ARM: 5715/1: Make kprobes unregistration SMP safe
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swap_state.c
blob5ae6b8b78c801d821d41003917b720116c938bd0
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
22 #include <asm/pgtable.h>
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
29 static const struct address_space_operations swap_aops = {
30 .writepage = swap_writepage,
31 .sync_page = block_sync_page,
32 .set_page_dirty = __set_page_dirty_nobuffers,
33 .migratepage = migrate_page,
36 static struct backing_dev_info swap_backing_dev_info = {
37 .name = "swap",
38 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
39 .unplug_io_fn = swap_unplug_io_fn,
42 struct address_space swapper_space = {
43 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
44 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
45 .a_ops = &swap_aops,
46 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
47 .backing_dev_info = &swap_backing_dev_info,
50 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
52 static struct {
53 unsigned long add_total;
54 unsigned long del_total;
55 unsigned long find_success;
56 unsigned long find_total;
57 } swap_cache_info;
59 void show_swap_cache_info(void)
61 printk("%lu pages in swap cache\n", total_swapcache_pages);
62 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
63 swap_cache_info.add_total, swap_cache_info.del_total,
64 swap_cache_info.find_success, swap_cache_info.find_total);
65 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
66 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
71 * but sets SwapCache flag and private instead of mapping and index.
73 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
75 int error;
77 VM_BUG_ON(!PageLocked(page));
78 VM_BUG_ON(PageSwapCache(page));
79 VM_BUG_ON(!PageSwapBacked(page));
81 error = radix_tree_preload(gfp_mask);
82 if (!error) {
83 page_cache_get(page);
84 SetPageSwapCache(page);
85 set_page_private(page, entry.val);
87 spin_lock_irq(&swapper_space.tree_lock);
88 error = radix_tree_insert(&swapper_space.page_tree,
89 entry.val, page);
90 if (likely(!error)) {
91 total_swapcache_pages++;
92 __inc_zone_page_state(page, NR_FILE_PAGES);
93 INC_CACHE_INFO(add_total);
95 spin_unlock_irq(&swapper_space.tree_lock);
96 radix_tree_preload_end();
98 if (unlikely(error)) {
99 set_page_private(page, 0UL);
100 ClearPageSwapCache(page);
101 page_cache_release(page);
104 return error;
108 * This must be called only on pages that have
109 * been verified to be in the swap cache.
111 void __delete_from_swap_cache(struct page *page)
113 VM_BUG_ON(!PageLocked(page));
114 VM_BUG_ON(!PageSwapCache(page));
115 VM_BUG_ON(PageWriteback(page));
117 radix_tree_delete(&swapper_space.page_tree, page_private(page));
118 set_page_private(page, 0);
119 ClearPageSwapCache(page);
120 total_swapcache_pages--;
121 __dec_zone_page_state(page, NR_FILE_PAGES);
122 INC_CACHE_INFO(del_total);
126 * add_to_swap - allocate swap space for a page
127 * @page: page we want to move to swap
129 * Allocate swap space for the page and add the page to the
130 * swap cache. Caller needs to hold the page lock.
132 int add_to_swap(struct page *page)
134 swp_entry_t entry;
135 int err;
137 VM_BUG_ON(!PageLocked(page));
138 VM_BUG_ON(!PageUptodate(page));
140 for (;;) {
141 entry = get_swap_page();
142 if (!entry.val)
143 return 0;
146 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 * stops emergency reserves from being allocated.
150 * TODO: this could cause a theoretical memory reclaim
151 * deadlock in the swap out path.
154 * Add it to the swap cache and mark it dirty
156 err = add_to_swap_cache(page, entry,
157 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
159 switch (err) {
160 case 0: /* Success */
161 SetPageDirty(page);
162 return 1;
163 case -EEXIST:
164 /* Raced with "speculative" read_swap_cache_async */
165 swapcache_free(entry, NULL);
166 continue;
167 default:
168 /* -ENOMEM radix-tree allocation failure */
169 swapcache_free(entry, NULL);
170 return 0;
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
181 void delete_from_swap_cache(struct page *page)
183 swp_entry_t entry;
185 entry.val = page_private(page);
187 spin_lock_irq(&swapper_space.tree_lock);
188 __delete_from_swap_cache(page);
189 spin_unlock_irq(&swapper_space.tree_lock);
191 swapcache_free(entry, page);
192 page_cache_release(page);
196 * If we are the only user, then try to free up the swap cache.
198 * Its ok to check for PageSwapCache without the page lock
199 * here because we are going to recheck again inside
200 * try_to_free_swap() _with_ the lock.
201 * - Marcelo
203 static inline void free_swap_cache(struct page *page)
205 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
206 try_to_free_swap(page);
207 unlock_page(page);
212 * Perform a free_page(), also freeing any swap cache associated with
213 * this page if it is the last user of the page.
215 void free_page_and_swap_cache(struct page *page)
217 free_swap_cache(page);
218 page_cache_release(page);
222 * Passed an array of pages, drop them all from swapcache and then release
223 * them. They are removed from the LRU and freed if this is their last use.
225 void free_pages_and_swap_cache(struct page **pages, int nr)
227 struct page **pagep = pages;
229 lru_add_drain();
230 while (nr) {
231 int todo = min(nr, PAGEVEC_SIZE);
232 int i;
234 for (i = 0; i < todo; i++)
235 free_swap_cache(pagep[i]);
236 release_pages(pagep, todo, 0);
237 pagep += todo;
238 nr -= todo;
243 * Lookup a swap entry in the swap cache. A found page will be returned
244 * unlocked and with its refcount incremented - we rely on the kernel
245 * lock getting page table operations atomic even if we drop the page
246 * lock before returning.
248 struct page * lookup_swap_cache(swp_entry_t entry)
250 struct page *page;
252 page = find_get_page(&swapper_space, entry.val);
254 if (page)
255 INC_CACHE_INFO(find_success);
257 INC_CACHE_INFO(find_total);
258 return page;
262 * Locate a page of swap in physical memory, reserving swap cache space
263 * and reading the disk if it is not already cached.
264 * A failure return means that either the page allocation failed or that
265 * the swap entry is no longer in use.
267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
268 struct vm_area_struct *vma, unsigned long addr)
270 struct page *found_page, *new_page = NULL;
271 int err;
273 do {
275 * First check the swap cache. Since this is normally
276 * called after lookup_swap_cache() failed, re-calling
277 * that would confuse statistics.
279 found_page = find_get_page(&swapper_space, entry.val);
280 if (found_page)
281 break;
284 * Get a new page to read into from swap.
286 if (!new_page) {
287 new_page = alloc_page_vma(gfp_mask, vma, addr);
288 if (!new_page)
289 break; /* Out of memory */
293 * Swap entry may have been freed since our caller observed it.
295 err = swapcache_prepare(entry);
296 if (err == -EEXIST) /* seems racy */
297 continue;
298 if (err) /* swp entry is obsolete ? */
299 break;
302 * Associate the page with swap entry in the swap cache.
303 * May fail (-EEXIST) if there is already a page associated
304 * with this entry in the swap cache: added by a racing
305 * read_swap_cache_async, or add_to_swap or shmem_writepage
306 * re-using the just freed swap entry for an existing page.
307 * May fail (-ENOMEM) if radix-tree node allocation failed.
309 __set_page_locked(new_page);
310 SetPageSwapBacked(new_page);
311 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
312 if (likely(!err)) {
314 * Initiate read into locked page and return.
316 lru_cache_add_anon(new_page);
317 swap_readpage(new_page);
318 return new_page;
320 ClearPageSwapBacked(new_page);
321 __clear_page_locked(new_page);
322 swapcache_free(entry, NULL);
323 } while (err != -ENOMEM);
325 if (new_page)
326 page_cache_release(new_page);
327 return found_page;
331 * swapin_readahead - swap in pages in hope we need them soon
332 * @entry: swap entry of this memory
333 * @gfp_mask: memory allocation flags
334 * @vma: user vma this address belongs to
335 * @addr: target address for mempolicy
337 * Returns the struct page for entry and addr, after queueing swapin.
339 * Primitive swap readahead code. We simply read an aligned block of
340 * (1 << page_cluster) entries in the swap area. This method is chosen
341 * because it doesn't cost us any seek time. We also make sure to queue
342 * the 'original' request together with the readahead ones...
344 * This has been extended to use the NUMA policies from the mm triggering
345 * the readahead.
347 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
349 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
350 struct vm_area_struct *vma, unsigned long addr)
352 int nr_pages;
353 struct page *page;
354 unsigned long offset;
355 unsigned long end_offset;
358 * Get starting offset for readaround, and number of pages to read.
359 * Adjust starting address by readbehind (for NUMA interleave case)?
360 * No, it's very unlikely that swap layout would follow vma layout,
361 * more likely that neighbouring swap pages came from the same node:
362 * so use the same "addr" to choose the same node for each swap read.
364 nr_pages = valid_swaphandles(entry, &offset);
365 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
366 /* Ok, do the async read-ahead now */
367 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
368 gfp_mask, vma, addr);
369 if (!page)
370 break;
371 page_cache_release(page);
373 lru_add_drain(); /* Push any new pages onto the LRU now */
374 return read_swap_cache_async(entry, gfp_mask, vma, addr);