ALSA: snd-meastro3: Document hardware volume control a bit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / pci / sis7019.c
blob9cc1b5aa0148f92445986601b6399ca1eb9a8306
1 /*
2 * Driver for SiS7019 Audio Accelerator
4 * Copyright (C) 2004-2007, David Dillow
5 * Written by David Dillow <dave@thedillows.org>
6 * Inspired by the Trident 4D-WaveDX/NX driver.
8 * All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
41 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
43 static int enable = 1;
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable, bool, 0444);
50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
52 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = {
53 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
54 { 0, }
57 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
59 /* There are three timing modes for the voices.
61 * For both playback and capture, when the buffer is one or two periods long,
62 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
63 * to let us know when the periods have ended.
65 * When performing playback with more than two periods per buffer, we set
66 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
67 * reach it. We then update the offset and continue on until we are
68 * interrupted for the next period.
70 * Capture channels do not have a SSO, so we allocate a playback channel to
71 * use as a timer for the capture periods. We use the SSO on the playback
72 * channel to clock out virtual periods, and adjust the virtual period length
73 * to maintain synchronization. This algorithm came from the Trident driver.
75 * FIXME: It'd be nice to make use of some of the synth features in the
76 * hardware, but a woeful lack of documentation is a significant roadblock.
78 struct voice {
79 u16 flags;
80 #define VOICE_IN_USE 1
81 #define VOICE_CAPTURE 2
82 #define VOICE_SSO_TIMING 4
83 #define VOICE_SYNC_TIMING 8
84 u16 sync_cso;
85 u16 period_size;
86 u16 buffer_size;
87 u16 sync_period_size;
88 u16 sync_buffer_size;
89 u32 sso;
90 u32 vperiod;
91 struct snd_pcm_substream *substream;
92 struct voice *timing;
93 void __iomem *ctrl_base;
94 void __iomem *wave_base;
95 void __iomem *sync_base;
96 int num;
99 /* We need four pages to store our wave parameters during a suspend. If
100 * we're not doing power management, we still need to allocate a page
101 * for the silence buffer.
103 #ifdef CONFIG_PM
104 #define SIS_SUSPEND_PAGES 4
105 #else
106 #define SIS_SUSPEND_PAGES 1
107 #endif
109 struct sis7019 {
110 unsigned long ioport;
111 void __iomem *ioaddr;
112 int irq;
113 int codecs_present;
115 struct pci_dev *pci;
116 struct snd_pcm *pcm;
117 struct snd_card *card;
118 struct snd_ac97 *ac97[3];
120 /* Protect against more than one thread hitting the AC97
121 * registers (in a more polite manner than pounding the hardware
122 * semaphore)
124 struct mutex ac97_mutex;
126 /* voice_lock protects allocation/freeing of the voice descriptions
128 spinlock_t voice_lock;
130 struct voice voices[64];
131 struct voice capture_voice;
133 /* Allocate pages to store the internal wave state during
134 * suspends. When we're operating, this can be used as a silence
135 * buffer for a timing channel.
137 void *suspend_state[SIS_SUSPEND_PAGES];
139 int silence_users;
140 dma_addr_t silence_dma_addr;
143 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
144 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
145 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
148 * documented range of 8-0xfff8 samples. Given that they are 0-based,
149 * that places our period/buffer range at 9-0xfff9 samples. That makes the
150 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
151 * max samples / min samples gives us the max periods in a buffer.
153 * We'll add a constraint upon open that limits the period and buffer sample
154 * size to values that are legal for the hardware.
156 static struct snd_pcm_hardware sis_playback_hw_info = {
157 .info = (SNDRV_PCM_INFO_MMAP |
158 SNDRV_PCM_INFO_MMAP_VALID |
159 SNDRV_PCM_INFO_INTERLEAVED |
160 SNDRV_PCM_INFO_BLOCK_TRANSFER |
161 SNDRV_PCM_INFO_SYNC_START |
162 SNDRV_PCM_INFO_RESUME),
163 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
164 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
165 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
166 .rate_min = 4000,
167 .rate_max = 48000,
168 .channels_min = 1,
169 .channels_max = 2,
170 .buffer_bytes_max = (0xfff9 * 4),
171 .period_bytes_min = 9,
172 .period_bytes_max = (0xfff9 * 4),
173 .periods_min = 1,
174 .periods_max = (0xfff9 / 9),
177 static struct snd_pcm_hardware sis_capture_hw_info = {
178 .info = (SNDRV_PCM_INFO_MMAP |
179 SNDRV_PCM_INFO_MMAP_VALID |
180 SNDRV_PCM_INFO_INTERLEAVED |
181 SNDRV_PCM_INFO_BLOCK_TRANSFER |
182 SNDRV_PCM_INFO_SYNC_START |
183 SNDRV_PCM_INFO_RESUME),
184 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
185 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
186 .rates = SNDRV_PCM_RATE_48000,
187 .rate_min = 4000,
188 .rate_max = 48000,
189 .channels_min = 1,
190 .channels_max = 2,
191 .buffer_bytes_max = (0xfff9 * 4),
192 .period_bytes_min = 9,
193 .period_bytes_max = (0xfff9 * 4),
194 .periods_min = 1,
195 .periods_max = (0xfff9 / 9),
198 static void sis_update_sso(struct voice *voice, u16 period)
200 void __iomem *base = voice->ctrl_base;
202 voice->sso += period;
203 if (voice->sso >= voice->buffer_size)
204 voice->sso -= voice->buffer_size;
206 /* Enforce the documented hardware minimum offset */
207 if (voice->sso < 8)
208 voice->sso = 8;
210 /* The SSO is in the upper 16 bits of the register. */
211 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
214 static void sis_update_voice(struct voice *voice)
216 if (voice->flags & VOICE_SSO_TIMING) {
217 sis_update_sso(voice, voice->period_size);
218 } else if (voice->flags & VOICE_SYNC_TIMING) {
219 int sync;
221 /* If we've not hit the end of the virtual period, update
222 * our records and keep going.
224 if (voice->vperiod > voice->period_size) {
225 voice->vperiod -= voice->period_size;
226 if (voice->vperiod < voice->period_size)
227 sis_update_sso(voice, voice->vperiod);
228 else
229 sis_update_sso(voice, voice->period_size);
230 return;
233 /* Calculate our relative offset between the target and
234 * the actual CSO value. Since we're operating in a loop,
235 * if the value is more than half way around, we can
236 * consider ourselves wrapped.
238 sync = voice->sync_cso;
239 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
240 if (sync > (voice->sync_buffer_size / 2))
241 sync -= voice->sync_buffer_size;
243 /* If sync is positive, then we interrupted too early, and
244 * we'll need to come back in a few samples and try again.
245 * There's a minimum wait, as it takes some time for the DMA
246 * engine to startup, etc...
248 if (sync > 0) {
249 if (sync < 16)
250 sync = 16;
251 sis_update_sso(voice, sync);
252 return;
255 /* Ok, we interrupted right on time, or (hopefully) just
256 * a bit late. We'll adjst our next waiting period based
257 * on how close we got.
259 * We need to stay just behind the actual channel to ensure
260 * it really is past a period when we get our interrupt --
261 * otherwise we'll fall into the early code above and have
262 * a minimum wait time, which makes us quite late here,
263 * eating into the user's time to refresh the buffer, esp.
264 * if using small periods.
266 * If we're less than 9 samples behind, we're on target.
268 if (sync > -9)
269 voice->vperiod = voice->sync_period_size + 1;
270 else
271 voice->vperiod = voice->sync_period_size - 4;
273 if (voice->vperiod < voice->buffer_size) {
274 sis_update_sso(voice, voice->vperiod);
275 voice->vperiod = 0;
276 } else
277 sis_update_sso(voice, voice->period_size);
279 sync = voice->sync_cso + voice->sync_period_size;
280 if (sync >= voice->sync_buffer_size)
281 sync -= voice->sync_buffer_size;
282 voice->sync_cso = sync;
285 snd_pcm_period_elapsed(voice->substream);
288 static void sis_voice_irq(u32 status, struct voice *voice)
290 int bit;
292 while (status) {
293 bit = __ffs(status);
294 status >>= bit + 1;
295 voice += bit;
296 sis_update_voice(voice);
297 voice++;
301 static irqreturn_t sis_interrupt(int irq, void *dev)
303 struct sis7019 *sis = dev;
304 unsigned long io = sis->ioport;
305 struct voice *voice;
306 u32 intr, status;
308 /* We only use the DMA interrupts, and we don't enable any other
309 * source of interrupts. But, it is possible to see an interupt
310 * status that didn't actually interrupt us, so eliminate anything
311 * we're not expecting to avoid falsely claiming an IRQ, and an
312 * ensuing endless loop.
314 intr = inl(io + SIS_GISR);
315 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
316 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
317 if (!intr)
318 return IRQ_NONE;
320 do {
321 status = inl(io + SIS_PISR_A);
322 if (status) {
323 sis_voice_irq(status, sis->voices);
324 outl(status, io + SIS_PISR_A);
327 status = inl(io + SIS_PISR_B);
328 if (status) {
329 sis_voice_irq(status, &sis->voices[32]);
330 outl(status, io + SIS_PISR_B);
333 status = inl(io + SIS_RISR);
334 if (status) {
335 voice = &sis->capture_voice;
336 if (!voice->timing)
337 snd_pcm_period_elapsed(voice->substream);
339 outl(status, io + SIS_RISR);
342 outl(intr, io + SIS_GISR);
343 intr = inl(io + SIS_GISR);
344 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
345 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
346 } while (intr);
348 return IRQ_HANDLED;
351 static u32 sis_rate_to_delta(unsigned int rate)
353 u32 delta;
355 /* This was copied from the trident driver, but it seems its gotten
356 * around a bit... nevertheless, it works well.
358 * We special case 44100 and 8000 since rounding with the equation
359 * does not give us an accurate enough value. For 11025 and 22050
360 * the equation gives us the best answer. All other frequencies will
361 * also use the equation. JDW
363 if (rate == 44100)
364 delta = 0xeb3;
365 else if (rate == 8000)
366 delta = 0x2ab;
367 else if (rate == 48000)
368 delta = 0x1000;
369 else
370 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
371 return delta;
374 static void __sis_map_silence(struct sis7019 *sis)
376 /* Helper function: must hold sis->voice_lock on entry */
377 if (!sis->silence_users)
378 sis->silence_dma_addr = pci_map_single(sis->pci,
379 sis->suspend_state[0],
380 4096, PCI_DMA_TODEVICE);
381 sis->silence_users++;
384 static void __sis_unmap_silence(struct sis7019 *sis)
386 /* Helper function: must hold sis->voice_lock on entry */
387 sis->silence_users--;
388 if (!sis->silence_users)
389 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
390 PCI_DMA_TODEVICE);
393 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
395 unsigned long flags;
397 spin_lock_irqsave(&sis->voice_lock, flags);
398 if (voice->timing) {
399 __sis_unmap_silence(sis);
400 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
401 VOICE_SYNC_TIMING);
402 voice->timing = NULL;
404 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
405 spin_unlock_irqrestore(&sis->voice_lock, flags);
408 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
410 /* Must hold the voice_lock on entry */
411 struct voice *voice;
412 int i;
414 for (i = 0; i < 64; i++) {
415 voice = &sis->voices[i];
416 if (voice->flags & VOICE_IN_USE)
417 continue;
418 voice->flags |= VOICE_IN_USE;
419 goto found_one;
421 voice = NULL;
423 found_one:
424 return voice;
427 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
429 struct voice *voice;
430 unsigned long flags;
432 spin_lock_irqsave(&sis->voice_lock, flags);
433 voice = __sis_alloc_playback_voice(sis);
434 spin_unlock_irqrestore(&sis->voice_lock, flags);
436 return voice;
439 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
440 struct snd_pcm_hw_params *hw_params)
442 struct sis7019 *sis = snd_pcm_substream_chip(substream);
443 struct snd_pcm_runtime *runtime = substream->runtime;
444 struct voice *voice = runtime->private_data;
445 unsigned int period_size, buffer_size;
446 unsigned long flags;
447 int needed;
449 /* If there are one or two periods per buffer, we don't need a
450 * timing voice, as we can use the capture channel's interrupts
451 * to clock out the periods.
453 period_size = params_period_size(hw_params);
454 buffer_size = params_buffer_size(hw_params);
455 needed = (period_size != buffer_size &&
456 period_size != (buffer_size / 2));
458 if (needed && !voice->timing) {
459 spin_lock_irqsave(&sis->voice_lock, flags);
460 voice->timing = __sis_alloc_playback_voice(sis);
461 if (voice->timing)
462 __sis_map_silence(sis);
463 spin_unlock_irqrestore(&sis->voice_lock, flags);
464 if (!voice->timing)
465 return -ENOMEM;
466 voice->timing->substream = substream;
467 } else if (!needed && voice->timing) {
468 sis_free_voice(sis, voice);
469 voice->timing = NULL;
472 return 0;
475 static int sis_playback_open(struct snd_pcm_substream *substream)
477 struct sis7019 *sis = snd_pcm_substream_chip(substream);
478 struct snd_pcm_runtime *runtime = substream->runtime;
479 struct voice *voice;
481 voice = sis_alloc_playback_voice(sis);
482 if (!voice)
483 return -EAGAIN;
485 voice->substream = substream;
486 runtime->private_data = voice;
487 runtime->hw = sis_playback_hw_info;
488 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
489 9, 0xfff9);
490 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
491 9, 0xfff9);
492 snd_pcm_set_sync(substream);
493 return 0;
496 static int sis_substream_close(struct snd_pcm_substream *substream)
498 struct sis7019 *sis = snd_pcm_substream_chip(substream);
499 struct snd_pcm_runtime *runtime = substream->runtime;
500 struct voice *voice = runtime->private_data;
502 sis_free_voice(sis, voice);
503 return 0;
506 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
507 struct snd_pcm_hw_params *hw_params)
509 return snd_pcm_lib_malloc_pages(substream,
510 params_buffer_bytes(hw_params));
513 static int sis_hw_free(struct snd_pcm_substream *substream)
515 return snd_pcm_lib_free_pages(substream);
518 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
520 struct snd_pcm_runtime *runtime = substream->runtime;
521 struct voice *voice = runtime->private_data;
522 void __iomem *ctrl_base = voice->ctrl_base;
523 void __iomem *wave_base = voice->wave_base;
524 u32 format, dma_addr, control, sso_eso, delta, reg;
525 u16 leo;
527 /* We rely on the PCM core to ensure that the parameters for this
528 * substream do not change on us while we're programming the HW.
530 format = 0;
531 if (snd_pcm_format_width(runtime->format) == 8)
532 format |= SIS_PLAY_DMA_FORMAT_8BIT;
533 if (!snd_pcm_format_signed(runtime->format))
534 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
535 if (runtime->channels == 1)
536 format |= SIS_PLAY_DMA_FORMAT_MONO;
538 /* The baseline setup is for a single period per buffer, and
539 * we add bells and whistles as needed from there.
541 dma_addr = runtime->dma_addr;
542 leo = runtime->buffer_size - 1;
543 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
544 sso_eso = leo;
546 if (runtime->period_size == (runtime->buffer_size / 2)) {
547 control |= SIS_PLAY_DMA_INTR_AT_MLP;
548 } else if (runtime->period_size != runtime->buffer_size) {
549 voice->flags |= VOICE_SSO_TIMING;
550 voice->sso = runtime->period_size - 1;
551 voice->period_size = runtime->period_size;
552 voice->buffer_size = runtime->buffer_size;
554 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
555 control |= SIS_PLAY_DMA_INTR_AT_SSO;
556 sso_eso |= (runtime->period_size - 1) << 16;
559 delta = sis_rate_to_delta(runtime->rate);
561 /* Ok, we're ready to go, set up the channel.
563 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
564 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
565 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
566 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
568 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
569 writel(0, wave_base + reg);
571 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
572 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
573 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
574 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
575 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
576 wave_base + SIS_WAVE_CHANNEL_CONTROL);
578 /* Force PCI writes to post. */
579 readl(ctrl_base);
581 return 0;
584 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
586 struct sis7019 *sis = snd_pcm_substream_chip(substream);
587 unsigned long io = sis->ioport;
588 struct snd_pcm_substream *s;
589 struct voice *voice;
590 void *chip;
591 int starting;
592 u32 record = 0;
593 u32 play[2] = { 0, 0 };
595 /* No locks needed, as the PCM core will hold the locks on the
596 * substreams, and the HW will only start/stop the indicated voices
597 * without changing the state of the others.
599 switch (cmd) {
600 case SNDRV_PCM_TRIGGER_START:
601 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
602 case SNDRV_PCM_TRIGGER_RESUME:
603 starting = 1;
604 break;
605 case SNDRV_PCM_TRIGGER_STOP:
606 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
607 case SNDRV_PCM_TRIGGER_SUSPEND:
608 starting = 0;
609 break;
610 default:
611 return -EINVAL;
614 snd_pcm_group_for_each_entry(s, substream) {
615 /* Make sure it is for us... */
616 chip = snd_pcm_substream_chip(s);
617 if (chip != sis)
618 continue;
620 voice = s->runtime->private_data;
621 if (voice->flags & VOICE_CAPTURE) {
622 record |= 1 << voice->num;
623 voice = voice->timing;
626 /* voice could be NULL if this a recording stream, and it
627 * doesn't have an external timing channel.
629 if (voice)
630 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
632 snd_pcm_trigger_done(s, substream);
635 if (starting) {
636 if (record)
637 outl(record, io + SIS_RECORD_START_REG);
638 if (play[0])
639 outl(play[0], io + SIS_PLAY_START_A_REG);
640 if (play[1])
641 outl(play[1], io + SIS_PLAY_START_B_REG);
642 } else {
643 if (record)
644 outl(record, io + SIS_RECORD_STOP_REG);
645 if (play[0])
646 outl(play[0], io + SIS_PLAY_STOP_A_REG);
647 if (play[1])
648 outl(play[1], io + SIS_PLAY_STOP_B_REG);
650 return 0;
653 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
655 struct snd_pcm_runtime *runtime = substream->runtime;
656 struct voice *voice = runtime->private_data;
657 u32 cso;
659 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
660 cso &= 0xffff;
661 return cso;
664 static int sis_capture_open(struct snd_pcm_substream *substream)
666 struct sis7019 *sis = snd_pcm_substream_chip(substream);
667 struct snd_pcm_runtime *runtime = substream->runtime;
668 struct voice *voice = &sis->capture_voice;
669 unsigned long flags;
671 /* FIXME: The driver only supports recording from one channel
672 * at the moment, but it could support more.
674 spin_lock_irqsave(&sis->voice_lock, flags);
675 if (voice->flags & VOICE_IN_USE)
676 voice = NULL;
677 else
678 voice->flags |= VOICE_IN_USE;
679 spin_unlock_irqrestore(&sis->voice_lock, flags);
681 if (!voice)
682 return -EAGAIN;
684 voice->substream = substream;
685 runtime->private_data = voice;
686 runtime->hw = sis_capture_hw_info;
687 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
688 snd_pcm_limit_hw_rates(runtime);
689 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
690 9, 0xfff9);
691 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
692 9, 0xfff9);
693 snd_pcm_set_sync(substream);
694 return 0;
697 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
698 struct snd_pcm_hw_params *hw_params)
700 struct sis7019 *sis = snd_pcm_substream_chip(substream);
701 int rc;
703 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
704 params_rate(hw_params));
705 if (rc)
706 goto out;
708 rc = snd_pcm_lib_malloc_pages(substream,
709 params_buffer_bytes(hw_params));
710 if (rc < 0)
711 goto out;
713 rc = sis_alloc_timing_voice(substream, hw_params);
715 out:
716 return rc;
719 static void sis_prepare_timing_voice(struct voice *voice,
720 struct snd_pcm_substream *substream)
722 struct sis7019 *sis = snd_pcm_substream_chip(substream);
723 struct snd_pcm_runtime *runtime = substream->runtime;
724 struct voice *timing = voice->timing;
725 void __iomem *play_base = timing->ctrl_base;
726 void __iomem *wave_base = timing->wave_base;
727 u16 buffer_size, period_size;
728 u32 format, control, sso_eso, delta;
729 u32 vperiod, sso, reg;
731 /* Set our initial buffer and period as large as we can given a
732 * single page of silence.
734 buffer_size = 4096 / runtime->channels;
735 buffer_size /= snd_pcm_format_size(runtime->format, 1);
736 period_size = buffer_size;
738 /* Initially, we want to interrupt just a bit behind the end of
739 * the period we're clocking out. 10 samples seems to give a good
740 * delay.
742 * We want to spread our interrupts throughout the virtual period,
743 * so that we don't end up with two interrupts back to back at the
744 * end -- this helps minimize the effects of any jitter. Adjust our
745 * clocking period size so that the last period is at least a fourth
746 * of a full period.
748 * This is all moot if we don't need to use virtual periods.
750 vperiod = runtime->period_size + 10;
751 if (vperiod > period_size) {
752 u16 tail = vperiod % period_size;
753 u16 quarter_period = period_size / 4;
755 if (tail && tail < quarter_period) {
756 u16 loops = vperiod / period_size;
758 tail = quarter_period - tail;
759 tail += loops - 1;
760 tail /= loops;
761 period_size -= tail;
764 sso = period_size - 1;
765 } else {
766 /* The initial period will fit inside the buffer, so we
767 * don't need to use virtual periods -- disable them.
769 period_size = runtime->period_size;
770 sso = vperiod - 1;
771 vperiod = 0;
774 /* The interrupt handler implements the timing syncronization, so
775 * setup its state.
777 timing->flags |= VOICE_SYNC_TIMING;
778 timing->sync_base = voice->ctrl_base;
779 timing->sync_cso = runtime->period_size - 1;
780 timing->sync_period_size = runtime->period_size;
781 timing->sync_buffer_size = runtime->buffer_size;
782 timing->period_size = period_size;
783 timing->buffer_size = buffer_size;
784 timing->sso = sso;
785 timing->vperiod = vperiod;
787 /* Using unsigned samples with the all-zero silence buffer
788 * forces the output to the lower rail, killing playback.
789 * So ignore unsigned vs signed -- it doesn't change the timing.
791 format = 0;
792 if (snd_pcm_format_width(runtime->format) == 8)
793 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
794 if (runtime->channels == 1)
795 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
797 control = timing->buffer_size - 1;
798 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
799 sso_eso = timing->buffer_size - 1;
800 sso_eso |= timing->sso << 16;
802 delta = sis_rate_to_delta(runtime->rate);
804 /* We've done the math, now configure the channel.
806 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
807 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
808 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
809 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
811 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
812 writel(0, wave_base + reg);
814 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
815 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
816 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
817 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
818 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
819 wave_base + SIS_WAVE_CHANNEL_CONTROL);
822 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
824 struct snd_pcm_runtime *runtime = substream->runtime;
825 struct voice *voice = runtime->private_data;
826 void __iomem *rec_base = voice->ctrl_base;
827 u32 format, dma_addr, control;
828 u16 leo;
830 /* We rely on the PCM core to ensure that the parameters for this
831 * substream do not change on us while we're programming the HW.
833 format = 0;
834 if (snd_pcm_format_width(runtime->format) == 8)
835 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
836 if (!snd_pcm_format_signed(runtime->format))
837 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
838 if (runtime->channels == 1)
839 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
841 dma_addr = runtime->dma_addr;
842 leo = runtime->buffer_size - 1;
843 control = leo | SIS_CAPTURE_DMA_LOOP;
845 /* If we've got more than two periods per buffer, then we have
846 * use a timing voice to clock out the periods. Otherwise, we can
847 * use the capture channel's interrupts.
849 if (voice->timing) {
850 sis_prepare_timing_voice(voice, substream);
851 } else {
852 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
853 if (runtime->period_size != runtime->buffer_size)
854 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
857 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
858 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
859 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
861 /* Force the writes to post. */
862 readl(rec_base);
864 return 0;
867 static struct snd_pcm_ops sis_playback_ops = {
868 .open = sis_playback_open,
869 .close = sis_substream_close,
870 .ioctl = snd_pcm_lib_ioctl,
871 .hw_params = sis_playback_hw_params,
872 .hw_free = sis_hw_free,
873 .prepare = sis_pcm_playback_prepare,
874 .trigger = sis_pcm_trigger,
875 .pointer = sis_pcm_pointer,
878 static struct snd_pcm_ops sis_capture_ops = {
879 .open = sis_capture_open,
880 .close = sis_substream_close,
881 .ioctl = snd_pcm_lib_ioctl,
882 .hw_params = sis_capture_hw_params,
883 .hw_free = sis_hw_free,
884 .prepare = sis_pcm_capture_prepare,
885 .trigger = sis_pcm_trigger,
886 .pointer = sis_pcm_pointer,
889 static int __devinit sis_pcm_create(struct sis7019 *sis)
891 struct snd_pcm *pcm;
892 int rc;
894 /* We have 64 voices, and the driver currently records from
895 * only one channel, though that could change in the future.
897 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
898 if (rc)
899 return rc;
901 pcm->private_data = sis;
902 strcpy(pcm->name, "SiS7019");
903 sis->pcm = pcm;
905 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
906 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
908 /* Try to preallocate some memory, but it's not the end of the
909 * world if this fails.
911 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
912 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
914 return 0;
917 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
919 unsigned long io = sis->ioport;
920 unsigned short val = 0xffff;
921 u16 status;
922 u16 rdy;
923 int count;
924 static const u16 codec_ready[3] = {
925 SIS_AC97_STATUS_CODEC_READY,
926 SIS_AC97_STATUS_CODEC2_READY,
927 SIS_AC97_STATUS_CODEC3_READY,
930 rdy = codec_ready[codec];
933 /* Get the AC97 semaphore -- software first, so we don't spin
934 * pounding out IO reads on the hardware semaphore...
936 mutex_lock(&sis->ac97_mutex);
938 count = 0xffff;
939 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
940 udelay(1);
942 if (!count)
943 goto timeout;
945 /* ... and wait for any outstanding commands to complete ...
947 count = 0xffff;
948 do {
949 status = inw(io + SIS_AC97_STATUS);
950 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
951 break;
953 udelay(1);
954 } while (--count);
956 if (!count)
957 goto timeout_sema;
959 /* ... before sending our command and waiting for it to finish ...
961 outl(cmd, io + SIS_AC97_CMD);
962 udelay(10);
964 count = 0xffff;
965 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
966 udelay(1);
968 /* ... and reading the results (if any).
970 val = inl(io + SIS_AC97_CMD) >> 16;
972 timeout_sema:
973 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
974 timeout:
975 mutex_unlock(&sis->ac97_mutex);
977 if (!count) {
978 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
979 codec, cmd);
982 return val;
985 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
986 unsigned short val)
988 static const u32 cmd[3] = {
989 SIS_AC97_CMD_CODEC_WRITE,
990 SIS_AC97_CMD_CODEC2_WRITE,
991 SIS_AC97_CMD_CODEC3_WRITE,
993 sis_ac97_rw(ac97->private_data, ac97->num,
994 (val << 16) | (reg << 8) | cmd[ac97->num]);
997 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
999 static const u32 cmd[3] = {
1000 SIS_AC97_CMD_CODEC_READ,
1001 SIS_AC97_CMD_CODEC2_READ,
1002 SIS_AC97_CMD_CODEC3_READ,
1004 return sis_ac97_rw(ac97->private_data, ac97->num,
1005 (reg << 8) | cmd[ac97->num]);
1008 static int __devinit sis_mixer_create(struct sis7019 *sis)
1010 struct snd_ac97_bus *bus;
1011 struct snd_ac97_template ac97;
1012 static struct snd_ac97_bus_ops ops = {
1013 .write = sis_ac97_write,
1014 .read = sis_ac97_read,
1016 int rc;
1018 memset(&ac97, 0, sizeof(ac97));
1019 ac97.private_data = sis;
1021 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1022 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1023 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1024 ac97.num = 1;
1025 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1026 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1027 ac97.num = 2;
1028 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1029 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1031 /* If we return an error here, then snd_card_free() should
1032 * free up any ac97 codecs that got created, as well as the bus.
1034 return rc;
1037 static void sis_free_suspend(struct sis7019 *sis)
1039 int i;
1041 for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1042 kfree(sis->suspend_state[i]);
1045 static int sis_chip_free(struct sis7019 *sis)
1047 /* Reset the chip, and disable all interrputs.
1049 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1050 udelay(10);
1051 outl(0, sis->ioport + SIS_GCR);
1052 outl(0, sis->ioport + SIS_GIER);
1054 /* Now, free everything we allocated.
1056 if (sis->irq >= 0)
1057 free_irq(sis->irq, sis);
1059 if (sis->ioaddr)
1060 iounmap(sis->ioaddr);
1062 pci_release_regions(sis->pci);
1063 pci_disable_device(sis->pci);
1065 sis_free_suspend(sis);
1066 return 0;
1069 static int sis_dev_free(struct snd_device *dev)
1071 struct sis7019 *sis = dev->device_data;
1072 return sis_chip_free(sis);
1075 static int sis_chip_init(struct sis7019 *sis)
1077 unsigned long io = sis->ioport;
1078 void __iomem *ioaddr = sis->ioaddr;
1079 u16 status;
1080 int count;
1081 int i;
1083 /* Reset the audio controller
1085 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1086 udelay(10);
1087 outl(0, io + SIS_GCR);
1089 /* Get the AC-link semaphore, and reset the codecs
1091 count = 0xffff;
1092 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1093 udelay(1);
1095 if (!count)
1096 return -EIO;
1098 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1099 udelay(10);
1101 count = 0xffff;
1102 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1103 udelay(1);
1105 /* Now that we've finished the reset, find out what's attached.
1107 status = inl(io + SIS_AC97_STATUS);
1108 if (status & SIS_AC97_STATUS_CODEC_READY)
1109 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1110 if (status & SIS_AC97_STATUS_CODEC2_READY)
1111 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1112 if (status & SIS_AC97_STATUS_CODEC3_READY)
1113 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1115 /* All done, let go of the semaphore, and check for errors
1117 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1118 if (!sis->codecs_present || !count)
1119 return -EIO;
1121 /* Let the hardware know that the audio driver is alive,
1122 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1123 * record channels. We're going to want to use Variable Rate Audio
1124 * for recording, to avoid needlessly resampling from 48kHZ.
1126 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1127 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1128 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1129 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1130 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1132 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1134 outl(0, io + SIS_AC97_PSR);
1136 /* There is only one valid DMA setup for a PCI environment.
1138 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1140 /* Reset the syncronization groups for all of the channels
1141 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1142 * we'll need to change how we handle these. Until then, we just
1143 * assign sub-mixer 0 to all playback channels, and avoid any
1144 * attenuation on the audio.
1146 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1147 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1148 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1149 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1150 outl(0, io + SIS_MIXER_SYNC_GROUP);
1152 for (i = 0; i < 64; i++) {
1153 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1154 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1155 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1158 /* Don't attenuate any audio set for the wave amplifier.
1160 * FIXME: Maximum attenuation is set for the music amp, which will
1161 * need to change if we start using the synth engine.
1163 outl(0xffff0000, io + SIS_WEVCR);
1165 /* Ensure that the wave engine is in normal operating mode.
1167 outl(0, io + SIS_WECCR);
1169 /* Go ahead and enable the DMA interrupts. They won't go live
1170 * until we start a channel.
1172 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1173 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1175 return 0;
1178 #ifdef CONFIG_PM
1179 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1181 struct snd_card *card = pci_get_drvdata(pci);
1182 struct sis7019 *sis = card->private_data;
1183 void __iomem *ioaddr = sis->ioaddr;
1184 int i;
1186 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1187 snd_pcm_suspend_all(sis->pcm);
1188 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1189 snd_ac97_suspend(sis->ac97[0]);
1190 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1191 snd_ac97_suspend(sis->ac97[1]);
1192 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1193 snd_ac97_suspend(sis->ac97[2]);
1195 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1197 if (sis->irq >= 0) {
1198 free_irq(sis->irq, sis);
1199 sis->irq = -1;
1202 /* Save the internal state away
1204 for (i = 0; i < 4; i++) {
1205 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1206 ioaddr += 4096;
1209 pci_disable_device(pci);
1210 pci_save_state(pci);
1211 pci_set_power_state(pci, pci_choose_state(pci, state));
1212 return 0;
1215 static int sis_resume(struct pci_dev *pci)
1217 struct snd_card *card = pci_get_drvdata(pci);
1218 struct sis7019 *sis = card->private_data;
1219 void __iomem *ioaddr = sis->ioaddr;
1220 int i;
1222 pci_set_power_state(pci, PCI_D0);
1223 pci_restore_state(pci);
1225 if (pci_enable_device(pci) < 0) {
1226 printk(KERN_ERR "sis7019: unable to re-enable device\n");
1227 goto error;
1230 if (sis_chip_init(sis)) {
1231 printk(KERN_ERR "sis7019: unable to re-init controller\n");
1232 goto error;
1235 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1236 card->shortname, sis)) {
1237 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1238 goto error;
1241 /* Restore saved state, then clear out the page we use for the
1242 * silence buffer.
1244 for (i = 0; i < 4; i++) {
1245 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1246 ioaddr += 4096;
1249 memset(sis->suspend_state[0], 0, 4096);
1251 sis->irq = pci->irq;
1252 pci_set_master(pci);
1254 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1255 snd_ac97_resume(sis->ac97[0]);
1256 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1257 snd_ac97_resume(sis->ac97[1]);
1258 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1259 snd_ac97_resume(sis->ac97[2]);
1261 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1262 return 0;
1264 error:
1265 snd_card_disconnect(card);
1266 return -EIO;
1268 #endif /* CONFIG_PM */
1270 static int sis_alloc_suspend(struct sis7019 *sis)
1272 int i;
1274 /* We need 16K to store the internal wave engine state during a
1275 * suspend, but we don't need it to be contiguous, so play nice
1276 * with the memory system. We'll also use this area for a silence
1277 * buffer.
1279 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1280 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1281 if (!sis->suspend_state[i])
1282 return -ENOMEM;
1284 memset(sis->suspend_state[0], 0, 4096);
1286 return 0;
1289 static int __devinit sis_chip_create(struct snd_card *card,
1290 struct pci_dev *pci)
1292 struct sis7019 *sis = card->private_data;
1293 struct voice *voice;
1294 static struct snd_device_ops ops = {
1295 .dev_free = sis_dev_free,
1297 int rc;
1298 int i;
1300 rc = pci_enable_device(pci);
1301 if (rc)
1302 goto error_out;
1304 if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1305 printk(KERN_ERR "sis7019: architecture does not support "
1306 "30-bit PCI busmaster DMA");
1307 goto error_out_enabled;
1310 memset(sis, 0, sizeof(*sis));
1311 mutex_init(&sis->ac97_mutex);
1312 spin_lock_init(&sis->voice_lock);
1313 sis->card = card;
1314 sis->pci = pci;
1315 sis->irq = -1;
1316 sis->ioport = pci_resource_start(pci, 0);
1318 rc = pci_request_regions(pci, "SiS7019");
1319 if (rc) {
1320 printk(KERN_ERR "sis7019: unable request regions\n");
1321 goto error_out_enabled;
1324 rc = -EIO;
1325 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1326 if (!sis->ioaddr) {
1327 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1328 goto error_out_cleanup;
1331 rc = sis_alloc_suspend(sis);
1332 if (rc < 0) {
1333 printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1334 goto error_out_cleanup;
1337 rc = sis_chip_init(sis);
1338 if (rc)
1339 goto error_out_cleanup;
1341 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1342 card->shortname, sis)) {
1343 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1344 goto error_out_cleanup;
1347 sis->irq = pci->irq;
1348 pci_set_master(pci);
1350 for (i = 0; i < 64; i++) {
1351 voice = &sis->voices[i];
1352 voice->num = i;
1353 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1354 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1357 voice = &sis->capture_voice;
1358 voice->flags = VOICE_CAPTURE;
1359 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1360 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1362 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1363 if (rc)
1364 goto error_out_cleanup;
1366 snd_card_set_dev(card, &pci->dev);
1368 return 0;
1370 error_out_cleanup:
1371 sis_chip_free(sis);
1373 error_out_enabled:
1374 pci_disable_device(pci);
1376 error_out:
1377 return rc;
1380 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1381 const struct pci_device_id *pci_id)
1383 struct snd_card *card;
1384 struct sis7019 *sis;
1385 int rc;
1387 rc = -ENOENT;
1388 if (!enable)
1389 goto error_out;
1391 rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1392 if (rc < 0)
1393 goto error_out;
1395 strcpy(card->driver, "SiS7019");
1396 strcpy(card->shortname, "SiS7019");
1397 rc = sis_chip_create(card, pci);
1398 if (rc)
1399 goto card_error_out;
1401 sis = card->private_data;
1403 rc = sis_mixer_create(sis);
1404 if (rc)
1405 goto card_error_out;
1407 rc = sis_pcm_create(sis);
1408 if (rc)
1409 goto card_error_out;
1411 snprintf(card->longname, sizeof(card->longname),
1412 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1413 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1414 sis->ioport, sis->irq);
1416 rc = snd_card_register(card);
1417 if (rc)
1418 goto card_error_out;
1420 pci_set_drvdata(pci, card);
1421 return 0;
1423 card_error_out:
1424 snd_card_free(card);
1426 error_out:
1427 return rc;
1430 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1432 snd_card_free(pci_get_drvdata(pci));
1433 pci_set_drvdata(pci, NULL);
1436 static struct pci_driver sis7019_driver = {
1437 .name = "SiS7019",
1438 .id_table = snd_sis7019_ids,
1439 .probe = snd_sis7019_probe,
1440 .remove = __devexit_p(snd_sis7019_remove),
1442 #ifdef CONFIG_PM
1443 .suspend = sis_suspend,
1444 .resume = sis_resume,
1445 #endif
1448 static int __init sis7019_init(void)
1450 return pci_register_driver(&sis7019_driver);
1453 static void __exit sis7019_exit(void)
1455 pci_unregister_driver(&sis7019_driver);
1458 module_init(sis7019_init);
1459 module_exit(sis7019_exit);