_bmapi(NULL
, ip
, map_first
,
1229 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1231 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1234 ASSERT(nimaps
== 1);
1235 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1240 * Calculate the last possible buffered byte in a file. This must
1241 * include data that was buffered beyond the EOF by the write code.
1242 * This also needs to deal with overflowing the xfs_fsize_t type
1243 * which can happen for sizes near the limit.
1245 * We also need to take into account any blocks beyond the EOF. It
1246 * may be the case that they were buffered by a write which failed.
1247 * In that case the pages will still be in memory, but the inode size
1248 * will never have been updated.
1255 xfs_fsize_t last_byte
;
1256 xfs_fileoff_t last_block
;
1257 xfs_fileoff_t size_last_block
;
1260 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1264 * Only check for blocks beyond the EOF if the extents have
1265 * been read in. This eliminates the need for the inode lock,
1266 * and it also saves us from looking when it really isn't
1269 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1270 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1271 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1273 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1280 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1281 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1283 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1284 if (last_byte
< 0) {
1285 return XFS_MAXIOFFSET(mp
);
1287 last_byte
+= (1 << mp
->m_writeio_log
);
1288 if (last_byte
< 0) {
1289 return XFS_MAXIOFFSET(mp
);
1295 * Start the truncation of the file to new_size. The new size
1296 * must be smaller than the current size. This routine will
1297 * clear the buffer and page caches of file data in the removed
1298 * range, and xfs_itruncate_finish() will remove the underlying
1301 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1302 * must NOT have the inode lock held at all. This is because we're
1303 * calling into the buffer/page cache code and we can't hold the
1304 * inode lock when we do so.
1306 * We need to wait for any direct I/Os in flight to complete before we
1307 * proceed with the truncate. This is needed to prevent the extents
1308 * being read or written by the direct I/Os from being removed while the
1309 * I/O is in flight as there is no other method of synchronising
1310 * direct I/O with the truncate operation. Also, because we hold
1311 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1312 * started until the truncate completes and drops the lock. Essentially,
1313 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1314 * ordering between direct I/Os and the truncate operation.
1316 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1317 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1318 * in the case that the caller is locking things out of order and
1319 * may not be able to call xfs_itruncate_finish() with the inode lock
1320 * held without dropping the I/O lock. If the caller must drop the
1321 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1322 * must be called again with all the same restrictions as the initial
1326 xfs_itruncate_start(
1329 xfs_fsize_t new_size
)
1331 xfs_fsize_t last_byte
;
1332 xfs_off_t toss_start
;
1336 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1337 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1338 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1339 (flags
== XFS_ITRUNC_MAYBE
));
1343 /* wait for the completion of any pending DIOs */
1344 if (new_size
== 0 || new_size
< ip
->i_size
)
1348 * Call toss_pages or flushinval_pages to get rid of pages
1349 * overlapping the region being removed. We have to use
1350 * the less efficient flushinval_pages in the case that the
1351 * caller may not be able to finish the truncate without
1352 * dropping the inode's I/O lock. Make sure
1353 * to catch any pages brought in by buffers overlapping
1354 * the EOF by searching out beyond the isize by our
1355 * block size. We round new_size up to a block boundary
1356 * so that we don't toss things on the same block as
1357 * new_size but before it.
1359 * Before calling toss_page or flushinval_pages, make sure to
1360 * call remapf() over the same region if the file is mapped.
1361 * This frees up mapped file references to the pages in the
1362 * given range and for the flushinval_pages case it ensures
1363 * that we get the latest mapped changes flushed out.
1365 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1366 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1367 if (toss_start
< 0) {
1369 * The place to start tossing is beyond our maximum
1370 * file size, so there is no way that the data extended
1375 last_byte
= xfs_file_last_byte(ip
);
1376 trace_xfs_itruncate_start(ip
, flags
, new_size
, toss_start
, last_byte
);
1377 if (last_byte
> toss_start
) {
1378 if (flags
& XFS_ITRUNC_DEFINITE
) {
1379 xfs_tosspages(ip
, toss_start
,
1380 -1, FI_REMAPF_LOCKED
);
1382 error
= xfs_flushinval_pages(ip
, toss_start
,
1383 -1, FI_REMAPF_LOCKED
);
1388 if (new_size
== 0) {
1389 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1396 * Shrink the file to the given new_size. The new size must be smaller than
1397 * the current size. This will free up the underlying blocks in the removed
1398 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1400 * The transaction passed to this routine must have made a permanent log
1401 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1402 * given transaction and start new ones, so make sure everything involved in
1403 * the transaction is tidy before calling here. Some transaction will be
1404 * returned to the caller to be committed. The incoming transaction must
1405 * already include the inode, and both inode locks must be held exclusively.
1406 * The inode must also be "held" within the transaction. On return the inode
1407 * will be "held" within the returned transaction. This routine does NOT
1408 * require any disk space to be reserved for it within the transaction.
1410 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1411 * indicates the fork which is to be truncated. For the attribute fork we only
1412 * support truncation to size 0.
1414 * We use the sync parameter to indicate whether or not the first transaction
1415 * we perform might have to be synchronous. For the attr fork, it needs to be
1416 * so if the unlink of the inode is not yet known to be permanent in the log.
1417 * This keeps us from freeing and reusing the blocks of the attribute fork
1418 * before the unlink of the inode becomes permanent.
1420 * For the data fork, we normally have to run synchronously if we're being
1421 * called out of the inactive path or we're being called out of the create path
1422 * where we're truncating an existing file. Either way, the truncate needs to
1423 * be sync so blocks don't reappear in the file with altered data in case of a
1424 * crash. wsync filesystems can run the first case async because anything that
1425 * shrinks the inode has to run sync so by the time we're called here from
1426 * inactive, the inode size is permanently set to 0.
1428 * Calls from the truncate path always need to be sync unless we're in a wsync
1429 * filesystem and the file has already been unlinked.
1431 * The caller is responsible for correctly setting the sync parameter. It gets
1432 * too hard for us to guess here which path we're being called out of just
1433 * based on inode state.
1435 * If we get an error, we must return with the inode locked and linked into the
1436 * current transaction. This keeps things simple for the higher level code,
1437 * because it always knows that the inode is locked and held in the transaction
1438 * that returns to it whether errors occur or not. We don't mark the inode
1439 * dirty on error so that transactions can be easily aborted if possible.
1442 xfs_itruncate_finish(
1445 xfs_fsize_t new_size
,
1449 xfs_fsblock_t first_block
;
1450 xfs_fileoff_t first_unmap_block
;
1451 xfs_fileoff_t last_block
;
1452 xfs_filblks_t unmap_len
=0;
1457 xfs_bmap_free_t free_list
;
1460 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1461 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1462 ASSERT(*tp
!= NULL
);
1463 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1464 ASSERT(ip
->i_transp
== *tp
);
1465 ASSERT(ip
->i_itemp
!= NULL
);
1466 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1470 mp
= (ntp
)->t_mountp
;
1471 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1474 * We only support truncating the entire attribute fork.
1476 if (fork
== XFS_ATTR_FORK
) {
1479 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1480 trace_xfs_itruncate_finish_start(ip
, new_size
);
1483 * The first thing we do is set the size to new_size permanently
1484 * on disk. This way we don't have to worry about anyone ever
1485 * being able to look at the data being freed even in the face
1486 * of a crash. What we're getting around here is the case where
1487 * we free a block, it is allocated to another file, it is written
1488 * to, and then we crash. If the new data gets written to the
1489 * file but the log buffers containing the free and reallocation
1490 * don't, then we'd end up with garbage in the blocks being freed.
1491 * As long as we make the new_size permanent before actually
1492 * freeing any blocks it doesn't matter if they get writtten to.
1494 * The callers must signal into us whether or not the size
1495 * setting here must be synchronous. There are a few cases
1496 * where it doesn't have to be synchronous. Those cases
1497 * occur if the file is unlinked and we know the unlink is
1498 * permanent or if the blocks being truncated are guaranteed
1499 * to be beyond the inode eof (regardless of the link count)
1500 * and the eof value is permanent. Both of these cases occur
1501 * only on wsync-mounted filesystems. In those cases, we're
1502 * guaranteed that no user will ever see the data in the blocks
1503 * that are being truncated so the truncate can run async.
1504 * In the free beyond eof case, the file may wind up with
1505 * more blocks allocated to it than it needs if we crash
1506 * and that won't get fixed until the next time the file
1507 * is re-opened and closed but that's ok as that shouldn't
1508 * be too many blocks.
1510 * However, we can't just make all wsync xactions run async
1511 * because there's one call out of the create path that needs
1512 * to run sync where it's truncating an existing file to size
1513 * 0 whose size is > 0.
1515 * It's probably possible to come up with a test in this
1516 * routine that would correctly distinguish all the above
1517 * cases from the values of the function parameters and the
1518 * inode state but for sanity's sake, I've decided to let the
1519 * layers above just tell us. It's simpler to correctly figure
1520 * out in the layer above exactly under what conditions we
1521 * can run async and I think it's easier for others read and
1522 * follow the logic in case something has to be changed.
1523 * cscope is your friend -- rcc.
1525 * The attribute fork is much simpler.
1527 * For the attribute fork we allow the caller to tell us whether
1528 * the unlink of the inode that led to this call is yet permanent
1529 * in the on disk log. If it is not and we will be freeing extents
1530 * in this inode then we make the first transaction synchronous
1531 * to make sure that the unlink is permanent by the time we free
1534 if (fork
== XFS_DATA_FORK
) {
1535 if (ip
->i_d
.di_nextents
> 0) {
1537 * If we are not changing the file size then do
1538 * not update the on-disk file size - we may be
1539 * called from xfs_inactive_free_eofblocks(). If we
1540 * update the on-disk file size and then the system
1541 * crashes before the contents of the file are
1542 * flushed to disk then the files may be full of
1543 * holes (ie NULL files bug).
1545 if (ip
->i_size
!= new_size
) {
1546 ip
->i_d
.di_size
= new_size
;
1547 ip
->i_size
= new_size
;
1548 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1552 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1553 if (ip
->i_d
.di_anextents
> 0)
1554 xfs_trans_set_sync(ntp
);
1556 ASSERT(fork
== XFS_DATA_FORK
||
1557 (fork
== XFS_ATTR_FORK
&&
1558 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1559 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1562 * Since it is possible for space to become allocated beyond
1563 * the end of the file (in a crash where the space is allocated
1564 * but the inode size is not yet updated), simply remove any
1565 * blocks which show up between the new EOF and the maximum
1566 * possible file size. If the first block to be removed is
1567 * beyond the maximum file size (ie it is the same as last_block),
1568 * then there is nothing to do.
1570 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1571 ASSERT(first_unmap_block
<= last_block
);
1573 if (last_block
== first_unmap_block
) {
1576 unmap_len
= last_block
- first_unmap_block
+ 1;
1580 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1581 * will tell us whether it freed the entire range or
1582 * not. If this is a synchronous mount (wsync),
1583 * then we can tell bunmapi to keep all the
1584 * transactions asynchronous since the unlink
1585 * transaction that made this inode inactive has
1586 * already hit the disk. There's no danger of
1587 * the freed blocks being reused, there being a
1588 * crash, and the reused blocks suddenly reappearing
1589 * in this file with garbage in them once recovery
1592 xfs_bmap_init(&free_list
, &first_block
);
1593 error
= xfs_bunmapi(ntp
, ip
,
1594 first_unmap_block
, unmap_len
,
1595 xfs_bmapi_aflag(fork
) |
1596 (sync
? 0 : XFS_BMAPI_ASYNC
),
1597 XFS_ITRUNC_MAX_EXTENTS
,
1598 &first_block
, &free_list
,
1602 * If the bunmapi call encounters an error,
1603 * return to the caller where the transaction
1604 * can be properly aborted. We just need to
1605 * make sure we're not holding any resources
1606 * that we were not when we came in.
1608 xfs_bmap_cancel(&free_list
);
1613 * Duplicate the transaction that has the permanent
1614 * reservation and commit the old transaction.
1616 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1619 /* link the inode into the next xact in the chain */
1620 xfs_trans_ijoin(ntp
, ip
,
1621 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1622 xfs_trans_ihold(ntp
, ip
);
1627 * If the bmap finish call encounters an error, return
1628 * to the caller where the transaction can be properly
1629 * aborted. We just need to make sure we're not
1630 * holding any resources that we were not when we came
1633 * Aborting from this point might lose some blocks in
1634 * the file system, but oh well.
1636 xfs_bmap_cancel(&free_list
);
1642 * Mark the inode dirty so it will be logged and
1643 * moved forward in the log as part of every commit.
1645 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1648 ntp
= xfs_trans_dup(ntp
);
1649 error
= xfs_trans_commit(*tp
, 0);
1652 /* link the inode into the next transaction in the chain */
1653 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1654 xfs_trans_ihold(ntp
, ip
);
1659 * transaction commit worked ok so we can drop the extra ticket
1660 * reference that we gained in xfs_trans_dup()
1662 xfs_log_ticket_put(ntp
->t_ticket
);
1663 error
= xfs_trans_reserve(ntp
, 0,
1664 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1665 XFS_TRANS_PERM_LOG_RES
,
1666 XFS_ITRUNCATE_LOG_COUNT
);
1671 * Only update the size in the case of the data fork, but
1672 * always re-log the inode so that our permanent transaction
1673 * can keep on rolling it forward in the log.
1675 if (fork
== XFS_DATA_FORK
) {
1676 xfs_isize_check(mp
, ip
, new_size
);
1678 * If we are not changing the file size then do
1679 * not update the on-disk file size - we may be
1680 * called from xfs_inactive_free_eofblocks(). If we
1681 * update the on-disk file size and then the system
1682 * crashes before the contents of the file are
1683 * flushed to disk then the files may be full of
1684 * holes (ie NULL files bug).
1686 if (ip
->i_size
!= new_size
) {
1687 ip
->i_d
.di_size
= new_size
;
1688 ip
->i_size
= new_size
;
1691 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1692 ASSERT((new_size
!= 0) ||
1693 (fork
== XFS_ATTR_FORK
) ||
1694 (ip
->i_delayed_blks
== 0));
1695 ASSERT((new_size
!= 0) ||
1696 (fork
== XFS_ATTR_FORK
) ||
1697 (ip
->i_d
.di_nextents
== 0));
1698 trace_xfs_itruncate_finish_end(ip
, new_size
);
1703 * This is called when the inode's link count goes to 0.
1704 * We place the on-disk inode on a list in the AGI. It
1705 * will be pulled from this list when the inode is freed.
1722 ASSERT(ip
->i_d
.di_nlink
== 0);
1723 ASSERT(ip
->i_d
.di_mode
!= 0);
1724 ASSERT(ip
->i_transp
== tp
);
1729 * Get the agi buffer first. It ensures lock ordering
1732 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1735 agi
= XFS_BUF_TO_AGI(agibp
);
1738 * Get the index into the agi hash table for the
1739 * list this inode will go on.
1741 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1743 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1744 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1745 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1747 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1749 * There is already another inode in the bucket we need
1750 * to add ourselves to. Add us at the front of the list.
1751 * Here we put the head pointer into our next pointer,
1752 * and then we fall through to point the head at us.
1754 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1758 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1759 /* both on-disk, don't endian flip twice */
1760 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1761 offset
= ip
->i_imap
.im_boffset
+
1762 offsetof(xfs_dinode_t
, di_next_unlinked
);
1763 xfs_trans_inode_buf(tp
, ibp
);
1764 xfs_trans_log_buf(tp
, ibp
, offset
,
1765 (offset
+ sizeof(xfs_agino_t
) - 1));
1766 xfs_inobp_check(mp
, ibp
);
1770 * Point the bucket head pointer at the inode being inserted.
1773 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1774 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1775 (sizeof(xfs_agino_t
) * bucket_index
);
1776 xfs_trans_log_buf(tp
, agibp
, offset
,
1777 (offset
+ sizeof(xfs_agino_t
) - 1));
1782 * Pull the on-disk inode from the AGI unlinked list.
1795 xfs_agnumber_t agno
;
1797 xfs_agino_t next_agino
;
1798 xfs_buf_t
*last_ibp
;
1799 xfs_dinode_t
*last_dip
= NULL
;
1801 int offset
, last_offset
= 0;
1805 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1808 * Get the agi buffer first. It ensures lock ordering
1811 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1815 agi
= XFS_BUF_TO_AGI(agibp
);
1818 * Get the index into the agi hash table for the
1819 * list this inode will go on.
1821 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1823 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1824 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1825 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1827 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1829 * We're at the head of the list. Get the inode's
1830 * on-disk buffer to see if there is anyone after us
1831 * on the list. Only modify our next pointer if it
1832 * is not already NULLAGINO. This saves us the overhead
1833 * of dealing with the buffer when there is no need to
1836 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1839 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1840 error
, mp
->m_fsname
);
1843 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1844 ASSERT(next_agino
!= 0);
1845 if (next_agino
!= NULLAGINO
) {
1846 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1847 offset
= ip
->i_imap
.im_boffset
+
1848 offsetof(xfs_dinode_t
, di_next_unlinked
);
1849 xfs_trans_inode_buf(tp
, ibp
);
1850 xfs_trans_log_buf(tp
, ibp
, offset
,
1851 (offset
+ sizeof(xfs_agino_t
) - 1));
1852 xfs_inobp_check(mp
, ibp
);
1854 xfs_trans_brelse(tp
, ibp
);
1857 * Point the bucket head pointer at the next inode.
1859 ASSERT(next_agino
!= 0);
1860 ASSERT(next_agino
!= agino
);
1861 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1862 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1863 (sizeof(xfs_agino_t
) * bucket_index
);
1864 xfs_trans_log_buf(tp
, agibp
, offset
,
1865 (offset
+ sizeof(xfs_agino_t
) - 1));
1868 * We need to search the list for the inode being freed.
1870 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1872 while (next_agino
!= agino
) {
1874 * If the last inode wasn't the one pointing to
1875 * us, then release its buffer since we're not
1876 * going to do anything with it.
1878 if (last_ibp
!= NULL
) {
1879 xfs_trans_brelse(tp
, last_ibp
);
1881 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1882 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1883 &last_ibp
, &last_offset
, 0);
1886 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1887 error
, mp
->m_fsname
);
1890 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1891 ASSERT(next_agino
!= NULLAGINO
);
1892 ASSERT(next_agino
!= 0);
1895 * Now last_ibp points to the buffer previous to us on
1896 * the unlinked list. Pull us from the list.
1898 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1901 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1902 error
, mp
->m_fsname
);
1905 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1906 ASSERT(next_agino
!= 0);
1907 ASSERT(next_agino
!= agino
);
1908 if (next_agino
!= NULLAGINO
) {
1909 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1910 offset
= ip
->i_imap
.im_boffset
+
1911 offsetof(xfs_dinode_t
, di_next_unlinked
);
1912 xfs_trans_inode_buf(tp
, ibp
);
1913 xfs_trans_log_buf(tp
, ibp
, offset
,
1914 (offset
+ sizeof(xfs_agino_t
) - 1));
1915 xfs_inobp_check(mp
, ibp
);
1917 xfs_trans_brelse(tp
, ibp
);
1920 * Point the previous inode on the list to the next inode.
1922 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1923 ASSERT(next_agino
!= 0);
1924 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1925 xfs_trans_inode_buf(tp
, last_ibp
);
1926 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1927 (offset
+ sizeof(xfs_agino_t
) - 1));
1928 xfs_inobp_check(mp
, last_ibp
);
1935 xfs_inode_t
*free_ip
,
1939 xfs_mount_t
*mp
= free_ip
->i_mount
;
1940 int blks_per_cluster
;
1943 int i
, j
, found
, pre_flushed
;
1946 xfs_inode_t
*ip
, **ip_found
;
1947 xfs_inode_log_item_t
*iip
;
1948 xfs_log_item_t
*lip
;
1949 struct xfs_perag
*pag
;
1951 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1952 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1953 blks_per_cluster
= 1;
1954 ninodes
= mp
->m_sb
.sb_inopblock
;
1955 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1957 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1958 mp
->m_sb
.sb_blocksize
;
1959 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1960 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1963 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
1965 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1966 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1967 XFS_INO_TO_AGBNO(mp
, inum
));
1971 * Look for each inode in memory and attempt to lock it,
1972 * we can be racing with flush and tail pushing here.
1973 * any inode we get the locks on, add to an array of
1974 * inode items to process later.
1976 * The get the buffer lock, we could beat a flush
1977 * or tail pushing thread to the lock here, in which
1978 * case they will go looking for the inode buffer
1979 * and fail, we need some other form of interlock
1983 for (i
= 0; i
< ninodes
; i
++) {
1984 read_lock(&pag
->pag_ici_lock
);
1985 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1986 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1988 /* Inode not in memory or we found it already,
1991 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
1992 read_unlock(&pag
->pag_ici_lock
);
1996 if (xfs_inode_clean(ip
)) {
1997 read_unlock(&pag
->pag_ici_lock
);
2001 /* If we can get the locks then add it to the
2002 * list, otherwise by the time we get the bp lock
2003 * below it will already be attached to the
2007 /* This inode will already be locked - by us, lets
2011 if (ip
== free_ip
) {
2012 if (xfs_iflock_nowait(ip
)) {
2013 xfs_iflags_set(ip
, XFS_ISTALE
);
2014 if (xfs_inode_clean(ip
)) {
2017 ip_found
[found
++] = ip
;
2020 read_unlock(&pag
->pag_ici_lock
);
2024 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2025 if (xfs_iflock_nowait(ip
)) {
2026 xfs_iflags_set(ip
, XFS_ISTALE
);
2028 if (xfs_inode_clean(ip
)) {
2030 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2032 ip_found
[found
++] = ip
;
2035 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2038 read_unlock(&pag
->pag_ici_lock
);
2041 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2042 mp
->m_bsize
* blks_per_cluster
,
2046 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2048 if (lip
->li_type
== XFS_LI_INODE
) {
2049 iip
= (xfs_inode_log_item_t
*)lip
;
2050 ASSERT(iip
->ili_logged
== 1);
2051 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2052 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2053 &iip
->ili_flush_lsn
,
2054 &iip
->ili_item
.li_lsn
);
2055 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2058 lip
= lip
->li_bio_list
;
2061 for (i
= 0; i
< found
; i
++) {
2066 ip
->i_update_core
= 0;
2068 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2072 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2073 iip
->ili_format
.ilf_fields
= 0;
2074 iip
->ili_logged
= 1;
2075 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2076 &iip
->ili_item
.li_lsn
);
2078 xfs_buf_attach_iodone(bp
,
2079 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2080 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2081 if (ip
!= free_ip
) {
2082 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2086 if (found
|| pre_flushed
)
2087 xfs_trans_stale_inode_buf(tp
, bp
);
2088 xfs_trans_binval(tp
, bp
);
2091 kmem_free(ip_found
);
2096 * This is called to return an inode to the inode free list.
2097 * The inode should already be truncated to 0 length and have
2098 * no pages associated with it. This routine also assumes that
2099 * the inode is already a part of the transaction.
2101 * The on-disk copy of the inode will have been added to the list
2102 * of unlinked inodes in the AGI. We need to remove the inode from
2103 * that list atomically with respect to freeing it here.
2109 xfs_bmap_free_t
*flist
)
2113 xfs_ino_t first_ino
;
2117 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2118 ASSERT(ip
->i_transp
== tp
);
2119 ASSERT(ip
->i_d
.di_nlink
== 0);
2120 ASSERT(ip
->i_d
.di_nextents
== 0);
2121 ASSERT(ip
->i_d
.di_anextents
== 0);
2122 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2123 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2124 ASSERT(ip
->i_d
.di_nblocks
== 0);
2127 * Pull the on-disk inode from the AGI unlinked list.
2129 error
= xfs_iunlink_remove(tp
, ip
);
2134 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2138 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2139 ip
->i_d
.di_flags
= 0;
2140 ip
->i_d
.di_dmevmask
= 0;
2141 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2142 ip
->i_df
.if_ext_max
=
2143 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2144 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2145 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2147 * Bump the generation count so no one will be confused
2148 * by reincarnations of this inode.
2152 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2154 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
2159 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2160 * from picking up this inode when it is reclaimed (its incore state
2161 * initialzed but not flushed to disk yet). The in-core di_mode is
2162 * already cleared and a corresponding transaction logged.
2163 * The hack here just synchronizes the in-core to on-disk
2164 * di_mode value in advance before the actual inode sync to disk.
2165 * This is OK because the inode is already unlinked and would never
2166 * change its di_mode again for this inode generation.
2167 * This is a temporary hack that would require a proper fix
2173 xfs_ifree_cluster(ip
, tp
, first_ino
);
2180 * Reallocate the space for if_broot based on the number of records
2181 * being added or deleted as indicated in rec_diff. Move the records
2182 * and pointers in if_broot to fit the new size. When shrinking this
2183 * will eliminate holes between the records and pointers created by
2184 * the caller. When growing this will create holes to be filled in
2187 * The caller must not request to add more records than would fit in
2188 * the on-disk inode root. If the if_broot is currently NULL, then
2189 * if we adding records one will be allocated. The caller must also
2190 * not request that the number of records go below zero, although
2191 * it can go to zero.
2193 * ip -- the inode whose if_broot area is changing
2194 * ext_diff -- the change in the number of records, positive or negative,
2195 * requested for the if_broot array.
2203 struct xfs_mount
*mp
= ip
->i_mount
;
2206 struct xfs_btree_block
*new_broot
;
2213 * Handle the degenerate case quietly.
2215 if (rec_diff
== 0) {
2219 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2222 * If there wasn't any memory allocated before, just
2223 * allocate it now and get out.
2225 if (ifp
->if_broot_bytes
== 0) {
2226 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2227 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2228 ifp
->if_broot_bytes
= (int)new_size
;
2233 * If there is already an existing if_broot, then we need
2234 * to realloc() it and shift the pointers to their new
2235 * location. The records don't change location because
2236 * they are kept butted up against the btree block header.
2238 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2239 new_max
= cur_max
+ rec_diff
;
2240 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2241 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2242 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2244 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2245 ifp
->if_broot_bytes
);
2246 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2248 ifp
->if_broot_bytes
= (int)new_size
;
2249 ASSERT(ifp
->if_broot_bytes
<=
2250 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2251 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2256 * rec_diff is less than 0. In this case, we are shrinking the
2257 * if_broot buffer. It must already exist. If we go to zero
2258 * records, just get rid of the root and clear the status bit.
2260 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2261 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2262 new_max
= cur_max
+ rec_diff
;
2263 ASSERT(new_max
>= 0);
2265 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2269 new_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2271 * First copy over the btree block header.
2273 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2276 ifp
->if_flags
&= ~XFS_IFBROOT
;
2280 * Only copy the records and pointers if there are any.
2284 * First copy the records.
2286 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2287 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2288 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2291 * Then copy the pointers.
2293 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2294 ifp
->if_broot_bytes
);
2295 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2297 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2299 kmem_free(ifp
->if_broot
);
2300 ifp
->if_broot
= new_broot
;
2301 ifp
->if_broot_bytes
= (int)new_size
;
2302 ASSERT(ifp
->if_broot_bytes
<=
2303 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2309 * This is called when the amount of space needed for if_data
2310 * is increased or decreased. The change in size is indicated by
2311 * the number of bytes that need to be added or deleted in the
2312 * byte_diff parameter.
2314 * If the amount of space needed has decreased below the size of the
2315 * inline buffer, then switch to using the inline buffer. Otherwise,
2316 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2317 * to what is needed.
2319 * ip -- the inode whose if_data area is changing
2320 * byte_diff -- the change in the number of bytes, positive or negative,
2321 * requested for the if_data array.
2333 if (byte_diff
== 0) {
2337 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2338 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2339 ASSERT(new_size
>= 0);
2341 if (new_size
== 0) {
2342 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2343 kmem_free(ifp
->if_u1
.if_data
);
2345 ifp
->if_u1
.if_data
= NULL
;
2347 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2349 * If the valid extents/data can fit in if_inline_ext/data,
2350 * copy them from the malloc'd vector and free it.
2352 if (ifp
->if_u1
.if_data
== NULL
) {
2353 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2354 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2355 ASSERT(ifp
->if_real_bytes
!= 0);
2356 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2358 kmem_free(ifp
->if_u1
.if_data
);
2359 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2364 * Stuck with malloc/realloc.
2365 * For inline data, the underlying buffer must be
2366 * a multiple of 4 bytes in size so that it can be
2367 * logged and stay on word boundaries. We enforce
2370 real_size
= roundup(new_size
, 4);
2371 if (ifp
->if_u1
.if_data
== NULL
) {
2372 ASSERT(ifp
->if_real_bytes
== 0);
2373 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2374 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2376 * Only do the realloc if the underlying size
2377 * is really changing.
2379 if (ifp
->if_real_bytes
!= real_size
) {
2380 ifp
->if_u1
.if_data
=
2381 kmem_realloc(ifp
->if_u1
.if_data
,
2387 ASSERT(ifp
->if_real_bytes
== 0);
2388 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2389 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2393 ifp
->if_real_bytes
= real_size
;
2394 ifp
->if_bytes
= new_size
;
2395 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2405 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2406 if (ifp
->if_broot
!= NULL
) {
2407 kmem_free(ifp
->if_broot
);
2408 ifp
->if_broot
= NULL
;
2412 * If the format is local, then we can't have an extents
2413 * array so just look for an inline data array. If we're
2414 * not local then we may or may not have an extents list,
2415 * so check and free it up if we do.
2417 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2418 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2419 (ifp
->if_u1
.if_data
!= NULL
)) {
2420 ASSERT(ifp
->if_real_bytes
!= 0);
2421 kmem_free(ifp
->if_u1
.if_data
);
2422 ifp
->if_u1
.if_data
= NULL
;
2423 ifp
->if_real_bytes
= 0;
2425 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2426 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2427 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2428 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2429 ASSERT(ifp
->if_real_bytes
!= 0);
2430 xfs_iext_destroy(ifp
);
2432 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2433 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2434 ASSERT(ifp
->if_real_bytes
== 0);
2435 if (whichfork
== XFS_ATTR_FORK
) {
2436 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2442 * This is called to unpin an inode. The caller must have the inode locked
2443 * in at least shared mode so that the buffer cannot be subsequently pinned
2444 * once someone is waiting for it to be unpinned.
2448 struct xfs_inode
*ip
)
2450 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2452 /* Give the log a push to start the unpinning I/O */
2453 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2459 struct xfs_inode
*ip
)
2461 if (xfs_ipincount(ip
)) {
2462 xfs_iunpin_nowait(ip
);
2463 wait_event(ip
->i_ipin_wait
, (xfs_ipincount(ip
) == 0));
2468 * xfs_iextents_copy()
2470 * This is called to copy the REAL extents (as opposed to the delayed
2471 * allocation extents) from the inode into the given buffer. It
2472 * returns the number of bytes copied into the buffer.
2474 * If there are no delayed allocation extents, then we can just
2475 * memcpy() the extents into the buffer. Otherwise, we need to
2476 * examine each extent in turn and skip those which are delayed.
2488 xfs_fsblock_t start_block
;
2490 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2491 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2492 ASSERT(ifp
->if_bytes
> 0);
2494 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2495 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2499 * There are some delayed allocation extents in the
2500 * inode, so copy the extents one at a time and skip
2501 * the delayed ones. There must be at least one
2502 * non-delayed extent.
2505 for (i
= 0; i
< nrecs
; i
++) {
2506 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2507 start_block
= xfs_bmbt_get_startblock(ep
);
2508 if (isnullstartblock(start_block
)) {
2510 * It's a delayed allocation extent, so skip it.
2515 /* Translate to on disk format */
2516 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2517 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2521 ASSERT(copied
!= 0);
2522 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2524 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2528 * Each of the following cases stores data into the same region
2529 * of the on-disk inode, so only one of them can be valid at
2530 * any given time. While it is possible to have conflicting formats
2531 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2532 * in EXTENTS format, this can only happen when the fork has
2533 * changed formats after being modified but before being flushed.
2534 * In these cases, the format always takes precedence, because the
2535 * format indicates the current state of the fork.
2542 xfs_inode_log_item_t
*iip
,
2549 #ifdef XFS_TRANS_DEBUG
2552 static const short brootflag
[2] =
2553 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2554 static const short dataflag
[2] =
2555 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2556 static const short extflag
[2] =
2557 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2561 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2563 * This can happen if we gave up in iformat in an error path,
2564 * for the attribute fork.
2567 ASSERT(whichfork
== XFS_ATTR_FORK
);
2570 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2572 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2573 case XFS_DINODE_FMT_LOCAL
:
2574 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2575 (ifp
->if_bytes
> 0)) {
2576 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2577 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2578 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2582 case XFS_DINODE_FMT_EXTENTS
:
2583 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2584 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2585 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2586 (ifp
->if_bytes
== 0));
2587 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2588 (ifp
->if_bytes
> 0));
2589 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2590 (ifp
->if_bytes
> 0)) {
2591 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2592 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2597 case XFS_DINODE_FMT_BTREE
:
2598 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2599 (ifp
->if_broot_bytes
> 0)) {
2600 ASSERT(ifp
->if_broot
!= NULL
);
2601 ASSERT(ifp
->if_broot_bytes
<=
2602 (XFS_IFORK_SIZE(ip
, whichfork
) +
2603 XFS_BROOT_SIZE_ADJ
));
2604 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2605 (xfs_bmdr_block_t
*)cp
,
2606 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2610 case XFS_DINODE_FMT_DEV
:
2611 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2612 ASSERT(whichfork
== XFS_DATA_FORK
);
2613 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2617 case XFS_DINODE_FMT_UUID
:
2618 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2619 ASSERT(whichfork
== XFS_DATA_FORK
);
2620 memcpy(XFS_DFORK_DPTR(dip
),
2621 &ip
->i_df
.if_u2
.if_uuid
,
2637 xfs_mount_t
*mp
= ip
->i_mount
;
2638 struct xfs_perag
*pag
;
2639 unsigned long first_index
, mask
;
2640 unsigned long inodes_per_cluster
;
2642 xfs_inode_t
**ilist
;
2649 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2650 ASSERT(pag
->pagi_inodeok
);
2651 ASSERT(pag
->pag_ici_init
);
2653 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2654 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2655 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2659 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2660 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2661 read_lock(&pag
->pag_ici_lock
);
2662 /* really need a gang lookup range call here */
2663 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2664 first_index
, inodes_per_cluster
);
2668 for (i
= 0; i
< nr_found
; i
++) {
2672 /* if the inode lies outside this cluster, we're done. */
2673 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2676 * Do an un-protected check to see if the inode is dirty and
2677 * is a candidate for flushing. These checks will be repeated
2678 * later after the appropriate locks are acquired.
2680 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2684 * Try to get locks. If any are unavailable or it is pinned,
2685 * then this inode cannot be flushed and is skipped.
2688 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2690 if (!xfs_iflock_nowait(iq
)) {
2691 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2694 if (xfs_ipincount(iq
)) {
2696 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2701 * arriving here means that this inode can be flushed. First
2702 * re-check that it's dirty before flushing.
2704 if (!xfs_inode_clean(iq
)) {
2706 error
= xfs_iflush_int(iq
, bp
);
2708 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2709 goto cluster_corrupt_out
;
2715 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2719 XFS_STATS_INC(xs_icluster_flushcnt
);
2720 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2724 read_unlock(&pag
->pag_ici_lock
);
2731 cluster_corrupt_out
:
2733 * Corruption detected in the clustering loop. Invalidate the
2734 * inode buffer and shut down the filesystem.
2736 read_unlock(&pag
->pag_ici_lock
);
2738 * Clean up the buffer. If it was B_DELWRI, just release it --
2739 * brelse can handle it with no problems. If not, shut down the
2740 * filesystem before releasing the buffer.
2742 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2746 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2748 if (!bufwasdelwri
) {
2750 * Just like incore_relse: if we have b_iodone functions,
2751 * mark the buffer as an error and call them. Otherwise
2752 * mark it as stale and brelse.
2754 if (XFS_BUF_IODONE_FUNC(bp
)) {
2755 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
2758 XFS_BUF_ERROR(bp
,EIO
);
2767 * Unlocks the flush lock
2769 xfs_iflush_abort(iq
);
2772 return XFS_ERROR(EFSCORRUPTED
);
2776 * xfs_iflush() will write a modified inode's changes out to the
2777 * inode's on disk home. The caller must have the inode lock held
2778 * in at least shared mode and the inode flush completion must be
2779 * active as well. The inode lock will still be held upon return from
2780 * the call and the caller is free to unlock it.
2781 * The inode flush will be completed when the inode reaches the disk.
2782 * The flags indicate how the inode's buffer should be written out.
2789 xfs_inode_log_item_t
*iip
;
2795 XFS_STATS_INC(xs_iflush_count
);
2797 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2798 ASSERT(!completion_done(&ip
->i_flush
));
2799 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2800 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2806 * We can't flush the inode until it is unpinned, so wait for it if we
2807 * are allowed to block. We know noone new can pin it, because we are
2808 * holding the inode lock shared and you need to hold it exclusively to
2811 * If we are not allowed to block, force the log out asynchronously so
2812 * that when we come back the inode will be unpinned. If other inodes
2813 * in the same cluster are dirty, they will probably write the inode
2814 * out for us if they occur after the log force completes.
2816 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2817 xfs_iunpin_nowait(ip
);
2821 xfs_iunpin_wait(ip
);
2824 * For stale inodes we cannot rely on the backing buffer remaining
2825 * stale in cache for the remaining life of the stale inode and so
2826 * xfs_itobp() below may give us a buffer that no longer contains
2827 * inodes below. We have to check this after ensuring the inode is
2828 * unpinned so that it is safe to reclaim the stale inode after the
2831 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2837 * This may have been unpinned because the filesystem is shutting
2838 * down forcibly. If that's the case we must not write this inode
2839 * to disk, because the log record didn't make it to disk!
2841 if (XFS_FORCED_SHUTDOWN(mp
)) {
2842 ip
->i_update_core
= 0;
2844 iip
->ili_format
.ilf_fields
= 0;
2846 return XFS_ERROR(EIO
);
2850 * Get the buffer containing the on-disk inode.
2852 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2853 (flags
& SYNC_WAIT
) ? XBF_LOCK
: XBF_TRYLOCK
);
2860 * First flush out the inode that xfs_iflush was called with.
2862 error
= xfs_iflush_int(ip
, bp
);
2867 * If the buffer is pinned then push on the log now so we won't
2868 * get stuck waiting in the write for too long.
2870 if (XFS_BUF_ISPINNED(bp
))
2871 xfs_log_force(mp
, 0);
2875 * see if other inodes can be gathered into this write
2877 error
= xfs_iflush_cluster(ip
, bp
);
2879 goto cluster_corrupt_out
;
2881 if (flags
& SYNC_WAIT
)
2882 error
= xfs_bwrite(mp
, bp
);
2884 xfs_bdwrite(mp
, bp
);
2889 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2890 cluster_corrupt_out
:
2892 * Unlocks the flush lock
2894 xfs_iflush_abort(ip
);
2895 return XFS_ERROR(EFSCORRUPTED
);
2904 xfs_inode_log_item_t
*iip
;
2907 #ifdef XFS_TRANS_DEBUG
2911 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2912 ASSERT(!completion_done(&ip
->i_flush
));
2913 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2914 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2919 /* set *dip = inode's place in the buffer */
2920 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2923 * Clear i_update_core before copying out the data.
2924 * This is for coordination with our timestamp updates
2925 * that don't hold the inode lock. They will always
2926 * update the timestamps BEFORE setting i_update_core,
2927 * so if we clear i_update_core after they set it we
2928 * are guaranteed to see their updates to the timestamps.
2929 * I believe that this depends on strongly ordered memory
2930 * semantics, but we have that. We use the SYNCHRONIZE
2931 * macro to make sure that the compiler does not reorder
2932 * the i_update_core access below the data copy below.
2934 ip
->i_update_core
= 0;
2938 * Make sure to get the latest timestamps from the Linux inode.
2940 xfs_synchronize_times(ip
);
2942 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
2943 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2944 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2945 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2946 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2949 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2950 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2951 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2952 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2953 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2956 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
2958 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2959 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2960 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2961 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2962 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2966 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
2968 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2969 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2970 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2971 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2972 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2973 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2978 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2979 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2980 XFS_RANDOM_IFLUSH_5
)) {
2981 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2982 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2984 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2989 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2990 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2991 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2992 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2993 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2997 * bump the flush iteration count, used to detect flushes which
2998 * postdate a log record during recovery.
3001 ip
->i_d
.di_flushiter
++;
3004 * Copy the dirty parts of the inode into the on-disk
3005 * inode. We always copy out the core of the inode,
3006 * because if the inode is dirty at all the core must
3009 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3011 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3012 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3013 ip
->i_d
.di_flushiter
= 0;
3016 * If this is really an old format inode and the superblock version
3017 * has not been updated to support only new format inodes, then
3018 * convert back to the old inode format. If the superblock version
3019 * has been updated, then make the conversion permanent.
3021 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3022 if (ip
->i_d
.di_version
== 1) {
3023 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3027 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3028 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3031 * The superblock version has already been bumped,
3032 * so just make the conversion to the new inode
3035 ip
->i_d
.di_version
= 2;
3036 dip
->di_version
= 2;
3037 ip
->i_d
.di_onlink
= 0;
3039 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3040 memset(&(dip
->di_pad
[0]), 0,
3041 sizeof(dip
->di_pad
));
3042 ASSERT(ip
->i_d
.di_projid
== 0);
3046 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3047 if (XFS_IFORK_Q(ip
))
3048 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3049 xfs_inobp_check(mp
, bp
);
3052 * We've recorded everything logged in the inode, so we'd
3053 * like to clear the ilf_fields bits so we don't log and
3054 * flush things unnecessarily. However, we can't stop
3055 * logging all this information until the data we've copied
3056 * into the disk buffer is written to disk. If we did we might
3057 * overwrite the copy of the inode in the log with all the
3058 * data after re-logging only part of it, and in the face of
3059 * a crash we wouldn't have all the data we need to recover.
3061 * What we do is move the bits to the ili_last_fields field.
3062 * When logging the inode, these bits are moved back to the
3063 * ilf_fields field. In the xfs_iflush_done() routine we
3064 * clear ili_last_fields, since we know that the information
3065 * those bits represent is permanently on disk. As long as
3066 * the flush completes before the inode is logged again, then
3067 * both ilf_fields and ili_last_fields will be cleared.
3069 * We can play with the ilf_fields bits here, because the inode
3070 * lock must be held exclusively in order to set bits there
3071 * and the flush lock protects the ili_last_fields bits.
3072 * Set ili_logged so the flush done
3073 * routine can tell whether or not to look in the AIL.
3074 * Also, store the current LSN of the inode so that we can tell
3075 * whether the item has moved in the AIL from xfs_iflush_done().
3076 * In order to read the lsn we need the AIL lock, because
3077 * it is a 64 bit value that cannot be read atomically.
3079 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3080 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3081 iip
->ili_format
.ilf_fields
= 0;
3082 iip
->ili_logged
= 1;
3084 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3085 &iip
->ili_item
.li_lsn
);
3088 * Attach the function xfs_iflush_done to the inode's
3089 * buffer. This will remove the inode from the AIL
3090 * and unlock the inode's flush lock when the inode is
3091 * completely written to disk.
3093 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3094 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3096 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3097 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3100 * We're flushing an inode which is not in the AIL and has
3101 * not been logged but has i_update_core set. For this
3102 * case we can use a B_DELWRI flush and immediately drop
3103 * the inode flush lock because we can avoid the whole
3104 * AIL state thing. It's OK to drop the flush lock now,
3105 * because we've already locked the buffer and to do anything
3106 * you really need both.
3109 ASSERT(iip
->ili_logged
== 0);
3110 ASSERT(iip
->ili_last_fields
== 0);
3111 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3119 return XFS_ERROR(EFSCORRUPTED
);
3123 * Return a pointer to the extent record at file index idx.
3125 xfs_bmbt_rec_host_t
*
3127 xfs_ifork_t
*ifp
, /* inode fork pointer */
3128 xfs_extnum_t idx
) /* index of target extent */
3131 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3132 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3133 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3134 xfs_ext_irec_t
*erp
; /* irec pointer */
3135 int erp_idx
= 0; /* irec index */
3136 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3138 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3139 return &erp
->er_extbuf
[page_idx
];
3140 } else if (ifp
->if_bytes
) {
3141 return &ifp
->if_u1
.if_extents
[idx
];
3148 * Insert new item(s) into the extent records for incore inode
3149 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3153 xfs_inode_t
*ip
, /* incore inode pointer */
3154 xfs_extnum_t idx
, /* starting index of new items */
3155 xfs_extnum_t count
, /* number of inserted items */
3156 xfs_bmbt_irec_t
*new, /* items to insert */
3157 int state
) /* type of extent conversion */
3159 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3160 xfs_extnum_t i
; /* extent record index */
3162 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
3164 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3165 xfs_iext_add(ifp
, idx
, count
);
3166 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3167 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3171 * This is called when the amount of space required for incore file
3172 * extents needs to be increased. The ext_diff parameter stores the
3173 * number of new extents being added and the idx parameter contains
3174 * the extent index where the new extents will be added. If the new
3175 * extents are being appended, then we just need to (re)allocate and
3176 * initialize the space. Otherwise, if the new extents are being
3177 * inserted into the middle of the existing entries, a bit more work
3178 * is required to make room for the new extents to be inserted. The
3179 * caller is responsible for filling in the new extent entries upon
3184 xfs_ifork_t
*ifp
, /* inode fork pointer */
3185 xfs_extnum_t idx
, /* index to begin adding exts */
3186 int ext_diff
) /* number of extents to add */
3188 int byte_diff
; /* new bytes being added */
3189 int new_size
; /* size of extents after adding */
3190 xfs_extnum_t nextents
; /* number of extents in file */
3192 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3193 ASSERT((idx
>= 0) && (idx
<= nextents
));
3194 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3195 new_size
= ifp
->if_bytes
+ byte_diff
;
3197 * If the new number of extents (nextents + ext_diff)
3198 * fits inside the inode, then continue to use the inline
3201 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3202 if (idx
< nextents
) {
3203 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3204 &ifp
->if_u2
.if_inline_ext
[idx
],
3205 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3206 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3208 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3209 ifp
->if_real_bytes
= 0;
3210 ifp
->if_lastex
= nextents
+ ext_diff
;
3213 * Otherwise use a linear (direct) extent list.
3214 * If the extents are currently inside the inode,
3215 * xfs_iext_realloc_direct will switch us from
3216 * inline to direct extent allocation mode.
3218 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3219 xfs_iext_realloc_direct(ifp
, new_size
);
3220 if (idx
< nextents
) {
3221 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3222 &ifp
->if_u1
.if_extents
[idx
],
3223 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3224 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3227 /* Indirection array */
3229 xfs_ext_irec_t
*erp
;
3233 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3234 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3235 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3237 xfs_iext_irec_init(ifp
);
3238 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3239 erp
= ifp
->if_u1
.if_ext_irec
;
3241 /* Extents fit in target extent page */
3242 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3243 if (page_idx
< erp
->er_extcount
) {
3244 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3245 &erp
->er_extbuf
[page_idx
],
3246 (erp
->er_extcount
- page_idx
) *
3247 sizeof(xfs_bmbt_rec_t
));
3248 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3250 erp
->er_extcount
+= ext_diff
;
3251 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3253 /* Insert a new extent page */
3255 xfs_iext_add_indirect_multi(ifp
,
3256 erp_idx
, page_idx
, ext_diff
);
3259 * If extent(s) are being appended to the last page in
3260 * the indirection array and the new extent(s) don't fit
3261 * in the page, then erp is NULL and erp_idx is set to
3262 * the next index needed in the indirection array.
3265 int count
= ext_diff
;
3268 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3269 erp
->er_extcount
= count
;
3270 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3277 ifp
->if_bytes
= new_size
;
3281 * This is called when incore extents are being added to the indirection
3282 * array and the new extents do not fit in the target extent list. The
3283 * erp_idx parameter contains the irec index for the target extent list
3284 * in the indirection array, and the idx parameter contains the extent
3285 * index within the list. The number of extents being added is stored
3286 * in the count parameter.
3288 * |-------| |-------|
3289 * | | | | idx - number of extents before idx
3291 * | | | | count - number of extents being inserted at idx
3292 * |-------| |-------|
3293 * | count | | nex2 | nex2 - number of extents after idx + count
3294 * |-------| |-------|
3297 xfs_iext_add_indirect_multi(
3298 xfs_ifork_t
*ifp
, /* inode fork pointer */
3299 int erp_idx
, /* target extent irec index */
3300 xfs_extnum_t idx
, /* index within target list */
3301 int count
) /* new extents being added */
3303 int byte_diff
; /* new bytes being added */
3304 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3305 xfs_extnum_t ext_diff
; /* number of extents to add */
3306 xfs_extnum_t ext_cnt
; /* new extents still needed */
3307 xfs_extnum_t nex2
; /* extents after idx + count */
3308 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3309 int nlists
; /* number of irec's (lists) */
3311 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3312 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3313 nex2
= erp
->er_extcount
- idx
;
3314 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3317 * Save second part of target extent list
3318 * (all extents past */
3320 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3321 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3322 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3323 erp
->er_extcount
-= nex2
;
3324 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3325 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3329 * Add the new extents to the end of the target
3330 * list, then allocate new irec record(s) and
3331 * extent buffer(s) as needed to store the rest
3332 * of the new extents.
3335 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3337 erp
->er_extcount
+= ext_diff
;
3338 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3339 ext_cnt
-= ext_diff
;
3343 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3344 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3345 erp
->er_extcount
= ext_diff
;
3346 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3347 ext_cnt
-= ext_diff
;
3350 /* Add nex2 extents back to indirection array */
3352 xfs_extnum_t ext_avail
;
3355 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3356 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3359 * If nex2 extents fit in the current page, append
3360 * nex2_ep after the new extents.
3362 if (nex2
<= ext_avail
) {
3363 i
= erp
->er_extcount
;
3366 * Otherwise, check if space is available in the
3369 else if ((erp_idx
< nlists
- 1) &&
3370 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3371 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3374 /* Create a hole for nex2 extents */
3375 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3376 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3379 * Final choice, create a new extent page for
3384 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3386 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3388 erp
->er_extcount
+= nex2
;
3389 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3394 * This is called when the amount of space required for incore file
3395 * extents needs to be decreased. The ext_diff parameter stores the
3396 * number of extents to be removed and the idx parameter contains
3397 * the extent index where the extents will be removed from.
3399 * If the amount of space needed has decreased below the linear
3400 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3401 * extent array. Otherwise, use kmem_realloc() to adjust the
3402 * size to what is needed.
3406 xfs_inode_t
*ip
, /* incore inode pointer */
3407 xfs_extnum_t idx
, /* index to begin removing exts */
3408 int ext_diff
, /* number of extents to remove */
3409 int state
) /* type of extent conversion */
3411 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3412 xfs_extnum_t nextents
; /* number of extents in file */
3413 int new_size
; /* size of extents after removal */
3415 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3417 ASSERT(ext_diff
> 0);
3418 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3419 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3421 if (new_size
== 0) {
3422 xfs_iext_destroy(ifp
);
3423 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3424 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3425 } else if (ifp
->if_real_bytes
) {
3426 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3428 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3430 ifp
->if_bytes
= new_size
;
3434 * This removes ext_diff extents from the inline buffer, beginning
3435 * at extent index idx.
3438 xfs_iext_remove_inline(
3439 xfs_ifork_t
*ifp
, /* inode fork pointer */
3440 xfs_extnum_t idx
, /* index to begin removing exts */
3441 int ext_diff
) /* number of extents to remove */
3443 int nextents
; /* number of extents in file */
3445 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3446 ASSERT(idx
< XFS_INLINE_EXTS
);
3447 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3448 ASSERT(((nextents
- ext_diff
) > 0) &&
3449 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3451 if (idx
+ ext_diff
< nextents
) {
3452 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3453 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3454 (nextents
- (idx
+ ext_diff
)) *
3455 sizeof(xfs_bmbt_rec_t
));
3456 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3457 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3459 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3460 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3465 * This removes ext_diff extents from a linear (direct) extent list,
3466 * beginning at extent index idx. If the extents are being removed
3467 * from the end of the list (ie. truncate) then we just need to re-
3468 * allocate the list to remove the extra space. Otherwise, if the
3469 * extents are being removed from the middle of the existing extent
3470 * entries, then we first need to move the extent records beginning
3471 * at idx + ext_diff up in the list to overwrite the records being
3472 * removed, then remove the extra space via kmem_realloc.
3475 xfs_iext_remove_direct(
3476 xfs_ifork_t
*ifp
, /* inode fork pointer */
3477 xfs_extnum_t idx
, /* index to begin removing exts */
3478 int ext_diff
) /* number of extents to remove */
3480 xfs_extnum_t nextents
; /* number of extents in file */
3481 int new_size
; /* size of extents after removal */
3483 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3484 new_size
= ifp
->if_bytes
-
3485 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3486 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3488 if (new_size
== 0) {
3489 xfs_iext_destroy(ifp
);
3492 /* Move extents up in the list (if needed) */
3493 if (idx
+ ext_diff
< nextents
) {
3494 memmove(&ifp
->if_u1
.if_extents
[idx
],
3495 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3496 (nextents
- (idx
+ ext_diff
)) *
3497 sizeof(xfs_bmbt_rec_t
));
3499 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3500 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3502 * Reallocate the direct extent list. If the extents
3503 * will fit inside the inode then xfs_iext_realloc_direct
3504 * will switch from direct to inline extent allocation
3507 xfs_iext_realloc_direct(ifp
, new_size
);
3508 ifp
->if_bytes
= new_size
;
3512 * This is called when incore extents are being removed from the
3513 * indirection array and the extents being removed span multiple extent
3514 * buffers. The idx parameter contains the file extent index where we
3515 * want to begin removing extents, and the count parameter contains
3516 * how many extents need to be removed.
3518 * |-------| |-------|
3519 * | nex1 | | | nex1 - number of extents before idx
3520 * |-------| | count |
3521 * | | | | count - number of extents being removed at idx
3522 * | count | |-------|
3523 * | | | nex2 | nex2 - number of extents after idx + count
3524 * |-------| |-------|
3527 xfs_iext_remove_indirect(
3528 xfs_ifork_t
*ifp
, /* inode fork pointer */
3529 xfs_extnum_t idx
, /* index to begin removing extents */
3530 int count
) /* number of extents to remove */
3532 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3533 int erp_idx
= 0; /* indirection array index */
3534 xfs_extnum_t ext_cnt
; /* extents left to remove */
3535 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3536 xfs_extnum_t nex1
; /* number of extents before idx */
3537 xfs_extnum_t nex2
; /* extents after idx + count */
3538 int nlists
; /* entries in indirection array */
3539 int page_idx
= idx
; /* index in target extent list */
3541 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3542 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3543 ASSERT(erp
!= NULL
);
3544 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3548 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3549 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3551 * Check for deletion of entire list;
3552 * xfs_iext_irec_remove() updates extent offsets.
3554 if (ext_diff
== erp
->er_extcount
) {
3555 xfs_iext_irec_remove(ifp
, erp_idx
);
3556 ext_cnt
-= ext_diff
;
3559 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3561 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3568 /* Move extents up (if needed) */
3570 memmove(&erp
->er_extbuf
[nex1
],
3571 &erp
->er_extbuf
[nex1
+ ext_diff
],
3572 nex2
* sizeof(xfs_bmbt_rec_t
));
3574 /* Zero out rest of page */
3575 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3576 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3577 /* Update remaining counters */
3578 erp
->er_extcount
-= ext_diff
;
3579 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3580 ext_cnt
-= ext_diff
;
3585 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3586 xfs_iext_irec_compact(ifp
);
3590 * Create, destroy, or resize a linear (direct) block of extents.
3593 xfs_iext_realloc_direct(
3594 xfs_ifork_t
*ifp
, /* inode fork pointer */
3595 int new_size
) /* new size of extents */
3597 int rnew_size
; /* real new size of extents */
3599 rnew_size
= new_size
;
3601 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3602 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3603 (new_size
!= ifp
->if_real_bytes
)));
3605 /* Free extent records */
3606 if (new_size
== 0) {
3607 xfs_iext_destroy(ifp
);
3609 /* Resize direct extent list and zero any new bytes */
3610 else if (ifp
->if_real_bytes
) {
3611 /* Check if extents will fit inside the inode */
3612 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3613 xfs_iext_direct_to_inline(ifp
, new_size
/
3614 (uint
)sizeof(xfs_bmbt_rec_t
));
3615 ifp
->if_bytes
= new_size
;
3618 if (!is_power_of_2(new_size
)){
3619 rnew_size
= roundup_pow_of_two(new_size
);
3621 if (rnew_size
!= ifp
->if_real_bytes
) {
3622 ifp
->if_u1
.if_extents
=
3623 kmem_realloc(ifp
->if_u1
.if_extents
,
3625 ifp
->if_real_bytes
, KM_NOFS
);
3627 if (rnew_size
> ifp
->if_real_bytes
) {
3628 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3629 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3630 rnew_size
- ifp
->if_real_bytes
);
3634 * Switch from the inline extent buffer to a direct
3635 * extent list. Be sure to include the inline extent
3636 * bytes in new_size.
3639 new_size
+= ifp
->if_bytes
;
3640 if (!is_power_of_2(new_size
)) {
3641 rnew_size
= roundup_pow_of_two(new_size
);
3643 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3645 ifp
->if_real_bytes
= rnew_size
;
3646 ifp
->if_bytes
= new_size
;
3650 * Switch from linear (direct) extent records to inline buffer.
3653 xfs_iext_direct_to_inline(
3654 xfs_ifork_t
*ifp
, /* inode fork pointer */
3655 xfs_extnum_t nextents
) /* number of extents in file */
3657 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3658 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3660 * The inline buffer was zeroed when we switched
3661 * from inline to direct extent allocation mode,
3662 * so we don't need to clear it here.
3664 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3665 nextents
* sizeof(xfs_bmbt_rec_t
));
3666 kmem_free(ifp
->if_u1
.if_extents
);
3667 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3668 ifp
->if_real_bytes
= 0;
3672 * Switch from inline buffer to linear (direct) extent records.
3673 * new_size should already be rounded up to the next power of 2
3674 * by the caller (when appropriate), so use new_size as it is.
3675 * However, since new_size may be rounded up, we can't update
3676 * if_bytes here. It is the caller's responsibility to update
3677 * if_bytes upon return.
3680 xfs_iext_inline_to_direct(
3681 xfs_ifork_t
*ifp
, /* inode fork pointer */
3682 int new_size
) /* number of extents in file */
3684 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3685 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3686 if (ifp
->if_bytes
) {
3687 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3689 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3690 sizeof(xfs_bmbt_rec_t
));
3692 ifp
->if_real_bytes
= new_size
;
3696 * Resize an extent indirection array to new_size bytes.
3699 xfs_iext_realloc_indirect(
3700 xfs_ifork_t
*ifp
, /* inode fork pointer */
3701 int new_size
) /* new indirection array size */
3703 int nlists
; /* number of irec's (ex lists) */
3704 int size
; /* current indirection array size */
3706 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3707 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3708 size
= nlists
* sizeof(xfs_ext_irec_t
);
3709 ASSERT(ifp
->if_real_bytes
);
3710 ASSERT((new_size
>= 0) && (new_size
!= size
));
3711 if (new_size
== 0) {
3712 xfs_iext_destroy(ifp
);
3714 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3715 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3716 new_size
, size
, KM_NOFS
);
3721 * Switch from indirection array to linear (direct) extent allocations.
3724 xfs_iext_indirect_to_direct(
3725 xfs_ifork_t
*ifp
) /* inode fork pointer */
3727 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3728 xfs_extnum_t nextents
; /* number of extents in file */
3729 int size
; /* size of file extents */
3731 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3732 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3733 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3734 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3736 xfs_iext_irec_compact_pages(ifp
);
3737 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3739 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3740 kmem_free(ifp
->if_u1
.if_ext_irec
);
3741 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3742 ifp
->if_u1
.if_extents
= ep
;
3743 ifp
->if_bytes
= size
;
3744 if (nextents
< XFS_LINEAR_EXTS
) {
3745 xfs_iext_realloc_direct(ifp
, size
);
3750 * Free incore file extents.
3754 xfs_ifork_t
*ifp
) /* inode fork pointer */
3756 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3760 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3761 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3762 xfs_iext_irec_remove(ifp
, erp_idx
);
3764 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3765 } else if (ifp
->if_real_bytes
) {
3766 kmem_free(ifp
->if_u1
.if_extents
);
3767 } else if (ifp
->if_bytes
) {
3768 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3769 sizeof(xfs_bmbt_rec_t
));
3771 ifp
->if_u1
.if_extents
= NULL
;
3772 ifp
->if_real_bytes
= 0;
3777 * Return a pointer to the extent record for file system block bno.
3779 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3780 xfs_iext_bno_to_ext(
3781 xfs_ifork_t
*ifp
, /* inode fork pointer */
3782 xfs_fileoff_t bno
, /* block number to search for */
3783 xfs_extnum_t
*idxp
) /* index of target extent */
3785 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3786 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3787 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3788 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3789 int high
; /* upper boundary in search */
3790 xfs_extnum_t idx
= 0; /* index of target extent */
3791 int low
; /* lower boundary in search */
3792 xfs_extnum_t nextents
; /* number of file extents */
3793 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3795 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3796 if (nextents
== 0) {
3801 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3802 /* Find target extent list */
3804 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3805 base
= erp
->er_extbuf
;
3806 high
= erp
->er_extcount
- 1;
3808 base
= ifp
->if_u1
.if_extents
;
3809 high
= nextents
- 1;
3811 /* Binary search extent records */
3812 while (low
<= high
) {
3813 idx
= (low
+ high
) >> 1;
3815 startoff
= xfs_bmbt_get_startoff(ep
);
3816 blockcount
= xfs_bmbt_get_blockcount(ep
);
3817 if (bno
< startoff
) {
3819 } else if (bno
>= startoff
+ blockcount
) {
3822 /* Convert back to file-based extent index */
3823 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3824 idx
+= erp
->er_extoff
;
3830 /* Convert back to file-based extent index */
3831 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3832 idx
+= erp
->er_extoff
;
3834 if (bno
>= startoff
+ blockcount
) {
3835 if (++idx
== nextents
) {
3838 ep
= xfs_iext_get_ext(ifp
, idx
);
3846 * Return a pointer to the indirection array entry containing the
3847 * extent record for filesystem block bno. Store the index of the
3848 * target irec in *erp_idxp.
3850 xfs_ext_irec_t
* /* pointer to found extent record */
3851 xfs_iext_bno_to_irec(
3852 xfs_ifork_t
*ifp
, /* inode fork pointer */
3853 xfs_fileoff_t bno
, /* block number to search for */
3854 int *erp_idxp
) /* irec index of target ext list */
3856 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3857 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3858 int erp_idx
; /* indirection array index */
3859 int nlists
; /* number of extent irec's (lists) */
3860 int high
; /* binary search upper limit */
3861 int low
; /* binary search lower limit */
3863 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3864 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3868 while (low
<= high
) {
3869 erp_idx
= (low
+ high
) >> 1;
3870 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3871 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3872 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3874 } else if (erp_next
&& bno
>=
3875 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3881 *erp_idxp
= erp_idx
;
3886 * Return a pointer to the indirection array entry containing the
3887 * extent record at file extent index *idxp. Store the index of the
3888 * target irec in *erp_idxp and store the page index of the target
3889 * extent record in *idxp.
3892 xfs_iext_idx_to_irec(
3893 xfs_ifork_t
*ifp
, /* inode fork pointer */
3894 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3895 int *erp_idxp
, /* pointer to target irec */
3896 int realloc
) /* new bytes were just added */
3898 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3899 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3900 int erp_idx
; /* indirection array index */
3901 int nlists
; /* number of irec's (ex lists) */
3902 int high
; /* binary search upper limit */
3903 int low
; /* binary search lower limit */
3904 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3906 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3907 ASSERT(page_idx
>= 0 && page_idx
<=
3908 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
3909 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3914 /* Binary search extent irec's */
3915 while (low
<= high
) {
3916 erp_idx
= (low
+ high
) >> 1;
3917 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3918 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3919 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3920 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3922 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3923 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3926 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3927 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3931 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3934 page_idx
-= erp
->er_extoff
;
3939 *erp_idxp
= erp_idx
;
3944 * Allocate and initialize an indirection array once the space needed
3945 * for incore extents increases above XFS_IEXT_BUFSZ.
3949 xfs_ifork_t
*ifp
) /* inode fork pointer */
3951 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3952 xfs_extnum_t nextents
; /* number of extents in file */
3954 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3955 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3956 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3958 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3960 if (nextents
== 0) {
3961 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3962 } else if (!ifp
->if_real_bytes
) {
3963 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3964 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3965 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3967 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3968 erp
->er_extcount
= nextents
;
3971 ifp
->if_flags
|= XFS_IFEXTIREC
;
3972 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3973 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3974 ifp
->if_u1
.if_ext_irec
= erp
;
3980 * Allocate and initialize a new entry in the indirection array.
3984 xfs_ifork_t
*ifp
, /* inode fork pointer */
3985 int erp_idx
) /* index for new irec */
3987 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3988 int i
; /* loop counter */
3989 int nlists
; /* number of irec's (ex lists) */
3991 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3992 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3994 /* Resize indirection array */
3995 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3996 sizeof(xfs_ext_irec_t
));
3998 * Move records down in the array so the
3999 * new page can use erp_idx.
4001 erp
= ifp
->if_u1
.if_ext_irec
;
4002 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4003 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4005 ASSERT(i
== erp_idx
);
4007 /* Initialize new extent record */
4008 erp
= ifp
->if_u1
.if_ext_irec
;
4009 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4010 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4011 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4012 erp
[erp_idx
].er_extcount
= 0;
4013 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4014 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4015 return (&erp
[erp_idx
]);
4019 * Remove a record from the indirection array.
4022 xfs_iext_irec_remove(
4023 xfs_ifork_t
*ifp
, /* inode fork pointer */
4024 int erp_idx
) /* irec index to remove */
4026 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4027 int i
; /* loop counter */
4028 int nlists
; /* number of irec's (ex lists) */
4030 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4031 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4032 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4033 if (erp
->er_extbuf
) {
4034 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4036 kmem_free(erp
->er_extbuf
);
4038 /* Compact extent records */
4039 erp
= ifp
->if_u1
.if_ext_irec
;
4040 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4041 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4044 * Manually free the last extent record from the indirection
4045 * array. A call to xfs_iext_realloc_indirect() with a size
4046 * of zero would result in a call to xfs_iext_destroy() which
4047 * would in turn call this function again, creating a nasty
4051 xfs_iext_realloc_indirect(ifp
,
4052 nlists
* sizeof(xfs_ext_irec_t
));
4054 kmem_free(ifp
->if_u1
.if_ext_irec
);
4056 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4060 * This is called to clean up large amounts of unused memory allocated
4061 * by the indirection array. Before compacting anything though, verify
4062 * that the indirection array is still needed and switch back to the
4063 * linear extent list (or even the inline buffer) if possible. The
4064 * compaction policy is as follows:
4066 * Full Compaction: Extents fit into a single page (or inline buffer)
4067 * Partial Compaction: Extents occupy less than 50% of allocated space
4068 * No Compaction: Extents occupy at least 50% of allocated space
4071 xfs_iext_irec_compact(
4072 xfs_ifork_t
*ifp
) /* inode fork pointer */
4074 xfs_extnum_t nextents
; /* number of extents in file */
4075 int nlists
; /* number of irec's (ex lists) */
4077 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4078 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4079 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4081 if (nextents
== 0) {
4082 xfs_iext_destroy(ifp
);
4083 } else if (nextents
<= XFS_INLINE_EXTS
) {
4084 xfs_iext_indirect_to_direct(ifp
);
4085 xfs_iext_direct_to_inline(ifp
, nextents
);
4086 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4087 xfs_iext_indirect_to_direct(ifp
);
4088 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4089 xfs_iext_irec_compact_pages(ifp
);
4094 * Combine extents from neighboring extent pages.
4097 xfs_iext_irec_compact_pages(
4098 xfs_ifork_t
*ifp
) /* inode fork pointer */
4100 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4101 int erp_idx
= 0; /* indirection array index */
4102 int nlists
; /* number of irec's (ex lists) */
4104 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4105 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4106 while (erp_idx
< nlists
- 1) {
4107 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4109 if (erp_next
->er_extcount
<=
4110 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4111 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4112 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4113 sizeof(xfs_bmbt_rec_t
));
4114 erp
->er_extcount
+= erp_next
->er_extcount
;
4116 * Free page before removing extent record
4117 * so er_extoffs don't get modified in
4118 * xfs_iext_irec_remove.
4120 kmem_free(erp_next
->er_extbuf
);
4121 erp_next
->er_extbuf
= NULL
;
4122 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4123 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4131 * This is called to update the er_extoff field in the indirection
4132 * array when extents have been added or removed from one of the
4133 * extent lists. erp_idx contains the irec index to begin updating
4134 * at and ext_diff contains the number of extents that were added
4138 xfs_iext_irec_update_extoffs(
4139 xfs_ifork_t
*ifp
, /* inode fork pointer */
4140 int erp_idx
, /* irec index to update */
4141 int ext_diff
) /* number of new extents */
4143 int i
; /* loop counter */
4144 int nlists
; /* number of irec's (ex lists */
4146 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4147 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4148 for (i
= erp_idx
; i
< nlists
; i
++) {
4149 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;