2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
20 #define ATH_PCI_VERSION "0.1"
22 static char *dev_info
= "ath9k";
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
29 static int modparam_nohwcrypt
;
30 module_param_named(nohwcrypt
, modparam_nohwcrypt
, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption");
33 /* We use the hw_value as an index into our private channel structure */
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
52 static struct ieee80211_channel ath9k_2ghz_chantable
[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
73 static struct ieee80211_channel ath9k_5ghz_chantable
[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
104 static void ath_cache_conf_rate(struct ath_softc
*sc
,
105 struct ieee80211_conf
*conf
)
107 switch (conf
->channel
->band
) {
108 case IEEE80211_BAND_2GHZ
:
109 if (conf_is_ht20(conf
))
111 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT20
];
112 else if (conf_is_ht40_minus(conf
))
114 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT40MINUS
];
115 else if (conf_is_ht40_plus(conf
))
117 sc
->hw_rate_table
[ATH9K_MODE_11NG_HT40PLUS
];
120 sc
->hw_rate_table
[ATH9K_MODE_11G
];
122 case IEEE80211_BAND_5GHZ
:
123 if (conf_is_ht20(conf
))
125 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT20
];
126 else if (conf_is_ht40_minus(conf
))
128 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT40MINUS
];
129 else if (conf_is_ht40_plus(conf
))
131 sc
->hw_rate_table
[ATH9K_MODE_11NA_HT40PLUS
];
134 sc
->hw_rate_table
[ATH9K_MODE_11A
];
142 static void ath_update_txpow(struct ath_softc
*sc
)
144 struct ath_hw
*ah
= sc
->sc_ah
;
147 if (sc
->curtxpow
!= sc
->config
.txpowlimit
) {
148 ath9k_hw_set_txpowerlimit(ah
, sc
->config
.txpowlimit
);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah
, ATH9K_CAP_TXPOW
, 1, &txpow
);
151 sc
->curtxpow
= txpow
;
155 static u8
parse_mpdudensity(u8 mpdudensity
)
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
168 switch (mpdudensity
) {
174 /* Our lower layer calculations limit our precision to
190 static void ath_setup_rates(struct ath_softc
*sc
, enum ieee80211_band band
)
192 const struct ath_rate_table
*rate_table
= NULL
;
193 struct ieee80211_supported_band
*sband
;
194 struct ieee80211_rate
*rate
;
198 case IEEE80211_BAND_2GHZ
:
199 rate_table
= sc
->hw_rate_table
[ATH9K_MODE_11G
];
201 case IEEE80211_BAND_5GHZ
:
202 rate_table
= sc
->hw_rate_table
[ATH9K_MODE_11A
];
208 if (rate_table
== NULL
)
211 sband
= &sc
->sbands
[band
];
212 rate
= sc
->rates
[band
];
214 if (rate_table
->rate_cnt
> ATH_RATE_MAX
)
215 maxrates
= ATH_RATE_MAX
;
217 maxrates
= rate_table
->rate_cnt
;
219 for (i
= 0; i
< maxrates
; i
++) {
220 rate
[i
].bitrate
= rate_table
->info
[i
].ratekbps
/ 100;
221 rate
[i
].hw_value
= rate_table
->info
[i
].ratecode
;
222 if (rate_table
->info
[i
].short_preamble
) {
223 rate
[i
].hw_value_short
= rate_table
->info
[i
].ratecode
|
224 rate_table
->info
[i
].short_preamble
;
225 rate
[i
].flags
= IEEE80211_RATE_SHORT_PREAMBLE
;
229 DPRINTF(sc
, ATH_DBG_CONFIG
, "Rate: %2dMbps, ratecode: %2d\n",
230 rate
[i
].bitrate
/ 10, rate
[i
].hw_value
);
235 * Set/change channels. If the channel is really being changed, it's done
236 * by reseting the chip. To accomplish this we must first cleanup any pending
237 * DMA, then restart stuff.
239 int ath_set_channel(struct ath_softc
*sc
, struct ieee80211_hw
*hw
,
240 struct ath9k_channel
*hchan
)
242 struct ath_hw
*ah
= sc
->sc_ah
;
243 bool fastcc
= true, stopped
;
244 struct ieee80211_channel
*channel
= hw
->conf
.channel
;
247 if (sc
->sc_flags
& SC_OP_INVALID
)
253 * This is only performed if the channel settings have
256 * To switch channels clear any pending DMA operations;
257 * wait long enough for the RX fifo to drain, reset the
258 * hardware at the new frequency, and then re-enable
259 * the relevant bits of the h/w.
261 ath9k_hw_set_interrupts(ah
, 0);
262 ath_drain_all_txq(sc
, false);
263 stopped
= ath_stoprecv(sc
);
265 /* XXX: do not flush receive queue here. We don't want
266 * to flush data frames already in queue because of
267 * changing channel. */
269 if (!stopped
|| (sc
->sc_flags
& SC_OP_FULL_RESET
))
272 DPRINTF(sc
, ATH_DBG_CONFIG
,
273 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274 sc
->sc_ah
->curchan
->channel
,
275 channel
->center_freq
, sc
->tx_chan_width
);
277 spin_lock_bh(&sc
->sc_resetlock
);
279 r
= ath9k_hw_reset(ah
, hchan
, fastcc
);
281 DPRINTF(sc
, ATH_DBG_FATAL
,
282 "Unable to reset channel (%u Mhz) "
284 channel
->center_freq
, r
);
285 spin_unlock_bh(&sc
->sc_resetlock
);
288 spin_unlock_bh(&sc
->sc_resetlock
);
290 sc
->sc_flags
&= ~SC_OP_FULL_RESET
;
292 if (ath_startrecv(sc
) != 0) {
293 DPRINTF(sc
, ATH_DBG_FATAL
,
294 "Unable to restart recv logic\n");
298 ath_cache_conf_rate(sc
, &hw
->conf
);
299 ath_update_txpow(sc
);
300 ath9k_hw_set_interrupts(ah
, sc
->imask
);
301 ath9k_ps_restore(sc
);
306 * This routine performs the periodic noise floor calibration function
307 * that is used to adjust and optimize the chip performance. This
308 * takes environmental changes (location, temperature) into account.
309 * When the task is complete, it reschedules itself depending on the
310 * appropriate interval that was calculated.
312 static void ath_ani_calibrate(unsigned long data
)
314 struct ath_softc
*sc
= (struct ath_softc
*)data
;
315 struct ath_hw
*ah
= sc
->sc_ah
;
316 bool longcal
= false;
317 bool shortcal
= false;
318 bool aniflag
= false;
319 unsigned int timestamp
= jiffies_to_msecs(jiffies
);
320 u32 cal_interval
, short_cal_interval
;
322 short_cal_interval
= (ah
->opmode
== NL80211_IFTYPE_AP
) ?
323 ATH_AP_SHORT_CALINTERVAL
: ATH_STA_SHORT_CALINTERVAL
;
326 * don't calibrate when we're scanning.
327 * we are most likely not on our home channel.
329 if (sc
->sc_flags
& SC_OP_SCANNING
)
332 /* Only calibrate if awake */
333 if (sc
->sc_ah
->power_mode
!= ATH9K_PM_AWAKE
)
338 /* Long calibration runs independently of short calibration. */
339 if ((timestamp
- sc
->ani
.longcal_timer
) >= ATH_LONG_CALINTERVAL
) {
341 DPRINTF(sc
, ATH_DBG_ANI
, "longcal @%lu\n", jiffies
);
342 sc
->ani
.longcal_timer
= timestamp
;
345 /* Short calibration applies only while caldone is false */
346 if (!sc
->ani
.caldone
) {
347 if ((timestamp
- sc
->ani
.shortcal_timer
) >= short_cal_interval
) {
349 DPRINTF(sc
, ATH_DBG_ANI
, "shortcal @%lu\n", jiffies
);
350 sc
->ani
.shortcal_timer
= timestamp
;
351 sc
->ani
.resetcal_timer
= timestamp
;
354 if ((timestamp
- sc
->ani
.resetcal_timer
) >=
355 ATH_RESTART_CALINTERVAL
) {
356 sc
->ani
.caldone
= ath9k_hw_reset_calvalid(ah
);
358 sc
->ani
.resetcal_timer
= timestamp
;
362 /* Verify whether we must check ANI */
363 if ((timestamp
- sc
->ani
.checkani_timer
) >= ATH_ANI_POLLINTERVAL
) {
365 sc
->ani
.checkani_timer
= timestamp
;
368 /* Skip all processing if there's nothing to do. */
369 if (longcal
|| shortcal
|| aniflag
) {
370 /* Call ANI routine if necessary */
372 ath9k_hw_ani_monitor(ah
, &sc
->nodestats
, ah
->curchan
);
374 /* Perform calibration if necessary */
375 if (longcal
|| shortcal
) {
376 sc
->ani
.caldone
= ath9k_hw_calibrate(ah
, ah
->curchan
,
377 sc
->rx_chainmask
, longcal
);
380 sc
->ani
.noise_floor
= ath9k_hw_getchan_noise(ah
,
383 DPRINTF(sc
, ATH_DBG_ANI
," calibrate chan %u/%x nf: %d\n",
384 ah
->curchan
->channel
, ah
->curchan
->channelFlags
,
385 sc
->ani
.noise_floor
);
389 ath9k_ps_restore(sc
);
393 * Set timer interval based on previous results.
394 * The interval must be the shortest necessary to satisfy ANI,
395 * short calibration and long calibration.
397 cal_interval
= ATH_LONG_CALINTERVAL
;
398 if (sc
->sc_ah
->config
.enable_ani
)
399 cal_interval
= min(cal_interval
, (u32
)ATH_ANI_POLLINTERVAL
);
400 if (!sc
->ani
.caldone
)
401 cal_interval
= min(cal_interval
, (u32
)short_cal_interval
);
403 mod_timer(&sc
->ani
.timer
, jiffies
+ msecs_to_jiffies(cal_interval
));
406 static void ath_start_ani(struct ath_softc
*sc
)
408 unsigned long timestamp
= jiffies_to_msecs(jiffies
);
410 sc
->ani
.longcal_timer
= timestamp
;
411 sc
->ani
.shortcal_timer
= timestamp
;
412 sc
->ani
.checkani_timer
= timestamp
;
414 mod_timer(&sc
->ani
.timer
,
415 jiffies
+ msecs_to_jiffies(ATH_ANI_POLLINTERVAL
));
419 * Update tx/rx chainmask. For legacy association,
420 * hard code chainmask to 1x1, for 11n association, use
421 * the chainmask configuration, for bt coexistence, use
422 * the chainmask configuration even in legacy mode.
424 void ath_update_chainmask(struct ath_softc
*sc
, int is_ht
)
427 (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_BT_COEX
)) {
428 sc
->tx_chainmask
= sc
->sc_ah
->caps
.tx_chainmask
;
429 sc
->rx_chainmask
= sc
->sc_ah
->caps
.rx_chainmask
;
431 sc
->tx_chainmask
= 1;
432 sc
->rx_chainmask
= 1;
435 DPRINTF(sc
, ATH_DBG_CONFIG
, "tx chmask: %d, rx chmask: %d\n",
436 sc
->tx_chainmask
, sc
->rx_chainmask
);
439 static void ath_node_attach(struct ath_softc
*sc
, struct ieee80211_sta
*sta
)
443 an
= (struct ath_node
*)sta
->drv_priv
;
445 if (sc
->sc_flags
& SC_OP_TXAGGR
) {
446 ath_tx_node_init(sc
, an
);
447 an
->maxampdu
= 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR
+
448 sta
->ht_cap
.ampdu_factor
);
449 an
->mpdudensity
= parse_mpdudensity(sta
->ht_cap
.ampdu_density
);
453 static void ath_node_detach(struct ath_softc
*sc
, struct ieee80211_sta
*sta
)
455 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
457 if (sc
->sc_flags
& SC_OP_TXAGGR
)
458 ath_tx_node_cleanup(sc
, an
);
461 static void ath9k_tasklet(unsigned long data
)
463 struct ath_softc
*sc
= (struct ath_softc
*)data
;
464 u32 status
= sc
->intrstatus
;
468 if (status
& ATH9K_INT_FATAL
) {
469 ath_reset(sc
, false);
470 ath9k_ps_restore(sc
);
474 if (status
& (ATH9K_INT_RX
| ATH9K_INT_RXEOL
| ATH9K_INT_RXORN
)) {
475 spin_lock_bh(&sc
->rx
.rxflushlock
);
476 ath_rx_tasklet(sc
, 0);
477 spin_unlock_bh(&sc
->rx
.rxflushlock
);
480 if (status
& ATH9K_INT_TX
)
483 /* re-enable hardware interrupt */
484 ath9k_hw_set_interrupts(sc
->sc_ah
, sc
->imask
);
485 ath9k_ps_restore(sc
);
488 irqreturn_t
ath_isr(int irq
, void *dev
)
490 #define SCHED_INTR ( \
500 struct ath_softc
*sc
= dev
;
501 struct ath_hw
*ah
= sc
->sc_ah
;
502 enum ath9k_int status
;
506 * The hardware is not ready/present, don't
507 * touch anything. Note this can happen early
508 * on if the IRQ is shared.
510 if (sc
->sc_flags
& SC_OP_INVALID
)
514 /* shared irq, not for us */
516 if (!ath9k_hw_intrpend(ah
))
520 * Figure out the reason(s) for the interrupt. Note
521 * that the hal returns a pseudo-ISR that may include
522 * bits we haven't explicitly enabled so we mask the
523 * value to insure we only process bits we requested.
525 ath9k_hw_getisr(ah
, &status
); /* NB: clears ISR too */
526 status
&= sc
->imask
; /* discard unasked-for bits */
529 * If there are no status bits set, then this interrupt was not
530 * for me (should have been caught above).
535 /* Cache the status */
536 sc
->intrstatus
= status
;
538 if (status
& SCHED_INTR
)
542 * If a FATAL or RXORN interrupt is received, we have to reset the
545 if (status
& (ATH9K_INT_FATAL
| ATH9K_INT_RXORN
))
548 if (status
& ATH9K_INT_SWBA
)
549 tasklet_schedule(&sc
->bcon_tasklet
);
551 if (status
& ATH9K_INT_TXURN
)
552 ath9k_hw_updatetxtriglevel(ah
, true);
554 if (status
& ATH9K_INT_MIB
) {
556 * Disable interrupts until we service the MIB
557 * interrupt; otherwise it will continue to
560 ath9k_hw_set_interrupts(ah
, 0);
562 * Let the hal handle the event. We assume
563 * it will clear whatever condition caused
566 ath9k_hw_procmibevent(ah
, &sc
->nodestats
);
567 ath9k_hw_set_interrupts(ah
, sc
->imask
);
570 if (!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
571 if (status
& ATH9K_INT_TIM_TIMER
) {
572 /* Clear RxAbort bit so that we can
574 ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
);
575 ath9k_hw_setrxabort(sc
->sc_ah
, 0);
576 sc
->sc_flags
|= SC_OP_WAIT_FOR_BEACON
;
581 ath_debug_stat_interrupt(sc
, status
);
584 /* turn off every interrupt except SWBA */
585 ath9k_hw_set_interrupts(ah
, (sc
->imask
& ATH9K_INT_SWBA
));
586 tasklet_schedule(&sc
->intr_tq
);
594 static u32
ath_get_extchanmode(struct ath_softc
*sc
,
595 struct ieee80211_channel
*chan
,
596 enum nl80211_channel_type channel_type
)
600 switch (chan
->band
) {
601 case IEEE80211_BAND_2GHZ
:
602 switch(channel_type
) {
603 case NL80211_CHAN_NO_HT
:
604 case NL80211_CHAN_HT20
:
605 chanmode
= CHANNEL_G_HT20
;
607 case NL80211_CHAN_HT40PLUS
:
608 chanmode
= CHANNEL_G_HT40PLUS
;
610 case NL80211_CHAN_HT40MINUS
:
611 chanmode
= CHANNEL_G_HT40MINUS
;
615 case IEEE80211_BAND_5GHZ
:
616 switch(channel_type
) {
617 case NL80211_CHAN_NO_HT
:
618 case NL80211_CHAN_HT20
:
619 chanmode
= CHANNEL_A_HT20
;
621 case NL80211_CHAN_HT40PLUS
:
622 chanmode
= CHANNEL_A_HT40PLUS
;
624 case NL80211_CHAN_HT40MINUS
:
625 chanmode
= CHANNEL_A_HT40MINUS
;
636 static int ath_setkey_tkip(struct ath_softc
*sc
, u16 keyix
, const u8
*key
,
637 struct ath9k_keyval
*hk
, const u8
*addr
,
643 key_txmic
= key
+ NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY
;
644 key_rxmic
= key
+ NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY
;
648 * Group key installation - only two key cache entries are used
649 * regardless of splitmic capability since group key is only
650 * used either for TX or RX.
653 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
654 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_mic
));
656 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
657 memcpy(hk
->kv_txmic
, key_rxmic
, sizeof(hk
->kv_mic
));
659 return ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
, hk
, addr
);
662 /* TX and RX keys share the same key cache entry. */
663 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
664 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_txmic
));
665 return ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
, hk
, addr
);
668 /* Separate key cache entries for TX and RX */
670 /* TX key goes at first index, RX key at +32. */
671 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
672 if (!ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
, hk
, NULL
)) {
673 /* TX MIC entry failed. No need to proceed further */
674 DPRINTF(sc
, ATH_DBG_FATAL
,
675 "Setting TX MIC Key Failed\n");
679 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
680 /* XXX delete tx key on failure? */
681 return ath9k_hw_set_keycache_entry(sc
->sc_ah
, keyix
+ 32, hk
, addr
);
684 static int ath_reserve_key_cache_slot_tkip(struct ath_softc
*sc
)
688 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
/ 2; i
++) {
689 if (test_bit(i
, sc
->keymap
) ||
690 test_bit(i
+ 64, sc
->keymap
))
691 continue; /* At least one part of TKIP key allocated */
693 (test_bit(i
+ 32, sc
->keymap
) ||
694 test_bit(i
+ 64 + 32, sc
->keymap
)))
695 continue; /* At least one part of TKIP key allocated */
697 /* Found a free slot for a TKIP key */
703 static int ath_reserve_key_cache_slot(struct ath_softc
*sc
)
707 /* First, try to find slots that would not be available for TKIP. */
709 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
/ 4; i
++) {
710 if (!test_bit(i
, sc
->keymap
) &&
711 (test_bit(i
+ 32, sc
->keymap
) ||
712 test_bit(i
+ 64, sc
->keymap
) ||
713 test_bit(i
+ 64 + 32, sc
->keymap
)))
715 if (!test_bit(i
+ 32, sc
->keymap
) &&
716 (test_bit(i
, sc
->keymap
) ||
717 test_bit(i
+ 64, sc
->keymap
) ||
718 test_bit(i
+ 64 + 32, sc
->keymap
)))
720 if (!test_bit(i
+ 64, sc
->keymap
) &&
721 (test_bit(i
, sc
->keymap
) ||
722 test_bit(i
+ 32, sc
->keymap
) ||
723 test_bit(i
+ 64 + 32, sc
->keymap
)))
725 if (!test_bit(i
+ 64 + 32, sc
->keymap
) &&
726 (test_bit(i
, sc
->keymap
) ||
727 test_bit(i
+ 32, sc
->keymap
) ||
728 test_bit(i
+ 64, sc
->keymap
)))
732 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
/ 2; i
++) {
733 if (!test_bit(i
, sc
->keymap
) &&
734 test_bit(i
+ 64, sc
->keymap
))
736 if (test_bit(i
, sc
->keymap
) &&
737 !test_bit(i
+ 64, sc
->keymap
))
742 /* No partially used TKIP slots, pick any available slot */
743 for (i
= IEEE80211_WEP_NKID
; i
< sc
->keymax
; i
++) {
744 /* Do not allow slots that could be needed for TKIP group keys
745 * to be used. This limitation could be removed if we know that
746 * TKIP will not be used. */
747 if (i
>= 64 && i
< 64 + IEEE80211_WEP_NKID
)
750 if (i
>= 32 && i
< 32 + IEEE80211_WEP_NKID
)
752 if (i
>= 64 + 32 && i
< 64 + 32 + IEEE80211_WEP_NKID
)
756 if (!test_bit(i
, sc
->keymap
))
757 return i
; /* Found a free slot for a key */
760 /* No free slot found */
764 static int ath_key_config(struct ath_softc
*sc
,
765 struct ieee80211_vif
*vif
,
766 struct ieee80211_sta
*sta
,
767 struct ieee80211_key_conf
*key
)
769 struct ath9k_keyval hk
;
770 const u8
*mac
= NULL
;
774 memset(&hk
, 0, sizeof(hk
));
778 hk
.kv_type
= ATH9K_CIPHER_WEP
;
781 hk
.kv_type
= ATH9K_CIPHER_TKIP
;
784 hk
.kv_type
= ATH9K_CIPHER_AES_CCM
;
790 hk
.kv_len
= key
->keylen
;
791 memcpy(hk
.kv_val
, key
->key
, key
->keylen
);
793 if (!(key
->flags
& IEEE80211_KEY_FLAG_PAIRWISE
)) {
794 /* For now, use the default keys for broadcast keys. This may
795 * need to change with virtual interfaces. */
797 } else if (key
->keyidx
) {
802 if (vif
->type
!= NL80211_IFTYPE_AP
) {
803 /* Only keyidx 0 should be used with unicast key, but
804 * allow this for client mode for now. */
813 if (key
->alg
== ALG_TKIP
)
814 idx
= ath_reserve_key_cache_slot_tkip(sc
);
816 idx
= ath_reserve_key_cache_slot(sc
);
818 return -ENOSPC
; /* no free key cache entries */
821 if (key
->alg
== ALG_TKIP
)
822 ret
= ath_setkey_tkip(sc
, idx
, key
->key
, &hk
, mac
,
823 vif
->type
== NL80211_IFTYPE_AP
);
825 ret
= ath9k_hw_set_keycache_entry(sc
->sc_ah
, idx
, &hk
, mac
);
830 set_bit(idx
, sc
->keymap
);
831 if (key
->alg
== ALG_TKIP
) {
832 set_bit(idx
+ 64, sc
->keymap
);
834 set_bit(idx
+ 32, sc
->keymap
);
835 set_bit(idx
+ 64 + 32, sc
->keymap
);
842 static void ath_key_delete(struct ath_softc
*sc
, struct ieee80211_key_conf
*key
)
844 ath9k_hw_keyreset(sc
->sc_ah
, key
->hw_key_idx
);
845 if (key
->hw_key_idx
< IEEE80211_WEP_NKID
)
848 clear_bit(key
->hw_key_idx
, sc
->keymap
);
849 if (key
->alg
!= ALG_TKIP
)
852 clear_bit(key
->hw_key_idx
+ 64, sc
->keymap
);
854 clear_bit(key
->hw_key_idx
+ 32, sc
->keymap
);
855 clear_bit(key
->hw_key_idx
+ 64 + 32, sc
->keymap
);
859 static void setup_ht_cap(struct ath_softc
*sc
,
860 struct ieee80211_sta_ht_cap
*ht_info
)
862 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
863 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
865 ht_info
->ht_supported
= true;
866 ht_info
->cap
= IEEE80211_HT_CAP_SUP_WIDTH_20_40
|
867 IEEE80211_HT_CAP_SM_PS
|
868 IEEE80211_HT_CAP_SGI_40
|
869 IEEE80211_HT_CAP_DSSSCCK40
;
871 ht_info
->ampdu_factor
= ATH9K_HT_CAP_MAXRXAMPDU_65536
;
872 ht_info
->ampdu_density
= ATH9K_HT_CAP_MPDUDENSITY_8
;
874 /* set up supported mcs set */
875 memset(&ht_info
->mcs
, 0, sizeof(ht_info
->mcs
));
877 switch(sc
->rx_chainmask
) {
879 ht_info
->mcs
.rx_mask
[0] = 0xff;
885 ht_info
->mcs
.rx_mask
[0] = 0xff;
886 ht_info
->mcs
.rx_mask
[1] = 0xff;
890 ht_info
->mcs
.tx_params
= IEEE80211_HT_MCS_TX_DEFINED
;
893 static void ath9k_bss_assoc_info(struct ath_softc
*sc
,
894 struct ieee80211_vif
*vif
,
895 struct ieee80211_bss_conf
*bss_conf
)
897 struct ath_vif
*avp
= (void *)vif
->drv_priv
;
899 if (bss_conf
->assoc
) {
900 DPRINTF(sc
, ATH_DBG_CONFIG
, "Bss Info ASSOC %d, bssid: %pM\n",
901 bss_conf
->aid
, sc
->curbssid
);
903 /* New association, store aid */
904 if (avp
->av_opmode
== NL80211_IFTYPE_STATION
) {
905 sc
->curaid
= bss_conf
->aid
;
906 ath9k_hw_write_associd(sc
);
909 /* Configure the beacon */
910 ath_beacon_config(sc
, vif
);
912 /* Reset rssi stats */
913 sc
->nodestats
.ns_avgbrssi
= ATH_RSSI_DUMMY_MARKER
;
914 sc
->nodestats
.ns_avgrssi
= ATH_RSSI_DUMMY_MARKER
;
915 sc
->nodestats
.ns_avgtxrssi
= ATH_RSSI_DUMMY_MARKER
;
916 sc
->nodestats
.ns_avgtxrate
= ATH_RATE_DUMMY_MARKER
;
920 DPRINTF(sc
, ATH_DBG_CONFIG
, "Bss Info DISASSOC\n");
925 /********************************/
927 /********************************/
929 static void ath_led_blink_work(struct work_struct
*work
)
931 struct ath_softc
*sc
= container_of(work
, struct ath_softc
,
932 ath_led_blink_work
.work
);
934 if (!(sc
->sc_flags
& SC_OP_LED_ASSOCIATED
))
937 if ((sc
->led_on_duration
== ATH_LED_ON_DURATION_IDLE
) ||
938 (sc
->led_off_duration
== ATH_LED_OFF_DURATION_IDLE
))
939 ath9k_hw_set_gpio(sc
->sc_ah
, ATH_LED_PIN
, 0);
941 ath9k_hw_set_gpio(sc
->sc_ah
, ATH_LED_PIN
,
942 (sc
->sc_flags
& SC_OP_LED_ON
) ? 1 : 0);
944 queue_delayed_work(sc
->hw
->workqueue
, &sc
->ath_led_blink_work
,
945 (sc
->sc_flags
& SC_OP_LED_ON
) ?
946 msecs_to_jiffies(sc
->led_off_duration
) :
947 msecs_to_jiffies(sc
->led_on_duration
));
949 sc
->led_on_duration
= sc
->led_on_cnt
?
950 max((ATH_LED_ON_DURATION_IDLE
- sc
->led_on_cnt
), 25) :
951 ATH_LED_ON_DURATION_IDLE
;
952 sc
->led_off_duration
= sc
->led_off_cnt
?
953 max((ATH_LED_OFF_DURATION_IDLE
- sc
->led_off_cnt
), 10) :
954 ATH_LED_OFF_DURATION_IDLE
;
955 sc
->led_on_cnt
= sc
->led_off_cnt
= 0;
956 if (sc
->sc_flags
& SC_OP_LED_ON
)
957 sc
->sc_flags
&= ~SC_OP_LED_ON
;
959 sc
->sc_flags
|= SC_OP_LED_ON
;
962 static void ath_led_brightness(struct led_classdev
*led_cdev
,
963 enum led_brightness brightness
)
965 struct ath_led
*led
= container_of(led_cdev
, struct ath_led
, led_cdev
);
966 struct ath_softc
*sc
= led
->sc
;
968 switch (brightness
) {
970 if (led
->led_type
== ATH_LED_ASSOC
||
971 led
->led_type
== ATH_LED_RADIO
) {
972 ath9k_hw_set_gpio(sc
->sc_ah
, ATH_LED_PIN
,
973 (led
->led_type
== ATH_LED_RADIO
));
974 sc
->sc_flags
&= ~SC_OP_LED_ASSOCIATED
;
975 if (led
->led_type
== ATH_LED_RADIO
)
976 sc
->sc_flags
&= ~SC_OP_LED_ON
;
982 if (led
->led_type
== ATH_LED_ASSOC
) {
983 sc
->sc_flags
|= SC_OP_LED_ASSOCIATED
;
984 queue_delayed_work(sc
->hw
->workqueue
,
985 &sc
->ath_led_blink_work
, 0);
986 } else if (led
->led_type
== ATH_LED_RADIO
) {
987 ath9k_hw_set_gpio(sc
->sc_ah
, ATH_LED_PIN
, 0);
988 sc
->sc_flags
|= SC_OP_LED_ON
;
998 static int ath_register_led(struct ath_softc
*sc
, struct ath_led
*led
,
1004 led
->led_cdev
.name
= led
->name
;
1005 led
->led_cdev
.default_trigger
= trigger
;
1006 led
->led_cdev
.brightness_set
= ath_led_brightness
;
1008 ret
= led_classdev_register(wiphy_dev(sc
->hw
->wiphy
), &led
->led_cdev
);
1010 DPRINTF(sc
, ATH_DBG_FATAL
,
1011 "Failed to register led:%s", led
->name
);
1013 led
->registered
= 1;
1017 static void ath_unregister_led(struct ath_led
*led
)
1019 if (led
->registered
) {
1020 led_classdev_unregister(&led
->led_cdev
);
1021 led
->registered
= 0;
1025 static void ath_deinit_leds(struct ath_softc
*sc
)
1027 cancel_delayed_work_sync(&sc
->ath_led_blink_work
);
1028 ath_unregister_led(&sc
->assoc_led
);
1029 sc
->sc_flags
&= ~SC_OP_LED_ASSOCIATED
;
1030 ath_unregister_led(&sc
->tx_led
);
1031 ath_unregister_led(&sc
->rx_led
);
1032 ath_unregister_led(&sc
->radio_led
);
1033 ath9k_hw_set_gpio(sc
->sc_ah
, ATH_LED_PIN
, 1);
1036 static void ath_init_leds(struct ath_softc
*sc
)
1041 /* Configure gpio 1 for output */
1042 ath9k_hw_cfg_output(sc
->sc_ah
, ATH_LED_PIN
,
1043 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1044 /* LED off, active low */
1045 ath9k_hw_set_gpio(sc
->sc_ah
, ATH_LED_PIN
, 1);
1047 INIT_DELAYED_WORK(&sc
->ath_led_blink_work
, ath_led_blink_work
);
1049 trigger
= ieee80211_get_radio_led_name(sc
->hw
);
1050 snprintf(sc
->radio_led
.name
, sizeof(sc
->radio_led
.name
),
1051 "ath9k-%s::radio", wiphy_name(sc
->hw
->wiphy
));
1052 ret
= ath_register_led(sc
, &sc
->radio_led
, trigger
);
1053 sc
->radio_led
.led_type
= ATH_LED_RADIO
;
1057 trigger
= ieee80211_get_assoc_led_name(sc
->hw
);
1058 snprintf(sc
->assoc_led
.name
, sizeof(sc
->assoc_led
.name
),
1059 "ath9k-%s::assoc", wiphy_name(sc
->hw
->wiphy
));
1060 ret
= ath_register_led(sc
, &sc
->assoc_led
, trigger
);
1061 sc
->assoc_led
.led_type
= ATH_LED_ASSOC
;
1065 trigger
= ieee80211_get_tx_led_name(sc
->hw
);
1066 snprintf(sc
->tx_led
.name
, sizeof(sc
->tx_led
.name
),
1067 "ath9k-%s::tx", wiphy_name(sc
->hw
->wiphy
));
1068 ret
= ath_register_led(sc
, &sc
->tx_led
, trigger
);
1069 sc
->tx_led
.led_type
= ATH_LED_TX
;
1073 trigger
= ieee80211_get_rx_led_name(sc
->hw
);
1074 snprintf(sc
->rx_led
.name
, sizeof(sc
->rx_led
.name
),
1075 "ath9k-%s::rx", wiphy_name(sc
->hw
->wiphy
));
1076 ret
= ath_register_led(sc
, &sc
->rx_led
, trigger
);
1077 sc
->rx_led
.led_type
= ATH_LED_RX
;
1084 ath_deinit_leds(sc
);
1087 void ath_radio_enable(struct ath_softc
*sc
)
1089 struct ath_hw
*ah
= sc
->sc_ah
;
1090 struct ieee80211_channel
*channel
= sc
->hw
->conf
.channel
;
1093 ath9k_ps_wakeup(sc
);
1094 ath9k_hw_configpcipowersave(ah
, 0);
1096 spin_lock_bh(&sc
->sc_resetlock
);
1097 r
= ath9k_hw_reset(ah
, ah
->curchan
, false);
1099 DPRINTF(sc
, ATH_DBG_FATAL
,
1100 "Unable to reset channel %u (%uMhz) ",
1101 "reset status %d\n",
1102 channel
->center_freq
, r
);
1104 spin_unlock_bh(&sc
->sc_resetlock
);
1106 ath_update_txpow(sc
);
1107 if (ath_startrecv(sc
) != 0) {
1108 DPRINTF(sc
, ATH_DBG_FATAL
,
1109 "Unable to restart recv logic\n");
1113 if (sc
->sc_flags
& SC_OP_BEACONS
)
1114 ath_beacon_config(sc
, NULL
); /* restart beacons */
1116 /* Re-Enable interrupts */
1117 ath9k_hw_set_interrupts(ah
, sc
->imask
);
1120 ath9k_hw_cfg_output(ah
, ATH_LED_PIN
,
1121 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1122 ath9k_hw_set_gpio(ah
, ATH_LED_PIN
, 0);
1124 ieee80211_wake_queues(sc
->hw
);
1125 ath9k_ps_restore(sc
);
1128 void ath_radio_disable(struct ath_softc
*sc
)
1130 struct ath_hw
*ah
= sc
->sc_ah
;
1131 struct ieee80211_channel
*channel
= sc
->hw
->conf
.channel
;
1134 ath9k_ps_wakeup(sc
);
1135 ieee80211_stop_queues(sc
->hw
);
1138 ath9k_hw_set_gpio(ah
, ATH_LED_PIN
, 1);
1139 ath9k_hw_cfg_gpio_input(ah
, ATH_LED_PIN
);
1141 /* Disable interrupts */
1142 ath9k_hw_set_interrupts(ah
, 0);
1144 ath_drain_all_txq(sc
, false); /* clear pending tx frames */
1145 ath_stoprecv(sc
); /* turn off frame recv */
1146 ath_flushrecv(sc
); /* flush recv queue */
1148 spin_lock_bh(&sc
->sc_resetlock
);
1149 r
= ath9k_hw_reset(ah
, ah
->curchan
, false);
1151 DPRINTF(sc
, ATH_DBG_FATAL
,
1152 "Unable to reset channel %u (%uMhz) "
1153 "reset status %d\n",
1154 channel
->center_freq
, r
);
1156 spin_unlock_bh(&sc
->sc_resetlock
);
1158 ath9k_hw_phy_disable(ah
);
1159 ath9k_hw_configpcipowersave(ah
, 1);
1160 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1161 ath9k_ps_restore(sc
);
1164 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1166 /*******************/
1168 /*******************/
1170 static bool ath_is_rfkill_set(struct ath_softc
*sc
)
1172 struct ath_hw
*ah
= sc
->sc_ah
;
1174 return ath9k_hw_gpio_get(ah
, ah
->rfkill_gpio
) ==
1175 ah
->rfkill_polarity
;
1178 /* h/w rfkill poll function */
1179 static void ath_rfkill_poll(struct work_struct
*work
)
1181 struct ath_softc
*sc
= container_of(work
, struct ath_softc
,
1182 rf_kill
.rfkill_poll
.work
);
1185 if (sc
->sc_flags
& SC_OP_INVALID
)
1188 radio_on
= !ath_is_rfkill_set(sc
);
1191 * enable/disable radio only when there is a
1192 * state change in RF switch
1194 if (radio_on
== !!(sc
->sc_flags
& SC_OP_RFKILL_HW_BLOCKED
)) {
1195 enum rfkill_state state
;
1197 if (sc
->sc_flags
& SC_OP_RFKILL_SW_BLOCKED
) {
1198 state
= radio_on
? RFKILL_STATE_SOFT_BLOCKED
1199 : RFKILL_STATE_HARD_BLOCKED
;
1200 } else if (radio_on
) {
1201 ath_radio_enable(sc
);
1202 state
= RFKILL_STATE_UNBLOCKED
;
1204 ath_radio_disable(sc
);
1205 state
= RFKILL_STATE_HARD_BLOCKED
;
1208 if (state
== RFKILL_STATE_HARD_BLOCKED
)
1209 sc
->sc_flags
|= SC_OP_RFKILL_HW_BLOCKED
;
1211 sc
->sc_flags
&= ~SC_OP_RFKILL_HW_BLOCKED
;
1213 rfkill_force_state(sc
->rf_kill
.rfkill
, state
);
1216 queue_delayed_work(sc
->hw
->workqueue
, &sc
->rf_kill
.rfkill_poll
,
1217 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL
));
1220 /* s/w rfkill handler */
1221 static int ath_sw_toggle_radio(void *data
, enum rfkill_state state
)
1223 struct ath_softc
*sc
= data
;
1226 case RFKILL_STATE_SOFT_BLOCKED
:
1227 if (!(sc
->sc_flags
& (SC_OP_RFKILL_HW_BLOCKED
|
1228 SC_OP_RFKILL_SW_BLOCKED
)))
1229 ath_radio_disable(sc
);
1230 sc
->sc_flags
|= SC_OP_RFKILL_SW_BLOCKED
;
1232 case RFKILL_STATE_UNBLOCKED
:
1233 if ((sc
->sc_flags
& SC_OP_RFKILL_SW_BLOCKED
)) {
1234 sc
->sc_flags
&= ~SC_OP_RFKILL_SW_BLOCKED
;
1235 if (sc
->sc_flags
& SC_OP_RFKILL_HW_BLOCKED
) {
1236 DPRINTF(sc
, ATH_DBG_FATAL
, "Can't turn on the"
1237 "radio as it is disabled by h/w\n");
1240 ath_radio_enable(sc
);
1248 /* Init s/w rfkill */
1249 static int ath_init_sw_rfkill(struct ath_softc
*sc
)
1251 sc
->rf_kill
.rfkill
= rfkill_allocate(wiphy_dev(sc
->hw
->wiphy
),
1253 if (!sc
->rf_kill
.rfkill
) {
1254 DPRINTF(sc
, ATH_DBG_FATAL
, "Failed to allocate rfkill\n");
1258 snprintf(sc
->rf_kill
.rfkill_name
, sizeof(sc
->rf_kill
.rfkill_name
),
1259 "ath9k-%s::rfkill", wiphy_name(sc
->hw
->wiphy
));
1260 sc
->rf_kill
.rfkill
->name
= sc
->rf_kill
.rfkill_name
;
1261 sc
->rf_kill
.rfkill
->data
= sc
;
1262 sc
->rf_kill
.rfkill
->toggle_radio
= ath_sw_toggle_radio
;
1263 sc
->rf_kill
.rfkill
->state
= RFKILL_STATE_UNBLOCKED
;
1268 /* Deinitialize rfkill */
1269 static void ath_deinit_rfkill(struct ath_softc
*sc
)
1271 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1272 cancel_delayed_work_sync(&sc
->rf_kill
.rfkill_poll
);
1274 if (sc
->sc_flags
& SC_OP_RFKILL_REGISTERED
) {
1275 rfkill_unregister(sc
->rf_kill
.rfkill
);
1276 sc
->sc_flags
&= ~SC_OP_RFKILL_REGISTERED
;
1277 sc
->rf_kill
.rfkill
= NULL
;
1281 static int ath_start_rfkill_poll(struct ath_softc
*sc
)
1283 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1284 queue_delayed_work(sc
->hw
->workqueue
,
1285 &sc
->rf_kill
.rfkill_poll
, 0);
1287 if (!(sc
->sc_flags
& SC_OP_RFKILL_REGISTERED
)) {
1288 if (rfkill_register(sc
->rf_kill
.rfkill
)) {
1289 DPRINTF(sc
, ATH_DBG_FATAL
,
1290 "Unable to register rfkill\n");
1291 rfkill_free(sc
->rf_kill
.rfkill
);
1293 /* Deinitialize the device */
1297 sc
->sc_flags
|= SC_OP_RFKILL_REGISTERED
;
1303 #endif /* CONFIG_RFKILL */
1305 void ath_cleanup(struct ath_softc
*sc
)
1308 free_irq(sc
->irq
, sc
);
1309 ath_bus_cleanup(sc
);
1310 kfree(sc
->sec_wiphy
);
1311 ieee80211_free_hw(sc
->hw
);
1314 void ath_detach(struct ath_softc
*sc
)
1316 struct ieee80211_hw
*hw
= sc
->hw
;
1319 ath9k_ps_wakeup(sc
);
1321 DPRINTF(sc
, ATH_DBG_CONFIG
, "Detach ATH hw\n");
1323 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1324 ath_deinit_rfkill(sc
);
1326 ath_deinit_leds(sc
);
1327 cancel_work_sync(&sc
->chan_work
);
1328 cancel_delayed_work_sync(&sc
->wiphy_work
);
1330 for (i
= 0; i
< sc
->num_sec_wiphy
; i
++) {
1331 struct ath_wiphy
*aphy
= sc
->sec_wiphy
[i
];
1334 sc
->sec_wiphy
[i
] = NULL
;
1335 ieee80211_unregister_hw(aphy
->hw
);
1336 ieee80211_free_hw(aphy
->hw
);
1338 ieee80211_unregister_hw(hw
);
1342 tasklet_kill(&sc
->intr_tq
);
1343 tasklet_kill(&sc
->bcon_tasklet
);
1345 if (!(sc
->sc_flags
& SC_OP_INVALID
))
1346 ath9k_hw_setpower(sc
->sc_ah
, ATH9K_PM_AWAKE
);
1348 /* cleanup tx queues */
1349 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1350 if (ATH_TXQ_SETUP(sc
, i
))
1351 ath_tx_cleanupq(sc
, &sc
->tx
.txq
[i
]);
1353 ath9k_hw_detach(sc
->sc_ah
);
1354 ath9k_exit_debug(sc
);
1355 ath9k_ps_restore(sc
);
1358 static int ath9k_reg_notifier(struct wiphy
*wiphy
,
1359 struct regulatory_request
*request
)
1361 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
1362 struct ath_wiphy
*aphy
= hw
->priv
;
1363 struct ath_softc
*sc
= aphy
->sc
;
1364 struct ath_regulatory
*reg
= &sc
->sc_ah
->regulatory
;
1366 return ath_reg_notifier_apply(wiphy
, request
, reg
);
1369 static int ath_init(u16 devid
, struct ath_softc
*sc
)
1371 struct ath_hw
*ah
= NULL
;
1376 /* XXX: hardware will not be ready until ath_open() being called */
1377 sc
->sc_flags
|= SC_OP_INVALID
;
1379 if (ath9k_init_debug(sc
) < 0)
1380 printk(KERN_ERR
"Unable to create debugfs files\n");
1382 spin_lock_init(&sc
->wiphy_lock
);
1383 spin_lock_init(&sc
->sc_resetlock
);
1384 spin_lock_init(&sc
->sc_serial_rw
);
1385 mutex_init(&sc
->mutex
);
1386 tasklet_init(&sc
->intr_tq
, ath9k_tasklet
, (unsigned long)sc
);
1387 tasklet_init(&sc
->bcon_tasklet
, ath_beacon_tasklet
,
1391 * Cache line size is used to size and align various
1392 * structures used to communicate with the hardware.
1394 ath_read_cachesize(sc
, &csz
);
1395 /* XXX assert csz is non-zero */
1396 sc
->cachelsz
= csz
<< 2; /* convert to bytes */
1398 ah
= ath9k_hw_attach(devid
, sc
, &status
);
1400 DPRINTF(sc
, ATH_DBG_FATAL
,
1401 "Unable to attach hardware; HAL status %d\n", status
);
1407 /* Get the hardware key cache size. */
1408 sc
->keymax
= ah
->caps
.keycache_size
;
1409 if (sc
->keymax
> ATH_KEYMAX
) {
1410 DPRINTF(sc
, ATH_DBG_ANY
,
1411 "Warning, using only %u entries in %u key cache\n",
1412 ATH_KEYMAX
, sc
->keymax
);
1413 sc
->keymax
= ATH_KEYMAX
;
1417 * Reset the key cache since some parts do not
1418 * reset the contents on initial power up.
1420 for (i
= 0; i
< sc
->keymax
; i
++)
1421 ath9k_hw_keyreset(ah
, (u16
) i
);
1423 error
= ath_regd_init(&sc
->sc_ah
->regulatory
, sc
->hw
->wiphy
,
1424 ath9k_reg_notifier
);
1428 /* default to MONITOR mode */
1429 sc
->sc_ah
->opmode
= NL80211_IFTYPE_MONITOR
;
1431 /* Setup rate tables */
1433 ath_rate_attach(sc
);
1434 ath_setup_rates(sc
, IEEE80211_BAND_2GHZ
);
1435 ath_setup_rates(sc
, IEEE80211_BAND_5GHZ
);
1438 * Allocate hardware transmit queues: one queue for
1439 * beacon frames and one data queue for each QoS
1440 * priority. Note that the hal handles reseting
1441 * these queues at the needed time.
1443 sc
->beacon
.beaconq
= ath_beaconq_setup(ah
);
1444 if (sc
->beacon
.beaconq
== -1) {
1445 DPRINTF(sc
, ATH_DBG_FATAL
,
1446 "Unable to setup a beacon xmit queue\n");
1450 sc
->beacon
.cabq
= ath_txq_setup(sc
, ATH9K_TX_QUEUE_CAB
, 0);
1451 if (sc
->beacon
.cabq
== NULL
) {
1452 DPRINTF(sc
, ATH_DBG_FATAL
,
1453 "Unable to setup CAB xmit queue\n");
1458 sc
->config
.cabqReadytime
= ATH_CABQ_READY_TIME
;
1459 ath_cabq_update(sc
);
1461 for (i
= 0; i
< ARRAY_SIZE(sc
->tx
.hwq_map
); i
++)
1462 sc
->tx
.hwq_map
[i
] = -1;
1464 /* Setup data queues */
1465 /* NB: ensure BK queue is the lowest priority h/w queue */
1466 if (!ath_tx_setup(sc
, ATH9K_WME_AC_BK
)) {
1467 DPRINTF(sc
, ATH_DBG_FATAL
,
1468 "Unable to setup xmit queue for BK traffic\n");
1473 if (!ath_tx_setup(sc
, ATH9K_WME_AC_BE
)) {
1474 DPRINTF(sc
, ATH_DBG_FATAL
,
1475 "Unable to setup xmit queue for BE traffic\n");
1479 if (!ath_tx_setup(sc
, ATH9K_WME_AC_VI
)) {
1480 DPRINTF(sc
, ATH_DBG_FATAL
,
1481 "Unable to setup xmit queue for VI traffic\n");
1485 if (!ath_tx_setup(sc
, ATH9K_WME_AC_VO
)) {
1486 DPRINTF(sc
, ATH_DBG_FATAL
,
1487 "Unable to setup xmit queue for VO traffic\n");
1492 /* Initializes the noise floor to a reasonable default value.
1493 * Later on this will be updated during ANI processing. */
1495 sc
->ani
.noise_floor
= ATH_DEFAULT_NOISE_FLOOR
;
1496 setup_timer(&sc
->ani
.timer
, ath_ani_calibrate
, (unsigned long)sc
);
1498 if (ath9k_hw_getcapability(ah
, ATH9K_CAP_CIPHER
,
1499 ATH9K_CIPHER_TKIP
, NULL
)) {
1501 * Whether we should enable h/w TKIP MIC.
1502 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1503 * report WMM capable, so it's always safe to turn on
1504 * TKIP MIC in this case.
1506 ath9k_hw_setcapability(sc
->sc_ah
, ATH9K_CAP_TKIP_MIC
,
1511 * Check whether the separate key cache entries
1512 * are required to handle both tx+rx MIC keys.
1513 * With split mic keys the number of stations is limited
1514 * to 27 otherwise 59.
1516 if (ath9k_hw_getcapability(ah
, ATH9K_CAP_CIPHER
,
1517 ATH9K_CIPHER_TKIP
, NULL
)
1518 && ath9k_hw_getcapability(ah
, ATH9K_CAP_CIPHER
,
1519 ATH9K_CIPHER_MIC
, NULL
)
1520 && ath9k_hw_getcapability(ah
, ATH9K_CAP_TKIP_SPLIT
,
1524 /* turn on mcast key search if possible */
1525 if (!ath9k_hw_getcapability(ah
, ATH9K_CAP_MCAST_KEYSRCH
, 0, NULL
))
1526 (void)ath9k_hw_setcapability(ah
, ATH9K_CAP_MCAST_KEYSRCH
, 1,
1529 sc
->config
.txpowlimit
= ATH_TXPOWER_MAX
;
1531 /* 11n Capabilities */
1532 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_HT
) {
1533 sc
->sc_flags
|= SC_OP_TXAGGR
;
1534 sc
->sc_flags
|= SC_OP_RXAGGR
;
1537 sc
->tx_chainmask
= ah
->caps
.tx_chainmask
;
1538 sc
->rx_chainmask
= ah
->caps
.rx_chainmask
;
1540 ath9k_hw_setcapability(ah
, ATH9K_CAP_DIVERSITY
, 1, true, NULL
);
1541 sc
->rx
.defant
= ath9k_hw_getdefantenna(ah
);
1543 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_BSSIDMASK
)
1544 memcpy(sc
->bssidmask
, ath_bcast_mac
, ETH_ALEN
);
1546 sc
->beacon
.slottime
= ATH9K_SLOT_TIME_9
; /* default to short slot time */
1548 /* initialize beacon slots */
1549 for (i
= 0; i
< ARRAY_SIZE(sc
->beacon
.bslot
); i
++) {
1550 sc
->beacon
.bslot
[i
] = NULL
;
1551 sc
->beacon
.bslot_aphy
[i
] = NULL
;
1554 /* setup channels and rates */
1556 sc
->sbands
[IEEE80211_BAND_2GHZ
].channels
= ath9k_2ghz_chantable
;
1557 sc
->sbands
[IEEE80211_BAND_2GHZ
].bitrates
=
1558 sc
->rates
[IEEE80211_BAND_2GHZ
];
1559 sc
->sbands
[IEEE80211_BAND_2GHZ
].band
= IEEE80211_BAND_2GHZ
;
1560 sc
->sbands
[IEEE80211_BAND_2GHZ
].n_channels
=
1561 ARRAY_SIZE(ath9k_2ghz_chantable
);
1563 if (test_bit(ATH9K_MODE_11A
, sc
->sc_ah
->caps
.wireless_modes
)) {
1564 sc
->sbands
[IEEE80211_BAND_5GHZ
].channels
= ath9k_5ghz_chantable
;
1565 sc
->sbands
[IEEE80211_BAND_5GHZ
].bitrates
=
1566 sc
->rates
[IEEE80211_BAND_5GHZ
];
1567 sc
->sbands
[IEEE80211_BAND_5GHZ
].band
= IEEE80211_BAND_5GHZ
;
1568 sc
->sbands
[IEEE80211_BAND_5GHZ
].n_channels
=
1569 ARRAY_SIZE(ath9k_5ghz_chantable
);
1572 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_BT_COEX
)
1573 ath9k_hw_btcoex_enable(sc
->sc_ah
);
1577 /* cleanup tx queues */
1578 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1579 if (ATH_TXQ_SETUP(sc
, i
))
1580 ath_tx_cleanupq(sc
, &sc
->tx
.txq
[i
]);
1583 ath9k_hw_detach(ah
);
1584 ath9k_exit_debug(sc
);
1589 void ath_set_hw_capab(struct ath_softc
*sc
, struct ieee80211_hw
*hw
)
1591 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
1592 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1593 IEEE80211_HW_SIGNAL_DBM
|
1594 IEEE80211_HW_AMPDU_AGGREGATION
|
1595 IEEE80211_HW_SUPPORTS_PS
|
1596 IEEE80211_HW_PS_NULLFUNC_STACK
|
1597 IEEE80211_HW_SPECTRUM_MGMT
;
1599 if (AR_SREV_9160_10_OR_LATER(sc
->sc_ah
) || modparam_nohwcrypt
)
1600 hw
->flags
|= IEEE80211_HW_MFP_CAPABLE
;
1602 hw
->wiphy
->interface_modes
=
1603 BIT(NL80211_IFTYPE_AP
) |
1604 BIT(NL80211_IFTYPE_STATION
) |
1605 BIT(NL80211_IFTYPE_ADHOC
) |
1606 BIT(NL80211_IFTYPE_MESH_POINT
);
1610 hw
->channel_change_time
= 5000;
1611 hw
->max_listen_interval
= 10;
1612 hw
->max_rate_tries
= ATH_11N_TXMAXTRY
;
1613 hw
->sta_data_size
= sizeof(struct ath_node
);
1614 hw
->vif_data_size
= sizeof(struct ath_vif
);
1616 hw
->rate_control_algorithm
= "ath9k_rate_control";
1618 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
1619 &sc
->sbands
[IEEE80211_BAND_2GHZ
];
1620 if (test_bit(ATH9K_MODE_11A
, sc
->sc_ah
->caps
.wireless_modes
))
1621 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
1622 &sc
->sbands
[IEEE80211_BAND_5GHZ
];
1625 int ath_attach(u16 devid
, struct ath_softc
*sc
)
1627 struct ieee80211_hw
*hw
= sc
->hw
;
1629 struct ath_regulatory
*reg
;
1631 DPRINTF(sc
, ATH_DBG_CONFIG
, "Attach ATH hw\n");
1633 error
= ath_init(devid
, sc
);
1637 reg
= &sc
->sc_ah
->regulatory
;
1639 /* get mac address from hardware and set in mac80211 */
1641 SET_IEEE80211_PERM_ADDR(hw
, sc
->sc_ah
->macaddr
);
1643 ath_set_hw_capab(sc
, hw
);
1645 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_HT
) {
1646 setup_ht_cap(sc
, &sc
->sbands
[IEEE80211_BAND_2GHZ
].ht_cap
);
1647 if (test_bit(ATH9K_MODE_11A
, sc
->sc_ah
->caps
.wireless_modes
))
1648 setup_ht_cap(sc
, &sc
->sbands
[IEEE80211_BAND_5GHZ
].ht_cap
);
1651 /* initialize tx/rx engine */
1652 error
= ath_tx_init(sc
, ATH_TXBUF
);
1656 error
= ath_rx_init(sc
, ATH_RXBUF
);
1660 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1661 /* Initialze h/w Rfkill */
1662 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1663 INIT_DELAYED_WORK(&sc
->rf_kill
.rfkill_poll
, ath_rfkill_poll
);
1665 /* Initialize s/w rfkill */
1666 error
= ath_init_sw_rfkill(sc
);
1671 INIT_WORK(&sc
->chan_work
, ath9k_wiphy_chan_work
);
1672 INIT_DELAYED_WORK(&sc
->wiphy_work
, ath9k_wiphy_work
);
1673 sc
->wiphy_scheduler_int
= msecs_to_jiffies(500);
1675 error
= ieee80211_register_hw(hw
);
1677 if (!ath_is_world_regd(reg
)) {
1678 error
= regulatory_hint(hw
->wiphy
, reg
->alpha2
);
1683 /* Initialize LED control */
1690 /* cleanup tx queues */
1691 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1692 if (ATH_TXQ_SETUP(sc
, i
))
1693 ath_tx_cleanupq(sc
, &sc
->tx
.txq
[i
]);
1695 ath9k_hw_detach(sc
->sc_ah
);
1696 ath9k_exit_debug(sc
);
1701 int ath_reset(struct ath_softc
*sc
, bool retry_tx
)
1703 struct ath_hw
*ah
= sc
->sc_ah
;
1704 struct ieee80211_hw
*hw
= sc
->hw
;
1707 ath9k_hw_set_interrupts(ah
, 0);
1708 ath_drain_all_txq(sc
, retry_tx
);
1712 spin_lock_bh(&sc
->sc_resetlock
);
1713 r
= ath9k_hw_reset(ah
, sc
->sc_ah
->curchan
, false);
1715 DPRINTF(sc
, ATH_DBG_FATAL
,
1716 "Unable to reset hardware; reset status %d\n", r
);
1717 spin_unlock_bh(&sc
->sc_resetlock
);
1719 if (ath_startrecv(sc
) != 0)
1720 DPRINTF(sc
, ATH_DBG_FATAL
, "Unable to start recv logic\n");
1723 * We may be doing a reset in response to a request
1724 * that changes the channel so update any state that
1725 * might change as a result.
1727 ath_cache_conf_rate(sc
, &hw
->conf
);
1729 ath_update_txpow(sc
);
1731 if (sc
->sc_flags
& SC_OP_BEACONS
)
1732 ath_beacon_config(sc
, NULL
); /* restart beacons */
1734 ath9k_hw_set_interrupts(ah
, sc
->imask
);
1738 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1739 if (ATH_TXQ_SETUP(sc
, i
)) {
1740 spin_lock_bh(&sc
->tx
.txq
[i
].axq_lock
);
1741 ath_txq_schedule(sc
, &sc
->tx
.txq
[i
]);
1742 spin_unlock_bh(&sc
->tx
.txq
[i
].axq_lock
);
1751 * This function will allocate both the DMA descriptor structure, and the
1752 * buffers it contains. These are used to contain the descriptors used
1755 int ath_descdma_setup(struct ath_softc
*sc
, struct ath_descdma
*dd
,
1756 struct list_head
*head
, const char *name
,
1757 int nbuf
, int ndesc
)
1759 #define DS2PHYS(_dd, _ds) \
1760 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1761 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1762 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1764 struct ath_desc
*ds
;
1766 int i
, bsize
, error
;
1768 DPRINTF(sc
, ATH_DBG_CONFIG
, "%s DMA: %u buffers %u desc/buf\n",
1771 INIT_LIST_HEAD(head
);
1772 /* ath_desc must be a multiple of DWORDs */
1773 if ((sizeof(struct ath_desc
) % 4) != 0) {
1774 DPRINTF(sc
, ATH_DBG_FATAL
, "ath_desc not DWORD aligned\n");
1775 ASSERT((sizeof(struct ath_desc
) % 4) == 0);
1780 dd
->dd_desc_len
= sizeof(struct ath_desc
) * nbuf
* ndesc
;
1783 * Need additional DMA memory because we can't use
1784 * descriptors that cross the 4K page boundary. Assume
1785 * one skipped descriptor per 4K page.
1787 if (!(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_4KB_SPLITTRANS
)) {
1789 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd
->dd_desc_len
);
1792 while (ndesc_skipped
) {
1793 dma_len
= ndesc_skipped
* sizeof(struct ath_desc
);
1794 dd
->dd_desc_len
+= dma_len
;
1796 ndesc_skipped
= ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len
);
1800 /* allocate descriptors */
1801 dd
->dd_desc
= dma_alloc_coherent(sc
->dev
, dd
->dd_desc_len
,
1802 &dd
->dd_desc_paddr
, GFP_KERNEL
);
1803 if (dd
->dd_desc
== NULL
) {
1808 DPRINTF(sc
, ATH_DBG_CONFIG
, "%s DMA map: %p (%u) -> %llx (%u)\n",
1809 name
, ds
, (u32
) dd
->dd_desc_len
,
1810 ito64(dd
->dd_desc_paddr
), /*XXX*/(u32
) dd
->dd_desc_len
);
1812 /* allocate buffers */
1813 bsize
= sizeof(struct ath_buf
) * nbuf
;
1814 bf
= kzalloc(bsize
, GFP_KERNEL
);
1821 for (i
= 0; i
< nbuf
; i
++, bf
++, ds
+= ndesc
) {
1823 bf
->bf_daddr
= DS2PHYS(dd
, ds
);
1825 if (!(sc
->sc_ah
->caps
.hw_caps
&
1826 ATH9K_HW_CAP_4KB_SPLITTRANS
)) {
1828 * Skip descriptor addresses which can cause 4KB
1829 * boundary crossing (addr + length) with a 32 dword
1832 while (ATH_DESC_4KB_BOUND_CHECK(bf
->bf_daddr
)) {
1833 ASSERT((caddr_t
) bf
->bf_desc
<
1834 ((caddr_t
) dd
->dd_desc
+
1839 bf
->bf_daddr
= DS2PHYS(dd
, ds
);
1842 list_add_tail(&bf
->list
, head
);
1846 dma_free_coherent(sc
->dev
, dd
->dd_desc_len
, dd
->dd_desc
,
1849 memset(dd
, 0, sizeof(*dd
));
1851 #undef ATH_DESC_4KB_BOUND_CHECK
1852 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1856 void ath_descdma_cleanup(struct ath_softc
*sc
,
1857 struct ath_descdma
*dd
,
1858 struct list_head
*head
)
1860 dma_free_coherent(sc
->dev
, dd
->dd_desc_len
, dd
->dd_desc
,
1863 INIT_LIST_HEAD(head
);
1864 kfree(dd
->dd_bufptr
);
1865 memset(dd
, 0, sizeof(*dd
));
1868 int ath_get_hal_qnum(u16 queue
, struct ath_softc
*sc
)
1874 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_VO
];
1877 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_VI
];
1880 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_BE
];
1883 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_BK
];
1886 qnum
= sc
->tx
.hwq_map
[ATH9K_WME_AC_BE
];
1893 int ath_get_mac80211_qnum(u32 queue
, struct ath_softc
*sc
)
1898 case ATH9K_WME_AC_VO
:
1901 case ATH9K_WME_AC_VI
:
1904 case ATH9K_WME_AC_BE
:
1907 case ATH9K_WME_AC_BK
:
1918 /* XXX: Remove me once we don't depend on ath9k_channel for all
1919 * this redundant data */
1920 void ath9k_update_ichannel(struct ath_softc
*sc
, struct ieee80211_hw
*hw
,
1921 struct ath9k_channel
*ichan
)
1923 struct ieee80211_channel
*chan
= hw
->conf
.channel
;
1924 struct ieee80211_conf
*conf
= &hw
->conf
;
1926 ichan
->channel
= chan
->center_freq
;
1929 if (chan
->band
== IEEE80211_BAND_2GHZ
) {
1930 ichan
->chanmode
= CHANNEL_G
;
1931 ichan
->channelFlags
= CHANNEL_2GHZ
| CHANNEL_OFDM
;
1933 ichan
->chanmode
= CHANNEL_A
;
1934 ichan
->channelFlags
= CHANNEL_5GHZ
| CHANNEL_OFDM
;
1937 sc
->tx_chan_width
= ATH9K_HT_MACMODE_20
;
1939 if (conf_is_ht(conf
)) {
1940 if (conf_is_ht40(conf
))
1941 sc
->tx_chan_width
= ATH9K_HT_MACMODE_2040
;
1943 ichan
->chanmode
= ath_get_extchanmode(sc
, chan
,
1944 conf
->channel_type
);
1948 /**********************/
1949 /* mac80211 callbacks */
1950 /**********************/
1952 static int ath9k_start(struct ieee80211_hw
*hw
)
1954 struct ath_wiphy
*aphy
= hw
->priv
;
1955 struct ath_softc
*sc
= aphy
->sc
;
1956 struct ieee80211_channel
*curchan
= hw
->conf
.channel
;
1957 struct ath9k_channel
*init_channel
;
1960 DPRINTF(sc
, ATH_DBG_CONFIG
, "Starting driver with "
1961 "initial channel: %d MHz\n", curchan
->center_freq
);
1963 mutex_lock(&sc
->mutex
);
1965 if (ath9k_wiphy_started(sc
)) {
1966 if (sc
->chan_idx
== curchan
->hw_value
) {
1968 * Already on the operational channel, the new wiphy
1969 * can be marked active.
1971 aphy
->state
= ATH_WIPHY_ACTIVE
;
1972 ieee80211_wake_queues(hw
);
1975 * Another wiphy is on another channel, start the new
1976 * wiphy in paused state.
1978 aphy
->state
= ATH_WIPHY_PAUSED
;
1979 ieee80211_stop_queues(hw
);
1981 mutex_unlock(&sc
->mutex
);
1984 aphy
->state
= ATH_WIPHY_ACTIVE
;
1986 /* setup initial channel */
1988 pos
= curchan
->hw_value
;
1991 init_channel
= &sc
->sc_ah
->channels
[pos
];
1992 ath9k_update_ichannel(sc
, hw
, init_channel
);
1994 /* Reset SERDES registers */
1995 ath9k_hw_configpcipowersave(sc
->sc_ah
, 0);
1998 * The basic interface to setting the hardware in a good
1999 * state is ``reset''. On return the hardware is known to
2000 * be powered up and with interrupts disabled. This must
2001 * be followed by initialization of the appropriate bits
2002 * and then setup of the interrupt mask.
2004 spin_lock_bh(&sc
->sc_resetlock
);
2005 r
= ath9k_hw_reset(sc
->sc_ah
, init_channel
, false);
2007 DPRINTF(sc
, ATH_DBG_FATAL
,
2008 "Unable to reset hardware; reset status %d "
2009 "(freq %u MHz)\n", r
,
2010 curchan
->center_freq
);
2011 spin_unlock_bh(&sc
->sc_resetlock
);
2014 spin_unlock_bh(&sc
->sc_resetlock
);
2017 * This is needed only to setup initial state
2018 * but it's best done after a reset.
2020 ath_update_txpow(sc
);
2023 * Setup the hardware after reset:
2024 * The receive engine is set going.
2025 * Frame transmit is handled entirely
2026 * in the frame output path; there's nothing to do
2027 * here except setup the interrupt mask.
2029 if (ath_startrecv(sc
) != 0) {
2030 DPRINTF(sc
, ATH_DBG_FATAL
, "Unable to start recv logic\n");
2035 /* Setup our intr mask. */
2036 sc
->imask
= ATH9K_INT_RX
| ATH9K_INT_TX
2037 | ATH9K_INT_RXEOL
| ATH9K_INT_RXORN
2038 | ATH9K_INT_FATAL
| ATH9K_INT_GLOBAL
;
2040 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_GTT
)
2041 sc
->imask
|= ATH9K_INT_GTT
;
2043 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_HT
)
2044 sc
->imask
|= ATH9K_INT_CST
;
2046 ath_cache_conf_rate(sc
, &hw
->conf
);
2048 sc
->sc_flags
&= ~SC_OP_INVALID
;
2050 /* Disable BMISS interrupt when we're not associated */
2051 sc
->imask
&= ~(ATH9K_INT_SWBA
| ATH9K_INT_BMISS
);
2052 ath9k_hw_set_interrupts(sc
->sc_ah
, sc
->imask
);
2054 ieee80211_wake_queues(hw
);
2056 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2057 r
= ath_start_rfkill_poll(sc
);
2061 mutex_unlock(&sc
->mutex
);
2066 static int ath9k_tx(struct ieee80211_hw
*hw
,
2067 struct sk_buff
*skb
)
2069 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2070 struct ath_wiphy
*aphy
= hw
->priv
;
2071 struct ath_softc
*sc
= aphy
->sc
;
2072 struct ath_tx_control txctl
;
2073 int hdrlen
, padsize
;
2075 if (aphy
->state
!= ATH_WIPHY_ACTIVE
&& aphy
->state
!= ATH_WIPHY_SCAN
) {
2076 printk(KERN_DEBUG
"ath9k: %s: TX in unexpected wiphy state "
2077 "%d\n", wiphy_name(hw
->wiphy
), aphy
->state
);
2081 if (unlikely(sc
->sc_ah
->power_mode
!= ATH9K_PM_AWAKE
)) {
2083 * We are using PS-Poll and mac80211 can request TX while in
2084 * power save mode. Need to wake up hardware for the TX to be
2085 * completed and if needed, also for RX of buffered frames.
2087 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2088 ath9k_ps_wakeup(sc
);
2089 ath9k_hw_setrxabort(sc
->sc_ah
, 0);
2090 if (ieee80211_is_pspoll(hdr
->frame_control
)) {
2091 DPRINTF(sc
, ATH_DBG_PS
, "Sending PS-Poll to pick a "
2092 "buffered frame\n");
2093 sc
->sc_flags
|= SC_OP_WAIT_FOR_PSPOLL_DATA
;
2095 DPRINTF(sc
, ATH_DBG_PS
, "Wake up to complete TX\n");
2096 sc
->sc_flags
|= SC_OP_WAIT_FOR_TX_ACK
;
2099 * The actual restore operation will happen only after
2100 * the sc_flags bit is cleared. We are just dropping
2101 * the ps_usecount here.
2103 ath9k_ps_restore(sc
);
2106 memset(&txctl
, 0, sizeof(struct ath_tx_control
));
2109 * As a temporary workaround, assign seq# here; this will likely need
2110 * to be cleaned up to work better with Beacon transmission and virtual
2113 if (info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
) {
2114 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2115 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
2116 sc
->tx
.seq_no
+= 0x10;
2117 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
2118 hdr
->seq_ctrl
|= cpu_to_le16(sc
->tx
.seq_no
);
2121 /* Add the padding after the header if this is not already done */
2122 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
2124 padsize
= hdrlen
% 4;
2125 if (skb_headroom(skb
) < padsize
)
2127 skb_push(skb
, padsize
);
2128 memmove(skb
->data
, skb
->data
+ padsize
, hdrlen
);
2131 /* Check if a tx queue is available */
2133 txctl
.txq
= ath_test_get_txq(sc
, skb
);
2137 DPRINTF(sc
, ATH_DBG_XMIT
, "transmitting packet, skb: %p\n", skb
);
2139 if (ath_tx_start(hw
, skb
, &txctl
) != 0) {
2140 DPRINTF(sc
, ATH_DBG_XMIT
, "TX failed\n");
2146 dev_kfree_skb_any(skb
);
2150 static void ath9k_stop(struct ieee80211_hw
*hw
)
2152 struct ath_wiphy
*aphy
= hw
->priv
;
2153 struct ath_softc
*sc
= aphy
->sc
;
2155 aphy
->state
= ATH_WIPHY_INACTIVE
;
2157 if (sc
->sc_flags
& SC_OP_INVALID
) {
2158 DPRINTF(sc
, ATH_DBG_ANY
, "Device not present\n");
2162 mutex_lock(&sc
->mutex
);
2164 ieee80211_stop_queues(hw
);
2166 if (ath9k_wiphy_started(sc
)) {
2167 mutex_unlock(&sc
->mutex
);
2168 return; /* another wiphy still in use */
2171 /* make sure h/w will not generate any interrupt
2172 * before setting the invalid flag. */
2173 ath9k_hw_set_interrupts(sc
->sc_ah
, 0);
2175 if (!(sc
->sc_flags
& SC_OP_INVALID
)) {
2176 ath_drain_all_txq(sc
, false);
2178 ath9k_hw_phy_disable(sc
->sc_ah
);
2180 sc
->rx
.rxlink
= NULL
;
2182 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2183 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2184 cancel_delayed_work_sync(&sc
->rf_kill
.rfkill_poll
);
2186 /* disable HAL and put h/w to sleep */
2187 ath9k_hw_disable(sc
->sc_ah
);
2188 ath9k_hw_configpcipowersave(sc
->sc_ah
, 1);
2190 sc
->sc_flags
|= SC_OP_INVALID
;
2192 mutex_unlock(&sc
->mutex
);
2194 DPRINTF(sc
, ATH_DBG_CONFIG
, "Driver halt\n");
2197 static int ath9k_add_interface(struct ieee80211_hw
*hw
,
2198 struct ieee80211_if_init_conf
*conf
)
2200 struct ath_wiphy
*aphy
= hw
->priv
;
2201 struct ath_softc
*sc
= aphy
->sc
;
2202 struct ath_vif
*avp
= (void *)conf
->vif
->drv_priv
;
2203 enum nl80211_iftype ic_opmode
= NL80211_IFTYPE_UNSPECIFIED
;
2206 mutex_lock(&sc
->mutex
);
2208 if (!(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_BSSIDMASK
) &&
2214 switch (conf
->type
) {
2215 case NL80211_IFTYPE_STATION
:
2216 ic_opmode
= NL80211_IFTYPE_STATION
;
2218 case NL80211_IFTYPE_ADHOC
:
2219 case NL80211_IFTYPE_AP
:
2220 case NL80211_IFTYPE_MESH_POINT
:
2221 if (sc
->nbcnvifs
>= ATH_BCBUF
) {
2225 ic_opmode
= conf
->type
;
2228 DPRINTF(sc
, ATH_DBG_FATAL
,
2229 "Interface type %d not yet supported\n", conf
->type
);
2234 DPRINTF(sc
, ATH_DBG_CONFIG
, "Attach a VIF of type: %d\n", ic_opmode
);
2236 /* Set the VIF opmode */
2237 avp
->av_opmode
= ic_opmode
;
2242 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_BSSIDMASK
)
2243 ath9k_set_bssid_mask(hw
);
2246 goto out
; /* skip global settings for secondary vif */
2248 if (ic_opmode
== NL80211_IFTYPE_AP
) {
2249 ath9k_hw_set_tsfadjust(sc
->sc_ah
, 1);
2250 sc
->sc_flags
|= SC_OP_TSF_RESET
;
2253 /* Set the device opmode */
2254 sc
->sc_ah
->opmode
= ic_opmode
;
2257 * Enable MIB interrupts when there are hardware phy counters.
2258 * Note we only do this (at the moment) for station mode.
2260 if ((conf
->type
== NL80211_IFTYPE_STATION
) ||
2261 (conf
->type
== NL80211_IFTYPE_ADHOC
) ||
2262 (conf
->type
== NL80211_IFTYPE_MESH_POINT
)) {
2263 if (ath9k_hw_phycounters(sc
->sc_ah
))
2264 sc
->imask
|= ATH9K_INT_MIB
;
2265 sc
->imask
|= ATH9K_INT_TSFOOR
;
2268 ath9k_hw_set_interrupts(sc
->sc_ah
, sc
->imask
);
2270 if (conf
->type
== NL80211_IFTYPE_AP
)
2274 mutex_unlock(&sc
->mutex
);
2278 static void ath9k_remove_interface(struct ieee80211_hw
*hw
,
2279 struct ieee80211_if_init_conf
*conf
)
2281 struct ath_wiphy
*aphy
= hw
->priv
;
2282 struct ath_softc
*sc
= aphy
->sc
;
2283 struct ath_vif
*avp
= (void *)conf
->vif
->drv_priv
;
2286 DPRINTF(sc
, ATH_DBG_CONFIG
, "Detach Interface\n");
2288 mutex_lock(&sc
->mutex
);
2291 del_timer_sync(&sc
->ani
.timer
);
2293 /* Reclaim beacon resources */
2294 if ((sc
->sc_ah
->opmode
== NL80211_IFTYPE_AP
) ||
2295 (sc
->sc_ah
->opmode
== NL80211_IFTYPE_ADHOC
) ||
2296 (sc
->sc_ah
->opmode
== NL80211_IFTYPE_MESH_POINT
)) {
2297 ath9k_hw_stoptxdma(sc
->sc_ah
, sc
->beacon
.beaconq
);
2298 ath_beacon_return(sc
, avp
);
2301 sc
->sc_flags
&= ~SC_OP_BEACONS
;
2303 for (i
= 0; i
< ARRAY_SIZE(sc
->beacon
.bslot
); i
++) {
2304 if (sc
->beacon
.bslot
[i
] == conf
->vif
) {
2305 printk(KERN_DEBUG
"%s: vif had allocated beacon "
2306 "slot\n", __func__
);
2307 sc
->beacon
.bslot
[i
] = NULL
;
2308 sc
->beacon
.bslot_aphy
[i
] = NULL
;
2314 mutex_unlock(&sc
->mutex
);
2317 static int ath9k_config(struct ieee80211_hw
*hw
, u32 changed
)
2319 struct ath_wiphy
*aphy
= hw
->priv
;
2320 struct ath_softc
*sc
= aphy
->sc
;
2321 struct ieee80211_conf
*conf
= &hw
->conf
;
2322 struct ath_hw
*ah
= sc
->sc_ah
;
2324 mutex_lock(&sc
->mutex
);
2326 if (changed
& IEEE80211_CONF_CHANGE_PS
) {
2327 if (conf
->flags
& IEEE80211_CONF_PS
) {
2328 if (!(ah
->caps
.hw_caps
&
2329 ATH9K_HW_CAP_AUTOSLEEP
)) {
2330 if ((sc
->imask
& ATH9K_INT_TIM_TIMER
) == 0) {
2331 sc
->imask
|= ATH9K_INT_TIM_TIMER
;
2332 ath9k_hw_set_interrupts(sc
->sc_ah
,
2335 ath9k_hw_setrxabort(sc
->sc_ah
, 1);
2337 ath9k_hw_setpower(sc
->sc_ah
, ATH9K_PM_NETWORK_SLEEP
);
2339 ath9k_hw_setpower(sc
->sc_ah
, ATH9K_PM_AWAKE
);
2340 if (!(ah
->caps
.hw_caps
&
2341 ATH9K_HW_CAP_AUTOSLEEP
)) {
2342 ath9k_hw_setrxabort(sc
->sc_ah
, 0);
2343 sc
->sc_flags
&= ~(SC_OP_WAIT_FOR_BEACON
|
2344 SC_OP_WAIT_FOR_CAB
|
2345 SC_OP_WAIT_FOR_PSPOLL_DATA
|
2346 SC_OP_WAIT_FOR_TX_ACK
);
2347 if (sc
->imask
& ATH9K_INT_TIM_TIMER
) {
2348 sc
->imask
&= ~ATH9K_INT_TIM_TIMER
;
2349 ath9k_hw_set_interrupts(sc
->sc_ah
,
2356 if (changed
& IEEE80211_CONF_CHANGE_CHANNEL
) {
2357 struct ieee80211_channel
*curchan
= hw
->conf
.channel
;
2358 int pos
= curchan
->hw_value
;
2360 aphy
->chan_idx
= pos
;
2361 aphy
->chan_is_ht
= conf_is_ht(conf
);
2363 if (aphy
->state
== ATH_WIPHY_SCAN
||
2364 aphy
->state
== ATH_WIPHY_ACTIVE
)
2365 ath9k_wiphy_pause_all_forced(sc
, aphy
);
2368 * Do not change operational channel based on a paused
2371 goto skip_chan_change
;
2374 DPRINTF(sc
, ATH_DBG_CONFIG
, "Set channel: %d MHz\n",
2375 curchan
->center_freq
);
2377 /* XXX: remove me eventualy */
2378 ath9k_update_ichannel(sc
, hw
, &sc
->sc_ah
->channels
[pos
]);
2380 ath_update_chainmask(sc
, conf_is_ht(conf
));
2382 if (ath_set_channel(sc
, hw
, &sc
->sc_ah
->channels
[pos
]) < 0) {
2383 DPRINTF(sc
, ATH_DBG_FATAL
, "Unable to set channel\n");
2384 mutex_unlock(&sc
->mutex
);
2390 if (changed
& IEEE80211_CONF_CHANGE_POWER
)
2391 sc
->config
.txpowlimit
= 2 * conf
->power_level
;
2393 mutex_unlock(&sc
->mutex
);
2398 #define SUPPORTED_FILTERS \
2399 (FIF_PROMISC_IN_BSS | \
2403 FIF_BCN_PRBRESP_PROMISC | \
2406 /* FIXME: sc->sc_full_reset ? */
2407 static void ath9k_configure_filter(struct ieee80211_hw
*hw
,
2408 unsigned int changed_flags
,
2409 unsigned int *total_flags
,
2411 struct dev_mc_list
*mclist
)
2413 struct ath_wiphy
*aphy
= hw
->priv
;
2414 struct ath_softc
*sc
= aphy
->sc
;
2417 changed_flags
&= SUPPORTED_FILTERS
;
2418 *total_flags
&= SUPPORTED_FILTERS
;
2420 sc
->rx
.rxfilter
= *total_flags
;
2421 rfilt
= ath_calcrxfilter(sc
);
2422 ath9k_hw_setrxfilter(sc
->sc_ah
, rfilt
);
2424 DPRINTF(sc
, ATH_DBG_CONFIG
, "Set HW RX filter: 0x%x\n", sc
->rx
.rxfilter
);
2427 static void ath9k_sta_notify(struct ieee80211_hw
*hw
,
2428 struct ieee80211_vif
*vif
,
2429 enum sta_notify_cmd cmd
,
2430 struct ieee80211_sta
*sta
)
2432 struct ath_wiphy
*aphy
= hw
->priv
;
2433 struct ath_softc
*sc
= aphy
->sc
;
2436 case STA_NOTIFY_ADD
:
2437 ath_node_attach(sc
, sta
);
2439 case STA_NOTIFY_REMOVE
:
2440 ath_node_detach(sc
, sta
);
2447 static int ath9k_conf_tx(struct ieee80211_hw
*hw
, u16 queue
,
2448 const struct ieee80211_tx_queue_params
*params
)
2450 struct ath_wiphy
*aphy
= hw
->priv
;
2451 struct ath_softc
*sc
= aphy
->sc
;
2452 struct ath9k_tx_queue_info qi
;
2455 if (queue
>= WME_NUM_AC
)
2458 mutex_lock(&sc
->mutex
);
2460 memset(&qi
, 0, sizeof(struct ath9k_tx_queue_info
));
2462 qi
.tqi_aifs
= params
->aifs
;
2463 qi
.tqi_cwmin
= params
->cw_min
;
2464 qi
.tqi_cwmax
= params
->cw_max
;
2465 qi
.tqi_burstTime
= params
->txop
;
2466 qnum
= ath_get_hal_qnum(queue
, sc
);
2468 DPRINTF(sc
, ATH_DBG_CONFIG
,
2469 "Configure tx [queue/halq] [%d/%d], "
2470 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2471 queue
, qnum
, params
->aifs
, params
->cw_min
,
2472 params
->cw_max
, params
->txop
);
2474 ret
= ath_txq_update(sc
, qnum
, &qi
);
2476 DPRINTF(sc
, ATH_DBG_FATAL
, "TXQ Update failed\n");
2478 mutex_unlock(&sc
->mutex
);
2483 static int ath9k_set_key(struct ieee80211_hw
*hw
,
2484 enum set_key_cmd cmd
,
2485 struct ieee80211_vif
*vif
,
2486 struct ieee80211_sta
*sta
,
2487 struct ieee80211_key_conf
*key
)
2489 struct ath_wiphy
*aphy
= hw
->priv
;
2490 struct ath_softc
*sc
= aphy
->sc
;
2493 if (modparam_nohwcrypt
)
2496 mutex_lock(&sc
->mutex
);
2497 ath9k_ps_wakeup(sc
);
2498 DPRINTF(sc
, ATH_DBG_CONFIG
, "Set HW Key\n");
2502 ret
= ath_key_config(sc
, vif
, sta
, key
);
2504 key
->hw_key_idx
= ret
;
2505 /* push IV and Michael MIC generation to stack */
2506 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
2507 if (key
->alg
== ALG_TKIP
)
2508 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
2509 if (sc
->sc_ah
->sw_mgmt_crypto
&& key
->alg
== ALG_CCMP
)
2510 key
->flags
|= IEEE80211_KEY_FLAG_SW_MGMT
;
2515 ath_key_delete(sc
, key
);
2521 ath9k_ps_restore(sc
);
2522 mutex_unlock(&sc
->mutex
);
2527 static void ath9k_bss_info_changed(struct ieee80211_hw
*hw
,
2528 struct ieee80211_vif
*vif
,
2529 struct ieee80211_bss_conf
*bss_conf
,
2532 struct ath_wiphy
*aphy
= hw
->priv
;
2533 struct ath_softc
*sc
= aphy
->sc
;
2534 struct ath_hw
*ah
= sc
->sc_ah
;
2535 struct ath_vif
*avp
= (void *)vif
->drv_priv
;
2539 mutex_lock(&sc
->mutex
);
2542 * TODO: Need to decide which hw opmode to use for
2543 * multi-interface cases
2544 * XXX: This belongs into add_interface!
2546 if (vif
->type
== NL80211_IFTYPE_AP
&&
2547 ah
->opmode
!= NL80211_IFTYPE_AP
) {
2548 ah
->opmode
= NL80211_IFTYPE_STATION
;
2549 ath9k_hw_setopmode(ah
);
2550 memcpy(sc
->curbssid
, sc
->sc_ah
->macaddr
, ETH_ALEN
);
2552 ath9k_hw_write_associd(sc
);
2553 /* Request full reset to get hw opmode changed properly */
2554 sc
->sc_flags
|= SC_OP_FULL_RESET
;
2557 if ((changed
& BSS_CHANGED_BSSID
) &&
2558 !is_zero_ether_addr(bss_conf
->bssid
)) {
2559 switch (vif
->type
) {
2560 case NL80211_IFTYPE_STATION
:
2561 case NL80211_IFTYPE_ADHOC
:
2562 case NL80211_IFTYPE_MESH_POINT
:
2564 memcpy(sc
->curbssid
, bss_conf
->bssid
, ETH_ALEN
);
2565 memcpy(avp
->bssid
, bss_conf
->bssid
, ETH_ALEN
);
2567 ath9k_hw_write_associd(sc
);
2569 /* Set aggregation protection mode parameters */
2570 sc
->config
.ath_aggr_prot
= 0;
2572 DPRINTF(sc
, ATH_DBG_CONFIG
,
2573 "RX filter 0x%x bssid %pM aid 0x%x\n",
2574 rfilt
, sc
->curbssid
, sc
->curaid
);
2576 /* need to reconfigure the beacon */
2577 sc
->sc_flags
&= ~SC_OP_BEACONS
;
2585 if ((vif
->type
== NL80211_IFTYPE_ADHOC
) ||
2586 (vif
->type
== NL80211_IFTYPE_AP
) ||
2587 (vif
->type
== NL80211_IFTYPE_MESH_POINT
)) {
2588 if ((changed
& BSS_CHANGED_BEACON
) ||
2589 (changed
& BSS_CHANGED_BEACON_ENABLED
&&
2590 bss_conf
->enable_beacon
)) {
2592 * Allocate and setup the beacon frame.
2594 * Stop any previous beacon DMA. This may be
2595 * necessary, for example, when an ibss merge
2596 * causes reconfiguration; we may be called
2597 * with beacon transmission active.
2599 ath9k_hw_stoptxdma(sc
->sc_ah
, sc
->beacon
.beaconq
);
2601 error
= ath_beacon_alloc(aphy
, vif
);
2603 ath_beacon_config(sc
, vif
);
2607 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2608 if ((avp
->av_opmode
!= NL80211_IFTYPE_STATION
)) {
2609 for (i
= 0; i
< IEEE80211_WEP_NKID
; i
++)
2610 if (ath9k_hw_keyisvalid(sc
->sc_ah
, (u16
)i
))
2611 ath9k_hw_keysetmac(sc
->sc_ah
,
2616 /* Only legacy IBSS for now */
2617 if (vif
->type
== NL80211_IFTYPE_ADHOC
)
2618 ath_update_chainmask(sc
, 0);
2620 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
2621 DPRINTF(sc
, ATH_DBG_CONFIG
, "BSS Changed PREAMBLE %d\n",
2622 bss_conf
->use_short_preamble
);
2623 if (bss_conf
->use_short_preamble
)
2624 sc
->sc_flags
|= SC_OP_PREAMBLE_SHORT
;
2626 sc
->sc_flags
&= ~SC_OP_PREAMBLE_SHORT
;
2629 if (changed
& BSS_CHANGED_ERP_CTS_PROT
) {
2630 DPRINTF(sc
, ATH_DBG_CONFIG
, "BSS Changed CTS PROT %d\n",
2631 bss_conf
->use_cts_prot
);
2632 if (bss_conf
->use_cts_prot
&&
2633 hw
->conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2634 sc
->sc_flags
|= SC_OP_PROTECT_ENABLE
;
2636 sc
->sc_flags
&= ~SC_OP_PROTECT_ENABLE
;
2639 if (changed
& BSS_CHANGED_ASSOC
) {
2640 DPRINTF(sc
, ATH_DBG_CONFIG
, "BSS Changed ASSOC %d\n",
2642 ath9k_bss_assoc_info(sc
, vif
, bss_conf
);
2646 * The HW TSF has to be reset when the beacon interval changes.
2647 * We set the flag here, and ath_beacon_config_ap() would take this
2648 * into account when it gets called through the subsequent
2649 * config_interface() call - with IFCC_BEACON in the changed field.
2652 if (changed
& BSS_CHANGED_BEACON_INT
) {
2653 sc
->sc_flags
|= SC_OP_TSF_RESET
;
2654 sc
->beacon_interval
= bss_conf
->beacon_int
;
2657 mutex_unlock(&sc
->mutex
);
2660 static u64
ath9k_get_tsf(struct ieee80211_hw
*hw
)
2663 struct ath_wiphy
*aphy
= hw
->priv
;
2664 struct ath_softc
*sc
= aphy
->sc
;
2666 mutex_lock(&sc
->mutex
);
2667 tsf
= ath9k_hw_gettsf64(sc
->sc_ah
);
2668 mutex_unlock(&sc
->mutex
);
2673 static void ath9k_set_tsf(struct ieee80211_hw
*hw
, u64 tsf
)
2675 struct ath_wiphy
*aphy
= hw
->priv
;
2676 struct ath_softc
*sc
= aphy
->sc
;
2678 mutex_lock(&sc
->mutex
);
2679 ath9k_hw_settsf64(sc
->sc_ah
, tsf
);
2680 mutex_unlock(&sc
->mutex
);
2683 static void ath9k_reset_tsf(struct ieee80211_hw
*hw
)
2685 struct ath_wiphy
*aphy
= hw
->priv
;
2686 struct ath_softc
*sc
= aphy
->sc
;
2688 mutex_lock(&sc
->mutex
);
2689 ath9k_hw_reset_tsf(sc
->sc_ah
);
2690 mutex_unlock(&sc
->mutex
);
2693 static int ath9k_ampdu_action(struct ieee80211_hw
*hw
,
2694 enum ieee80211_ampdu_mlme_action action
,
2695 struct ieee80211_sta
*sta
,
2698 struct ath_wiphy
*aphy
= hw
->priv
;
2699 struct ath_softc
*sc
= aphy
->sc
;
2703 case IEEE80211_AMPDU_RX_START
:
2704 if (!(sc
->sc_flags
& SC_OP_RXAGGR
))
2707 case IEEE80211_AMPDU_RX_STOP
:
2709 case IEEE80211_AMPDU_TX_START
:
2710 ret
= ath_tx_aggr_start(sc
, sta
, tid
, ssn
);
2712 DPRINTF(sc
, ATH_DBG_FATAL
,
2713 "Unable to start TX aggregation\n");
2715 ieee80211_start_tx_ba_cb_irqsafe(hw
, sta
->addr
, tid
);
2717 case IEEE80211_AMPDU_TX_STOP
:
2718 ret
= ath_tx_aggr_stop(sc
, sta
, tid
);
2720 DPRINTF(sc
, ATH_DBG_FATAL
,
2721 "Unable to stop TX aggregation\n");
2723 ieee80211_stop_tx_ba_cb_irqsafe(hw
, sta
->addr
, tid
);
2725 case IEEE80211_AMPDU_TX_OPERATIONAL
:
2726 ath_tx_aggr_resume(sc
, sta
, tid
);
2729 DPRINTF(sc
, ATH_DBG_FATAL
, "Unknown AMPDU action\n");
2735 static void ath9k_sw_scan_start(struct ieee80211_hw
*hw
)
2737 struct ath_wiphy
*aphy
= hw
->priv
;
2738 struct ath_softc
*sc
= aphy
->sc
;
2740 if (ath9k_wiphy_scanning(sc
)) {
2741 printk(KERN_DEBUG
"ath9k: Two wiphys trying to scan at the "
2744 * Do not allow the concurrent scanning state for now. This
2745 * could be improved with scanning control moved into ath9k.
2750 aphy
->state
= ATH_WIPHY_SCAN
;
2751 ath9k_wiphy_pause_all_forced(sc
, aphy
);
2753 mutex_lock(&sc
->mutex
);
2754 sc
->sc_flags
|= SC_OP_SCANNING
;
2755 mutex_unlock(&sc
->mutex
);
2758 static void ath9k_sw_scan_complete(struct ieee80211_hw
*hw
)
2760 struct ath_wiphy
*aphy
= hw
->priv
;
2761 struct ath_softc
*sc
= aphy
->sc
;
2763 mutex_lock(&sc
->mutex
);
2764 aphy
->state
= ATH_WIPHY_ACTIVE
;
2765 sc
->sc_flags
&= ~SC_OP_SCANNING
;
2766 sc
->sc_flags
|= SC_OP_FULL_RESET
;
2767 mutex_unlock(&sc
->mutex
);
2770 struct ieee80211_ops ath9k_ops
= {
2772 .start
= ath9k_start
,
2774 .add_interface
= ath9k_add_interface
,
2775 .remove_interface
= ath9k_remove_interface
,
2776 .config
= ath9k_config
,
2777 .configure_filter
= ath9k_configure_filter
,
2778 .sta_notify
= ath9k_sta_notify
,
2779 .conf_tx
= ath9k_conf_tx
,
2780 .bss_info_changed
= ath9k_bss_info_changed
,
2781 .set_key
= ath9k_set_key
,
2782 .get_tsf
= ath9k_get_tsf
,
2783 .set_tsf
= ath9k_set_tsf
,
2784 .reset_tsf
= ath9k_reset_tsf
,
2785 .ampdu_action
= ath9k_ampdu_action
,
2786 .sw_scan_start
= ath9k_sw_scan_start
,
2787 .sw_scan_complete
= ath9k_sw_scan_complete
,
2793 } ath_mac_bb_names
[] = {
2794 { AR_SREV_VERSION_5416_PCI
, "5416" },
2795 { AR_SREV_VERSION_5416_PCIE
, "5418" },
2796 { AR_SREV_VERSION_9100
, "9100" },
2797 { AR_SREV_VERSION_9160
, "9160" },
2798 { AR_SREV_VERSION_9280
, "9280" },
2799 { AR_SREV_VERSION_9285
, "9285" }
2805 } ath_rf_names
[] = {
2807 { AR_RAD5133_SREV_MAJOR
, "5133" },
2808 { AR_RAD5122_SREV_MAJOR
, "5122" },
2809 { AR_RAD2133_SREV_MAJOR
, "2133" },
2810 { AR_RAD2122_SREV_MAJOR
, "2122" }
2814 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2817 ath_mac_bb_name(u32 mac_bb_version
)
2821 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
2822 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
2823 return ath_mac_bb_names
[i
].name
;
2831 * Return the RF name. "????" is returned if the RF is unknown.
2834 ath_rf_name(u16 rf_version
)
2838 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
2839 if (ath_rf_names
[i
].version
== rf_version
) {
2840 return ath_rf_names
[i
].name
;
2847 static int __init
ath9k_init(void)
2851 /* Register rate control algorithm */
2852 error
= ath_rate_control_register();
2855 "ath9k: Unable to register rate control "
2861 error
= ath9k_debug_create_root();
2864 "ath9k: Unable to create debugfs root: %d\n",
2866 goto err_rate_unregister
;
2869 error
= ath_pci_init();
2872 "ath9k: No PCI devices found, driver not installed.\n");
2874 goto err_remove_root
;
2877 error
= ath_ahb_init();
2889 ath9k_debug_remove_root();
2890 err_rate_unregister
:
2891 ath_rate_control_unregister();
2895 module_init(ath9k_init
);
2897 static void __exit
ath9k_exit(void)
2901 ath9k_debug_remove_root();
2902 ath_rate_control_unregister();
2903 printk(KERN_INFO
"%s: Driver unloaded\n", dev_info
);
2905 module_exit(ath9k_exit
);