2 * consumer.h -- SoC Regulator consumer support.
4 * Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
6 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * Regulator Consumer Interface.
14 * A Power Management Regulator framework for SoC based devices.
16 * o Voltage and current level control.
17 * o Operating mode control.
19 * o sysfs entries for showing client devices and status
21 * EXPERIMENTAL FEATURES:
22 * Dynamic Regulator operating Mode Switching (DRMS) - allows regulators
23 * to use most efficient operating mode depending upon voltage and load and
24 * is transparent to client drivers.
26 * e.g. Devices x,y,z share regulator r. Device x and y draw 20mA each during
27 * IO and 1mA at idle. Device z draws 100mA when under load and 5mA when
28 * idling. Regulator r has > 90% efficiency in NORMAL mode at loads > 100mA
29 * but this drops rapidly to 60% when below 100mA. Regulator r has > 90%
30 * efficiency in IDLE mode at loads < 10mA. Thus regulator r will operate
31 * in normal mode for loads > 10mA and in IDLE mode for load <= 10mA.
35 #ifndef __LINUX_REGULATOR_CONSUMER_H_
36 #define __LINUX_REGULATOR_CONSUMER_H_
38 #include <linux/device.h>
41 * Regulator operating modes.
43 * Regulators can run in a variety of different operating modes depending on
44 * output load. This allows further system power savings by selecting the
45 * best (and most efficient) regulator mode for a desired load.
47 * Most drivers will only care about NORMAL. The modes below are generic and
48 * will probably not match the naming convention of your regulator data sheet
49 * but should match the use cases in the datasheet.
51 * In order of power efficiency (least efficient at top).
54 * FAST Regulator can handle fast changes in it's load.
55 * e.g. useful in CPU voltage & frequency scaling where
56 * load can quickly increase with CPU frequency increases.
58 * NORMAL Normal regulator power supply mode. Most drivers will
61 * IDLE Regulator runs in a more efficient mode for light
62 * loads. Can be used for devices that have a low power
63 * requirement during periods of inactivity. This mode
64 * may be more noisy than NORMAL and may not be able
65 * to handle fast load switching.
67 * STANDBY Regulator runs in the most efficient mode for very
68 * light loads. Can be used by devices when they are
69 * in a sleep/standby state. This mode is likely to be
70 * the most noisy and may not be able to handle fast load
73 * NOTE: Most regulators will only support a subset of these modes. Some
74 * will only just support NORMAL.
76 * These modes can be OR'ed together to make up a mask of valid register modes.
79 #define REGULATOR_MODE_FAST 0x1
80 #define REGULATOR_MODE_NORMAL 0x2
81 #define REGULATOR_MODE_IDLE 0x4
82 #define REGULATOR_MODE_STANDBY 0x8
85 * Regulator notifier events.
87 * UNDER_VOLTAGE Regulator output is under voltage.
88 * OVER_CURRENT Regulator output current is too high.
89 * REGULATION_OUT Regulator output is out of regulation.
90 * FAIL Regulator output has failed.
91 * OVER_TEMP Regulator over temp.
92 * FORCE_DISABLE Regulator forcibly shut down by software.
93 * VOLTAGE_CHANGE Regulator voltage changed.
94 * DISABLE Regulator was disabled.
96 * NOTE: These events can be OR'ed together when passed into handler.
99 #define REGULATOR_EVENT_UNDER_VOLTAGE 0x01
100 #define REGULATOR_EVENT_OVER_CURRENT 0x02
101 #define REGULATOR_EVENT_REGULATION_OUT 0x04
102 #define REGULATOR_EVENT_FAIL 0x08
103 #define REGULATOR_EVENT_OVER_TEMP 0x10
104 #define REGULATOR_EVENT_FORCE_DISABLE 0x20
105 #define REGULATOR_EVENT_VOLTAGE_CHANGE 0x40
106 #define REGULATOR_EVENT_DISABLE 0x80
111 * struct regulator_bulk_data - Data used for bulk regulator operations.
113 * @supply: The name of the supply. Initialised by the user before
114 * using the bulk regulator APIs.
115 * @consumer: The regulator consumer for the supply. This will be managed
118 * The regulator APIs provide a series of regulator_bulk_() API calls as
119 * a convenience to consumers which require multiple supplies. This
120 * structure is used to manage data for these calls.
122 struct regulator_bulk_data
{
124 struct regulator
*consumer
;
126 /* private: Internal use */
130 #if defined(CONFIG_REGULATOR)
132 /* regulator get and put */
133 struct regulator
*__must_check
regulator_get(struct device
*dev
,
135 struct regulator
*__must_check
regulator_get_exclusive(struct device
*dev
,
137 void regulator_put(struct regulator
*regulator
);
139 /* regulator output control and status */
140 int regulator_enable(struct regulator
*regulator
);
141 int regulator_disable(struct regulator
*regulator
);
142 int regulator_force_disable(struct regulator
*regulator
);
143 int regulator_is_enabled(struct regulator
*regulator
);
145 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
146 struct regulator_bulk_data
*consumers
);
147 int regulator_bulk_enable(int num_consumers
,
148 struct regulator_bulk_data
*consumers
);
149 int regulator_bulk_disable(int num_consumers
,
150 struct regulator_bulk_data
*consumers
);
151 void regulator_bulk_free(int num_consumers
,
152 struct regulator_bulk_data
*consumers
);
154 int regulator_count_voltages(struct regulator
*regulator
);
155 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
);
156 int regulator_is_supported_voltage(struct regulator
*regulator
,
157 int min_uV
, int max_uV
);
158 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
);
159 int regulator_set_voltage_time(struct regulator
*regulator
,
160 int old_uV
, int new_uV
);
161 int regulator_get_voltage(struct regulator
*regulator
);
162 int regulator_sync_voltage(struct regulator
*regulator
);
163 int regulator_set_current_limit(struct regulator
*regulator
,
164 int min_uA
, int max_uA
);
165 int regulator_get_current_limit(struct regulator
*regulator
);
167 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
);
168 unsigned int regulator_get_mode(struct regulator
*regulator
);
169 int regulator_set_optimum_mode(struct regulator
*regulator
, int load_uA
);
171 /* regulator notifier block */
172 int regulator_register_notifier(struct regulator
*regulator
,
173 struct notifier_block
*nb
);
174 int regulator_unregister_notifier(struct regulator
*regulator
,
175 struct notifier_block
*nb
);
177 /* driver data - core doesn't touch */
178 void *regulator_get_drvdata(struct regulator
*regulator
);
179 void regulator_set_drvdata(struct regulator
*regulator
, void *data
);
184 * Make sure client drivers will still build on systems with no software
185 * controllable voltage or current regulators.
187 static inline struct regulator
*__must_check
regulator_get(struct device
*dev
,
190 /* Nothing except the stubbed out regulator API should be
191 * looking at the value except to check if it is an error
192 * value. Drivers are free to handle NULL specifically by
193 * skipping all regulator API calls, but they don't have to.
194 * Drivers which don't, should make sure they properly handle
195 * corner cases of the API, such as regulator_get_voltage()
200 static inline void regulator_put(struct regulator
*regulator
)
204 static inline int regulator_enable(struct regulator
*regulator
)
209 static inline int regulator_disable(struct regulator
*regulator
)
214 static inline int regulator_is_enabled(struct regulator
*regulator
)
219 static inline int regulator_bulk_get(struct device
*dev
,
221 struct regulator_bulk_data
*consumers
)
226 static inline int regulator_bulk_enable(int num_consumers
,
227 struct regulator_bulk_data
*consumers
)
232 static inline int regulator_bulk_disable(int num_consumers
,
233 struct regulator_bulk_data
*consumers
)
238 static inline void regulator_bulk_free(int num_consumers
,
239 struct regulator_bulk_data
*consumers
)
243 static inline int regulator_set_voltage(struct regulator
*regulator
,
244 int min_uV
, int max_uV
)
249 static inline int regulator_get_voltage(struct regulator
*regulator
)
254 static inline int regulator_set_current_limit(struct regulator
*regulator
,
255 int min_uA
, int max_uA
)
260 static inline int regulator_get_current_limit(struct regulator
*regulator
)
265 static inline int regulator_set_mode(struct regulator
*regulator
,
271 static inline unsigned int regulator_get_mode(struct regulator
*regulator
)
273 return REGULATOR_MODE_NORMAL
;
276 static inline int regulator_set_optimum_mode(struct regulator
*regulator
,
279 return REGULATOR_MODE_NORMAL
;
282 static inline int regulator_register_notifier(struct regulator
*regulator
,
283 struct notifier_block
*nb
)
288 static inline int regulator_unregister_notifier(struct regulator
*regulator
,
289 struct notifier_block
*nb
)
294 static inline void *regulator_get_drvdata(struct regulator
*regulator
)
299 static inline void regulator_set_drvdata(struct regulator
*regulator
,