1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/delay.h>
45 #include <linux/init.h>
46 #include <linux/errno.h>
47 #include <linux/pci.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/skbuff.h>
52 #include <linux/mii.h>
53 #include <linux/ethtool.h>
54 #include <linux/crc32.h>
55 #include <linux/random.h>
56 #include <linux/workqueue.h>
57 #include <linux/if_vlan.h>
58 #include <linux/bitops.h>
59 #include <linux/mutex.h>
62 #include <asm/system.h>
64 #include <asm/byteorder.h>
65 #include <asm/uaccess.h>
69 #include <asm/idprom.h>
73 #ifdef CONFIG_PPC_PMAC
74 #include <asm/pci-bridge.h>
76 #include <asm/machdep.h>
77 #include <asm/pmac_feature.h>
80 #include "sungem_phy.h"
83 /* Stripping FCS is causing problems, disabled for now */
86 #define DEFAULT_MSG (NETIF_MSG_DRV | \
90 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
91 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
92 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
93 SUPPORTED_Pause | SUPPORTED_Autoneg)
95 #define DRV_NAME "sungem"
96 #define DRV_VERSION "0.98"
97 #define DRV_RELDATE "8/24/03"
98 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
100 static char version
[] __devinitdata
=
101 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
103 MODULE_AUTHOR(DRV_AUTHOR
);
104 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
105 MODULE_LICENSE("GPL");
107 #define GEM_MODULE_NAME "gem"
108 #define PFX GEM_MODULE_NAME ": "
110 static struct pci_device_id gem_pci_tbl
[] = {
111 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
112 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
114 /* These models only differ from the original GEM in
115 * that their tx/rx fifos are of a different size and
116 * they only support 10/100 speeds. -DaveM
118 * Apple's GMAC does support gigabit on machines with
119 * the BCM54xx PHYs. -BenH
121 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
122 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
123 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
125 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
127 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
129 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
131 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
133 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
138 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
140 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
147 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
148 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
149 cmd
|= (MIF_FRAME_TAMSB
);
150 writel(cmd
, gp
->regs
+ MIF_FRAME
);
153 cmd
= readl(gp
->regs
+ MIF_FRAME
);
154 if (cmd
& MIF_FRAME_TALSB
)
163 return cmd
& MIF_FRAME_DATA
;
166 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
168 struct gem
*gp
= netdev_priv(dev
);
169 return __phy_read(gp
, mii_id
, reg
);
172 static inline u16
phy_read(struct gem
*gp
, int reg
)
174 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
177 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
184 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
185 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
186 cmd
|= (MIF_FRAME_TAMSB
);
187 cmd
|= (val
& MIF_FRAME_DATA
);
188 writel(cmd
, gp
->regs
+ MIF_FRAME
);
191 cmd
= readl(gp
->regs
+ MIF_FRAME
);
192 if (cmd
& MIF_FRAME_TALSB
)
199 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
201 struct gem
*gp
= netdev_priv(dev
);
202 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
205 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
207 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
210 static inline void gem_enable_ints(struct gem
*gp
)
212 /* Enable all interrupts but TXDONE */
213 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
216 static inline void gem_disable_ints(struct gem
*gp
)
218 /* Disable all interrupts, including TXDONE */
219 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
222 static void gem_get_cell(struct gem
*gp
)
224 BUG_ON(gp
->cell_enabled
< 0);
226 #ifdef CONFIG_PPC_PMAC
227 if (gp
->cell_enabled
== 1) {
229 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
232 #endif /* CONFIG_PPC_PMAC */
235 /* Turn off the chip's clock */
236 static void gem_put_cell(struct gem
*gp
)
238 BUG_ON(gp
->cell_enabled
<= 0);
240 #ifdef CONFIG_PPC_PMAC
241 if (gp
->cell_enabled
== 0) {
243 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
246 #endif /* CONFIG_PPC_PMAC */
249 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
251 if (netif_msg_intr(gp
))
252 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
255 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
257 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
260 if (netif_msg_intr(gp
))
261 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
262 gp
->dev
->name
, pcs_istat
);
264 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
265 printk(KERN_ERR
"%s: PCS irq but no link status change???\n",
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
274 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
275 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
277 (readl(gp
->regs
+ PCS_MIISTAT
) &
280 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
284 if (pcs_miistat
& PCS_MIISTAT_RF
)
285 printk(KERN_INFO
"%s: PCS AutoNEG complete, "
286 "RemoteFault\n", dev
->name
);
288 printk(KERN_INFO
"%s: PCS AutoNEG complete.\n",
292 if (pcs_miistat
& PCS_MIISTAT_LS
) {
293 printk(KERN_INFO
"%s: PCS link is now up.\n",
295 netif_carrier_on(gp
->dev
);
297 printk(KERN_INFO
"%s: PCS link is now down.\n",
299 netif_carrier_off(gp
->dev
);
300 /* If this happens and the link timer is not running,
301 * reset so we re-negotiate.
303 if (!timer_pending(&gp
->link_timer
))
310 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
312 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
314 if (netif_msg_intr(gp
))
315 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
316 gp
->dev
->name
, txmac_stat
);
318 /* Defer timer expiration is quite normal,
319 * don't even log the event.
321 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
322 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
325 if (txmac_stat
& MAC_TXSTAT_URUN
) {
326 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
328 gp
->net_stats
.tx_fifo_errors
++;
331 if (txmac_stat
& MAC_TXSTAT_MPE
) {
332 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
334 gp
->net_stats
.tx_errors
++;
337 /* The rest are all cases of one of the 16-bit TX
340 if (txmac_stat
& MAC_TXSTAT_NCE
)
341 gp
->net_stats
.collisions
+= 0x10000;
343 if (txmac_stat
& MAC_TXSTAT_ECE
) {
344 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
345 gp
->net_stats
.collisions
+= 0x10000;
348 if (txmac_stat
& MAC_TXSTAT_LCE
) {
349 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
350 gp
->net_stats
.collisions
+= 0x10000;
353 /* We do not keep track of MAC_TXSTAT_FCE and
354 * MAC_TXSTAT_PCE events.
359 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
360 * so we do the following.
362 * If any part of the reset goes wrong, we return 1 and that causes the
363 * whole chip to be reset.
365 static int gem_rxmac_reset(struct gem
*gp
)
367 struct net_device
*dev
= gp
->dev
;
372 /* First, reset & disable MAC RX. */
373 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
374 for (limit
= 0; limit
< 5000; limit
++) {
375 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
380 printk(KERN_ERR
"%s: RX MAC will not reset, resetting whole "
381 "chip.\n", dev
->name
);
385 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
386 gp
->regs
+ MAC_RXCFG
);
387 for (limit
= 0; limit
< 5000; limit
++) {
388 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
393 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
394 "chip.\n", dev
->name
);
398 /* Second, disable RX DMA. */
399 writel(0, gp
->regs
+ RXDMA_CFG
);
400 for (limit
= 0; limit
< 5000; limit
++) {
401 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
406 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
407 "chip.\n", dev
->name
);
413 /* Execute RX reset command. */
414 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
415 gp
->regs
+ GREG_SWRST
);
416 for (limit
= 0; limit
< 5000; limit
++) {
417 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
422 printk(KERN_ERR
"%s: RX reset command will not execute, resetting "
423 "whole chip.\n", dev
->name
);
427 /* Refresh the RX ring. */
428 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
429 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
431 if (gp
->rx_skbs
[i
] == NULL
) {
432 printk(KERN_ERR
"%s: Parts of RX ring empty, resetting "
433 "whole chip.\n", dev
->name
);
437 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
439 gp
->rx_new
= gp
->rx_old
= 0;
441 /* Now we must reprogram the rest of RX unit. */
442 desc_dma
= (u64
) gp
->gblock_dvma
;
443 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
444 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
445 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
446 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
447 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
448 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
449 writel(val
, gp
->regs
+ RXDMA_CFG
);
450 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
451 writel(((5 & RXDMA_BLANK_IPKTS
) |
452 ((8 << 12) & RXDMA_BLANK_ITIME
)),
453 gp
->regs
+ RXDMA_BLANK
);
455 writel(((5 & RXDMA_BLANK_IPKTS
) |
456 ((4 << 12) & RXDMA_BLANK_ITIME
)),
457 gp
->regs
+ RXDMA_BLANK
);
458 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
459 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
460 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
461 val
= readl(gp
->regs
+ RXDMA_CFG
);
462 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
463 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
464 val
= readl(gp
->regs
+ MAC_RXCFG
);
465 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
470 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
472 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
475 if (netif_msg_intr(gp
))
476 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
477 gp
->dev
->name
, rxmac_stat
);
479 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
480 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
482 printk(KERN_ERR
"%s: RX MAC fifo overflow smac[%08x].\n",
484 gp
->net_stats
.rx_over_errors
++;
485 gp
->net_stats
.rx_fifo_errors
++;
487 ret
= gem_rxmac_reset(gp
);
490 if (rxmac_stat
& MAC_RXSTAT_ACE
)
491 gp
->net_stats
.rx_frame_errors
+= 0x10000;
493 if (rxmac_stat
& MAC_RXSTAT_CCE
)
494 gp
->net_stats
.rx_crc_errors
+= 0x10000;
496 if (rxmac_stat
& MAC_RXSTAT_LCE
)
497 gp
->net_stats
.rx_length_errors
+= 0x10000;
499 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
505 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
507 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
509 if (netif_msg_intr(gp
))
510 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
511 gp
->dev
->name
, mac_cstat
);
513 /* This interrupt is just for pause frame and pause
514 * tracking. It is useful for diagnostics and debug
515 * but probably by default we will mask these events.
517 if (mac_cstat
& MAC_CSTAT_PS
)
520 if (mac_cstat
& MAC_CSTAT_PRCV
)
521 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
526 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
528 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
529 u32 reg_val
, changed_bits
;
531 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
532 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
534 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
539 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
541 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
543 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
544 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
545 printk(KERN_ERR
"%s: PCI error [%04x] ",
546 dev
->name
, pci_estat
);
548 if (pci_estat
& GREG_PCIESTAT_BADACK
)
549 printk("<No ACK64# during ABS64 cycle> ");
550 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
551 printk("<Delayed transaction timeout> ");
552 if (pci_estat
& GREG_PCIESTAT_OTHER
)
556 pci_estat
|= GREG_PCIESTAT_OTHER
;
557 printk(KERN_ERR
"%s: PCI error\n", dev
->name
);
560 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
563 /* Interrogate PCI config space for the
566 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
568 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
569 dev
->name
, pci_cfg_stat
);
570 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
571 printk(KERN_ERR
"%s: PCI parity error detected.\n",
573 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
574 printk(KERN_ERR
"%s: PCI target abort.\n",
576 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
577 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
579 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
580 printk(KERN_ERR
"%s: PCI master abort.\n",
582 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
583 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
585 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
586 printk(KERN_ERR
"%s: PCI parity error.\n",
589 /* Write the error bits back to clear them. */
590 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
591 PCI_STATUS_SIG_TARGET_ABORT
|
592 PCI_STATUS_REC_TARGET_ABORT
|
593 PCI_STATUS_REC_MASTER_ABORT
|
594 PCI_STATUS_SIG_SYSTEM_ERROR
|
595 PCI_STATUS_DETECTED_PARITY
);
596 pci_write_config_word(gp
->pdev
,
597 PCI_STATUS
, pci_cfg_stat
);
600 /* For all PCI errors, we should reset the chip. */
604 /* All non-normal interrupt conditions get serviced here.
605 * Returns non-zero if we should just exit the interrupt
606 * handler right now (ie. if we reset the card which invalidates
607 * all of the other original irq status bits).
609 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
611 if (gem_status
& GREG_STAT_RXNOBUF
) {
612 /* Frame arrived, no free RX buffers available. */
613 if (netif_msg_rx_err(gp
))
614 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
616 gp
->net_stats
.rx_dropped
++;
619 if (gem_status
& GREG_STAT_RXTAGERR
) {
620 /* corrupt RX tag framing */
621 if (netif_msg_rx_err(gp
))
622 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
624 gp
->net_stats
.rx_errors
++;
629 if (gem_status
& GREG_STAT_PCS
) {
630 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
634 if (gem_status
& GREG_STAT_TXMAC
) {
635 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
639 if (gem_status
& GREG_STAT_RXMAC
) {
640 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
644 if (gem_status
& GREG_STAT_MAC
) {
645 if (gem_mac_interrupt(dev
, gp
, gem_status
))
649 if (gem_status
& GREG_STAT_MIF
) {
650 if (gem_mif_interrupt(dev
, gp
, gem_status
))
654 if (gem_status
& GREG_STAT_PCIERR
) {
655 if (gem_pci_interrupt(dev
, gp
, gem_status
))
662 gp
->reset_task_pending
= 1;
663 schedule_work(&gp
->reset_task
);
668 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
672 if (netif_msg_intr(gp
))
673 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
674 gp
->dev
->name
, gem_status
);
677 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
678 while (entry
!= limit
) {
685 if (netif_msg_tx_done(gp
))
686 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
687 gp
->dev
->name
, entry
);
688 skb
= gp
->tx_skbs
[entry
];
689 if (skb_shinfo(skb
)->nr_frags
) {
690 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
694 last
&= (TX_RING_SIZE
- 1);
696 walk
= NEXT_TX(walk
);
705 gp
->tx_skbs
[entry
] = NULL
;
706 gp
->net_stats
.tx_bytes
+= skb
->len
;
708 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
709 txd
= &gp
->init_block
->txd
[entry
];
711 dma_addr
= le64_to_cpu(txd
->buffer
);
712 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
714 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
715 entry
= NEXT_TX(entry
);
718 gp
->net_stats
.tx_packets
++;
719 dev_kfree_skb_irq(skb
);
723 if (netif_queue_stopped(dev
) &&
724 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
725 netif_wake_queue(dev
);
728 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
730 int cluster_start
, curr
, count
, kick
;
732 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
736 while (curr
!= limit
) {
737 curr
= NEXT_RX(curr
);
739 struct gem_rxd
*rxd
=
740 &gp
->init_block
->rxd
[cluster_start
];
742 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
744 cluster_start
= NEXT_RX(cluster_start
);
745 if (cluster_start
== curr
)
754 writel(kick
, gp
->regs
+ RXDMA_KICK
);
758 static int gem_rx(struct gem
*gp
, int work_to_do
)
760 int entry
, drops
, work_done
= 0;
764 if (netif_msg_rx_status(gp
))
765 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
766 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
770 done
= readl(gp
->regs
+ RXDMA_DONE
);
772 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
774 u64 status
= le64_to_cpu(rxd
->status_word
);
778 if ((status
& RXDCTRL_OWN
) != 0)
781 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
784 /* When writing back RX descriptor, GEM writes status
785 * then buffer address, possibly in seperate transactions.
786 * If we don't wait for the chip to write both, we could
787 * post a new buffer to this descriptor then have GEM spam
788 * on the buffer address. We sync on the RX completion
789 * register to prevent this from happening.
792 done
= readl(gp
->regs
+ RXDMA_DONE
);
797 /* We can now account for the work we're about to do */
800 skb
= gp
->rx_skbs
[entry
];
802 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
803 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
804 gp
->net_stats
.rx_errors
++;
806 gp
->net_stats
.rx_length_errors
++;
807 if (len
& RXDCTRL_BAD
)
808 gp
->net_stats
.rx_crc_errors
++;
810 /* We'll just return it to GEM. */
812 gp
->net_stats
.rx_dropped
++;
816 dma_addr
= le64_to_cpu(rxd
->buffer
);
817 if (len
> RX_COPY_THRESHOLD
) {
818 struct sk_buff
*new_skb
;
820 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
821 if (new_skb
== NULL
) {
825 pci_unmap_page(gp
->pdev
, dma_addr
,
826 RX_BUF_ALLOC_SIZE(gp
),
828 gp
->rx_skbs
[entry
] = new_skb
;
829 new_skb
->dev
= gp
->dev
;
830 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
831 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
832 virt_to_page(new_skb
->data
),
833 offset_in_page(new_skb
->data
),
834 RX_BUF_ALLOC_SIZE(gp
),
835 PCI_DMA_FROMDEVICE
));
836 skb_reserve(new_skb
, RX_OFFSET
);
838 /* Trim the original skb for the netif. */
841 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
843 if (copy_skb
== NULL
) {
848 skb_reserve(copy_skb
, 2);
849 skb_put(copy_skb
, len
);
850 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
851 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
852 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
854 /* We'll reuse the original ring buffer. */
858 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
859 skb
->csum
= csum_unfold(csum
);
860 skb
->ip_summed
= CHECKSUM_COMPLETE
;
861 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
863 netif_receive_skb(skb
);
865 gp
->net_stats
.rx_packets
++;
866 gp
->net_stats
.rx_bytes
+= len
;
869 entry
= NEXT_RX(entry
);
872 gem_post_rxds(gp
, entry
);
877 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
883 static int gem_poll(struct napi_struct
*napi
, int budget
)
885 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
886 struct net_device
*dev
= gp
->dev
;
891 * NAPI locking nightmare: See comment at head of driver
893 spin_lock_irqsave(&gp
->lock
, flags
);
897 /* Handle anomalies */
898 if (gp
->status
& GREG_STAT_ABNORMAL
) {
899 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
903 /* Run TX completion thread */
904 spin_lock(&gp
->tx_lock
);
905 gem_tx(dev
, gp
, gp
->status
);
906 spin_unlock(&gp
->tx_lock
);
908 spin_unlock_irqrestore(&gp
->lock
, flags
);
910 /* Run RX thread. We don't use any locking here,
911 * code willing to do bad things - like cleaning the
912 * rx ring - must call napi_disable(), which
913 * schedule_timeout()'s if polling is already disabled.
915 work_done
+= gem_rx(gp
, budget
- work_done
);
917 if (work_done
>= budget
)
920 spin_lock_irqsave(&gp
->lock
, flags
);
922 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
923 } while (gp
->status
& GREG_STAT_NAPI
);
925 __napi_complete(napi
);
928 spin_unlock_irqrestore(&gp
->lock
, flags
);
933 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
935 struct net_device
*dev
= dev_id
;
936 struct gem
*gp
= netdev_priv(dev
);
939 /* Swallow interrupts when shutting the chip down, though
940 * that shouldn't happen, we should have done free_irq() at
946 spin_lock_irqsave(&gp
->lock
, flags
);
948 if (napi_schedule_prep(&gp
->napi
)) {
949 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
951 if (gem_status
== 0) {
952 napi_enable(&gp
->napi
);
953 spin_unlock_irqrestore(&gp
->lock
, flags
);
956 gp
->status
= gem_status
;
957 gem_disable_ints(gp
);
958 __napi_schedule(&gp
->napi
);
961 spin_unlock_irqrestore(&gp
->lock
, flags
);
963 /* If polling was disabled at the time we received that
964 * interrupt, we may return IRQ_HANDLED here while we
965 * should return IRQ_NONE. No big deal...
970 #ifdef CONFIG_NET_POLL_CONTROLLER
971 static void gem_poll_controller(struct net_device
*dev
)
973 /* gem_interrupt is safe to reentrance so no need
974 * to disable_irq here.
976 gem_interrupt(dev
->irq
, dev
);
980 static void gem_tx_timeout(struct net_device
*dev
)
982 struct gem
*gp
= netdev_priv(dev
);
984 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
986 printk("%s: hrm.. hw not running !\n", dev
->name
);
989 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x]\n",
991 readl(gp
->regs
+ TXDMA_CFG
),
992 readl(gp
->regs
+ MAC_TXSTAT
),
993 readl(gp
->regs
+ MAC_TXCFG
));
994 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
996 readl(gp
->regs
+ RXDMA_CFG
),
997 readl(gp
->regs
+ MAC_RXSTAT
),
998 readl(gp
->regs
+ MAC_RXCFG
));
1000 spin_lock_irq(&gp
->lock
);
1001 spin_lock(&gp
->tx_lock
);
1003 gp
->reset_task_pending
= 1;
1004 schedule_work(&gp
->reset_task
);
1006 spin_unlock(&gp
->tx_lock
);
1007 spin_unlock_irq(&gp
->lock
);
1010 static __inline__
int gem_intme(int entry
)
1012 /* Algorithm: IRQ every 1/2 of descriptors. */
1013 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1019 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
1020 struct net_device
*dev
)
1022 struct gem
*gp
= netdev_priv(dev
);
1025 unsigned long flags
;
1028 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1029 const u64 csum_start_off
= skb_transport_offset(skb
);
1030 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1032 ctrl
= (TXDCTRL_CENAB
|
1033 (csum_start_off
<< 15) |
1034 (csum_stuff_off
<< 21));
1037 local_irq_save(flags
);
1038 if (!spin_trylock(&gp
->tx_lock
)) {
1039 /* Tell upper layer to requeue */
1040 local_irq_restore(flags
);
1041 return NETDEV_TX_LOCKED
;
1043 /* We raced with gem_do_stop() */
1045 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1046 return NETDEV_TX_BUSY
;
1049 /* This is a hard error, log it. */
1050 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1051 netif_stop_queue(dev
);
1052 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1053 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
1055 return NETDEV_TX_BUSY
;
1059 gp
->tx_skbs
[entry
] = skb
;
1061 if (skb_shinfo(skb
)->nr_frags
== 0) {
1062 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1067 mapping
= pci_map_page(gp
->pdev
,
1068 virt_to_page(skb
->data
),
1069 offset_in_page(skb
->data
),
1070 len
, PCI_DMA_TODEVICE
);
1071 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1072 if (gem_intme(entry
))
1073 ctrl
|= TXDCTRL_INTME
;
1074 txd
->buffer
= cpu_to_le64(mapping
);
1076 txd
->control_word
= cpu_to_le64(ctrl
);
1077 entry
= NEXT_TX(entry
);
1079 struct gem_txd
*txd
;
1082 dma_addr_t first_mapping
;
1083 int frag
, first_entry
= entry
;
1086 if (gem_intme(entry
))
1087 intme
|= TXDCTRL_INTME
;
1089 /* We must give this initial chunk to the device last.
1090 * Otherwise we could race with the device.
1092 first_len
= skb_headlen(skb
);
1093 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1094 offset_in_page(skb
->data
),
1095 first_len
, PCI_DMA_TODEVICE
);
1096 entry
= NEXT_TX(entry
);
1098 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1099 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1104 len
= this_frag
->size
;
1105 mapping
= pci_map_page(gp
->pdev
,
1107 this_frag
->page_offset
,
1108 len
, PCI_DMA_TODEVICE
);
1110 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1111 this_ctrl
|= TXDCTRL_EOF
;
1113 txd
= &gp
->init_block
->txd
[entry
];
1114 txd
->buffer
= cpu_to_le64(mapping
);
1116 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1118 if (gem_intme(entry
))
1119 intme
|= TXDCTRL_INTME
;
1121 entry
= NEXT_TX(entry
);
1123 txd
= &gp
->init_block
->txd
[first_entry
];
1124 txd
->buffer
= cpu_to_le64(first_mapping
);
1127 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1131 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1132 netif_stop_queue(dev
);
1134 if (netif_msg_tx_queued(gp
))
1135 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1136 dev
->name
, entry
, skb
->len
);
1138 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1139 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1141 dev
->trans_start
= jiffies
;
1143 return NETDEV_TX_OK
;
1146 static void gem_pcs_reset(struct gem
*gp
)
1151 /* Reset PCS unit. */
1152 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1153 val
|= PCS_MIICTRL_RST
;
1154 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1157 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1163 printk(KERN_WARNING
"%s: PCS reset bit would not clear.\n",
1167 static void gem_pcs_reinit_adv(struct gem
*gp
)
1171 /* Make sure PCS is disabled while changing advertisement
1174 val
= readl(gp
->regs
+ PCS_CFG
);
1175 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1176 writel(val
, gp
->regs
+ PCS_CFG
);
1178 /* Advertise all capabilities except assymetric
1181 val
= readl(gp
->regs
+ PCS_MIIADV
);
1182 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1183 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1184 writel(val
, gp
->regs
+ PCS_MIIADV
);
1186 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1187 * and re-enable PCS.
1189 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1190 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1191 val
&= ~PCS_MIICTRL_WB
;
1192 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1194 val
= readl(gp
->regs
+ PCS_CFG
);
1195 val
|= PCS_CFG_ENABLE
;
1196 writel(val
, gp
->regs
+ PCS_CFG
);
1198 /* Make sure serialink loopback is off. The meaning
1199 * of this bit is logically inverted based upon whether
1200 * you are in Serialink or SERDES mode.
1202 val
= readl(gp
->regs
+ PCS_SCTRL
);
1203 if (gp
->phy_type
== phy_serialink
)
1204 val
&= ~PCS_SCTRL_LOOP
;
1206 val
|= PCS_SCTRL_LOOP
;
1207 writel(val
, gp
->regs
+ PCS_SCTRL
);
1210 #define STOP_TRIES 32
1212 /* Must be invoked under gp->lock and gp->tx_lock. */
1213 static void gem_reset(struct gem
*gp
)
1218 /* Make sure we won't get any more interrupts */
1219 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1221 /* Reset the chip */
1222 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1223 gp
->regs
+ GREG_SWRST
);
1229 val
= readl(gp
->regs
+ GREG_SWRST
);
1232 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1235 printk(KERN_ERR
"%s: SW reset is ghetto.\n", gp
->dev
->name
);
1237 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1238 gem_pcs_reinit_adv(gp
);
1241 /* Must be invoked under gp->lock and gp->tx_lock. */
1242 static void gem_start_dma(struct gem
*gp
)
1246 /* We are ready to rock, turn everything on. */
1247 val
= readl(gp
->regs
+ TXDMA_CFG
);
1248 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1249 val
= readl(gp
->regs
+ RXDMA_CFG
);
1250 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1251 val
= readl(gp
->regs
+ MAC_TXCFG
);
1252 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1253 val
= readl(gp
->regs
+ MAC_RXCFG
);
1254 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1256 (void) readl(gp
->regs
+ MAC_RXCFG
);
1259 gem_enable_ints(gp
);
1261 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1264 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1265 * actually stopped before about 4ms tho ...
1267 static void gem_stop_dma(struct gem
*gp
)
1271 /* We are done rocking, turn everything off. */
1272 val
= readl(gp
->regs
+ TXDMA_CFG
);
1273 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1274 val
= readl(gp
->regs
+ RXDMA_CFG
);
1275 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1276 val
= readl(gp
->regs
+ MAC_TXCFG
);
1277 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1278 val
= readl(gp
->regs
+ MAC_RXCFG
);
1279 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1281 (void) readl(gp
->regs
+ MAC_RXCFG
);
1283 /* Need to wait a bit ... done by the caller */
1287 /* Must be invoked under gp->lock and gp->tx_lock. */
1288 // XXX dbl check what that function should do when called on PCS PHY
1289 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1291 u32 advertise
, features
;
1296 if (gp
->phy_type
!= phy_mii_mdio0
&&
1297 gp
->phy_type
!= phy_mii_mdio1
)
1300 /* Setup advertise */
1301 if (found_mii_phy(gp
))
1302 features
= gp
->phy_mii
.def
->features
;
1306 advertise
= features
& ADVERTISE_MASK
;
1307 if (gp
->phy_mii
.advertising
!= 0)
1308 advertise
&= gp
->phy_mii
.advertising
;
1310 autoneg
= gp
->want_autoneg
;
1311 speed
= gp
->phy_mii
.speed
;
1312 duplex
= gp
->phy_mii
.duplex
;
1314 /* Setup link parameters */
1317 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1318 advertise
= ep
->advertising
;
1323 duplex
= ep
->duplex
;
1327 /* Sanitize settings based on PHY capabilities */
1328 if ((features
& SUPPORTED_Autoneg
) == 0)
1330 if (speed
== SPEED_1000
&&
1331 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1333 if (speed
== SPEED_100
&&
1334 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1336 if (duplex
== DUPLEX_FULL
&&
1337 !(features
& (SUPPORTED_1000baseT_Full
|
1338 SUPPORTED_100baseT_Full
|
1339 SUPPORTED_10baseT_Full
)))
1340 duplex
= DUPLEX_HALF
;
1344 /* If we are asleep, we don't try to actually setup the PHY, we
1345 * just store the settings
1348 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1349 gp
->phy_mii
.speed
= speed
;
1350 gp
->phy_mii
.duplex
= duplex
;
1354 /* Configure PHY & start aneg */
1355 gp
->want_autoneg
= autoneg
;
1357 if (found_mii_phy(gp
))
1358 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1359 gp
->lstate
= link_aneg
;
1361 if (found_mii_phy(gp
))
1362 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1363 gp
->lstate
= link_force_ok
;
1367 gp
->timer_ticks
= 0;
1368 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1371 /* A link-up condition has occurred, initialize and enable the
1374 * Must be invoked under gp->lock and gp->tx_lock.
1376 static int gem_set_link_modes(struct gem
*gp
)
1379 int full_duplex
, speed
, pause
;
1385 if (found_mii_phy(gp
)) {
1386 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1388 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1389 speed
= gp
->phy_mii
.speed
;
1390 pause
= gp
->phy_mii
.pause
;
1391 } else if (gp
->phy_type
== phy_serialink
||
1392 gp
->phy_type
== phy_serdes
) {
1393 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1395 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1400 if (netif_msg_link(gp
))
1401 printk(KERN_INFO
"%s: Link is up at %d Mbps, %s-duplex.\n",
1402 gp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
1407 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1409 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1411 /* MAC_TXCFG_NBO must be zero. */
1413 writel(val
, gp
->regs
+ MAC_TXCFG
);
1415 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1417 (gp
->phy_type
== phy_mii_mdio0
||
1418 gp
->phy_type
== phy_mii_mdio1
)) {
1419 val
|= MAC_XIFCFG_DISE
;
1420 } else if (full_duplex
) {
1421 val
|= MAC_XIFCFG_FLED
;
1424 if (speed
== SPEED_1000
)
1425 val
|= (MAC_XIFCFG_GMII
);
1427 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1429 /* If gigabit and half-duplex, enable carrier extension
1430 * mode. Else, disable it.
1432 if (speed
== SPEED_1000
&& !full_duplex
) {
1433 val
= readl(gp
->regs
+ MAC_TXCFG
);
1434 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1436 val
= readl(gp
->regs
+ MAC_RXCFG
);
1437 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1439 val
= readl(gp
->regs
+ MAC_TXCFG
);
1440 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1442 val
= readl(gp
->regs
+ MAC_RXCFG
);
1443 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1446 if (gp
->phy_type
== phy_serialink
||
1447 gp
->phy_type
== phy_serdes
) {
1448 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1450 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1454 if (netif_msg_link(gp
)) {
1456 printk(KERN_INFO
"%s: Pause is enabled "
1457 "(rxfifo: %d off: %d on: %d)\n",
1463 printk(KERN_INFO
"%s: Pause is disabled\n",
1469 writel(512, gp
->regs
+ MAC_STIME
);
1471 writel(64, gp
->regs
+ MAC_STIME
);
1472 val
= readl(gp
->regs
+ MAC_MCCFG
);
1474 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1476 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1477 writel(val
, gp
->regs
+ MAC_MCCFG
);
1484 /* Must be invoked under gp->lock and gp->tx_lock. */
1485 static int gem_mdio_link_not_up(struct gem
*gp
)
1487 switch (gp
->lstate
) {
1488 case link_force_ret
:
1489 if (netif_msg_link(gp
))
1490 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1491 " forced mode\n", gp
->dev
->name
);
1492 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1493 gp
->last_forced_speed
, DUPLEX_HALF
);
1494 gp
->timer_ticks
= 5;
1495 gp
->lstate
= link_force_ok
;
1498 /* We try forced modes after a failed aneg only on PHYs that don't
1499 * have "magic_aneg" bit set, which means they internally do the
1500 * while forced-mode thingy. On these, we just restart aneg
1502 if (gp
->phy_mii
.def
->magic_aneg
)
1504 if (netif_msg_link(gp
))
1505 printk(KERN_INFO
"%s: switching to forced 100bt\n",
1507 /* Try forced modes. */
1508 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1510 gp
->timer_ticks
= 5;
1511 gp
->lstate
= link_force_try
;
1513 case link_force_try
:
1514 /* Downgrade from 100 to 10 Mbps if necessary.
1515 * If already at 10Mbps, warn user about the
1516 * situation every 10 ticks.
1518 if (gp
->phy_mii
.speed
== SPEED_100
) {
1519 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1521 gp
->timer_ticks
= 5;
1522 if (netif_msg_link(gp
))
1523 printk(KERN_INFO
"%s: switching to forced 10bt\n",
1533 static void gem_link_timer(unsigned long data
)
1535 struct gem
*gp
= (struct gem
*) data
;
1536 int restart_aneg
= 0;
1541 spin_lock_irq(&gp
->lock
);
1542 spin_lock(&gp
->tx_lock
);
1545 /* If the reset task is still pending, we just
1546 * reschedule the link timer
1548 if (gp
->reset_task_pending
)
1551 if (gp
->phy_type
== phy_serialink
||
1552 gp
->phy_type
== phy_serdes
) {
1553 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1555 if (!(val
& PCS_MIISTAT_LS
))
1556 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1558 if ((val
& PCS_MIISTAT_LS
) != 0) {
1559 if (gp
->lstate
== link_up
)
1562 gp
->lstate
= link_up
;
1563 netif_carrier_on(gp
->dev
);
1564 (void)gem_set_link_modes(gp
);
1568 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1569 /* Ok, here we got a link. If we had it due to a forced
1570 * fallback, and we were configured for autoneg, we do
1571 * retry a short autoneg pass. If you know your hub is
1572 * broken, use ethtool ;)
1574 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1575 gp
->lstate
= link_force_ret
;
1576 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1577 gp
->timer_ticks
= 5;
1578 if (netif_msg_link(gp
))
1579 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1580 " autoneg once...\n", gp
->dev
->name
);
1581 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1582 } else if (gp
->lstate
!= link_up
) {
1583 gp
->lstate
= link_up
;
1584 netif_carrier_on(gp
->dev
);
1585 if (gem_set_link_modes(gp
))
1589 /* If the link was previously up, we restart the
1592 if (gp
->lstate
== link_up
) {
1593 gp
->lstate
= link_down
;
1594 if (netif_msg_link(gp
))
1595 printk(KERN_INFO
"%s: Link down\n",
1597 netif_carrier_off(gp
->dev
);
1598 gp
->reset_task_pending
= 1;
1599 schedule_work(&gp
->reset_task
);
1601 } else if (++gp
->timer_ticks
> 10) {
1602 if (found_mii_phy(gp
))
1603 restart_aneg
= gem_mdio_link_not_up(gp
);
1609 gem_begin_auto_negotiation(gp
, NULL
);
1613 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1616 spin_unlock(&gp
->tx_lock
);
1617 spin_unlock_irq(&gp
->lock
);
1620 /* Must be invoked under gp->lock and gp->tx_lock. */
1621 static void gem_clean_rings(struct gem
*gp
)
1623 struct gem_init_block
*gb
= gp
->init_block
;
1624 struct sk_buff
*skb
;
1626 dma_addr_t dma_addr
;
1628 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1629 struct gem_rxd
*rxd
;
1632 if (gp
->rx_skbs
[i
] != NULL
) {
1633 skb
= gp
->rx_skbs
[i
];
1634 dma_addr
= le64_to_cpu(rxd
->buffer
);
1635 pci_unmap_page(gp
->pdev
, dma_addr
,
1636 RX_BUF_ALLOC_SIZE(gp
),
1637 PCI_DMA_FROMDEVICE
);
1638 dev_kfree_skb_any(skb
);
1639 gp
->rx_skbs
[i
] = NULL
;
1641 rxd
->status_word
= 0;
1646 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1647 if (gp
->tx_skbs
[i
] != NULL
) {
1648 struct gem_txd
*txd
;
1651 skb
= gp
->tx_skbs
[i
];
1652 gp
->tx_skbs
[i
] = NULL
;
1654 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1655 int ent
= i
& (TX_RING_SIZE
- 1);
1657 txd
= &gb
->txd
[ent
];
1658 dma_addr
= le64_to_cpu(txd
->buffer
);
1659 pci_unmap_page(gp
->pdev
, dma_addr
,
1660 le64_to_cpu(txd
->control_word
) &
1661 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1663 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1666 dev_kfree_skb_any(skb
);
1671 /* Must be invoked under gp->lock and gp->tx_lock. */
1672 static void gem_init_rings(struct gem
*gp
)
1674 struct gem_init_block
*gb
= gp
->init_block
;
1675 struct net_device
*dev
= gp
->dev
;
1677 dma_addr_t dma_addr
;
1679 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1681 gem_clean_rings(gp
);
1683 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1684 (unsigned)VLAN_ETH_FRAME_LEN
);
1686 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1687 struct sk_buff
*skb
;
1688 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1690 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1693 rxd
->status_word
= 0;
1697 gp
->rx_skbs
[i
] = skb
;
1699 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1700 dma_addr
= pci_map_page(gp
->pdev
,
1701 virt_to_page(skb
->data
),
1702 offset_in_page(skb
->data
),
1703 RX_BUF_ALLOC_SIZE(gp
),
1704 PCI_DMA_FROMDEVICE
);
1705 rxd
->buffer
= cpu_to_le64(dma_addr
);
1707 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1708 skb_reserve(skb
, RX_OFFSET
);
1711 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1712 struct gem_txd
*txd
= &gb
->txd
[i
];
1714 txd
->control_word
= 0;
1721 /* Init PHY interface and start link poll state machine */
1722 static void gem_init_phy(struct gem
*gp
)
1726 /* Revert MIF CFG setting done on stop_phy */
1727 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1728 mifcfg
&= ~MIF_CFG_BBMODE
;
1729 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1731 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1734 /* Those delay sucks, the HW seem to love them though, I'll
1735 * serisouly consider breaking some locks here to be able
1736 * to schedule instead
1738 for (i
= 0; i
< 3; i
++) {
1739 #ifdef CONFIG_PPC_PMAC
1740 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1743 /* Some PHYs used by apple have problem getting back to us,
1744 * we do an additional reset here
1746 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1748 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1751 printk(KERN_WARNING
"%s: GMAC PHY not responding !\n",
1756 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1757 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1760 /* Init datapath mode register. */
1761 if (gp
->phy_type
== phy_mii_mdio0
||
1762 gp
->phy_type
== phy_mii_mdio1
) {
1763 val
= PCS_DMODE_MGM
;
1764 } else if (gp
->phy_type
== phy_serialink
) {
1765 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1767 val
= PCS_DMODE_ESM
;
1770 writel(val
, gp
->regs
+ PCS_DMODE
);
1773 if (gp
->phy_type
== phy_mii_mdio0
||
1774 gp
->phy_type
== phy_mii_mdio1
) {
1775 // XXX check for errors
1776 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1779 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1780 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1783 gem_pcs_reinit_adv(gp
);
1786 /* Default aneg parameters */
1787 gp
->timer_ticks
= 0;
1788 gp
->lstate
= link_down
;
1789 netif_carrier_off(gp
->dev
);
1791 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1792 spin_lock_irq(&gp
->lock
);
1793 gem_begin_auto_negotiation(gp
, NULL
);
1794 spin_unlock_irq(&gp
->lock
);
1797 /* Must be invoked under gp->lock and gp->tx_lock. */
1798 static void gem_init_dma(struct gem
*gp
)
1800 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1803 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1804 writel(val
, gp
->regs
+ TXDMA_CFG
);
1806 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1807 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1808 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1810 writel(0, gp
->regs
+ TXDMA_KICK
);
1812 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1813 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1814 writel(val
, gp
->regs
+ RXDMA_CFG
);
1816 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1817 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1819 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1821 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1822 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1823 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1825 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1826 writel(((5 & RXDMA_BLANK_IPKTS
) |
1827 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1828 gp
->regs
+ RXDMA_BLANK
);
1830 writel(((5 & RXDMA_BLANK_IPKTS
) |
1831 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1832 gp
->regs
+ RXDMA_BLANK
);
1835 /* Must be invoked under gp->lock and gp->tx_lock. */
1836 static u32
gem_setup_multicast(struct gem
*gp
)
1841 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1842 (gp
->dev
->mc_count
> 256)) {
1843 for (i
=0; i
<16; i
++)
1844 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1845 rxcfg
|= MAC_RXCFG_HFE
;
1846 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1847 rxcfg
|= MAC_RXCFG_PROM
;
1851 struct dev_mc_list
*dmi
= gp
->dev
->mc_list
;
1854 for (i
= 0; i
< 16; i
++)
1857 for (i
= 0; i
< gp
->dev
->mc_count
; i
++) {
1858 char *addrs
= dmi
->dmi_addr
;
1865 crc
= ether_crc_le(6, addrs
);
1867 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1869 for (i
=0; i
<16; i
++)
1870 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1871 rxcfg
|= MAC_RXCFG_HFE
;
1877 /* Must be invoked under gp->lock and gp->tx_lock. */
1878 static void gem_init_mac(struct gem
*gp
)
1880 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1882 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1884 writel(0x00, gp
->regs
+ MAC_IPG0
);
1885 writel(0x08, gp
->regs
+ MAC_IPG1
);
1886 writel(0x04, gp
->regs
+ MAC_IPG2
);
1887 writel(0x40, gp
->regs
+ MAC_STIME
);
1888 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1890 /* Ethernet payload + header + FCS + optional VLAN tag. */
1891 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1893 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1894 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1895 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1896 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1898 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1900 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1901 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1902 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1904 writel(0, gp
->regs
+ MAC_ADDR3
);
1905 writel(0, gp
->regs
+ MAC_ADDR4
);
1906 writel(0, gp
->regs
+ MAC_ADDR5
);
1908 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1909 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1910 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1912 writel(0, gp
->regs
+ MAC_AFILT0
);
1913 writel(0, gp
->regs
+ MAC_AFILT1
);
1914 writel(0, gp
->regs
+ MAC_AFILT2
);
1915 writel(0, gp
->regs
+ MAC_AF21MSK
);
1916 writel(0, gp
->regs
+ MAC_AF0MSK
);
1918 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1920 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1922 writel(0, gp
->regs
+ MAC_NCOLL
);
1923 writel(0, gp
->regs
+ MAC_FASUCC
);
1924 writel(0, gp
->regs
+ MAC_ECOLL
);
1925 writel(0, gp
->regs
+ MAC_LCOLL
);
1926 writel(0, gp
->regs
+ MAC_DTIMER
);
1927 writel(0, gp
->regs
+ MAC_PATMPS
);
1928 writel(0, gp
->regs
+ MAC_RFCTR
);
1929 writel(0, gp
->regs
+ MAC_LERR
);
1930 writel(0, gp
->regs
+ MAC_AERR
);
1931 writel(0, gp
->regs
+ MAC_FCSERR
);
1932 writel(0, gp
->regs
+ MAC_RXCVERR
);
1934 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1935 * them once a link is established.
1937 writel(0, gp
->regs
+ MAC_TXCFG
);
1938 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1939 writel(0, gp
->regs
+ MAC_MCCFG
);
1940 writel(0, gp
->regs
+ MAC_XIFCFG
);
1942 /* Setup MAC interrupts. We want to get all of the interesting
1943 * counter expiration events, but we do not want to hear about
1944 * normal rx/tx as the DMA engine tells us that.
1946 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1947 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1949 /* Don't enable even the PAUSE interrupts for now, we
1950 * make no use of those events other than to record them.
1952 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1954 /* Don't enable GEM's WOL in normal operations
1957 writel(0, gp
->regs
+ WOL_WAKECSR
);
1960 /* Must be invoked under gp->lock and gp->tx_lock. */
1961 static void gem_init_pause_thresholds(struct gem
*gp
)
1965 /* Calculate pause thresholds. Setting the OFF threshold to the
1966 * full RX fifo size effectively disables PAUSE generation which
1967 * is what we do for 10/100 only GEMs which have FIFOs too small
1968 * to make real gains from PAUSE.
1970 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1971 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1973 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1974 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1975 int on
= off
- max_frame
;
1977 gp
->rx_pause_off
= off
;
1978 gp
->rx_pause_on
= on
;
1982 /* Configure the chip "burst" DMA mode & enable some
1983 * HW bug fixes on Apple version
1986 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1987 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1988 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1989 cfg
|= GREG_CFG_IBURST
;
1991 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1992 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1993 writel(cfg
, gp
->regs
+ GREG_CFG
);
1995 /* If Infinite Burst didn't stick, then use different
1996 * thresholds (and Apple bug fixes don't exist)
1998 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1999 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
2000 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
2001 writel(cfg
, gp
->regs
+ GREG_CFG
);
2005 static int gem_check_invariants(struct gem
*gp
)
2007 struct pci_dev
*pdev
= gp
->pdev
;
2010 /* On Apple's sungem, we can't rely on registers as the chip
2011 * was been powered down by the firmware. The PHY is looked
2014 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
2015 gp
->phy_type
= phy_mii_mdio0
;
2016 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2017 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2020 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2021 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
2022 mif_cfg
|= MIF_CFG_MDI0
;
2023 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2024 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
2025 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
2027 /* We hard-code the PHY address so we can properly bring it out of
2028 * reset later on, we can't really probe it at this point, though
2029 * that isn't an issue.
2031 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
2032 gp
->mii_phy_addr
= 1;
2034 gp
->mii_phy_addr
= 0;
2039 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2041 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2042 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2043 /* One of the MII PHYs _must_ be present
2044 * as this chip has no gigabit PHY.
2046 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2047 printk(KERN_ERR PFX
"RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2053 /* Determine initial PHY interface type guess. MDIO1 is the
2054 * external PHY and thus takes precedence over MDIO0.
2057 if (mif_cfg
& MIF_CFG_MDI1
) {
2058 gp
->phy_type
= phy_mii_mdio1
;
2059 mif_cfg
|= MIF_CFG_PSELECT
;
2060 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2061 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2062 gp
->phy_type
= phy_mii_mdio0
;
2063 mif_cfg
&= ~MIF_CFG_PSELECT
;
2064 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2066 gp
->phy_type
= phy_serialink
;
2068 if (gp
->phy_type
== phy_mii_mdio1
||
2069 gp
->phy_type
== phy_mii_mdio0
) {
2072 for (i
= 0; i
< 32; i
++) {
2073 gp
->mii_phy_addr
= i
;
2074 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2078 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2079 printk(KERN_ERR PFX
"RIO MII phy will not respond.\n");
2082 gp
->phy_type
= phy_serdes
;
2086 /* Fetch the FIFO configurations now too. */
2087 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2088 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2090 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2091 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2092 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2093 gp
->rx_fifo_sz
!= (20 * 1024)) {
2094 printk(KERN_ERR PFX
"GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2095 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2100 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2101 gp
->rx_fifo_sz
!= (2 * 1024)) {
2102 printk(KERN_ERR PFX
"RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2103 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2106 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2113 /* Must be invoked under gp->lock and gp->tx_lock. */
2114 static void gem_reinit_chip(struct gem
*gp
)
2116 /* Reset the chip */
2119 /* Make sure ints are disabled */
2120 gem_disable_ints(gp
);
2122 /* Allocate & setup ring buffers */
2125 /* Configure pause thresholds */
2126 gem_init_pause_thresholds(gp
);
2128 /* Init DMA & MAC engines */
2134 /* Must be invoked with no lock held. */
2135 static void gem_stop_phy(struct gem
*gp
, int wol
)
2138 unsigned long flags
;
2140 /* Let the chip settle down a bit, it seems that helps
2141 * for sleep mode on some models
2145 /* Make sure we aren't polling PHY status change. We
2146 * don't currently use that feature though
2148 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2149 mifcfg
&= ~MIF_CFG_POLL
;
2150 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2152 if (wol
&& gp
->has_wol
) {
2153 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2156 /* Setup wake-on-lan for MAGIC packet */
2157 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2158 gp
->regs
+ MAC_RXCFG
);
2159 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2160 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2161 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2163 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2164 csr
= WOL_WAKECSR_ENABLE
;
2165 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2166 csr
|= WOL_WAKECSR_MII
;
2167 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2169 writel(0, gp
->regs
+ MAC_RXCFG
);
2170 (void)readl(gp
->regs
+ MAC_RXCFG
);
2171 /* Machine sleep will die in strange ways if we
2172 * dont wait a bit here, looks like the chip takes
2173 * some time to really shut down
2178 writel(0, gp
->regs
+ MAC_TXCFG
);
2179 writel(0, gp
->regs
+ MAC_XIFCFG
);
2180 writel(0, gp
->regs
+ TXDMA_CFG
);
2181 writel(0, gp
->regs
+ RXDMA_CFG
);
2184 spin_lock_irqsave(&gp
->lock
, flags
);
2185 spin_lock(&gp
->tx_lock
);
2187 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2188 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2189 spin_unlock(&gp
->tx_lock
);
2190 spin_unlock_irqrestore(&gp
->lock
, flags
);
2192 /* No need to take the lock here */
2194 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2195 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2197 /* According to Apple, we must set the MDIO pins to this begnign
2198 * state or we may 1) eat more current, 2) damage some PHYs
2200 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2201 writel(0, gp
->regs
+ MIF_BBCLK
);
2202 writel(0, gp
->regs
+ MIF_BBDATA
);
2203 writel(0, gp
->regs
+ MIF_BBOENAB
);
2204 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2205 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2210 static int gem_do_start(struct net_device
*dev
)
2212 struct gem
*gp
= netdev_priv(dev
);
2213 unsigned long flags
;
2215 spin_lock_irqsave(&gp
->lock
, flags
);
2216 spin_lock(&gp
->tx_lock
);
2218 /* Enable the cell */
2221 /* Init & setup chip hardware */
2222 gem_reinit_chip(gp
);
2226 napi_enable(&gp
->napi
);
2228 if (gp
->lstate
== link_up
) {
2229 netif_carrier_on(gp
->dev
);
2230 gem_set_link_modes(gp
);
2233 netif_wake_queue(gp
->dev
);
2235 spin_unlock(&gp
->tx_lock
);
2236 spin_unlock_irqrestore(&gp
->lock
, flags
);
2238 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2239 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2240 printk(KERN_ERR
"%s: failed to request irq !\n", gp
->dev
->name
);
2242 spin_lock_irqsave(&gp
->lock
, flags
);
2243 spin_lock(&gp
->tx_lock
);
2245 napi_disable(&gp
->napi
);
2249 gem_clean_rings(gp
);
2252 spin_unlock(&gp
->tx_lock
);
2253 spin_unlock_irqrestore(&gp
->lock
, flags
);
2261 static void gem_do_stop(struct net_device
*dev
, int wol
)
2263 struct gem
*gp
= netdev_priv(dev
);
2264 unsigned long flags
;
2266 spin_lock_irqsave(&gp
->lock
, flags
);
2267 spin_lock(&gp
->tx_lock
);
2271 /* Stop netif queue */
2272 netif_stop_queue(dev
);
2274 /* Make sure ints are disabled */
2275 gem_disable_ints(gp
);
2277 /* We can drop the lock now */
2278 spin_unlock(&gp
->tx_lock
);
2279 spin_unlock_irqrestore(&gp
->lock
, flags
);
2281 /* If we are going to sleep with WOL */
2288 /* Get rid of rings */
2289 gem_clean_rings(gp
);
2291 /* No irq needed anymore */
2292 free_irq(gp
->pdev
->irq
, (void *) dev
);
2294 /* Cell not needed neither if no WOL */
2296 spin_lock_irqsave(&gp
->lock
, flags
);
2298 spin_unlock_irqrestore(&gp
->lock
, flags
);
2302 static void gem_reset_task(struct work_struct
*work
)
2304 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2306 mutex_lock(&gp
->pm_mutex
);
2309 napi_disable(&gp
->napi
);
2311 spin_lock_irq(&gp
->lock
);
2312 spin_lock(&gp
->tx_lock
);
2315 netif_stop_queue(gp
->dev
);
2317 /* Reset the chip & rings */
2318 gem_reinit_chip(gp
);
2319 if (gp
->lstate
== link_up
)
2320 gem_set_link_modes(gp
);
2321 netif_wake_queue(gp
->dev
);
2324 gp
->reset_task_pending
= 0;
2326 spin_unlock(&gp
->tx_lock
);
2327 spin_unlock_irq(&gp
->lock
);
2330 napi_enable(&gp
->napi
);
2332 mutex_unlock(&gp
->pm_mutex
);
2336 static int gem_open(struct net_device
*dev
)
2338 struct gem
*gp
= netdev_priv(dev
);
2341 mutex_lock(&gp
->pm_mutex
);
2343 /* We need the cell enabled */
2345 rc
= gem_do_start(dev
);
2346 gp
->opened
= (rc
== 0);
2348 mutex_unlock(&gp
->pm_mutex
);
2353 static int gem_close(struct net_device
*dev
)
2355 struct gem
*gp
= netdev_priv(dev
);
2357 mutex_lock(&gp
->pm_mutex
);
2359 napi_disable(&gp
->napi
);
2363 gem_do_stop(dev
, 0);
2365 mutex_unlock(&gp
->pm_mutex
);
2371 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2373 struct net_device
*dev
= pci_get_drvdata(pdev
);
2374 struct gem
*gp
= netdev_priv(dev
);
2375 unsigned long flags
;
2377 mutex_lock(&gp
->pm_mutex
);
2379 printk(KERN_INFO
"%s: suspending, WakeOnLan %s\n",
2381 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2383 /* Keep the cell enabled during the entire operation */
2384 spin_lock_irqsave(&gp
->lock
, flags
);
2385 spin_lock(&gp
->tx_lock
);
2387 spin_unlock(&gp
->tx_lock
);
2388 spin_unlock_irqrestore(&gp
->lock
, flags
);
2390 /* If the driver is opened, we stop the MAC */
2392 napi_disable(&gp
->napi
);
2394 /* Stop traffic, mark us closed */
2395 netif_device_detach(dev
);
2397 /* Switch off MAC, remember WOL setting */
2398 gp
->asleep_wol
= gp
->wake_on_lan
;
2399 gem_do_stop(dev
, gp
->asleep_wol
);
2403 /* Mark us asleep */
2407 /* Stop the link timer */
2408 del_timer_sync(&gp
->link_timer
);
2410 /* Now we release the mutex to not block the reset task who
2411 * can take it too. We are marked asleep, so there will be no
2414 mutex_unlock(&gp
->pm_mutex
);
2416 /* Wait for a pending reset task to complete */
2417 while (gp
->reset_task_pending
)
2419 flush_scheduled_work();
2421 /* Shut the PHY down eventually and setup WOL */
2422 gem_stop_phy(gp
, gp
->asleep_wol
);
2424 /* Make sure bus master is disabled */
2425 pci_disable_device(gp
->pdev
);
2427 /* Release the cell, no need to take a lock at this point since
2428 * nothing else can happen now
2435 static int gem_resume(struct pci_dev
*pdev
)
2437 struct net_device
*dev
= pci_get_drvdata(pdev
);
2438 struct gem
*gp
= netdev_priv(dev
);
2439 unsigned long flags
;
2441 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
2443 mutex_lock(&gp
->pm_mutex
);
2445 /* Keep the cell enabled during the entire operation, no need to
2446 * take a lock here tho since nothing else can happen while we are
2451 /* Make sure PCI access and bus master are enabled */
2452 if (pci_enable_device(gp
->pdev
)) {
2453 printk(KERN_ERR
"%s: Can't re-enable chip !\n",
2455 /* Put cell and forget it for now, it will be considered as
2456 * still asleep, a new sleep cycle may bring it back
2459 mutex_unlock(&gp
->pm_mutex
);
2462 pci_set_master(gp
->pdev
);
2464 /* Reset everything */
2467 /* Mark us woken up */
2471 /* Bring the PHY back. Again, lock is useless at this point as
2472 * nothing can be happening until we restart the whole thing
2476 /* If we were opened, bring everything back */
2481 /* Re-attach net device */
2482 netif_device_attach(dev
);
2485 spin_lock_irqsave(&gp
->lock
, flags
);
2486 spin_lock(&gp
->tx_lock
);
2488 /* If we had WOL enabled, the cell clock was never turned off during
2489 * sleep, so we end up beeing unbalanced. Fix that here
2494 /* This function doesn't need to hold the cell, it will be held if the
2495 * driver is open by gem_do_start().
2499 spin_unlock(&gp
->tx_lock
);
2500 spin_unlock_irqrestore(&gp
->lock
, flags
);
2502 mutex_unlock(&gp
->pm_mutex
);
2506 #endif /* CONFIG_PM */
2508 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2510 struct gem
*gp
= netdev_priv(dev
);
2511 struct net_device_stats
*stats
= &gp
->net_stats
;
2513 spin_lock_irq(&gp
->lock
);
2514 spin_lock(&gp
->tx_lock
);
2516 /* I have seen this being called while the PM was in progress,
2517 * so we shield against this
2520 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2521 writel(0, gp
->regs
+ MAC_FCSERR
);
2523 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2524 writel(0, gp
->regs
+ MAC_AERR
);
2526 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2527 writel(0, gp
->regs
+ MAC_LERR
);
2529 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2530 stats
->collisions
+=
2531 (readl(gp
->regs
+ MAC_ECOLL
) +
2532 readl(gp
->regs
+ MAC_LCOLL
));
2533 writel(0, gp
->regs
+ MAC_ECOLL
);
2534 writel(0, gp
->regs
+ MAC_LCOLL
);
2537 spin_unlock(&gp
->tx_lock
);
2538 spin_unlock_irq(&gp
->lock
);
2540 return &gp
->net_stats
;
2543 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2545 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2546 struct gem
*gp
= netdev_priv(dev
);
2547 unsigned char *e
= &dev
->dev_addr
[0];
2549 if (!is_valid_ether_addr(macaddr
->sa_data
))
2550 return -EADDRNOTAVAIL
;
2552 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2553 /* We'll just catch it later when the
2554 * device is up'd or resumed.
2556 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2560 mutex_lock(&gp
->pm_mutex
);
2561 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2563 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2564 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2565 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2567 mutex_unlock(&gp
->pm_mutex
);
2572 static void gem_set_multicast(struct net_device
*dev
)
2574 struct gem
*gp
= netdev_priv(dev
);
2575 u32 rxcfg
, rxcfg_new
;
2579 spin_lock_irq(&gp
->lock
);
2580 spin_lock(&gp
->tx_lock
);
2585 netif_stop_queue(dev
);
2587 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2588 rxcfg_new
= gem_setup_multicast(gp
);
2590 rxcfg_new
|= MAC_RXCFG_SFCS
;
2592 gp
->mac_rx_cfg
= rxcfg_new
;
2594 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2595 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2601 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2604 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2606 netif_wake_queue(dev
);
2609 spin_unlock(&gp
->tx_lock
);
2610 spin_unlock_irq(&gp
->lock
);
2613 /* Jumbo-grams don't seem to work :-( */
2614 #define GEM_MIN_MTU 68
2616 #define GEM_MAX_MTU 1500
2618 #define GEM_MAX_MTU 9000
2621 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2623 struct gem
*gp
= netdev_priv(dev
);
2625 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2628 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2629 /* We'll just catch it later when the
2630 * device is up'd or resumed.
2636 mutex_lock(&gp
->pm_mutex
);
2637 spin_lock_irq(&gp
->lock
);
2638 spin_lock(&gp
->tx_lock
);
2641 gem_reinit_chip(gp
);
2642 if (gp
->lstate
== link_up
)
2643 gem_set_link_modes(gp
);
2645 spin_unlock(&gp
->tx_lock
);
2646 spin_unlock_irq(&gp
->lock
);
2647 mutex_unlock(&gp
->pm_mutex
);
2652 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2654 struct gem
*gp
= netdev_priv(dev
);
2656 strcpy(info
->driver
, DRV_NAME
);
2657 strcpy(info
->version
, DRV_VERSION
);
2658 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2661 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2663 struct gem
*gp
= netdev_priv(dev
);
2665 if (gp
->phy_type
== phy_mii_mdio0
||
2666 gp
->phy_type
== phy_mii_mdio1
) {
2667 if (gp
->phy_mii
.def
)
2668 cmd
->supported
= gp
->phy_mii
.def
->features
;
2670 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2671 SUPPORTED_10baseT_Full
);
2673 /* XXX hardcoded stuff for now */
2674 cmd
->port
= PORT_MII
;
2675 cmd
->transceiver
= XCVR_EXTERNAL
;
2676 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2678 /* Return current PHY settings */
2679 spin_lock_irq(&gp
->lock
);
2680 cmd
->autoneg
= gp
->want_autoneg
;
2681 cmd
->speed
= gp
->phy_mii
.speed
;
2682 cmd
->duplex
= gp
->phy_mii
.duplex
;
2683 cmd
->advertising
= gp
->phy_mii
.advertising
;
2685 /* If we started with a forced mode, we don't have a default
2686 * advertise set, we need to return something sensible so
2687 * userland can re-enable autoneg properly.
2689 if (cmd
->advertising
== 0)
2690 cmd
->advertising
= cmd
->supported
;
2691 spin_unlock_irq(&gp
->lock
);
2692 } else { // XXX PCS ?
2694 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2695 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2697 cmd
->advertising
= cmd
->supported
;
2699 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2700 cmd
->transceiver
= cmd
->autoneg
= 0;
2702 /* serdes means usually a Fibre connector, with most fixed */
2703 if (gp
->phy_type
== phy_serdes
) {
2704 cmd
->port
= PORT_FIBRE
;
2705 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2706 SUPPORTED_1000baseT_Full
|
2707 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2708 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2709 cmd
->advertising
= cmd
->supported
;
2710 cmd
->transceiver
= XCVR_INTERNAL
;
2711 if (gp
->lstate
== link_up
)
2712 cmd
->speed
= SPEED_1000
;
2713 cmd
->duplex
= DUPLEX_FULL
;
2717 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2722 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2724 struct gem
*gp
= netdev_priv(dev
);
2726 /* Verify the settings we care about. */
2727 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2728 cmd
->autoneg
!= AUTONEG_DISABLE
)
2731 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2732 cmd
->advertising
== 0)
2735 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2736 ((cmd
->speed
!= SPEED_1000
&&
2737 cmd
->speed
!= SPEED_100
&&
2738 cmd
->speed
!= SPEED_10
) ||
2739 (cmd
->duplex
!= DUPLEX_HALF
&&
2740 cmd
->duplex
!= DUPLEX_FULL
)))
2743 /* Apply settings and restart link process. */
2744 spin_lock_irq(&gp
->lock
);
2746 gem_begin_auto_negotiation(gp
, cmd
);
2748 spin_unlock_irq(&gp
->lock
);
2753 static int gem_nway_reset(struct net_device
*dev
)
2755 struct gem
*gp
= netdev_priv(dev
);
2757 if (!gp
->want_autoneg
)
2760 /* Restart link process. */
2761 spin_lock_irq(&gp
->lock
);
2763 gem_begin_auto_negotiation(gp
, NULL
);
2765 spin_unlock_irq(&gp
->lock
);
2770 static u32
gem_get_msglevel(struct net_device
*dev
)
2772 struct gem
*gp
= netdev_priv(dev
);
2773 return gp
->msg_enable
;
2776 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2778 struct gem
*gp
= netdev_priv(dev
);
2779 gp
->msg_enable
= value
;
2783 /* Add more when I understand how to program the chip */
2784 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2786 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2788 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2790 struct gem
*gp
= netdev_priv(dev
);
2792 /* Add more when I understand how to program the chip */
2794 wol
->supported
= WOL_SUPPORTED_MASK
;
2795 wol
->wolopts
= gp
->wake_on_lan
;
2802 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2804 struct gem
*gp
= netdev_priv(dev
);
2808 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2812 static const struct ethtool_ops gem_ethtool_ops
= {
2813 .get_drvinfo
= gem_get_drvinfo
,
2814 .get_link
= ethtool_op_get_link
,
2815 .get_settings
= gem_get_settings
,
2816 .set_settings
= gem_set_settings
,
2817 .nway_reset
= gem_nway_reset
,
2818 .get_msglevel
= gem_get_msglevel
,
2819 .set_msglevel
= gem_set_msglevel
,
2820 .get_wol
= gem_get_wol
,
2821 .set_wol
= gem_set_wol
,
2824 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2826 struct gem
*gp
= netdev_priv(dev
);
2827 struct mii_ioctl_data
*data
= if_mii(ifr
);
2828 int rc
= -EOPNOTSUPP
;
2829 unsigned long flags
;
2831 /* Hold the PM mutex while doing ioctl's or we may collide
2832 * with power management.
2834 mutex_lock(&gp
->pm_mutex
);
2836 spin_lock_irqsave(&gp
->lock
, flags
);
2838 spin_unlock_irqrestore(&gp
->lock
, flags
);
2841 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2842 data
->phy_id
= gp
->mii_phy_addr
;
2843 /* Fallthrough... */
2845 case SIOCGMIIREG
: /* Read MII PHY register. */
2849 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2850 data
->reg_num
& 0x1f);
2855 case SIOCSMIIREG
: /* Write MII PHY register. */
2859 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2866 spin_lock_irqsave(&gp
->lock
, flags
);
2868 spin_unlock_irqrestore(&gp
->lock
, flags
);
2870 mutex_unlock(&gp
->pm_mutex
);
2875 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2876 /* Fetch MAC address from vital product data of PCI ROM. */
2877 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2881 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2882 void __iomem
*p
= rom_base
+ this_offset
;
2885 if (readb(p
+ 0) != 0x90 ||
2886 readb(p
+ 1) != 0x00 ||
2887 readb(p
+ 2) != 0x09 ||
2888 readb(p
+ 3) != 0x4e ||
2889 readb(p
+ 4) != 0x41 ||
2890 readb(p
+ 5) != 0x06)
2896 for (i
= 0; i
< 6; i
++)
2897 dev_addr
[i
] = readb(p
+ i
);
2903 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2906 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2911 found
= readb(p
) == 0x55 &&
2912 readb(p
+ 1) == 0xaa &&
2913 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2914 pci_unmap_rom(pdev
, p
);
2919 /* Sun MAC prefix then 3 random bytes. */
2923 get_random_bytes(dev_addr
+ 3, 3);
2926 #endif /* not Sparc and not PPC */
2928 static int __devinit
gem_get_device_address(struct gem
*gp
)
2930 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2931 struct net_device
*dev
= gp
->dev
;
2932 const unsigned char *addr
;
2934 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2937 addr
= idprom
->id_ethaddr
;
2940 printk(KERN_ERR
"%s: can't get mac-address\n", dev
->name
);
2944 memcpy(dev
->dev_addr
, addr
, 6);
2946 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2951 static void gem_remove_one(struct pci_dev
*pdev
)
2953 struct net_device
*dev
= pci_get_drvdata(pdev
);
2956 struct gem
*gp
= netdev_priv(dev
);
2958 unregister_netdev(dev
);
2960 /* Stop the link timer */
2961 del_timer_sync(&gp
->link_timer
);
2963 /* We shouldn't need any locking here */
2966 /* Wait for a pending reset task to complete */
2967 while (gp
->reset_task_pending
)
2969 flush_scheduled_work();
2971 /* Shut the PHY down */
2972 gem_stop_phy(gp
, 0);
2976 /* Make sure bus master is disabled */
2977 pci_disable_device(gp
->pdev
);
2979 /* Free resources */
2980 pci_free_consistent(pdev
,
2981 sizeof(struct gem_init_block
),
2985 pci_release_regions(pdev
);
2988 pci_set_drvdata(pdev
, NULL
);
2992 static const struct net_device_ops gem_netdev_ops
= {
2993 .ndo_open
= gem_open
,
2994 .ndo_stop
= gem_close
,
2995 .ndo_start_xmit
= gem_start_xmit
,
2996 .ndo_get_stats
= gem_get_stats
,
2997 .ndo_set_multicast_list
= gem_set_multicast
,
2998 .ndo_do_ioctl
= gem_ioctl
,
2999 .ndo_tx_timeout
= gem_tx_timeout
,
3000 .ndo_change_mtu
= gem_change_mtu
,
3001 .ndo_validate_addr
= eth_validate_addr
,
3002 .ndo_set_mac_address
= gem_set_mac_address
,
3003 #ifdef CONFIG_NET_POLL_CONTROLLER
3004 .ndo_poll_controller
= gem_poll_controller
,
3008 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
3009 const struct pci_device_id
*ent
)
3011 static int gem_version_printed
= 0;
3012 unsigned long gemreg_base
, gemreg_len
;
3013 struct net_device
*dev
;
3015 int err
, pci_using_dac
;
3017 if (gem_version_printed
++ == 0)
3018 printk(KERN_INFO
"%s", version
);
3020 /* Apple gmac note: during probe, the chip is powered up by
3021 * the arch code to allow the code below to work (and to let
3022 * the chip be probed on the config space. It won't stay powered
3023 * up until the interface is brought up however, so we can't rely
3024 * on register configuration done at this point.
3026 err
= pci_enable_device(pdev
);
3028 printk(KERN_ERR PFX
"Cannot enable MMIO operation, "
3032 pci_set_master(pdev
);
3034 /* Configure DMA attributes. */
3036 /* All of the GEM documentation states that 64-bit DMA addressing
3037 * is fully supported and should work just fine. However the
3038 * front end for RIO based GEMs is different and only supports
3039 * 32-bit addressing.
3041 * For now we assume the various PPC GEMs are 32-bit only as well.
3043 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
3044 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
3045 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3048 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
3050 printk(KERN_ERR PFX
"No usable DMA configuration, "
3052 goto err_disable_device
;
3057 gemreg_base
= pci_resource_start(pdev
, 0);
3058 gemreg_len
= pci_resource_len(pdev
, 0);
3060 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3061 printk(KERN_ERR PFX
"Cannot find proper PCI device "
3062 "base address, aborting.\n");
3064 goto err_disable_device
;
3067 dev
= alloc_etherdev(sizeof(*gp
));
3069 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
3071 goto err_disable_device
;
3073 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3075 gp
= netdev_priv(dev
);
3077 err
= pci_request_regions(pdev
, DRV_NAME
);
3079 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
3081 goto err_out_free_netdev
;
3085 dev
->base_addr
= (long) pdev
;
3088 gp
->msg_enable
= DEFAULT_MSG
;
3090 spin_lock_init(&gp
->lock
);
3091 spin_lock_init(&gp
->tx_lock
);
3092 mutex_init(&gp
->pm_mutex
);
3094 init_timer(&gp
->link_timer
);
3095 gp
->link_timer
.function
= gem_link_timer
;
3096 gp
->link_timer
.data
= (unsigned long) gp
;
3098 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
3100 gp
->lstate
= link_down
;
3101 gp
->timer_ticks
= 0;
3102 netif_carrier_off(dev
);
3104 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3106 printk(KERN_ERR PFX
"Cannot map device registers, "
3109 goto err_out_free_res
;
3112 /* On Apple, we want a reference to the Open Firmware device-tree
3113 * node. We use it for clock control.
3115 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3116 gp
->of_node
= pci_device_to_OF_node(pdev
);
3119 /* Only Apple version supports WOL afaik */
3120 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3123 /* Make sure cell is enabled */
3126 /* Make sure everything is stopped and in init state */
3129 /* Fill up the mii_phy structure (even if we won't use it) */
3130 gp
->phy_mii
.dev
= dev
;
3131 gp
->phy_mii
.mdio_read
= _phy_read
;
3132 gp
->phy_mii
.mdio_write
= _phy_write
;
3133 #ifdef CONFIG_PPC_PMAC
3134 gp
->phy_mii
.platform_data
= gp
->of_node
;
3136 /* By default, we start with autoneg */
3137 gp
->want_autoneg
= 1;
3139 /* Check fifo sizes, PHY type, etc... */
3140 if (gem_check_invariants(gp
)) {
3142 goto err_out_iounmap
;
3145 /* It is guaranteed that the returned buffer will be at least
3146 * PAGE_SIZE aligned.
3148 gp
->init_block
= (struct gem_init_block
*)
3149 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3151 if (!gp
->init_block
) {
3152 printk(KERN_ERR PFX
"Cannot allocate init block, "
3155 goto err_out_iounmap
;
3158 if (gem_get_device_address(gp
))
3159 goto err_out_free_consistent
;
3161 dev
->netdev_ops
= &gem_netdev_ops
;
3162 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
3163 dev
->ethtool_ops
= &gem_ethtool_ops
;
3164 dev
->watchdog_timeo
= 5 * HZ
;
3165 dev
->irq
= pdev
->irq
;
3168 /* Set that now, in case PM kicks in now */
3169 pci_set_drvdata(pdev
, dev
);
3171 /* Detect & init PHY, start autoneg, we release the cell now
3172 * too, it will be managed by whoever needs it
3176 spin_lock_irq(&gp
->lock
);
3178 spin_unlock_irq(&gp
->lock
);
3180 /* Register with kernel */
3181 if (register_netdev(dev
)) {
3182 printk(KERN_ERR PFX
"Cannot register net device, "
3185 goto err_out_free_consistent
;
3188 printk(KERN_INFO
"%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3189 dev
->name
, dev
->dev_addr
);
3191 if (gp
->phy_type
== phy_mii_mdio0
||
3192 gp
->phy_type
== phy_mii_mdio1
)
3193 printk(KERN_INFO
"%s: Found %s PHY\n", dev
->name
,
3194 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3196 /* GEM can do it all... */
3197 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_LLTX
;
3199 dev
->features
|= NETIF_F_HIGHDMA
;
3203 err_out_free_consistent
:
3204 gem_remove_one(pdev
);
3210 pci_release_regions(pdev
);
3212 err_out_free_netdev
:
3215 pci_disable_device(pdev
);
3221 static struct pci_driver gem_driver
= {
3222 .name
= GEM_MODULE_NAME
,
3223 .id_table
= gem_pci_tbl
,
3224 .probe
= gem_init_one
,
3225 .remove
= gem_remove_one
,
3227 .suspend
= gem_suspend
,
3228 .resume
= gem_resume
,
3229 #endif /* CONFIG_PM */
3232 static int __init
gem_init(void)
3234 return pci_register_driver(&gem_driver
);
3237 static void __exit
gem_cleanup(void)
3239 pci_unregister_driver(&gem_driver
);
3242 module_init(gem_init
);
3243 module_exit(gem_cleanup
);