drm/i915: set more FBC chicken bits
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blobd2ef1c2c65e9a9ed9d3244454ee63a950d72e031
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
348 if (IS_GEN5(dev)) {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351 } else
352 return 27;
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
428 .find_pll = intel_g4x_find_best_PLL,
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
444 .find_pll = intel_g4x_find_best_PLL,
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
468 .find_pll = intel_g4x_find_best_PLL,
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
492 .find_pll = intel_g4x_find_best_PLL,
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
499 .max = G4X_VCO_MAX},
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646 int refclk)
648 struct drm_device *dev = crtc->dev;
649 struct drm_i915_private *dev_priv = dev->dev_private;
650 const intel_limit_t *limit;
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100000)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100000)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
672 return limit;
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
699 return limit;
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc, refclk);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
727 return limit;
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
752 * Returns whether any output on the specified pipe is of the specified type
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
764 return false;
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774 const intel_limit_t *limit,
775 const intel_clock_t *clock)
777 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
778 INTELPllInvalid ("p1 out of range\n");
779 if (clock->p < limit->p.min || limit->p.max < clock->p)
780 INTELPllInvalid ("p out of range\n");
781 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
782 INTELPllInvalid ("m2 out of range\n");
783 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
784 INTELPllInvalid ("m1 out of range\n");
785 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786 INTELPllInvalid ("m1 <= m2\n");
787 if (clock->m < limit->m.min || limit->m.max < clock->m)
788 INTELPllInvalid ("m out of range\n");
789 if (clock->n < limit->n.min || limit->n.max < clock->n)
790 INTELPllInvalid ("n out of range\n");
791 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792 INTELPllInvalid ("vco out of range\n");
793 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794 * connector, etc., rather than just a single range.
796 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797 INTELPllInvalid ("dot out of range\n");
799 return true;
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804 int target, int refclk, intel_clock_t *best_clock)
807 struct drm_device *dev = crtc->dev;
808 struct drm_i915_private *dev_priv = dev->dev_private;
809 intel_clock_t clock;
810 int err = target;
812 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813 (I915_READ(LVDS)) != 0) {
815 * For LVDS, if the panel is on, just rely on its current
816 * settings for dual-channel. We haven't figured out how to
817 * reliably set up different single/dual channel state, if we
818 * even can.
820 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821 LVDS_CLKB_POWER_UP)
822 clock.p2 = limit->p2.p2_fast;
823 else
824 clock.p2 = limit->p2.p2_slow;
825 } else {
826 if (target < limit->p2.dot_limit)
827 clock.p2 = limit->p2.p2_slow;
828 else
829 clock.p2 = limit->p2.p2_fast;
832 memset (best_clock, 0, sizeof (*best_clock));
834 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835 clock.m1++) {
836 for (clock.m2 = limit->m2.min;
837 clock.m2 <= limit->m2.max; clock.m2++) {
838 /* m1 is always 0 in Pineview */
839 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840 break;
841 for (clock.n = limit->n.min;
842 clock.n <= limit->n.max; clock.n++) {
843 for (clock.p1 = limit->p1.min;
844 clock.p1 <= limit->p1.max; clock.p1++) {
845 int this_err;
847 intel_clock(dev, refclk, &clock);
848 if (!intel_PLL_is_valid(dev, limit,
849 &clock))
850 continue;
852 this_err = abs(clock.dot - target);
853 if (this_err < err) {
854 *best_clock = clock;
855 err = this_err;
862 return (err != target);
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867 int target, int refclk, intel_clock_t *best_clock)
869 struct drm_device *dev = crtc->dev;
870 struct drm_i915_private *dev_priv = dev->dev_private;
871 intel_clock_t clock;
872 int max_n;
873 bool found;
874 /* approximately equals target * 0.00585 */
875 int err_most = (target >> 8) + (target >> 9);
876 found = false;
878 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879 int lvds_reg;
881 if (HAS_PCH_SPLIT(dev))
882 lvds_reg = PCH_LVDS;
883 else
884 lvds_reg = LVDS;
885 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886 LVDS_CLKB_POWER_UP)
887 clock.p2 = limit->p2.p2_fast;
888 else
889 clock.p2 = limit->p2.p2_slow;
890 } else {
891 if (target < limit->p2.dot_limit)
892 clock.p2 = limit->p2.p2_slow;
893 else
894 clock.p2 = limit->p2.p2_fast;
897 memset(best_clock, 0, sizeof(*best_clock));
898 max_n = limit->n.max;
899 /* based on hardware requirement, prefer smaller n to precision */
900 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901 /* based on hardware requirement, prefere larger m1,m2 */
902 for (clock.m1 = limit->m1.max;
903 clock.m1 >= limit->m1.min; clock.m1--) {
904 for (clock.m2 = limit->m2.max;
905 clock.m2 >= limit->m2.min; clock.m2--) {
906 for (clock.p1 = limit->p1.max;
907 clock.p1 >= limit->p1.min; clock.p1--) {
908 int this_err;
910 intel_clock(dev, refclk, &clock);
911 if (!intel_PLL_is_valid(dev, limit,
912 &clock))
913 continue;
915 this_err = abs(clock.dot - target);
916 if (this_err < err_most) {
917 *best_clock = clock;
918 err_most = this_err;
919 max_n = clock.n;
920 found = true;
926 return found;
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931 int target, int refclk, intel_clock_t *best_clock)
933 struct drm_device *dev = crtc->dev;
934 intel_clock_t clock;
936 if (target < 200000) {
937 clock.n = 1;
938 clock.p1 = 2;
939 clock.p2 = 10;
940 clock.m1 = 12;
941 clock.m2 = 9;
942 } else {
943 clock.n = 2;
944 clock.p1 = 1;
945 clock.p2 = 10;
946 clock.m1 = 14;
947 clock.m2 = 8;
949 intel_clock(dev, refclk, &clock);
950 memcpy(best_clock, &clock, sizeof(intel_clock_t));
951 return true;
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957 int target, int refclk, intel_clock_t *best_clock)
959 intel_clock_t clock;
960 if (target < 200000) {
961 clock.p1 = 2;
962 clock.p2 = 10;
963 clock.n = 2;
964 clock.m1 = 23;
965 clock.m2 = 8;
966 } else {
967 clock.p1 = 1;
968 clock.p2 = 10;
969 clock.n = 1;
970 clock.m1 = 14;
971 clock.m2 = 2;
973 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974 clock.p = (clock.p1 * clock.p2);
975 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976 clock.vco = 0;
977 memcpy(best_clock, &clock, sizeof(intel_clock_t));
978 return true;
982 * intel_wait_for_vblank - wait for vblank on a given pipe
983 * @dev: drm device
984 * @pipe: pipe to wait for
986 * Wait for vblank to occur on a given pipe. Needed for various bits of
987 * mode setting code.
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
991 struct drm_i915_private *dev_priv = dev->dev_private;
992 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
994 /* Clear existing vblank status. Note this will clear any other
995 * sticky status fields as well.
997 * This races with i915_driver_irq_handler() with the result
998 * that either function could miss a vblank event. Here it is not
999 * fatal, as we will either wait upon the next vblank interrupt or
1000 * timeout. Generally speaking intel_wait_for_vblank() is only
1001 * called during modeset at which time the GPU should be idle and
1002 * should *not* be performing page flips and thus not waiting on
1003 * vblanks...
1004 * Currently, the result of us stealing a vblank from the irq
1005 * handler is that a single frame will be skipped during swapbuffers.
1007 I915_WRITE(pipestat_reg,
1008 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1010 /* Wait for vblank interrupt bit to set */
1011 if (wait_for(I915_READ(pipestat_reg) &
1012 PIPE_VBLANK_INTERRUPT_STATUS,
1013 50))
1014 DRM_DEBUG_KMS("vblank wait timed out\n");
1018 * intel_wait_for_pipe_off - wait for pipe to turn off
1019 * @dev: drm device
1020 * @pipe: pipe to wait for
1022 * After disabling a pipe, we can't wait for vblank in the usual way,
1023 * spinning on the vblank interrupt status bit, since we won't actually
1024 * see an interrupt when the pipe is disabled.
1026 * On Gen4 and above:
1027 * wait for the pipe register state bit to turn off
1029 * Otherwise:
1030 * wait for the display line value to settle (it usually
1031 * ends up stopping at the start of the next frame).
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1038 if (INTEL_INFO(dev)->gen >= 4) {
1039 int reg = PIPECONF(pipe);
1041 /* Wait for the Pipe State to go off */
1042 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043 100))
1044 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045 } else {
1046 u32 last_line;
1047 int reg = PIPEDSL(pipe);
1048 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1050 /* Wait for the display line to settle */
1051 do {
1052 last_line = I915_READ(reg) & DSL_LINEMASK;
1053 mdelay(5);
1054 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055 time_after(timeout, jiffies));
1056 if (time_after(jiffies, timeout))
1057 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1061 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1063 struct drm_device *dev = crtc->dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 struct drm_framebuffer *fb = crtc->fb;
1066 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1067 struct drm_i915_gem_object *obj = intel_fb->obj;
1068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069 int plane, i;
1070 u32 fbc_ctl, fbc_ctl2;
1072 if (fb->pitch == dev_priv->cfb_pitch &&
1073 obj->fence_reg == dev_priv->cfb_fence &&
1074 intel_crtc->plane == dev_priv->cfb_plane &&
1075 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1076 return;
1078 i8xx_disable_fbc(dev);
1080 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1082 if (fb->pitch < dev_priv->cfb_pitch)
1083 dev_priv->cfb_pitch = fb->pitch;
1085 /* FBC_CTL wants 64B units */
1086 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1087 dev_priv->cfb_fence = obj->fence_reg;
1088 dev_priv->cfb_plane = intel_crtc->plane;
1089 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1091 /* Clear old tags */
1092 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1093 I915_WRITE(FBC_TAG + (i * 4), 0);
1095 /* Set it up... */
1096 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1097 if (obj->tiling_mode != I915_TILING_NONE)
1098 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1099 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1100 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1102 /* enable it... */
1103 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1104 if (IS_I945GM(dev))
1105 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1106 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1107 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1108 if (obj->tiling_mode != I915_TILING_NONE)
1109 fbc_ctl |= dev_priv->cfb_fence;
1110 I915_WRITE(FBC_CONTROL, fbc_ctl);
1112 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1113 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1116 void i8xx_disable_fbc(struct drm_device *dev)
1118 struct drm_i915_private *dev_priv = dev->dev_private;
1119 u32 fbc_ctl;
1121 /* Disable compression */
1122 fbc_ctl = I915_READ(FBC_CONTROL);
1123 if ((fbc_ctl & FBC_CTL_EN) == 0)
1124 return;
1126 fbc_ctl &= ~FBC_CTL_EN;
1127 I915_WRITE(FBC_CONTROL, fbc_ctl);
1129 /* Wait for compressing bit to clear */
1130 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1131 DRM_DEBUG_KMS("FBC idle timed out\n");
1132 return;
1135 DRM_DEBUG_KMS("disabled FBC\n");
1138 static bool i8xx_fbc_enabled(struct drm_device *dev)
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1142 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1145 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1147 struct drm_device *dev = crtc->dev;
1148 struct drm_i915_private *dev_priv = dev->dev_private;
1149 struct drm_framebuffer *fb = crtc->fb;
1150 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1151 struct drm_i915_gem_object *obj = intel_fb->obj;
1152 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1153 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1154 unsigned long stall_watermark = 200;
1155 u32 dpfc_ctl;
1157 dpfc_ctl = I915_READ(DPFC_CONTROL);
1158 if (dpfc_ctl & DPFC_CTL_EN) {
1159 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1160 dev_priv->cfb_fence == obj->fence_reg &&
1161 dev_priv->cfb_plane == intel_crtc->plane &&
1162 dev_priv->cfb_y == crtc->y)
1163 return;
1165 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1166 POSTING_READ(DPFC_CONTROL);
1167 intel_wait_for_vblank(dev, intel_crtc->pipe);
1170 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1171 dev_priv->cfb_fence = obj->fence_reg;
1172 dev_priv->cfb_plane = intel_crtc->plane;
1173 dev_priv->cfb_y = crtc->y;
1175 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1176 if (obj->tiling_mode != I915_TILING_NONE) {
1177 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1178 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1179 } else {
1180 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1183 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1184 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1185 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1186 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1188 /* enable it... */
1189 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1191 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1194 void g4x_disable_fbc(struct drm_device *dev)
1196 struct drm_i915_private *dev_priv = dev->dev_private;
1197 u32 dpfc_ctl;
1199 /* Disable compression */
1200 dpfc_ctl = I915_READ(DPFC_CONTROL);
1201 if (dpfc_ctl & DPFC_CTL_EN) {
1202 dpfc_ctl &= ~DPFC_CTL_EN;
1203 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1205 DRM_DEBUG_KMS("disabled FBC\n");
1209 static bool g4x_fbc_enabled(struct drm_device *dev)
1211 struct drm_i915_private *dev_priv = dev->dev_private;
1213 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1216 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1218 struct drm_device *dev = crtc->dev;
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220 struct drm_framebuffer *fb = crtc->fb;
1221 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1222 struct drm_i915_gem_object *obj = intel_fb->obj;
1223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1224 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1225 unsigned long stall_watermark = 200;
1226 u32 dpfc_ctl;
1228 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1229 if (dpfc_ctl & DPFC_CTL_EN) {
1230 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1231 dev_priv->cfb_fence == obj->fence_reg &&
1232 dev_priv->cfb_plane == intel_crtc->plane &&
1233 dev_priv->cfb_offset == obj->gtt_offset &&
1234 dev_priv->cfb_y == crtc->y)
1235 return;
1237 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1238 POSTING_READ(ILK_DPFC_CONTROL);
1239 intel_wait_for_vblank(dev, intel_crtc->pipe);
1242 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1243 dev_priv->cfb_fence = obj->fence_reg;
1244 dev_priv->cfb_plane = intel_crtc->plane;
1245 dev_priv->cfb_offset = obj->gtt_offset;
1246 dev_priv->cfb_y = crtc->y;
1248 dpfc_ctl &= DPFC_RESERVED;
1249 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1250 if (obj->tiling_mode != I915_TILING_NONE) {
1251 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1252 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1253 } else {
1254 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1257 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1258 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1259 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1260 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1261 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1262 /* enable it... */
1263 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1265 if (IS_GEN6(dev)) {
1266 I915_WRITE(SNB_DPFC_CTL_SA,
1267 SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1268 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1271 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1274 void ironlake_disable_fbc(struct drm_device *dev)
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 u32 dpfc_ctl;
1279 /* Disable compression */
1280 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1281 if (dpfc_ctl & DPFC_CTL_EN) {
1282 dpfc_ctl &= ~DPFC_CTL_EN;
1283 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1285 DRM_DEBUG_KMS("disabled FBC\n");
1289 static bool ironlake_fbc_enabled(struct drm_device *dev)
1291 struct drm_i915_private *dev_priv = dev->dev_private;
1293 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1296 bool intel_fbc_enabled(struct drm_device *dev)
1298 struct drm_i915_private *dev_priv = dev->dev_private;
1300 if (!dev_priv->display.fbc_enabled)
1301 return false;
1303 return dev_priv->display.fbc_enabled(dev);
1306 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1308 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1310 if (!dev_priv->display.enable_fbc)
1311 return;
1313 dev_priv->display.enable_fbc(crtc, interval);
1316 void intel_disable_fbc(struct drm_device *dev)
1318 struct drm_i915_private *dev_priv = dev->dev_private;
1320 if (!dev_priv->display.disable_fbc)
1321 return;
1323 dev_priv->display.disable_fbc(dev);
1327 * intel_update_fbc - enable/disable FBC as needed
1328 * @dev: the drm_device
1330 * Set up the framebuffer compression hardware at mode set time. We
1331 * enable it if possible:
1332 * - plane A only (on pre-965)
1333 * - no pixel mulitply/line duplication
1334 * - no alpha buffer discard
1335 * - no dual wide
1336 * - framebuffer <= 2048 in width, 1536 in height
1338 * We can't assume that any compression will take place (worst case),
1339 * so the compressed buffer has to be the same size as the uncompressed
1340 * one. It also must reside (along with the line length buffer) in
1341 * stolen memory.
1343 * We need to enable/disable FBC on a global basis.
1345 static void intel_update_fbc(struct drm_device *dev)
1347 struct drm_i915_private *dev_priv = dev->dev_private;
1348 struct drm_crtc *crtc = NULL, *tmp_crtc;
1349 struct intel_crtc *intel_crtc;
1350 struct drm_framebuffer *fb;
1351 struct intel_framebuffer *intel_fb;
1352 struct drm_i915_gem_object *obj;
1354 DRM_DEBUG_KMS("\n");
1356 if (!i915_powersave)
1357 return;
1359 if (!I915_HAS_FBC(dev))
1360 return;
1363 * If FBC is already on, we just have to verify that we can
1364 * keep it that way...
1365 * Need to disable if:
1366 * - more than one pipe is active
1367 * - changing FBC params (stride, fence, mode)
1368 * - new fb is too large to fit in compressed buffer
1369 * - going to an unsupported config (interlace, pixel multiply, etc.)
1371 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1372 if (tmp_crtc->enabled) {
1373 if (crtc) {
1374 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1375 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1376 goto out_disable;
1378 crtc = tmp_crtc;
1382 if (!crtc || crtc->fb == NULL) {
1383 DRM_DEBUG_KMS("no output, disabling\n");
1384 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1385 goto out_disable;
1388 intel_crtc = to_intel_crtc(crtc);
1389 fb = crtc->fb;
1390 intel_fb = to_intel_framebuffer(fb);
1391 obj = intel_fb->obj;
1393 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1394 DRM_DEBUG_KMS("framebuffer too large, disabling "
1395 "compression\n");
1396 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1397 goto out_disable;
1399 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1400 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1401 DRM_DEBUG_KMS("mode incompatible with compression, "
1402 "disabling\n");
1403 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1404 goto out_disable;
1406 if ((crtc->mode.hdisplay > 2048) ||
1407 (crtc->mode.vdisplay > 1536)) {
1408 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1409 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1410 goto out_disable;
1412 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1413 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1414 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1415 goto out_disable;
1417 if (obj->tiling_mode != I915_TILING_X) {
1418 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1419 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1420 goto out_disable;
1423 /* If the kernel debugger is active, always disable compression */
1424 if (in_dbg_master())
1425 goto out_disable;
1427 intel_enable_fbc(crtc, 500);
1428 return;
1430 out_disable:
1431 /* Multiple disables should be harmless */
1432 if (intel_fbc_enabled(dev)) {
1433 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1434 intel_disable_fbc(dev);
1439 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1440 struct drm_i915_gem_object *obj,
1441 struct intel_ring_buffer *pipelined)
1443 u32 alignment;
1444 int ret;
1446 switch (obj->tiling_mode) {
1447 case I915_TILING_NONE:
1448 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1449 alignment = 128 * 1024;
1450 else if (INTEL_INFO(dev)->gen >= 4)
1451 alignment = 4 * 1024;
1452 else
1453 alignment = 64 * 1024;
1454 break;
1455 case I915_TILING_X:
1456 /* pin() will align the object as required by fence */
1457 alignment = 0;
1458 break;
1459 case I915_TILING_Y:
1460 /* FIXME: Is this true? */
1461 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1462 return -EINVAL;
1463 default:
1464 BUG();
1467 ret = i915_gem_object_pin(obj, alignment, true);
1468 if (ret)
1469 return ret;
1471 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1472 if (ret)
1473 goto err_unpin;
1475 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1476 * fence, whereas 965+ only requires a fence if using
1477 * framebuffer compression. For simplicity, we always install
1478 * a fence as the cost is not that onerous.
1480 if (obj->tiling_mode != I915_TILING_NONE) {
1481 ret = i915_gem_object_get_fence(obj, pipelined, false);
1482 if (ret)
1483 goto err_unpin;
1486 return 0;
1488 err_unpin:
1489 i915_gem_object_unpin(obj);
1490 return ret;
1493 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1494 static int
1495 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1496 int x, int y, enum mode_set_atomic state)
1498 struct drm_device *dev = crtc->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1501 struct intel_framebuffer *intel_fb;
1502 struct drm_i915_gem_object *obj;
1503 int plane = intel_crtc->plane;
1504 unsigned long Start, Offset;
1505 u32 dspcntr;
1506 u32 reg;
1508 switch (plane) {
1509 case 0:
1510 case 1:
1511 break;
1512 default:
1513 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1514 return -EINVAL;
1517 intel_fb = to_intel_framebuffer(fb);
1518 obj = intel_fb->obj;
1520 reg = DSPCNTR(plane);
1521 dspcntr = I915_READ(reg);
1522 /* Mask out pixel format bits in case we change it */
1523 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524 switch (fb->bits_per_pixel) {
1525 case 8:
1526 dspcntr |= DISPPLANE_8BPP;
1527 break;
1528 case 16:
1529 if (fb->depth == 15)
1530 dspcntr |= DISPPLANE_15_16BPP;
1531 else
1532 dspcntr |= DISPPLANE_16BPP;
1533 break;
1534 case 24:
1535 case 32:
1536 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537 break;
1538 default:
1539 DRM_ERROR("Unknown color depth\n");
1540 return -EINVAL;
1542 if (INTEL_INFO(dev)->gen >= 4) {
1543 if (obj->tiling_mode != I915_TILING_NONE)
1544 dspcntr |= DISPPLANE_TILED;
1545 else
1546 dspcntr &= ~DISPPLANE_TILED;
1549 if (HAS_PCH_SPLIT(dev))
1550 /* must disable */
1551 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1553 I915_WRITE(reg, dspcntr);
1555 Start = obj->gtt_offset;
1556 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1558 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559 Start, Offset, x, y, fb->pitch);
1560 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561 if (INTEL_INFO(dev)->gen >= 4) {
1562 I915_WRITE(DSPSURF(plane), Start);
1563 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564 I915_WRITE(DSPADDR(plane), Offset);
1565 } else
1566 I915_WRITE(DSPADDR(plane), Start + Offset);
1567 POSTING_READ(reg);
1569 intel_update_fbc(dev);
1570 intel_increase_pllclock(crtc);
1572 return 0;
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577 struct drm_framebuffer *old_fb)
1579 struct drm_device *dev = crtc->dev;
1580 struct drm_i915_master_private *master_priv;
1581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582 int ret;
1584 /* no fb bound */
1585 if (!crtc->fb) {
1586 DRM_DEBUG_KMS("No FB bound\n");
1587 return 0;
1590 switch (intel_crtc->plane) {
1591 case 0:
1592 case 1:
1593 break;
1594 default:
1595 return -EINVAL;
1598 mutex_lock(&dev->struct_mutex);
1599 ret = intel_pin_and_fence_fb_obj(dev,
1600 to_intel_framebuffer(crtc->fb)->obj,
1601 NULL);
1602 if (ret != 0) {
1603 mutex_unlock(&dev->struct_mutex);
1604 return ret;
1607 if (old_fb) {
1608 struct drm_i915_private *dev_priv = dev->dev_private;
1609 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1611 wait_event(dev_priv->pending_flip_queue,
1612 atomic_read(&obj->pending_flip) == 0);
1614 /* Big Hammer, we also need to ensure that any pending
1615 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1616 * current scanout is retired before unpinning the old
1617 * framebuffer.
1619 ret = i915_gem_object_flush_gpu(obj, false);
1620 if (ret) {
1621 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1627 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1628 LEAVE_ATOMIC_MODE_SET);
1629 if (ret) {
1630 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1631 mutex_unlock(&dev->struct_mutex);
1632 return ret;
1635 if (old_fb) {
1636 intel_wait_for_vblank(dev, intel_crtc->pipe);
1637 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1640 mutex_unlock(&dev->struct_mutex);
1642 if (!dev->primary->master)
1643 return 0;
1645 master_priv = dev->primary->master->driver_priv;
1646 if (!master_priv->sarea_priv)
1647 return 0;
1649 if (intel_crtc->pipe) {
1650 master_priv->sarea_priv->pipeB_x = x;
1651 master_priv->sarea_priv->pipeB_y = y;
1652 } else {
1653 master_priv->sarea_priv->pipeA_x = x;
1654 master_priv->sarea_priv->pipeA_y = y;
1657 return 0;
1660 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1662 struct drm_device *dev = crtc->dev;
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 u32 dpa_ctl;
1666 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1667 dpa_ctl = I915_READ(DP_A);
1668 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1670 if (clock < 200000) {
1671 u32 temp;
1672 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1673 /* workaround for 160Mhz:
1674 1) program 0x4600c bits 15:0 = 0x8124
1675 2) program 0x46010 bit 0 = 1
1676 3) program 0x46034 bit 24 = 1
1677 4) program 0x64000 bit 14 = 1
1679 temp = I915_READ(0x4600c);
1680 temp &= 0xffff0000;
1681 I915_WRITE(0x4600c, temp | 0x8124);
1683 temp = I915_READ(0x46010);
1684 I915_WRITE(0x46010, temp | 1);
1686 temp = I915_READ(0x46034);
1687 I915_WRITE(0x46034, temp | (1 << 24));
1688 } else {
1689 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1691 I915_WRITE(DP_A, dpa_ctl);
1693 POSTING_READ(DP_A);
1694 udelay(500);
1697 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1699 struct drm_device *dev = crtc->dev;
1700 struct drm_i915_private *dev_priv = dev->dev_private;
1701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1702 int pipe = intel_crtc->pipe;
1703 u32 reg, temp;
1705 /* enable normal train */
1706 reg = FDI_TX_CTL(pipe);
1707 temp = I915_READ(reg);
1708 temp &= ~FDI_LINK_TRAIN_NONE;
1709 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1710 I915_WRITE(reg, temp);
1712 reg = FDI_RX_CTL(pipe);
1713 temp = I915_READ(reg);
1714 if (HAS_PCH_CPT(dev)) {
1715 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1716 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1717 } else {
1718 temp &= ~FDI_LINK_TRAIN_NONE;
1719 temp |= FDI_LINK_TRAIN_NONE;
1721 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1723 /* wait one idle pattern time */
1724 POSTING_READ(reg);
1725 udelay(1000);
1728 /* The FDI link training functions for ILK/Ibexpeak. */
1729 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1731 struct drm_device *dev = crtc->dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1734 int pipe = intel_crtc->pipe;
1735 u32 reg, temp, tries;
1737 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1738 for train result */
1739 reg = FDI_RX_IMR(pipe);
1740 temp = I915_READ(reg);
1741 temp &= ~FDI_RX_SYMBOL_LOCK;
1742 temp &= ~FDI_RX_BIT_LOCK;
1743 I915_WRITE(reg, temp);
1744 I915_READ(reg);
1745 udelay(150);
1747 /* enable CPU FDI TX and PCH FDI RX */
1748 reg = FDI_TX_CTL(pipe);
1749 temp = I915_READ(reg);
1750 temp &= ~(7 << 19);
1751 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1752 temp &= ~FDI_LINK_TRAIN_NONE;
1753 temp |= FDI_LINK_TRAIN_PATTERN_1;
1754 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1756 reg = FDI_RX_CTL(pipe);
1757 temp = I915_READ(reg);
1758 temp &= ~FDI_LINK_TRAIN_NONE;
1759 temp |= FDI_LINK_TRAIN_PATTERN_1;
1760 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1762 POSTING_READ(reg);
1763 udelay(150);
1765 /* Ironlake workaround, enable clock pointer after FDI enable*/
1766 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1768 reg = FDI_RX_IIR(pipe);
1769 for (tries = 0; tries < 5; tries++) {
1770 temp = I915_READ(reg);
1771 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1773 if ((temp & FDI_RX_BIT_LOCK)) {
1774 DRM_DEBUG_KMS("FDI train 1 done.\n");
1775 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1776 break;
1779 if (tries == 5)
1780 DRM_ERROR("FDI train 1 fail!\n");
1782 /* Train 2 */
1783 reg = FDI_TX_CTL(pipe);
1784 temp = I915_READ(reg);
1785 temp &= ~FDI_LINK_TRAIN_NONE;
1786 temp |= FDI_LINK_TRAIN_PATTERN_2;
1787 I915_WRITE(reg, temp);
1789 reg = FDI_RX_CTL(pipe);
1790 temp = I915_READ(reg);
1791 temp &= ~FDI_LINK_TRAIN_NONE;
1792 temp |= FDI_LINK_TRAIN_PATTERN_2;
1793 I915_WRITE(reg, temp);
1795 POSTING_READ(reg);
1796 udelay(150);
1798 reg = FDI_RX_IIR(pipe);
1799 for (tries = 0; tries < 5; tries++) {
1800 temp = I915_READ(reg);
1801 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1803 if (temp & FDI_RX_SYMBOL_LOCK) {
1804 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1805 DRM_DEBUG_KMS("FDI train 2 done.\n");
1806 break;
1809 if (tries == 5)
1810 DRM_ERROR("FDI train 2 fail!\n");
1812 DRM_DEBUG_KMS("FDI train done\n");
1816 static const int const snb_b_fdi_train_param [] = {
1817 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1818 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1819 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1820 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1823 /* The FDI link training functions for SNB/Cougarpoint. */
1824 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1826 struct drm_device *dev = crtc->dev;
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1829 int pipe = intel_crtc->pipe;
1830 u32 reg, temp, i;
1832 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1833 for train result */
1834 reg = FDI_RX_IMR(pipe);
1835 temp = I915_READ(reg);
1836 temp &= ~FDI_RX_SYMBOL_LOCK;
1837 temp &= ~FDI_RX_BIT_LOCK;
1838 I915_WRITE(reg, temp);
1840 POSTING_READ(reg);
1841 udelay(150);
1843 /* enable CPU FDI TX and PCH FDI RX */
1844 reg = FDI_TX_CTL(pipe);
1845 temp = I915_READ(reg);
1846 temp &= ~(7 << 19);
1847 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1848 temp &= ~FDI_LINK_TRAIN_NONE;
1849 temp |= FDI_LINK_TRAIN_PATTERN_1;
1850 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1851 /* SNB-B */
1852 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1853 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1855 reg = FDI_RX_CTL(pipe);
1856 temp = I915_READ(reg);
1857 if (HAS_PCH_CPT(dev)) {
1858 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1859 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1860 } else {
1861 temp &= ~FDI_LINK_TRAIN_NONE;
1862 temp |= FDI_LINK_TRAIN_PATTERN_1;
1864 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1866 POSTING_READ(reg);
1867 udelay(150);
1869 for (i = 0; i < 4; i++ ) {
1870 reg = FDI_TX_CTL(pipe);
1871 temp = I915_READ(reg);
1872 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1873 temp |= snb_b_fdi_train_param[i];
1874 I915_WRITE(reg, temp);
1876 POSTING_READ(reg);
1877 udelay(500);
1879 reg = FDI_RX_IIR(pipe);
1880 temp = I915_READ(reg);
1881 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1883 if (temp & FDI_RX_BIT_LOCK) {
1884 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1885 DRM_DEBUG_KMS("FDI train 1 done.\n");
1886 break;
1889 if (i == 4)
1890 DRM_ERROR("FDI train 1 fail!\n");
1892 /* Train 2 */
1893 reg = FDI_TX_CTL(pipe);
1894 temp = I915_READ(reg);
1895 temp &= ~FDI_LINK_TRAIN_NONE;
1896 temp |= FDI_LINK_TRAIN_PATTERN_2;
1897 if (IS_GEN6(dev)) {
1898 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1899 /* SNB-B */
1900 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1902 I915_WRITE(reg, temp);
1904 reg = FDI_RX_CTL(pipe);
1905 temp = I915_READ(reg);
1906 if (HAS_PCH_CPT(dev)) {
1907 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1908 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1909 } else {
1910 temp &= ~FDI_LINK_TRAIN_NONE;
1911 temp |= FDI_LINK_TRAIN_PATTERN_2;
1913 I915_WRITE(reg, temp);
1915 POSTING_READ(reg);
1916 udelay(150);
1918 for (i = 0; i < 4; i++ ) {
1919 reg = FDI_TX_CTL(pipe);
1920 temp = I915_READ(reg);
1921 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1922 temp |= snb_b_fdi_train_param[i];
1923 I915_WRITE(reg, temp);
1925 POSTING_READ(reg);
1926 udelay(500);
1928 reg = FDI_RX_IIR(pipe);
1929 temp = I915_READ(reg);
1930 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1932 if (temp & FDI_RX_SYMBOL_LOCK) {
1933 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1934 DRM_DEBUG_KMS("FDI train 2 done.\n");
1935 break;
1938 if (i == 4)
1939 DRM_ERROR("FDI train 2 fail!\n");
1941 DRM_DEBUG_KMS("FDI train done.\n");
1944 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 int pipe = intel_crtc->pipe;
1950 u32 reg, temp;
1952 /* Write the TU size bits so error detection works */
1953 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1954 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1956 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1957 reg = FDI_RX_CTL(pipe);
1958 temp = I915_READ(reg);
1959 temp &= ~((0x7 << 19) | (0x7 << 16));
1960 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1961 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1962 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1964 POSTING_READ(reg);
1965 udelay(200);
1967 /* Switch from Rawclk to PCDclk */
1968 temp = I915_READ(reg);
1969 I915_WRITE(reg, temp | FDI_PCDCLK);
1971 POSTING_READ(reg);
1972 udelay(200);
1974 /* Enable CPU FDI TX PLL, always on for Ironlake */
1975 reg = FDI_TX_CTL(pipe);
1976 temp = I915_READ(reg);
1977 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1978 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1980 POSTING_READ(reg);
1981 udelay(100);
1985 static void intel_flush_display_plane(struct drm_device *dev,
1986 int plane)
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 u32 reg = DSPADDR(plane);
1990 I915_WRITE(reg, I915_READ(reg));
1994 * When we disable a pipe, we need to clear any pending scanline wait events
1995 * to avoid hanging the ring, which we assume we are waiting on.
1997 static void intel_clear_scanline_wait(struct drm_device *dev)
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 struct intel_ring_buffer *ring;
2001 u32 tmp;
2003 if (IS_GEN2(dev))
2004 /* Can't break the hang on i8xx */
2005 return;
2007 ring = LP_RING(dev_priv);
2008 tmp = I915_READ_CTL(ring);
2009 if (tmp & RING_WAIT)
2010 I915_WRITE_CTL(ring, tmp);
2013 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2015 struct drm_i915_gem_object *obj;
2016 struct drm_i915_private *dev_priv;
2018 if (crtc->fb == NULL)
2019 return;
2021 obj = to_intel_framebuffer(crtc->fb)->obj;
2022 dev_priv = crtc->dev->dev_private;
2023 wait_event(dev_priv->pending_flip_queue,
2024 atomic_read(&obj->pending_flip) == 0);
2027 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 int pipe = intel_crtc->pipe;
2033 int plane = intel_crtc->plane;
2034 u32 reg, temp;
2036 if (intel_crtc->active)
2037 return;
2039 intel_crtc->active = true;
2040 intel_update_watermarks(dev);
2042 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2043 temp = I915_READ(PCH_LVDS);
2044 if ((temp & LVDS_PORT_EN) == 0)
2045 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2048 ironlake_fdi_enable(crtc);
2050 /* Enable panel fitting for LVDS */
2051 if (dev_priv->pch_pf_size &&
2052 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2053 /* Force use of hard-coded filter coefficients
2054 * as some pre-programmed values are broken,
2055 * e.g. x201.
2057 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2058 PF_ENABLE | PF_FILTER_MED_3x3);
2059 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2060 dev_priv->pch_pf_pos);
2061 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2062 dev_priv->pch_pf_size);
2065 /* Enable CPU pipe */
2066 reg = PIPECONF(pipe);
2067 temp = I915_READ(reg);
2068 if ((temp & PIPECONF_ENABLE) == 0) {
2069 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2070 POSTING_READ(reg);
2071 intel_wait_for_vblank(dev, intel_crtc->pipe);
2074 /* configure and enable CPU plane */
2075 reg = DSPCNTR(plane);
2076 temp = I915_READ(reg);
2077 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2078 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2079 intel_flush_display_plane(dev, plane);
2082 /* For PCH output, training FDI link */
2083 if (IS_GEN6(dev))
2084 gen6_fdi_link_train(crtc);
2085 else
2086 ironlake_fdi_link_train(crtc);
2088 /* enable PCH DPLL */
2089 reg = PCH_DPLL(pipe);
2090 temp = I915_READ(reg);
2091 if ((temp & DPLL_VCO_ENABLE) == 0) {
2092 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2093 POSTING_READ(reg);
2094 udelay(200);
2097 if (HAS_PCH_CPT(dev)) {
2098 /* Be sure PCH DPLL SEL is set */
2099 temp = I915_READ(PCH_DPLL_SEL);
2100 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2101 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2102 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2103 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2104 I915_WRITE(PCH_DPLL_SEL, temp);
2107 /* set transcoder timing */
2108 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2109 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2110 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2112 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2113 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2114 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2116 intel_fdi_normal_train(crtc);
2118 /* For PCH DP, enable TRANS_DP_CTL */
2119 if (HAS_PCH_CPT(dev) &&
2120 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2121 reg = TRANS_DP_CTL(pipe);
2122 temp = I915_READ(reg);
2123 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2124 TRANS_DP_SYNC_MASK |
2125 TRANS_DP_BPC_MASK);
2126 temp |= (TRANS_DP_OUTPUT_ENABLE |
2127 TRANS_DP_ENH_FRAMING);
2128 temp |= TRANS_DP_8BPC;
2130 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2131 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2132 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2133 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2135 switch (intel_trans_dp_port_sel(crtc)) {
2136 case PCH_DP_B:
2137 temp |= TRANS_DP_PORT_SEL_B;
2138 break;
2139 case PCH_DP_C:
2140 temp |= TRANS_DP_PORT_SEL_C;
2141 break;
2142 case PCH_DP_D:
2143 temp |= TRANS_DP_PORT_SEL_D;
2144 break;
2145 default:
2146 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2147 temp |= TRANS_DP_PORT_SEL_B;
2148 break;
2151 I915_WRITE(reg, temp);
2154 /* enable PCH transcoder */
2155 reg = TRANSCONF(pipe);
2156 temp = I915_READ(reg);
2158 * make the BPC in transcoder be consistent with
2159 * that in pipeconf reg.
2161 temp &= ~PIPE_BPC_MASK;
2162 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2163 I915_WRITE(reg, temp | TRANS_ENABLE);
2164 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2165 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2167 intel_crtc_load_lut(crtc);
2168 intel_update_fbc(dev);
2169 intel_crtc_update_cursor(crtc, true);
2172 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2174 struct drm_device *dev = crtc->dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2177 int pipe = intel_crtc->pipe;
2178 int plane = intel_crtc->plane;
2179 u32 reg, temp;
2181 if (!intel_crtc->active)
2182 return;
2184 intel_crtc_wait_for_pending_flips(crtc);
2185 drm_vblank_off(dev, pipe);
2186 intel_crtc_update_cursor(crtc, false);
2188 /* Disable display plane */
2189 reg = DSPCNTR(plane);
2190 temp = I915_READ(reg);
2191 if (temp & DISPLAY_PLANE_ENABLE) {
2192 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2193 intel_flush_display_plane(dev, plane);
2196 if (dev_priv->cfb_plane == plane &&
2197 dev_priv->display.disable_fbc)
2198 dev_priv->display.disable_fbc(dev);
2200 /* disable cpu pipe, disable after all planes disabled */
2201 reg = PIPECONF(pipe);
2202 temp = I915_READ(reg);
2203 if (temp & PIPECONF_ENABLE) {
2204 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2205 POSTING_READ(reg);
2206 /* wait for cpu pipe off, pipe state */
2207 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2210 /* Disable PF */
2211 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2212 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2214 /* disable CPU FDI tx and PCH FDI rx */
2215 reg = FDI_TX_CTL(pipe);
2216 temp = I915_READ(reg);
2217 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2218 POSTING_READ(reg);
2220 reg = FDI_RX_CTL(pipe);
2221 temp = I915_READ(reg);
2222 temp &= ~(0x7 << 16);
2223 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2224 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2226 POSTING_READ(reg);
2227 udelay(100);
2229 /* Ironlake workaround, disable clock pointer after downing FDI */
2230 if (HAS_PCH_IBX(dev))
2231 I915_WRITE(FDI_RX_CHICKEN(pipe),
2232 I915_READ(FDI_RX_CHICKEN(pipe) &
2233 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2235 /* still set train pattern 1 */
2236 reg = FDI_TX_CTL(pipe);
2237 temp = I915_READ(reg);
2238 temp &= ~FDI_LINK_TRAIN_NONE;
2239 temp |= FDI_LINK_TRAIN_PATTERN_1;
2240 I915_WRITE(reg, temp);
2242 reg = FDI_RX_CTL(pipe);
2243 temp = I915_READ(reg);
2244 if (HAS_PCH_CPT(dev)) {
2245 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2246 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2247 } else {
2248 temp &= ~FDI_LINK_TRAIN_NONE;
2249 temp |= FDI_LINK_TRAIN_PATTERN_1;
2251 /* BPC in FDI rx is consistent with that in PIPECONF */
2252 temp &= ~(0x07 << 16);
2253 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2254 I915_WRITE(reg, temp);
2256 POSTING_READ(reg);
2257 udelay(100);
2259 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2260 temp = I915_READ(PCH_LVDS);
2261 if (temp & LVDS_PORT_EN) {
2262 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2263 POSTING_READ(PCH_LVDS);
2264 udelay(100);
2268 /* disable PCH transcoder */
2269 reg = TRANSCONF(plane);
2270 temp = I915_READ(reg);
2271 if (temp & TRANS_ENABLE) {
2272 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2273 /* wait for PCH transcoder off, transcoder state */
2274 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2275 DRM_ERROR("failed to disable transcoder\n");
2278 if (HAS_PCH_CPT(dev)) {
2279 /* disable TRANS_DP_CTL */
2280 reg = TRANS_DP_CTL(pipe);
2281 temp = I915_READ(reg);
2282 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2283 I915_WRITE(reg, temp);
2285 /* disable DPLL_SEL */
2286 temp = I915_READ(PCH_DPLL_SEL);
2287 if (pipe == 0)
2288 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2289 else
2290 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2291 I915_WRITE(PCH_DPLL_SEL, temp);
2294 /* disable PCH DPLL */
2295 reg = PCH_DPLL(pipe);
2296 temp = I915_READ(reg);
2297 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2299 /* Switch from PCDclk to Rawclk */
2300 reg = FDI_RX_CTL(pipe);
2301 temp = I915_READ(reg);
2302 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2304 /* Disable CPU FDI TX PLL */
2305 reg = FDI_TX_CTL(pipe);
2306 temp = I915_READ(reg);
2307 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2309 POSTING_READ(reg);
2310 udelay(100);
2312 reg = FDI_RX_CTL(pipe);
2313 temp = I915_READ(reg);
2314 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2316 /* Wait for the clocks to turn off. */
2317 POSTING_READ(reg);
2318 udelay(100);
2320 intel_crtc->active = false;
2321 intel_update_watermarks(dev);
2322 intel_update_fbc(dev);
2323 intel_clear_scanline_wait(dev);
2326 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2329 int pipe = intel_crtc->pipe;
2330 int plane = intel_crtc->plane;
2332 /* XXX: When our outputs are all unaware of DPMS modes other than off
2333 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2335 switch (mode) {
2336 case DRM_MODE_DPMS_ON:
2337 case DRM_MODE_DPMS_STANDBY:
2338 case DRM_MODE_DPMS_SUSPEND:
2339 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2340 ironlake_crtc_enable(crtc);
2341 break;
2343 case DRM_MODE_DPMS_OFF:
2344 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2345 ironlake_crtc_disable(crtc);
2346 break;
2350 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2352 if (!enable && intel_crtc->overlay) {
2353 struct drm_device *dev = intel_crtc->base.dev;
2355 mutex_lock(&dev->struct_mutex);
2356 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2357 mutex_unlock(&dev->struct_mutex);
2360 /* Let userspace switch the overlay on again. In most cases userspace
2361 * has to recompute where to put it anyway.
2365 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2367 struct drm_device *dev = crtc->dev;
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2370 int pipe = intel_crtc->pipe;
2371 int plane = intel_crtc->plane;
2372 u32 reg, temp;
2374 if (intel_crtc->active)
2375 return;
2377 intel_crtc->active = true;
2378 intel_update_watermarks(dev);
2380 /* Enable the DPLL */
2381 reg = DPLL(pipe);
2382 temp = I915_READ(reg);
2383 if ((temp & DPLL_VCO_ENABLE) == 0) {
2384 I915_WRITE(reg, temp);
2386 /* Wait for the clocks to stabilize. */
2387 POSTING_READ(reg);
2388 udelay(150);
2390 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2392 /* Wait for the clocks to stabilize. */
2393 POSTING_READ(reg);
2394 udelay(150);
2396 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2398 /* Wait for the clocks to stabilize. */
2399 POSTING_READ(reg);
2400 udelay(150);
2403 /* Enable the pipe */
2404 reg = PIPECONF(pipe);
2405 temp = I915_READ(reg);
2406 if ((temp & PIPECONF_ENABLE) == 0)
2407 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2409 /* Enable the plane */
2410 reg = DSPCNTR(plane);
2411 temp = I915_READ(reg);
2412 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2413 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2414 intel_flush_display_plane(dev, plane);
2417 intel_crtc_load_lut(crtc);
2418 intel_update_fbc(dev);
2420 /* Give the overlay scaler a chance to enable if it's on this pipe */
2421 intel_crtc_dpms_overlay(intel_crtc, true);
2422 intel_crtc_update_cursor(crtc, true);
2425 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2427 struct drm_device *dev = crtc->dev;
2428 struct drm_i915_private *dev_priv = dev->dev_private;
2429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2430 int pipe = intel_crtc->pipe;
2431 int plane = intel_crtc->plane;
2432 u32 reg, temp;
2434 if (!intel_crtc->active)
2435 return;
2437 /* Give the overlay scaler a chance to disable if it's on this pipe */
2438 intel_crtc_wait_for_pending_flips(crtc);
2439 drm_vblank_off(dev, pipe);
2440 intel_crtc_dpms_overlay(intel_crtc, false);
2441 intel_crtc_update_cursor(crtc, false);
2443 if (dev_priv->cfb_plane == plane &&
2444 dev_priv->display.disable_fbc)
2445 dev_priv->display.disable_fbc(dev);
2447 /* Disable display plane */
2448 reg = DSPCNTR(plane);
2449 temp = I915_READ(reg);
2450 if (temp & DISPLAY_PLANE_ENABLE) {
2451 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2452 /* Flush the plane changes */
2453 intel_flush_display_plane(dev, plane);
2455 /* Wait for vblank for the disable to take effect */
2456 if (IS_GEN2(dev))
2457 intel_wait_for_vblank(dev, pipe);
2460 /* Don't disable pipe A or pipe A PLLs if needed */
2461 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2462 goto done;
2464 /* Next, disable display pipes */
2465 reg = PIPECONF(pipe);
2466 temp = I915_READ(reg);
2467 if (temp & PIPECONF_ENABLE) {
2468 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2470 /* Wait for the pipe to turn off */
2471 POSTING_READ(reg);
2472 intel_wait_for_pipe_off(dev, pipe);
2475 reg = DPLL(pipe);
2476 temp = I915_READ(reg);
2477 if (temp & DPLL_VCO_ENABLE) {
2478 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2480 /* Wait for the clocks to turn off. */
2481 POSTING_READ(reg);
2482 udelay(150);
2485 done:
2486 intel_crtc->active = false;
2487 intel_update_fbc(dev);
2488 intel_update_watermarks(dev);
2489 intel_clear_scanline_wait(dev);
2492 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2494 /* XXX: When our outputs are all unaware of DPMS modes other than off
2495 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2497 switch (mode) {
2498 case DRM_MODE_DPMS_ON:
2499 case DRM_MODE_DPMS_STANDBY:
2500 case DRM_MODE_DPMS_SUSPEND:
2501 i9xx_crtc_enable(crtc);
2502 break;
2503 case DRM_MODE_DPMS_OFF:
2504 i9xx_crtc_disable(crtc);
2505 break;
2510 * Sets the power management mode of the pipe and plane.
2512 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2514 struct drm_device *dev = crtc->dev;
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516 struct drm_i915_master_private *master_priv;
2517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2518 int pipe = intel_crtc->pipe;
2519 bool enabled;
2521 if (intel_crtc->dpms_mode == mode)
2522 return;
2524 intel_crtc->dpms_mode = mode;
2526 dev_priv->display.dpms(crtc, mode);
2528 if (!dev->primary->master)
2529 return;
2531 master_priv = dev->primary->master->driver_priv;
2532 if (!master_priv->sarea_priv)
2533 return;
2535 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2537 switch (pipe) {
2538 case 0:
2539 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2540 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2541 break;
2542 case 1:
2543 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2544 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2545 break;
2546 default:
2547 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2548 break;
2552 static void intel_crtc_disable(struct drm_crtc *crtc)
2554 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2555 struct drm_device *dev = crtc->dev;
2557 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2559 if (crtc->fb) {
2560 mutex_lock(&dev->struct_mutex);
2561 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2562 mutex_unlock(&dev->struct_mutex);
2566 /* Prepare for a mode set.
2568 * Note we could be a lot smarter here. We need to figure out which outputs
2569 * will be enabled, which disabled (in short, how the config will changes)
2570 * and perform the minimum necessary steps to accomplish that, e.g. updating
2571 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2572 * panel fitting is in the proper state, etc.
2574 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2576 i9xx_crtc_disable(crtc);
2579 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2581 i9xx_crtc_enable(crtc);
2584 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2586 ironlake_crtc_disable(crtc);
2589 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2591 ironlake_crtc_enable(crtc);
2594 void intel_encoder_prepare (struct drm_encoder *encoder)
2596 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2597 /* lvds has its own version of prepare see intel_lvds_prepare */
2598 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2601 void intel_encoder_commit (struct drm_encoder *encoder)
2603 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2604 /* lvds has its own version of commit see intel_lvds_commit */
2605 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2608 void intel_encoder_destroy(struct drm_encoder *encoder)
2610 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2612 drm_encoder_cleanup(encoder);
2613 kfree(intel_encoder);
2616 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2617 struct drm_display_mode *mode,
2618 struct drm_display_mode *adjusted_mode)
2620 struct drm_device *dev = crtc->dev;
2622 if (HAS_PCH_SPLIT(dev)) {
2623 /* FDI link clock is fixed at 2.7G */
2624 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2625 return false;
2628 /* XXX some encoders set the crtcinfo, others don't.
2629 * Obviously we need some form of conflict resolution here...
2631 if (adjusted_mode->crtc_htotal == 0)
2632 drm_mode_set_crtcinfo(adjusted_mode, 0);
2634 return true;
2637 static int i945_get_display_clock_speed(struct drm_device *dev)
2639 return 400000;
2642 static int i915_get_display_clock_speed(struct drm_device *dev)
2644 return 333000;
2647 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2649 return 200000;
2652 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2654 u16 gcfgc = 0;
2656 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2658 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2659 return 133000;
2660 else {
2661 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2662 case GC_DISPLAY_CLOCK_333_MHZ:
2663 return 333000;
2664 default:
2665 case GC_DISPLAY_CLOCK_190_200_MHZ:
2666 return 190000;
2671 static int i865_get_display_clock_speed(struct drm_device *dev)
2673 return 266000;
2676 static int i855_get_display_clock_speed(struct drm_device *dev)
2678 u16 hpllcc = 0;
2679 /* Assume that the hardware is in the high speed state. This
2680 * should be the default.
2682 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2683 case GC_CLOCK_133_200:
2684 case GC_CLOCK_100_200:
2685 return 200000;
2686 case GC_CLOCK_166_250:
2687 return 250000;
2688 case GC_CLOCK_100_133:
2689 return 133000;
2692 /* Shouldn't happen */
2693 return 0;
2696 static int i830_get_display_clock_speed(struct drm_device *dev)
2698 return 133000;
2701 struct fdi_m_n {
2702 u32 tu;
2703 u32 gmch_m;
2704 u32 gmch_n;
2705 u32 link_m;
2706 u32 link_n;
2709 static void
2710 fdi_reduce_ratio(u32 *num, u32 *den)
2712 while (*num > 0xffffff || *den > 0xffffff) {
2713 *num >>= 1;
2714 *den >>= 1;
2718 static void
2719 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2720 int link_clock, struct fdi_m_n *m_n)
2722 m_n->tu = 64; /* default size */
2724 /* BUG_ON(pixel_clock > INT_MAX / 36); */
2725 m_n->gmch_m = bits_per_pixel * pixel_clock;
2726 m_n->gmch_n = link_clock * nlanes * 8;
2727 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2729 m_n->link_m = pixel_clock;
2730 m_n->link_n = link_clock;
2731 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2735 struct intel_watermark_params {
2736 unsigned long fifo_size;
2737 unsigned long max_wm;
2738 unsigned long default_wm;
2739 unsigned long guard_size;
2740 unsigned long cacheline_size;
2743 /* Pineview has different values for various configs */
2744 static struct intel_watermark_params pineview_display_wm = {
2745 PINEVIEW_DISPLAY_FIFO,
2746 PINEVIEW_MAX_WM,
2747 PINEVIEW_DFT_WM,
2748 PINEVIEW_GUARD_WM,
2749 PINEVIEW_FIFO_LINE_SIZE
2751 static struct intel_watermark_params pineview_display_hplloff_wm = {
2752 PINEVIEW_DISPLAY_FIFO,
2753 PINEVIEW_MAX_WM,
2754 PINEVIEW_DFT_HPLLOFF_WM,
2755 PINEVIEW_GUARD_WM,
2756 PINEVIEW_FIFO_LINE_SIZE
2758 static struct intel_watermark_params pineview_cursor_wm = {
2759 PINEVIEW_CURSOR_FIFO,
2760 PINEVIEW_CURSOR_MAX_WM,
2761 PINEVIEW_CURSOR_DFT_WM,
2762 PINEVIEW_CURSOR_GUARD_WM,
2763 PINEVIEW_FIFO_LINE_SIZE,
2765 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2766 PINEVIEW_CURSOR_FIFO,
2767 PINEVIEW_CURSOR_MAX_WM,
2768 PINEVIEW_CURSOR_DFT_WM,
2769 PINEVIEW_CURSOR_GUARD_WM,
2770 PINEVIEW_FIFO_LINE_SIZE
2772 static struct intel_watermark_params g4x_wm_info = {
2773 G4X_FIFO_SIZE,
2774 G4X_MAX_WM,
2775 G4X_MAX_WM,
2777 G4X_FIFO_LINE_SIZE,
2779 static struct intel_watermark_params g4x_cursor_wm_info = {
2780 I965_CURSOR_FIFO,
2781 I965_CURSOR_MAX_WM,
2782 I965_CURSOR_DFT_WM,
2784 G4X_FIFO_LINE_SIZE,
2786 static struct intel_watermark_params i965_cursor_wm_info = {
2787 I965_CURSOR_FIFO,
2788 I965_CURSOR_MAX_WM,
2789 I965_CURSOR_DFT_WM,
2791 I915_FIFO_LINE_SIZE,
2793 static struct intel_watermark_params i945_wm_info = {
2794 I945_FIFO_SIZE,
2795 I915_MAX_WM,
2798 I915_FIFO_LINE_SIZE
2800 static struct intel_watermark_params i915_wm_info = {
2801 I915_FIFO_SIZE,
2802 I915_MAX_WM,
2805 I915_FIFO_LINE_SIZE
2807 static struct intel_watermark_params i855_wm_info = {
2808 I855GM_FIFO_SIZE,
2809 I915_MAX_WM,
2812 I830_FIFO_LINE_SIZE
2814 static struct intel_watermark_params i830_wm_info = {
2815 I830_FIFO_SIZE,
2816 I915_MAX_WM,
2819 I830_FIFO_LINE_SIZE
2822 static struct intel_watermark_params ironlake_display_wm_info = {
2823 ILK_DISPLAY_FIFO,
2824 ILK_DISPLAY_MAXWM,
2825 ILK_DISPLAY_DFTWM,
2827 ILK_FIFO_LINE_SIZE
2830 static struct intel_watermark_params ironlake_cursor_wm_info = {
2831 ILK_CURSOR_FIFO,
2832 ILK_CURSOR_MAXWM,
2833 ILK_CURSOR_DFTWM,
2835 ILK_FIFO_LINE_SIZE
2838 static struct intel_watermark_params ironlake_display_srwm_info = {
2839 ILK_DISPLAY_SR_FIFO,
2840 ILK_DISPLAY_MAX_SRWM,
2841 ILK_DISPLAY_DFT_SRWM,
2843 ILK_FIFO_LINE_SIZE
2846 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2847 ILK_CURSOR_SR_FIFO,
2848 ILK_CURSOR_MAX_SRWM,
2849 ILK_CURSOR_DFT_SRWM,
2851 ILK_FIFO_LINE_SIZE
2854 static struct intel_watermark_params sandybridge_display_wm_info = {
2855 SNB_DISPLAY_FIFO,
2856 SNB_DISPLAY_MAXWM,
2857 SNB_DISPLAY_DFTWM,
2859 SNB_FIFO_LINE_SIZE
2862 static struct intel_watermark_params sandybridge_cursor_wm_info = {
2863 SNB_CURSOR_FIFO,
2864 SNB_CURSOR_MAXWM,
2865 SNB_CURSOR_DFTWM,
2867 SNB_FIFO_LINE_SIZE
2870 static struct intel_watermark_params sandybridge_display_srwm_info = {
2871 SNB_DISPLAY_SR_FIFO,
2872 SNB_DISPLAY_MAX_SRWM,
2873 SNB_DISPLAY_DFT_SRWM,
2875 SNB_FIFO_LINE_SIZE
2878 static struct intel_watermark_params sandybridge_cursor_srwm_info = {
2879 SNB_CURSOR_SR_FIFO,
2880 SNB_CURSOR_MAX_SRWM,
2881 SNB_CURSOR_DFT_SRWM,
2883 SNB_FIFO_LINE_SIZE
2888 * intel_calculate_wm - calculate watermark level
2889 * @clock_in_khz: pixel clock
2890 * @wm: chip FIFO params
2891 * @pixel_size: display pixel size
2892 * @latency_ns: memory latency for the platform
2894 * Calculate the watermark level (the level at which the display plane will
2895 * start fetching from memory again). Each chip has a different display
2896 * FIFO size and allocation, so the caller needs to figure that out and pass
2897 * in the correct intel_watermark_params structure.
2899 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2900 * on the pixel size. When it reaches the watermark level, it'll start
2901 * fetching FIFO line sized based chunks from memory until the FIFO fills
2902 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2903 * will occur, and a display engine hang could result.
2905 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2906 struct intel_watermark_params *wm,
2907 int pixel_size,
2908 unsigned long latency_ns)
2910 long entries_required, wm_size;
2913 * Note: we need to make sure we don't overflow for various clock &
2914 * latency values.
2915 * clocks go from a few thousand to several hundred thousand.
2916 * latency is usually a few thousand
2918 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2919 1000;
2920 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2922 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2924 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2926 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2928 /* Don't promote wm_size to unsigned... */
2929 if (wm_size > (long)wm->max_wm)
2930 wm_size = wm->max_wm;
2931 if (wm_size <= 0)
2932 wm_size = wm->default_wm;
2933 return wm_size;
2936 struct cxsr_latency {
2937 int is_desktop;
2938 int is_ddr3;
2939 unsigned long fsb_freq;
2940 unsigned long mem_freq;
2941 unsigned long display_sr;
2942 unsigned long display_hpll_disable;
2943 unsigned long cursor_sr;
2944 unsigned long cursor_hpll_disable;
2947 static const struct cxsr_latency cxsr_latency_table[] = {
2948 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2949 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2950 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2951 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2952 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2954 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2955 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2956 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2957 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2958 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2960 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2961 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2962 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2963 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2964 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2966 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2967 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2968 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2969 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2970 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2972 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2973 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2974 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2975 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2976 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2978 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2979 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2980 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2981 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2982 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2985 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2986 int is_ddr3,
2987 int fsb,
2988 int mem)
2990 const struct cxsr_latency *latency;
2991 int i;
2993 if (fsb == 0 || mem == 0)
2994 return NULL;
2996 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2997 latency = &cxsr_latency_table[i];
2998 if (is_desktop == latency->is_desktop &&
2999 is_ddr3 == latency->is_ddr3 &&
3000 fsb == latency->fsb_freq && mem == latency->mem_freq)
3001 return latency;
3004 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3006 return NULL;
3009 static void pineview_disable_cxsr(struct drm_device *dev)
3011 struct drm_i915_private *dev_priv = dev->dev_private;
3013 /* deactivate cxsr */
3014 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3018 * Latency for FIFO fetches is dependent on several factors:
3019 * - memory configuration (speed, channels)
3020 * - chipset
3021 * - current MCH state
3022 * It can be fairly high in some situations, so here we assume a fairly
3023 * pessimal value. It's a tradeoff between extra memory fetches (if we
3024 * set this value too high, the FIFO will fetch frequently to stay full)
3025 * and power consumption (set it too low to save power and we might see
3026 * FIFO underruns and display "flicker").
3028 * A value of 5us seems to be a good balance; safe for very low end
3029 * platforms but not overly aggressive on lower latency configs.
3031 static const int latency_ns = 5000;
3033 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 uint32_t dsparb = I915_READ(DSPARB);
3037 int size;
3039 size = dsparb & 0x7f;
3040 if (plane)
3041 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3043 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3044 plane ? "B" : "A", size);
3046 return size;
3049 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3051 struct drm_i915_private *dev_priv = dev->dev_private;
3052 uint32_t dsparb = I915_READ(DSPARB);
3053 int size;
3055 size = dsparb & 0x1ff;
3056 if (plane)
3057 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3058 size >>= 1; /* Convert to cachelines */
3060 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3061 plane ? "B" : "A", size);
3063 return size;
3066 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3068 struct drm_i915_private *dev_priv = dev->dev_private;
3069 uint32_t dsparb = I915_READ(DSPARB);
3070 int size;
3072 size = dsparb & 0x7f;
3073 size >>= 2; /* Convert to cachelines */
3075 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3076 plane ? "B" : "A",
3077 size);
3079 return size;
3082 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3084 struct drm_i915_private *dev_priv = dev->dev_private;
3085 uint32_t dsparb = I915_READ(DSPARB);
3086 int size;
3088 size = dsparb & 0x7f;
3089 size >>= 1; /* Convert to cachelines */
3091 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3092 plane ? "B" : "A", size);
3094 return size;
3097 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3098 int planeb_clock, int sr_hdisplay, int unused,
3099 int pixel_size)
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102 const struct cxsr_latency *latency;
3103 u32 reg;
3104 unsigned long wm;
3105 int sr_clock;
3107 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3108 dev_priv->fsb_freq, dev_priv->mem_freq);
3109 if (!latency) {
3110 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3111 pineview_disable_cxsr(dev);
3112 return;
3115 if (!planea_clock || !planeb_clock) {
3116 sr_clock = planea_clock ? planea_clock : planeb_clock;
3118 /* Display SR */
3119 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3120 pixel_size, latency->display_sr);
3121 reg = I915_READ(DSPFW1);
3122 reg &= ~DSPFW_SR_MASK;
3123 reg |= wm << DSPFW_SR_SHIFT;
3124 I915_WRITE(DSPFW1, reg);
3125 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3127 /* cursor SR */
3128 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3129 pixel_size, latency->cursor_sr);
3130 reg = I915_READ(DSPFW3);
3131 reg &= ~DSPFW_CURSOR_SR_MASK;
3132 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3133 I915_WRITE(DSPFW3, reg);
3135 /* Display HPLL off SR */
3136 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3137 pixel_size, latency->display_hpll_disable);
3138 reg = I915_READ(DSPFW3);
3139 reg &= ~DSPFW_HPLL_SR_MASK;
3140 reg |= wm & DSPFW_HPLL_SR_MASK;
3141 I915_WRITE(DSPFW3, reg);
3143 /* cursor HPLL off SR */
3144 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3145 pixel_size, latency->cursor_hpll_disable);
3146 reg = I915_READ(DSPFW3);
3147 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3148 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3149 I915_WRITE(DSPFW3, reg);
3150 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3152 /* activate cxsr */
3153 I915_WRITE(DSPFW3,
3154 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3155 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3156 } else {
3157 pineview_disable_cxsr(dev);
3158 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3162 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3163 int planeb_clock, int sr_hdisplay, int sr_htotal,
3164 int pixel_size)
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 int total_size, cacheline_size;
3168 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3169 struct intel_watermark_params planea_params, planeb_params;
3170 unsigned long line_time_us;
3171 int sr_clock, sr_entries = 0, entries_required;
3173 /* Create copies of the base settings for each pipe */
3174 planea_params = planeb_params = g4x_wm_info;
3176 /* Grab a couple of global values before we overwrite them */
3177 total_size = planea_params.fifo_size;
3178 cacheline_size = planea_params.cacheline_size;
3181 * Note: we need to make sure we don't overflow for various clock &
3182 * latency values.
3183 * clocks go from a few thousand to several hundred thousand.
3184 * latency is usually a few thousand
3186 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3187 1000;
3188 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3189 planea_wm = entries_required + planea_params.guard_size;
3191 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3192 1000;
3193 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3194 planeb_wm = entries_required + planeb_params.guard_size;
3196 cursora_wm = cursorb_wm = 16;
3197 cursor_sr = 32;
3199 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3201 /* Calc sr entries for one plane configs */
3202 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3203 /* self-refresh has much higher latency */
3204 static const int sr_latency_ns = 12000;
3206 sr_clock = planea_clock ? planea_clock : planeb_clock;
3207 line_time_us = ((sr_htotal * 1000) / sr_clock);
3209 /* Use ns/us then divide to preserve precision */
3210 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3211 pixel_size * sr_hdisplay;
3212 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3214 entries_required = (((sr_latency_ns / line_time_us) +
3215 1000) / 1000) * pixel_size * 64;
3216 entries_required = DIV_ROUND_UP(entries_required,
3217 g4x_cursor_wm_info.cacheline_size);
3218 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3220 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3221 cursor_sr = g4x_cursor_wm_info.max_wm;
3222 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3223 "cursor %d\n", sr_entries, cursor_sr);
3225 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3226 } else {
3227 /* Turn off self refresh if both pipes are enabled */
3228 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3229 & ~FW_BLC_SELF_EN);
3232 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3233 planea_wm, planeb_wm, sr_entries);
3235 planea_wm &= 0x3f;
3236 planeb_wm &= 0x3f;
3238 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3239 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3240 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3241 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3242 (cursora_wm << DSPFW_CURSORA_SHIFT));
3243 /* HPLL off in SR has some issues on G4x... disable it */
3244 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3245 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3248 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3249 int planeb_clock, int sr_hdisplay, int sr_htotal,
3250 int pixel_size)
3252 struct drm_i915_private *dev_priv = dev->dev_private;
3253 unsigned long line_time_us;
3254 int sr_clock, sr_entries, srwm = 1;
3255 int cursor_sr = 16;
3257 /* Calc sr entries for one plane configs */
3258 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3259 /* self-refresh has much higher latency */
3260 static const int sr_latency_ns = 12000;
3262 sr_clock = planea_clock ? planea_clock : planeb_clock;
3263 line_time_us = ((sr_htotal * 1000) / sr_clock);
3265 /* Use ns/us then divide to preserve precision */
3266 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3267 pixel_size * sr_hdisplay;
3268 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3269 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3270 srwm = I965_FIFO_SIZE - sr_entries;
3271 if (srwm < 0)
3272 srwm = 1;
3273 srwm &= 0x1ff;
3275 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3276 pixel_size * 64;
3277 sr_entries = DIV_ROUND_UP(sr_entries,
3278 i965_cursor_wm_info.cacheline_size);
3279 cursor_sr = i965_cursor_wm_info.fifo_size -
3280 (sr_entries + i965_cursor_wm_info.guard_size);
3282 if (cursor_sr > i965_cursor_wm_info.max_wm)
3283 cursor_sr = i965_cursor_wm_info.max_wm;
3285 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3286 "cursor %d\n", srwm, cursor_sr);
3288 if (IS_CRESTLINE(dev))
3289 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3290 } else {
3291 /* Turn off self refresh if both pipes are enabled */
3292 if (IS_CRESTLINE(dev))
3293 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3294 & ~FW_BLC_SELF_EN);
3297 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3298 srwm);
3300 /* 965 has limitations... */
3301 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3302 (8 << 0));
3303 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3304 /* update cursor SR watermark */
3305 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3308 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3309 int planeb_clock, int sr_hdisplay, int sr_htotal,
3310 int pixel_size)
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313 uint32_t fwater_lo;
3314 uint32_t fwater_hi;
3315 int total_size, cacheline_size, cwm, srwm = 1;
3316 int planea_wm, planeb_wm;
3317 struct intel_watermark_params planea_params, planeb_params;
3318 unsigned long line_time_us;
3319 int sr_clock, sr_entries = 0;
3321 /* Create copies of the base settings for each pipe */
3322 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3323 planea_params = planeb_params = i945_wm_info;
3324 else if (!IS_GEN2(dev))
3325 planea_params = planeb_params = i915_wm_info;
3326 else
3327 planea_params = planeb_params = i855_wm_info;
3329 /* Grab a couple of global values before we overwrite them */
3330 total_size = planea_params.fifo_size;
3331 cacheline_size = planea_params.cacheline_size;
3333 /* Update per-plane FIFO sizes */
3334 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3335 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3337 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3338 pixel_size, latency_ns);
3339 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3340 pixel_size, latency_ns);
3341 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3344 * Overlay gets an aggressive default since video jitter is bad.
3346 cwm = 2;
3348 /* Calc sr entries for one plane configs */
3349 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3350 (!planea_clock || !planeb_clock)) {
3351 /* self-refresh has much higher latency */
3352 static const int sr_latency_ns = 6000;
3354 sr_clock = planea_clock ? planea_clock : planeb_clock;
3355 line_time_us = ((sr_htotal * 1000) / sr_clock);
3357 /* Use ns/us then divide to preserve precision */
3358 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3359 pixel_size * sr_hdisplay;
3360 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3361 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3362 srwm = total_size - sr_entries;
3363 if (srwm < 0)
3364 srwm = 1;
3366 if (IS_I945G(dev) || IS_I945GM(dev))
3367 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3368 else if (IS_I915GM(dev)) {
3369 /* 915M has a smaller SRWM field */
3370 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3371 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3373 } else {
3374 /* Turn off self refresh if both pipes are enabled */
3375 if (IS_I945G(dev) || IS_I945GM(dev)) {
3376 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3377 & ~FW_BLC_SELF_EN);
3378 } else if (IS_I915GM(dev)) {
3379 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3383 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3384 planea_wm, planeb_wm, cwm, srwm);
3386 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3387 fwater_hi = (cwm & 0x1f);
3389 /* Set request length to 8 cachelines per fetch */
3390 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3391 fwater_hi = fwater_hi | (1 << 8);
3393 I915_WRITE(FW_BLC, fwater_lo);
3394 I915_WRITE(FW_BLC2, fwater_hi);
3397 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3398 int unused2, int unused3, int pixel_size)
3400 struct drm_i915_private *dev_priv = dev->dev_private;
3401 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3402 int planea_wm;
3404 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3406 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3407 pixel_size, latency_ns);
3408 fwater_lo |= (3<<8) | planea_wm;
3410 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3412 I915_WRITE(FW_BLC, fwater_lo);
3415 #define ILK_LP0_PLANE_LATENCY 700
3416 #define ILK_LP0_CURSOR_LATENCY 1300
3418 static bool ironlake_compute_wm0(struct drm_device *dev,
3419 int pipe,
3420 const struct intel_watermark_params *display,
3421 int display_latency_ns,
3422 const struct intel_watermark_params *cursor,
3423 int cursor_latency_ns,
3424 int *plane_wm,
3425 int *cursor_wm)
3427 struct drm_crtc *crtc;
3428 int htotal, hdisplay, clock, pixel_size;
3429 int line_time_us, line_count;
3430 int entries, tlb_miss;
3432 crtc = intel_get_crtc_for_pipe(dev, pipe);
3433 if (crtc->fb == NULL || !crtc->enabled)
3434 return false;
3436 htotal = crtc->mode.htotal;
3437 hdisplay = crtc->mode.hdisplay;
3438 clock = crtc->mode.clock;
3439 pixel_size = crtc->fb->bits_per_pixel / 8;
3441 /* Use the small buffer method to calculate plane watermark */
3442 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3443 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3444 if (tlb_miss > 0)
3445 entries += tlb_miss;
3446 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3447 *plane_wm = entries + display->guard_size;
3448 if (*plane_wm > (int)display->max_wm)
3449 *plane_wm = display->max_wm;
3451 /* Use the large buffer method to calculate cursor watermark */
3452 line_time_us = ((htotal * 1000) / clock);
3453 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3454 entries = line_count * 64 * pixel_size;
3455 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3456 if (tlb_miss > 0)
3457 entries += tlb_miss;
3458 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3459 *cursor_wm = entries + cursor->guard_size;
3460 if (*cursor_wm > (int)cursor->max_wm)
3461 *cursor_wm = (int)cursor->max_wm;
3463 return true;
3467 * Check the wm result.
3469 * If any calculated watermark values is larger than the maximum value that
3470 * can be programmed into the associated watermark register, that watermark
3471 * must be disabled.
3473 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3474 int fbc_wm, int display_wm, int cursor_wm,
3475 const struct intel_watermark_params *display,
3476 const struct intel_watermark_params *cursor)
3478 struct drm_i915_private *dev_priv = dev->dev_private;
3480 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
3481 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
3483 if (fbc_wm > SNB_FBC_MAX_SRWM) {
3484 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
3485 fbc_wm, SNB_FBC_MAX_SRWM, level);
3487 /* fbc has it's own way to disable FBC WM */
3488 I915_WRITE(DISP_ARB_CTL,
3489 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
3490 return false;
3493 if (display_wm > display->max_wm) {
3494 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
3495 display_wm, SNB_DISPLAY_MAX_SRWM, level);
3496 return false;
3499 if (cursor_wm > cursor->max_wm) {
3500 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
3501 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
3502 return false;
3505 if (!(fbc_wm || display_wm || cursor_wm)) {
3506 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
3507 return false;
3510 return true;
3514 * Compute watermark values of WM[1-3],
3516 static bool ironlake_compute_srwm(struct drm_device *dev, int level,
3517 int hdisplay, int htotal,
3518 int pixel_size, int clock, int latency_ns,
3519 const struct intel_watermark_params *display,
3520 const struct intel_watermark_params *cursor,
3521 int *fbc_wm, int *display_wm, int *cursor_wm)
3524 unsigned long line_time_us;
3525 int line_count, line_size;
3526 int small, large;
3527 int entries;
3529 if (!latency_ns) {
3530 *fbc_wm = *display_wm = *cursor_wm = 0;
3531 return false;
3534 line_time_us = (htotal * 1000) / clock;
3535 line_count = (latency_ns / line_time_us + 1000) / 1000;
3536 line_size = hdisplay * pixel_size;
3538 /* Use the minimum of the small and large buffer method for primary */
3539 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3540 large = line_count * line_size;
3542 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3543 *display_wm = entries + display->guard_size;
3546 * Spec says:
3547 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
3549 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
3551 /* calculate the self-refresh watermark for display cursor */
3552 entries = line_count * pixel_size * 64;
3553 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3554 *cursor_wm = entries + cursor->guard_size;
3556 return ironlake_check_srwm(dev, level,
3557 *fbc_wm, *display_wm, *cursor_wm,
3558 display, cursor);
3561 static void ironlake_update_wm(struct drm_device *dev,
3562 int planea_clock, int planeb_clock,
3563 int hdisplay, int htotal,
3564 int pixel_size)
3566 struct drm_i915_private *dev_priv = dev->dev_private;
3567 int fbc_wm, plane_wm, cursor_wm, enabled;
3568 int clock;
3570 enabled = 0;
3571 if (ironlake_compute_wm0(dev, 0,
3572 &ironlake_display_wm_info,
3573 ILK_LP0_PLANE_LATENCY,
3574 &ironlake_cursor_wm_info,
3575 ILK_LP0_CURSOR_LATENCY,
3576 &plane_wm, &cursor_wm)) {
3577 I915_WRITE(WM0_PIPEA_ILK,
3578 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3579 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3580 " plane %d, " "cursor: %d\n",
3581 plane_wm, cursor_wm);
3582 enabled++;
3585 if (ironlake_compute_wm0(dev, 1,
3586 &ironlake_display_wm_info,
3587 ILK_LP0_PLANE_LATENCY,
3588 &ironlake_cursor_wm_info,
3589 ILK_LP0_CURSOR_LATENCY,
3590 &plane_wm, &cursor_wm)) {
3591 I915_WRITE(WM0_PIPEB_ILK,
3592 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3593 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3594 " plane %d, cursor: %d\n",
3595 plane_wm, cursor_wm);
3596 enabled++;
3600 * Calculate and update the self-refresh watermark only when one
3601 * display plane is used.
3603 I915_WRITE(WM3_LP_ILK, 0);
3604 I915_WRITE(WM2_LP_ILK, 0);
3605 I915_WRITE(WM1_LP_ILK, 0);
3607 if (enabled != 1)
3608 return;
3610 clock = planea_clock ? planea_clock : planeb_clock;
3612 /* WM1 */
3613 if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
3614 clock, ILK_READ_WM1_LATENCY() * 500,
3615 &ironlake_display_srwm_info,
3616 &ironlake_cursor_srwm_info,
3617 &fbc_wm, &plane_wm, &cursor_wm))
3618 return;
3620 I915_WRITE(WM1_LP_ILK,
3621 WM1_LP_SR_EN |
3622 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3623 (fbc_wm << WM1_LP_FBC_SHIFT) |
3624 (plane_wm << WM1_LP_SR_SHIFT) |
3625 cursor_wm);
3627 /* WM2 */
3628 if (!ironlake_compute_srwm(dev, 2, hdisplay, htotal, pixel_size,
3629 clock, ILK_READ_WM2_LATENCY() * 500,
3630 &ironlake_display_srwm_info,
3631 &ironlake_cursor_srwm_info,
3632 &fbc_wm, &plane_wm, &cursor_wm))
3633 return;
3635 I915_WRITE(WM2_LP_ILK,
3636 WM2_LP_EN |
3637 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3638 (fbc_wm << WM1_LP_FBC_SHIFT) |
3639 (plane_wm << WM1_LP_SR_SHIFT) |
3640 cursor_wm);
3643 * WM3 is unsupported on ILK, probably because we don't have latency
3644 * data for that power state
3648 static void sandybridge_update_wm(struct drm_device *dev,
3649 int planea_clock, int planeb_clock,
3650 int hdisplay, int htotal,
3651 int pixel_size)
3653 struct drm_i915_private *dev_priv = dev->dev_private;
3654 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
3655 int fbc_wm, plane_wm, cursor_wm, enabled;
3656 int clock;
3658 enabled = 0;
3659 if (ironlake_compute_wm0(dev, 0,
3660 &sandybridge_display_wm_info, latency,
3661 &sandybridge_cursor_wm_info, latency,
3662 &plane_wm, &cursor_wm)) {
3663 I915_WRITE(WM0_PIPEA_ILK,
3664 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3665 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3666 " plane %d, " "cursor: %d\n",
3667 plane_wm, cursor_wm);
3668 enabled++;
3671 if (ironlake_compute_wm0(dev, 1,
3672 &sandybridge_display_wm_info, latency,
3673 &sandybridge_cursor_wm_info, latency,
3674 &plane_wm, &cursor_wm)) {
3675 I915_WRITE(WM0_PIPEB_ILK,
3676 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3677 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3678 " plane %d, cursor: %d\n",
3679 plane_wm, cursor_wm);
3680 enabled++;
3684 * Calculate and update the self-refresh watermark only when one
3685 * display plane is used.
3687 * SNB support 3 levels of watermark.
3689 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
3690 * and disabled in the descending order
3693 I915_WRITE(WM3_LP_ILK, 0);
3694 I915_WRITE(WM2_LP_ILK, 0);
3695 I915_WRITE(WM1_LP_ILK, 0);
3697 if (enabled != 1)
3698 return;
3700 clock = planea_clock ? planea_clock : planeb_clock;
3702 /* WM1 */
3703 if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
3704 clock, SNB_READ_WM1_LATENCY() * 500,
3705 &sandybridge_display_srwm_info,
3706 &sandybridge_cursor_srwm_info,
3707 &fbc_wm, &plane_wm, &cursor_wm))
3708 return;
3710 I915_WRITE(WM1_LP_ILK,
3711 WM1_LP_SR_EN |
3712 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3713 (fbc_wm << WM1_LP_FBC_SHIFT) |
3714 (plane_wm << WM1_LP_SR_SHIFT) |
3715 cursor_wm);
3717 /* WM2 */
3718 if (!ironlake_compute_srwm(dev, 2,
3719 hdisplay, htotal, pixel_size,
3720 clock, SNB_READ_WM2_LATENCY() * 500,
3721 &sandybridge_display_srwm_info,
3722 &sandybridge_cursor_srwm_info,
3723 &fbc_wm, &plane_wm, &cursor_wm))
3724 return;
3726 I915_WRITE(WM2_LP_ILK,
3727 WM2_LP_EN |
3728 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3729 (fbc_wm << WM1_LP_FBC_SHIFT) |
3730 (plane_wm << WM1_LP_SR_SHIFT) |
3731 cursor_wm);
3733 /* WM3 */
3734 if (!ironlake_compute_srwm(dev, 3,
3735 hdisplay, htotal, pixel_size,
3736 clock, SNB_READ_WM3_LATENCY() * 500,
3737 &sandybridge_display_srwm_info,
3738 &sandybridge_cursor_srwm_info,
3739 &fbc_wm, &plane_wm, &cursor_wm))
3740 return;
3742 I915_WRITE(WM3_LP_ILK,
3743 WM3_LP_EN |
3744 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3745 (fbc_wm << WM1_LP_FBC_SHIFT) |
3746 (plane_wm << WM1_LP_SR_SHIFT) |
3747 cursor_wm);
3751 * intel_update_watermarks - update FIFO watermark values based on current modes
3753 * Calculate watermark values for the various WM regs based on current mode
3754 * and plane configuration.
3756 * There are several cases to deal with here:
3757 * - normal (i.e. non-self-refresh)
3758 * - self-refresh (SR) mode
3759 * - lines are large relative to FIFO size (buffer can hold up to 2)
3760 * - lines are small relative to FIFO size (buffer can hold more than 2
3761 * lines), so need to account for TLB latency
3763 * The normal calculation is:
3764 * watermark = dotclock * bytes per pixel * latency
3765 * where latency is platform & configuration dependent (we assume pessimal
3766 * values here).
3768 * The SR calculation is:
3769 * watermark = (trunc(latency/line time)+1) * surface width *
3770 * bytes per pixel
3771 * where
3772 * line time = htotal / dotclock
3773 * surface width = hdisplay for normal plane and 64 for cursor
3774 * and latency is assumed to be high, as above.
3776 * The final value programmed to the register should always be rounded up,
3777 * and include an extra 2 entries to account for clock crossings.
3779 * We don't use the sprite, so we can ignore that. And on Crestline we have
3780 * to set the non-SR watermarks to 8.
3782 static void intel_update_watermarks(struct drm_device *dev)
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785 struct drm_crtc *crtc;
3786 int sr_hdisplay = 0;
3787 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3788 int enabled = 0, pixel_size = 0;
3789 int sr_htotal = 0;
3791 if (!dev_priv->display.update_wm)
3792 return;
3794 /* Get the clock config from both planes */
3795 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797 if (intel_crtc->active) {
3798 enabled++;
3799 if (intel_crtc->plane == 0) {
3800 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3801 intel_crtc->pipe, crtc->mode.clock);
3802 planea_clock = crtc->mode.clock;
3803 } else {
3804 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3805 intel_crtc->pipe, crtc->mode.clock);
3806 planeb_clock = crtc->mode.clock;
3808 sr_hdisplay = crtc->mode.hdisplay;
3809 sr_clock = crtc->mode.clock;
3810 sr_htotal = crtc->mode.htotal;
3811 if (crtc->fb)
3812 pixel_size = crtc->fb->bits_per_pixel / 8;
3813 else
3814 pixel_size = 4; /* by default */
3818 if (enabled <= 0)
3819 return;
3821 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3822 sr_hdisplay, sr_htotal, pixel_size);
3825 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3827 return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
3830 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3831 struct drm_display_mode *mode,
3832 struct drm_display_mode *adjusted_mode,
3833 int x, int y,
3834 struct drm_framebuffer *old_fb)
3836 struct drm_device *dev = crtc->dev;
3837 struct drm_i915_private *dev_priv = dev->dev_private;
3838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3839 int pipe = intel_crtc->pipe;
3840 int plane = intel_crtc->plane;
3841 u32 fp_reg, dpll_reg;
3842 int refclk, num_connectors = 0;
3843 intel_clock_t clock, reduced_clock;
3844 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3845 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3846 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3847 struct intel_encoder *has_edp_encoder = NULL;
3848 struct drm_mode_config *mode_config = &dev->mode_config;
3849 struct intel_encoder *encoder;
3850 const intel_limit_t *limit;
3851 int ret;
3852 struct fdi_m_n m_n = {0};
3853 u32 reg, temp;
3854 int target_clock;
3856 drm_vblank_pre_modeset(dev, pipe);
3858 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3859 if (encoder->base.crtc != crtc)
3860 continue;
3862 switch (encoder->type) {
3863 case INTEL_OUTPUT_LVDS:
3864 is_lvds = true;
3865 break;
3866 case INTEL_OUTPUT_SDVO:
3867 case INTEL_OUTPUT_HDMI:
3868 is_sdvo = true;
3869 if (encoder->needs_tv_clock)
3870 is_tv = true;
3871 break;
3872 case INTEL_OUTPUT_DVO:
3873 is_dvo = true;
3874 break;
3875 case INTEL_OUTPUT_TVOUT:
3876 is_tv = true;
3877 break;
3878 case INTEL_OUTPUT_ANALOG:
3879 is_crt = true;
3880 break;
3881 case INTEL_OUTPUT_DISPLAYPORT:
3882 is_dp = true;
3883 break;
3884 case INTEL_OUTPUT_EDP:
3885 has_edp_encoder = encoder;
3886 break;
3889 num_connectors++;
3892 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3893 refclk = dev_priv->lvds_ssc_freq * 1000;
3894 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3895 refclk / 1000);
3896 } else if (!IS_GEN2(dev)) {
3897 refclk = 96000;
3898 if (HAS_PCH_SPLIT(dev) &&
3899 (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3900 refclk = 120000; /* 120Mhz refclk */
3901 } else {
3902 refclk = 48000;
3906 * Returns a set of divisors for the desired target clock with the given
3907 * refclk, or FALSE. The returned values represent the clock equation:
3908 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3910 limit = intel_limit(crtc, refclk);
3911 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3912 if (!ok) {
3913 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3914 drm_vblank_post_modeset(dev, pipe);
3915 return -EINVAL;
3918 /* Ensure that the cursor is valid for the new mode before changing... */
3919 intel_crtc_update_cursor(crtc, true);
3921 if (is_lvds && dev_priv->lvds_downclock_avail) {
3922 has_reduced_clock = limit->find_pll(limit, crtc,
3923 dev_priv->lvds_downclock,
3924 refclk,
3925 &reduced_clock);
3926 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3928 * If the different P is found, it means that we can't
3929 * switch the display clock by using the FP0/FP1.
3930 * In such case we will disable the LVDS downclock
3931 * feature.
3933 DRM_DEBUG_KMS("Different P is found for "
3934 "LVDS clock/downclock\n");
3935 has_reduced_clock = 0;
3938 /* SDVO TV has fixed PLL values depend on its clock range,
3939 this mirrors vbios setting. */
3940 if (is_sdvo && is_tv) {
3941 if (adjusted_mode->clock >= 100000
3942 && adjusted_mode->clock < 140500) {
3943 clock.p1 = 2;
3944 clock.p2 = 10;
3945 clock.n = 3;
3946 clock.m1 = 16;
3947 clock.m2 = 8;
3948 } else if (adjusted_mode->clock >= 140500
3949 && adjusted_mode->clock <= 200000) {
3950 clock.p1 = 1;
3951 clock.p2 = 10;
3952 clock.n = 6;
3953 clock.m1 = 12;
3954 clock.m2 = 8;
3958 /* FDI link */
3959 if (HAS_PCH_SPLIT(dev)) {
3960 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3961 int lane = 0, link_bw, bpp;
3962 /* CPU eDP doesn't require FDI link, so just set DP M/N
3963 according to current link config */
3964 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3965 target_clock = mode->clock;
3966 intel_edp_link_config(has_edp_encoder,
3967 &lane, &link_bw);
3968 } else {
3969 /* [e]DP over FDI requires target mode clock
3970 instead of link clock */
3971 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3972 target_clock = mode->clock;
3973 else
3974 target_clock = adjusted_mode->clock;
3976 /* FDI is a binary signal running at ~2.7GHz, encoding
3977 * each output octet as 10 bits. The actual frequency
3978 * is stored as a divider into a 100MHz clock, and the
3979 * mode pixel clock is stored in units of 1KHz.
3980 * Hence the bw of each lane in terms of the mode signal
3981 * is:
3983 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3986 /* determine panel color depth */
3987 temp = I915_READ(PIPECONF(pipe));
3988 temp &= ~PIPE_BPC_MASK;
3989 if (is_lvds) {
3990 /* the BPC will be 6 if it is 18-bit LVDS panel */
3991 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3992 temp |= PIPE_8BPC;
3993 else
3994 temp |= PIPE_6BPC;
3995 } else if (has_edp_encoder) {
3996 switch (dev_priv->edp.bpp/3) {
3997 case 8:
3998 temp |= PIPE_8BPC;
3999 break;
4000 case 10:
4001 temp |= PIPE_10BPC;
4002 break;
4003 case 6:
4004 temp |= PIPE_6BPC;
4005 break;
4006 case 12:
4007 temp |= PIPE_12BPC;
4008 break;
4010 } else
4011 temp |= PIPE_8BPC;
4012 I915_WRITE(PIPECONF(pipe), temp);
4014 switch (temp & PIPE_BPC_MASK) {
4015 case PIPE_8BPC:
4016 bpp = 24;
4017 break;
4018 case PIPE_10BPC:
4019 bpp = 30;
4020 break;
4021 case PIPE_6BPC:
4022 bpp = 18;
4023 break;
4024 case PIPE_12BPC:
4025 bpp = 36;
4026 break;
4027 default:
4028 DRM_ERROR("unknown pipe bpc value\n");
4029 bpp = 24;
4032 if (!lane) {
4034 * Account for spread spectrum to avoid
4035 * oversubscribing the link. Max center spread
4036 * is 2.5%; use 5% for safety's sake.
4038 u32 bps = target_clock * bpp * 21 / 20;
4039 lane = bps / (link_bw * 8) + 1;
4042 intel_crtc->fdi_lanes = lane;
4044 if (pixel_multiplier > 1)
4045 link_bw *= pixel_multiplier;
4046 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4049 /* Ironlake: try to setup display ref clock before DPLL
4050 * enabling. This is only under driver's control after
4051 * PCH B stepping, previous chipset stepping should be
4052 * ignoring this setting.
4054 if (HAS_PCH_SPLIT(dev)) {
4055 temp = I915_READ(PCH_DREF_CONTROL);
4056 /* Always enable nonspread source */
4057 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4058 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4059 temp &= ~DREF_SSC_SOURCE_MASK;
4060 temp |= DREF_SSC_SOURCE_ENABLE;
4061 I915_WRITE(PCH_DREF_CONTROL, temp);
4063 POSTING_READ(PCH_DREF_CONTROL);
4064 udelay(200);
4066 if (has_edp_encoder) {
4067 if (intel_panel_use_ssc(dev_priv)) {
4068 temp |= DREF_SSC1_ENABLE;
4069 I915_WRITE(PCH_DREF_CONTROL, temp);
4071 POSTING_READ(PCH_DREF_CONTROL);
4072 udelay(200);
4074 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4076 /* Enable CPU source on CPU attached eDP */
4077 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4078 if (intel_panel_use_ssc(dev_priv))
4079 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4080 else
4081 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4082 } else {
4083 /* Enable SSC on PCH eDP if needed */
4084 if (intel_panel_use_ssc(dev_priv)) {
4085 DRM_ERROR("enabling SSC on PCH\n");
4086 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4089 I915_WRITE(PCH_DREF_CONTROL, temp);
4090 POSTING_READ(PCH_DREF_CONTROL);
4091 udelay(200);
4095 if (IS_PINEVIEW(dev)) {
4096 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4097 if (has_reduced_clock)
4098 fp2 = (1 << reduced_clock.n) << 16 |
4099 reduced_clock.m1 << 8 | reduced_clock.m2;
4100 } else {
4101 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4102 if (has_reduced_clock)
4103 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4104 reduced_clock.m2;
4107 /* Enable autotuning of the PLL clock (if permissible) */
4108 if (HAS_PCH_SPLIT(dev)) {
4109 int factor = 21;
4111 if (is_lvds) {
4112 if ((intel_panel_use_ssc(dev_priv) &&
4113 dev_priv->lvds_ssc_freq == 100) ||
4114 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4115 factor = 25;
4116 } else if (is_sdvo && is_tv)
4117 factor = 20;
4119 if (clock.m1 < factor * clock.n)
4120 fp |= FP_CB_TUNE;
4123 dpll = 0;
4124 if (!HAS_PCH_SPLIT(dev))
4125 dpll = DPLL_VGA_MODE_DIS;
4127 if (!IS_GEN2(dev)) {
4128 if (is_lvds)
4129 dpll |= DPLLB_MODE_LVDS;
4130 else
4131 dpll |= DPLLB_MODE_DAC_SERIAL;
4132 if (is_sdvo) {
4133 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4134 if (pixel_multiplier > 1) {
4135 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4136 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4137 else if (HAS_PCH_SPLIT(dev))
4138 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4140 dpll |= DPLL_DVO_HIGH_SPEED;
4142 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4143 dpll |= DPLL_DVO_HIGH_SPEED;
4145 /* compute bitmask from p1 value */
4146 if (IS_PINEVIEW(dev))
4147 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4148 else {
4149 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4150 /* also FPA1 */
4151 if (HAS_PCH_SPLIT(dev))
4152 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4153 if (IS_G4X(dev) && has_reduced_clock)
4154 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4156 switch (clock.p2) {
4157 case 5:
4158 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4159 break;
4160 case 7:
4161 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4162 break;
4163 case 10:
4164 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4165 break;
4166 case 14:
4167 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4168 break;
4170 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
4171 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4172 } else {
4173 if (is_lvds) {
4174 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4175 } else {
4176 if (clock.p1 == 2)
4177 dpll |= PLL_P1_DIVIDE_BY_TWO;
4178 else
4179 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4180 if (clock.p2 == 4)
4181 dpll |= PLL_P2_DIVIDE_BY_4;
4185 if (is_sdvo && is_tv)
4186 dpll |= PLL_REF_INPUT_TVCLKINBC;
4187 else if (is_tv)
4188 /* XXX: just matching BIOS for now */
4189 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4190 dpll |= 3;
4191 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4192 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4193 else
4194 dpll |= PLL_REF_INPUT_DREFCLK;
4196 /* setup pipeconf */
4197 pipeconf = I915_READ(PIPECONF(pipe));
4199 /* Set up the display plane register */
4200 dspcntr = DISPPLANE_GAMMA_ENABLE;
4202 /* Ironlake's plane is forced to pipe, bit 24 is to
4203 enable color space conversion */
4204 if (!HAS_PCH_SPLIT(dev)) {
4205 if (pipe == 0)
4206 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4207 else
4208 dspcntr |= DISPPLANE_SEL_PIPE_B;
4211 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4212 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4213 * core speed.
4215 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4216 * pipe == 0 check?
4218 if (mode->clock >
4219 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4220 pipeconf |= PIPECONF_DOUBLE_WIDE;
4221 else
4222 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4225 dspcntr |= DISPLAY_PLANE_ENABLE;
4226 pipeconf |= PIPECONF_ENABLE;
4227 dpll |= DPLL_VCO_ENABLE;
4229 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4230 drm_mode_debug_printmodeline(mode);
4232 /* assign to Ironlake registers */
4233 if (HAS_PCH_SPLIT(dev)) {
4234 fp_reg = PCH_FP0(pipe);
4235 dpll_reg = PCH_DPLL(pipe);
4236 } else {
4237 fp_reg = FP0(pipe);
4238 dpll_reg = DPLL(pipe);
4241 /* PCH eDP needs FDI, but CPU eDP does not */
4242 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4243 I915_WRITE(fp_reg, fp);
4244 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
4246 POSTING_READ(dpll_reg);
4247 udelay(150);
4250 /* enable transcoder DPLL */
4251 if (HAS_PCH_CPT(dev)) {
4252 temp = I915_READ(PCH_DPLL_SEL);
4253 if (pipe == 0)
4254 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4255 else
4256 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4257 I915_WRITE(PCH_DPLL_SEL, temp);
4259 POSTING_READ(PCH_DPLL_SEL);
4260 udelay(150);
4263 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4264 * This is an exception to the general rule that mode_set doesn't turn
4265 * things on.
4267 if (is_lvds) {
4268 reg = LVDS;
4269 if (HAS_PCH_SPLIT(dev))
4270 reg = PCH_LVDS;
4272 temp = I915_READ(reg);
4273 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4274 if (pipe == 1) {
4275 if (HAS_PCH_CPT(dev))
4276 temp |= PORT_TRANS_B_SEL_CPT;
4277 else
4278 temp |= LVDS_PIPEB_SELECT;
4279 } else {
4280 if (HAS_PCH_CPT(dev))
4281 temp &= ~PORT_TRANS_SEL_MASK;
4282 else
4283 temp &= ~LVDS_PIPEB_SELECT;
4285 /* set the corresponsding LVDS_BORDER bit */
4286 temp |= dev_priv->lvds_border_bits;
4287 /* Set the B0-B3 data pairs corresponding to whether we're going to
4288 * set the DPLLs for dual-channel mode or not.
4290 if (clock.p2 == 7)
4291 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4292 else
4293 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4295 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4296 * appropriately here, but we need to look more thoroughly into how
4297 * panels behave in the two modes.
4299 /* set the dithering flag on non-PCH LVDS as needed */
4300 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4301 if (dev_priv->lvds_dither)
4302 temp |= LVDS_ENABLE_DITHER;
4303 else
4304 temp &= ~LVDS_ENABLE_DITHER;
4306 I915_WRITE(reg, temp);
4309 /* set the dithering flag and clear for anything other than a panel. */
4310 if (HAS_PCH_SPLIT(dev)) {
4311 pipeconf &= ~PIPECONF_DITHER_EN;
4312 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4313 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4314 pipeconf |= PIPECONF_DITHER_EN;
4315 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4319 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4320 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4321 } else if (HAS_PCH_SPLIT(dev)) {
4322 /* For non-DP output, clear any trans DP clock recovery setting.*/
4323 if (pipe == 0) {
4324 I915_WRITE(TRANSA_DATA_M1, 0);
4325 I915_WRITE(TRANSA_DATA_N1, 0);
4326 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4327 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4328 } else {
4329 I915_WRITE(TRANSB_DATA_M1, 0);
4330 I915_WRITE(TRANSB_DATA_N1, 0);
4331 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4332 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4336 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4337 I915_WRITE(dpll_reg, dpll);
4339 /* Wait for the clocks to stabilize. */
4340 POSTING_READ(dpll_reg);
4341 udelay(150);
4343 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4344 temp = 0;
4345 if (is_sdvo) {
4346 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4347 if (temp > 1)
4348 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4349 else
4350 temp = 0;
4352 I915_WRITE(DPLL_MD(pipe), temp);
4353 } else {
4354 /* The pixel multiplier can only be updated once the
4355 * DPLL is enabled and the clocks are stable.
4357 * So write it again.
4359 I915_WRITE(dpll_reg, dpll);
4363 intel_crtc->lowfreq_avail = false;
4364 if (is_lvds && has_reduced_clock && i915_powersave) {
4365 I915_WRITE(fp_reg + 4, fp2);
4366 intel_crtc->lowfreq_avail = true;
4367 if (HAS_PIPE_CXSR(dev)) {
4368 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4369 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4371 } else {
4372 I915_WRITE(fp_reg + 4, fp);
4373 if (HAS_PIPE_CXSR(dev)) {
4374 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4375 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4379 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4380 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4381 /* the chip adds 2 halflines automatically */
4382 adjusted_mode->crtc_vdisplay -= 1;
4383 adjusted_mode->crtc_vtotal -= 1;
4384 adjusted_mode->crtc_vblank_start -= 1;
4385 adjusted_mode->crtc_vblank_end -= 1;
4386 adjusted_mode->crtc_vsync_end -= 1;
4387 adjusted_mode->crtc_vsync_start -= 1;
4388 } else
4389 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4391 I915_WRITE(HTOTAL(pipe),
4392 (adjusted_mode->crtc_hdisplay - 1) |
4393 ((adjusted_mode->crtc_htotal - 1) << 16));
4394 I915_WRITE(HBLANK(pipe),
4395 (adjusted_mode->crtc_hblank_start - 1) |
4396 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4397 I915_WRITE(HSYNC(pipe),
4398 (adjusted_mode->crtc_hsync_start - 1) |
4399 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4401 I915_WRITE(VTOTAL(pipe),
4402 (adjusted_mode->crtc_vdisplay - 1) |
4403 ((adjusted_mode->crtc_vtotal - 1) << 16));
4404 I915_WRITE(VBLANK(pipe),
4405 (adjusted_mode->crtc_vblank_start - 1) |
4406 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4407 I915_WRITE(VSYNC(pipe),
4408 (adjusted_mode->crtc_vsync_start - 1) |
4409 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4411 /* pipesrc and dspsize control the size that is scaled from,
4412 * which should always be the user's requested size.
4414 if (!HAS_PCH_SPLIT(dev)) {
4415 I915_WRITE(DSPSIZE(plane),
4416 ((mode->vdisplay - 1) << 16) |
4417 (mode->hdisplay - 1));
4418 I915_WRITE(DSPPOS(plane), 0);
4420 I915_WRITE(PIPESRC(pipe),
4421 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4423 if (HAS_PCH_SPLIT(dev)) {
4424 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4425 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4426 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4427 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4429 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4430 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4434 I915_WRITE(PIPECONF(pipe), pipeconf);
4435 POSTING_READ(PIPECONF(pipe));
4437 intel_wait_for_vblank(dev, pipe);
4439 if (IS_GEN5(dev)) {
4440 /* enable address swizzle for tiling buffer */
4441 temp = I915_READ(DISP_ARB_CTL);
4442 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4445 I915_WRITE(DSPCNTR(plane), dspcntr);
4447 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4449 intel_update_watermarks(dev);
4451 drm_vblank_post_modeset(dev, pipe);
4453 return ret;
4456 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4457 void intel_crtc_load_lut(struct drm_crtc *crtc)
4459 struct drm_device *dev = crtc->dev;
4460 struct drm_i915_private *dev_priv = dev->dev_private;
4461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4462 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4463 int i;
4465 /* The clocks have to be on to load the palette. */
4466 if (!crtc->enabled)
4467 return;
4469 /* use legacy palette for Ironlake */
4470 if (HAS_PCH_SPLIT(dev))
4471 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4472 LGC_PALETTE_B;
4474 for (i = 0; i < 256; i++) {
4475 I915_WRITE(palreg + 4 * i,
4476 (intel_crtc->lut_r[i] << 16) |
4477 (intel_crtc->lut_g[i] << 8) |
4478 intel_crtc->lut_b[i]);
4482 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4484 struct drm_device *dev = crtc->dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4487 bool visible = base != 0;
4488 u32 cntl;
4490 if (intel_crtc->cursor_visible == visible)
4491 return;
4493 cntl = I915_READ(CURACNTR);
4494 if (visible) {
4495 /* On these chipsets we can only modify the base whilst
4496 * the cursor is disabled.
4498 I915_WRITE(CURABASE, base);
4500 cntl &= ~(CURSOR_FORMAT_MASK);
4501 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4502 cntl |= CURSOR_ENABLE |
4503 CURSOR_GAMMA_ENABLE |
4504 CURSOR_FORMAT_ARGB;
4505 } else
4506 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4507 I915_WRITE(CURACNTR, cntl);
4509 intel_crtc->cursor_visible = visible;
4512 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4514 struct drm_device *dev = crtc->dev;
4515 struct drm_i915_private *dev_priv = dev->dev_private;
4516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4517 int pipe = intel_crtc->pipe;
4518 bool visible = base != 0;
4520 if (intel_crtc->cursor_visible != visible) {
4521 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4522 if (base) {
4523 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4524 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4525 cntl |= pipe << 28; /* Connect to correct pipe */
4526 } else {
4527 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4528 cntl |= CURSOR_MODE_DISABLE;
4530 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4532 intel_crtc->cursor_visible = visible;
4534 /* and commit changes on next vblank */
4535 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4538 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4539 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4540 bool on)
4542 struct drm_device *dev = crtc->dev;
4543 struct drm_i915_private *dev_priv = dev->dev_private;
4544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4545 int pipe = intel_crtc->pipe;
4546 int x = intel_crtc->cursor_x;
4547 int y = intel_crtc->cursor_y;
4548 u32 base, pos;
4549 bool visible;
4551 pos = 0;
4553 if (on && crtc->enabled && crtc->fb) {
4554 base = intel_crtc->cursor_addr;
4555 if (x > (int) crtc->fb->width)
4556 base = 0;
4558 if (y > (int) crtc->fb->height)
4559 base = 0;
4560 } else
4561 base = 0;
4563 if (x < 0) {
4564 if (x + intel_crtc->cursor_width < 0)
4565 base = 0;
4567 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4568 x = -x;
4570 pos |= x << CURSOR_X_SHIFT;
4572 if (y < 0) {
4573 if (y + intel_crtc->cursor_height < 0)
4574 base = 0;
4576 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4577 y = -y;
4579 pos |= y << CURSOR_Y_SHIFT;
4581 visible = base != 0;
4582 if (!visible && !intel_crtc->cursor_visible)
4583 return;
4585 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4586 if (IS_845G(dev) || IS_I865G(dev))
4587 i845_update_cursor(crtc, base);
4588 else
4589 i9xx_update_cursor(crtc, base);
4591 if (visible)
4592 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4595 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4596 struct drm_file *file,
4597 uint32_t handle,
4598 uint32_t width, uint32_t height)
4600 struct drm_device *dev = crtc->dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603 struct drm_i915_gem_object *obj;
4604 uint32_t addr;
4605 int ret;
4607 DRM_DEBUG_KMS("\n");
4609 /* if we want to turn off the cursor ignore width and height */
4610 if (!handle) {
4611 DRM_DEBUG_KMS("cursor off\n");
4612 addr = 0;
4613 obj = NULL;
4614 mutex_lock(&dev->struct_mutex);
4615 goto finish;
4618 /* Currently we only support 64x64 cursors */
4619 if (width != 64 || height != 64) {
4620 DRM_ERROR("we currently only support 64x64 cursors\n");
4621 return -EINVAL;
4624 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4625 if (!obj)
4626 return -ENOENT;
4628 if (obj->base.size < width * height * 4) {
4629 DRM_ERROR("buffer is to small\n");
4630 ret = -ENOMEM;
4631 goto fail;
4634 /* we only need to pin inside GTT if cursor is non-phy */
4635 mutex_lock(&dev->struct_mutex);
4636 if (!dev_priv->info->cursor_needs_physical) {
4637 if (obj->tiling_mode) {
4638 DRM_ERROR("cursor cannot be tiled\n");
4639 ret = -EINVAL;
4640 goto fail_locked;
4643 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
4644 if (ret) {
4645 DRM_ERROR("failed to pin cursor bo\n");
4646 goto fail_locked;
4649 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
4650 if (ret) {
4651 DRM_ERROR("failed to move cursor bo into the GTT\n");
4652 goto fail_unpin;
4655 ret = i915_gem_object_put_fence(obj);
4656 if (ret) {
4657 DRM_ERROR("failed to move cursor bo into the GTT\n");
4658 goto fail_unpin;
4661 addr = obj->gtt_offset;
4662 } else {
4663 int align = IS_I830(dev) ? 16 * 1024 : 256;
4664 ret = i915_gem_attach_phys_object(dev, obj,
4665 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4666 align);
4667 if (ret) {
4668 DRM_ERROR("failed to attach phys object\n");
4669 goto fail_locked;
4671 addr = obj->phys_obj->handle->busaddr;
4674 if (IS_GEN2(dev))
4675 I915_WRITE(CURSIZE, (height << 12) | width);
4677 finish:
4678 if (intel_crtc->cursor_bo) {
4679 if (dev_priv->info->cursor_needs_physical) {
4680 if (intel_crtc->cursor_bo != obj)
4681 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4682 } else
4683 i915_gem_object_unpin(intel_crtc->cursor_bo);
4684 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4687 mutex_unlock(&dev->struct_mutex);
4689 intel_crtc->cursor_addr = addr;
4690 intel_crtc->cursor_bo = obj;
4691 intel_crtc->cursor_width = width;
4692 intel_crtc->cursor_height = height;
4694 intel_crtc_update_cursor(crtc, true);
4696 return 0;
4697 fail_unpin:
4698 i915_gem_object_unpin(obj);
4699 fail_locked:
4700 mutex_unlock(&dev->struct_mutex);
4701 fail:
4702 drm_gem_object_unreference_unlocked(&obj->base);
4703 return ret;
4706 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4710 intel_crtc->cursor_x = x;
4711 intel_crtc->cursor_y = y;
4713 intel_crtc_update_cursor(crtc, true);
4715 return 0;
4718 /** Sets the color ramps on behalf of RandR */
4719 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4720 u16 blue, int regno)
4722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4724 intel_crtc->lut_r[regno] = red >> 8;
4725 intel_crtc->lut_g[regno] = green >> 8;
4726 intel_crtc->lut_b[regno] = blue >> 8;
4729 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4730 u16 *blue, int regno)
4732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4734 *red = intel_crtc->lut_r[regno] << 8;
4735 *green = intel_crtc->lut_g[regno] << 8;
4736 *blue = intel_crtc->lut_b[regno] << 8;
4739 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4740 u16 *blue, uint32_t start, uint32_t size)
4742 int end = (start + size > 256) ? 256 : start + size, i;
4743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4745 for (i = start; i < end; i++) {
4746 intel_crtc->lut_r[i] = red[i] >> 8;
4747 intel_crtc->lut_g[i] = green[i] >> 8;
4748 intel_crtc->lut_b[i] = blue[i] >> 8;
4751 intel_crtc_load_lut(crtc);
4755 * Get a pipe with a simple mode set on it for doing load-based monitor
4756 * detection.
4758 * It will be up to the load-detect code to adjust the pipe as appropriate for
4759 * its requirements. The pipe will be connected to no other encoders.
4761 * Currently this code will only succeed if there is a pipe with no encoders
4762 * configured for it. In the future, it could choose to temporarily disable
4763 * some outputs to free up a pipe for its use.
4765 * \return crtc, or NULL if no pipes are available.
4768 /* VESA 640x480x72Hz mode to set on the pipe */
4769 static struct drm_display_mode load_detect_mode = {
4770 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4771 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4774 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4775 struct drm_connector *connector,
4776 struct drm_display_mode *mode,
4777 int *dpms_mode)
4779 struct intel_crtc *intel_crtc;
4780 struct drm_crtc *possible_crtc;
4781 struct drm_crtc *supported_crtc =NULL;
4782 struct drm_encoder *encoder = &intel_encoder->base;
4783 struct drm_crtc *crtc = NULL;
4784 struct drm_device *dev = encoder->dev;
4785 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4786 struct drm_crtc_helper_funcs *crtc_funcs;
4787 int i = -1;
4790 * Algorithm gets a little messy:
4791 * - if the connector already has an assigned crtc, use it (but make
4792 * sure it's on first)
4793 * - try to find the first unused crtc that can drive this connector,
4794 * and use that if we find one
4795 * - if there are no unused crtcs available, try to use the first
4796 * one we found that supports the connector
4799 /* See if we already have a CRTC for this connector */
4800 if (encoder->crtc) {
4801 crtc = encoder->crtc;
4802 /* Make sure the crtc and connector are running */
4803 intel_crtc = to_intel_crtc(crtc);
4804 *dpms_mode = intel_crtc->dpms_mode;
4805 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4806 crtc_funcs = crtc->helper_private;
4807 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4808 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4810 return crtc;
4813 /* Find an unused one (if possible) */
4814 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4815 i++;
4816 if (!(encoder->possible_crtcs & (1 << i)))
4817 continue;
4818 if (!possible_crtc->enabled) {
4819 crtc = possible_crtc;
4820 break;
4822 if (!supported_crtc)
4823 supported_crtc = possible_crtc;
4827 * If we didn't find an unused CRTC, don't use any.
4829 if (!crtc) {
4830 return NULL;
4833 encoder->crtc = crtc;
4834 connector->encoder = encoder;
4835 intel_encoder->load_detect_temp = true;
4837 intel_crtc = to_intel_crtc(crtc);
4838 *dpms_mode = intel_crtc->dpms_mode;
4840 if (!crtc->enabled) {
4841 if (!mode)
4842 mode = &load_detect_mode;
4843 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4844 } else {
4845 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4846 crtc_funcs = crtc->helper_private;
4847 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4850 /* Add this connector to the crtc */
4851 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4852 encoder_funcs->commit(encoder);
4854 /* let the connector get through one full cycle before testing */
4855 intel_wait_for_vblank(dev, intel_crtc->pipe);
4857 return crtc;
4860 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4861 struct drm_connector *connector, int dpms_mode)
4863 struct drm_encoder *encoder = &intel_encoder->base;
4864 struct drm_device *dev = encoder->dev;
4865 struct drm_crtc *crtc = encoder->crtc;
4866 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4867 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4869 if (intel_encoder->load_detect_temp) {
4870 encoder->crtc = NULL;
4871 connector->encoder = NULL;
4872 intel_encoder->load_detect_temp = false;
4873 crtc->enabled = drm_helper_crtc_in_use(crtc);
4874 drm_helper_disable_unused_functions(dev);
4877 /* Switch crtc and encoder back off if necessary */
4878 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4879 if (encoder->crtc == crtc)
4880 encoder_funcs->dpms(encoder, dpms_mode);
4881 crtc_funcs->dpms(crtc, dpms_mode);
4885 /* Returns the clock of the currently programmed mode of the given pipe. */
4886 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4888 struct drm_i915_private *dev_priv = dev->dev_private;
4889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4890 int pipe = intel_crtc->pipe;
4891 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4892 u32 fp;
4893 intel_clock_t clock;
4895 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4896 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4897 else
4898 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4900 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4901 if (IS_PINEVIEW(dev)) {
4902 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4903 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4904 } else {
4905 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4906 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4909 if (!IS_GEN2(dev)) {
4910 if (IS_PINEVIEW(dev))
4911 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4912 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4913 else
4914 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4915 DPLL_FPA01_P1_POST_DIV_SHIFT);
4917 switch (dpll & DPLL_MODE_MASK) {
4918 case DPLLB_MODE_DAC_SERIAL:
4919 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4920 5 : 10;
4921 break;
4922 case DPLLB_MODE_LVDS:
4923 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4924 7 : 14;
4925 break;
4926 default:
4927 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4928 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4929 return 0;
4932 /* XXX: Handle the 100Mhz refclk */
4933 intel_clock(dev, 96000, &clock);
4934 } else {
4935 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4937 if (is_lvds) {
4938 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4939 DPLL_FPA01_P1_POST_DIV_SHIFT);
4940 clock.p2 = 14;
4942 if ((dpll & PLL_REF_INPUT_MASK) ==
4943 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4944 /* XXX: might not be 66MHz */
4945 intel_clock(dev, 66000, &clock);
4946 } else
4947 intel_clock(dev, 48000, &clock);
4948 } else {
4949 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4950 clock.p1 = 2;
4951 else {
4952 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4953 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4955 if (dpll & PLL_P2_DIVIDE_BY_4)
4956 clock.p2 = 4;
4957 else
4958 clock.p2 = 2;
4960 intel_clock(dev, 48000, &clock);
4964 /* XXX: It would be nice to validate the clocks, but we can't reuse
4965 * i830PllIsValid() because it relies on the xf86_config connector
4966 * configuration being accurate, which it isn't necessarily.
4969 return clock.dot;
4972 /** Returns the currently programmed mode of the given pipe. */
4973 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4974 struct drm_crtc *crtc)
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4978 int pipe = intel_crtc->pipe;
4979 struct drm_display_mode *mode;
4980 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4981 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4982 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4983 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4985 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4986 if (!mode)
4987 return NULL;
4989 mode->clock = intel_crtc_clock_get(dev, crtc);
4990 mode->hdisplay = (htot & 0xffff) + 1;
4991 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4992 mode->hsync_start = (hsync & 0xffff) + 1;
4993 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4994 mode->vdisplay = (vtot & 0xffff) + 1;
4995 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4996 mode->vsync_start = (vsync & 0xffff) + 1;
4997 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4999 drm_mode_set_name(mode);
5000 drm_mode_set_crtcinfo(mode, 0);
5002 return mode;
5005 #define GPU_IDLE_TIMEOUT 500 /* ms */
5007 /* When this timer fires, we've been idle for awhile */
5008 static void intel_gpu_idle_timer(unsigned long arg)
5010 struct drm_device *dev = (struct drm_device *)arg;
5011 drm_i915_private_t *dev_priv = dev->dev_private;
5013 if (!list_empty(&dev_priv->mm.active_list)) {
5014 /* Still processing requests, so just re-arm the timer. */
5015 mod_timer(&dev_priv->idle_timer, jiffies +
5016 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5017 return;
5020 dev_priv->busy = false;
5021 queue_work(dev_priv->wq, &dev_priv->idle_work);
5024 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5026 static void intel_crtc_idle_timer(unsigned long arg)
5028 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5029 struct drm_crtc *crtc = &intel_crtc->base;
5030 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5031 struct intel_framebuffer *intel_fb;
5033 intel_fb = to_intel_framebuffer(crtc->fb);
5034 if (intel_fb && intel_fb->obj->active) {
5035 /* The framebuffer is still being accessed by the GPU. */
5036 mod_timer(&intel_crtc->idle_timer, jiffies +
5037 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5038 return;
5041 intel_crtc->busy = false;
5042 queue_work(dev_priv->wq, &dev_priv->idle_work);
5045 static void intel_increase_pllclock(struct drm_crtc *crtc)
5047 struct drm_device *dev = crtc->dev;
5048 drm_i915_private_t *dev_priv = dev->dev_private;
5049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5050 int pipe = intel_crtc->pipe;
5051 int dpll_reg = DPLL(pipe);
5052 int dpll;
5054 if (HAS_PCH_SPLIT(dev))
5055 return;
5057 if (!dev_priv->lvds_downclock_avail)
5058 return;
5060 dpll = I915_READ(dpll_reg);
5061 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5062 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5064 /* Unlock panel regs */
5065 I915_WRITE(PP_CONTROL,
5066 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5068 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5069 I915_WRITE(dpll_reg, dpll);
5070 POSTING_READ(dpll_reg);
5071 intel_wait_for_vblank(dev, pipe);
5073 dpll = I915_READ(dpll_reg);
5074 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5075 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5077 /* ...and lock them again */
5078 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5081 /* Schedule downclock */
5082 mod_timer(&intel_crtc->idle_timer, jiffies +
5083 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5086 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5088 struct drm_device *dev = crtc->dev;
5089 drm_i915_private_t *dev_priv = dev->dev_private;
5090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5091 int pipe = intel_crtc->pipe;
5092 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
5093 int dpll = I915_READ(dpll_reg);
5095 if (HAS_PCH_SPLIT(dev))
5096 return;
5098 if (!dev_priv->lvds_downclock_avail)
5099 return;
5102 * Since this is called by a timer, we should never get here in
5103 * the manual case.
5105 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5106 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5108 /* Unlock panel regs */
5109 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5110 PANEL_UNLOCK_REGS);
5112 dpll |= DISPLAY_RATE_SELECT_FPA1;
5113 I915_WRITE(dpll_reg, dpll);
5114 dpll = I915_READ(dpll_reg);
5115 intel_wait_for_vblank(dev, pipe);
5116 dpll = I915_READ(dpll_reg);
5117 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5118 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5120 /* ...and lock them again */
5121 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5127 * intel_idle_update - adjust clocks for idleness
5128 * @work: work struct
5130 * Either the GPU or display (or both) went idle. Check the busy status
5131 * here and adjust the CRTC and GPU clocks as necessary.
5133 static void intel_idle_update(struct work_struct *work)
5135 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5136 idle_work);
5137 struct drm_device *dev = dev_priv->dev;
5138 struct drm_crtc *crtc;
5139 struct intel_crtc *intel_crtc;
5140 int enabled = 0;
5142 if (!i915_powersave)
5143 return;
5145 mutex_lock(&dev->struct_mutex);
5147 i915_update_gfx_val(dev_priv);
5149 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5150 /* Skip inactive CRTCs */
5151 if (!crtc->fb)
5152 continue;
5154 enabled++;
5155 intel_crtc = to_intel_crtc(crtc);
5156 if (!intel_crtc->busy)
5157 intel_decrease_pllclock(crtc);
5160 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
5161 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
5162 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
5165 mutex_unlock(&dev->struct_mutex);
5169 * intel_mark_busy - mark the GPU and possibly the display busy
5170 * @dev: drm device
5171 * @obj: object we're operating on
5173 * Callers can use this function to indicate that the GPU is busy processing
5174 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
5175 * buffer), we'll also mark the display as busy, so we know to increase its
5176 * clock frequency.
5178 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5180 drm_i915_private_t *dev_priv = dev->dev_private;
5181 struct drm_crtc *crtc = NULL;
5182 struct intel_framebuffer *intel_fb;
5183 struct intel_crtc *intel_crtc;
5185 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5186 return;
5188 if (!dev_priv->busy) {
5189 if (IS_I945G(dev) || IS_I945GM(dev)) {
5190 u32 fw_blc_self;
5192 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
5193 fw_blc_self = I915_READ(FW_BLC_SELF);
5194 fw_blc_self &= ~FW_BLC_SELF_EN;
5195 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
5197 dev_priv->busy = true;
5198 } else
5199 mod_timer(&dev_priv->idle_timer, jiffies +
5200 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5202 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5203 if (!crtc->fb)
5204 continue;
5206 intel_crtc = to_intel_crtc(crtc);
5207 intel_fb = to_intel_framebuffer(crtc->fb);
5208 if (intel_fb->obj == obj) {
5209 if (!intel_crtc->busy) {
5210 if (IS_I945G(dev) || IS_I945GM(dev)) {
5211 u32 fw_blc_self;
5213 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
5214 fw_blc_self = I915_READ(FW_BLC_SELF);
5215 fw_blc_self &= ~FW_BLC_SELF_EN;
5216 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
5218 /* Non-busy -> busy, upclock */
5219 intel_increase_pllclock(crtc);
5220 intel_crtc->busy = true;
5221 } else {
5222 /* Busy -> busy, put off timer */
5223 mod_timer(&intel_crtc->idle_timer, jiffies +
5224 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5230 static void intel_crtc_destroy(struct drm_crtc *crtc)
5232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233 struct drm_device *dev = crtc->dev;
5234 struct intel_unpin_work *work;
5235 unsigned long flags;
5237 spin_lock_irqsave(&dev->event_lock, flags);
5238 work = intel_crtc->unpin_work;
5239 intel_crtc->unpin_work = NULL;
5240 spin_unlock_irqrestore(&dev->event_lock, flags);
5242 if (work) {
5243 cancel_work_sync(&work->work);
5244 kfree(work);
5247 drm_crtc_cleanup(crtc);
5249 kfree(intel_crtc);
5252 static void intel_unpin_work_fn(struct work_struct *__work)
5254 struct intel_unpin_work *work =
5255 container_of(__work, struct intel_unpin_work, work);
5257 mutex_lock(&work->dev->struct_mutex);
5258 i915_gem_object_unpin(work->old_fb_obj);
5259 drm_gem_object_unreference(&work->pending_flip_obj->base);
5260 drm_gem_object_unreference(&work->old_fb_obj->base);
5262 mutex_unlock(&work->dev->struct_mutex);
5263 kfree(work);
5266 static void do_intel_finish_page_flip(struct drm_device *dev,
5267 struct drm_crtc *crtc)
5269 drm_i915_private_t *dev_priv = dev->dev_private;
5270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5271 struct intel_unpin_work *work;
5272 struct drm_i915_gem_object *obj;
5273 struct drm_pending_vblank_event *e;
5274 struct timeval tnow, tvbl;
5275 unsigned long flags;
5277 /* Ignore early vblank irqs */
5278 if (intel_crtc == NULL)
5279 return;
5281 do_gettimeofday(&tnow);
5283 spin_lock_irqsave(&dev->event_lock, flags);
5284 work = intel_crtc->unpin_work;
5285 if (work == NULL || !work->pending) {
5286 spin_unlock_irqrestore(&dev->event_lock, flags);
5287 return;
5290 intel_crtc->unpin_work = NULL;
5292 if (work->event) {
5293 e = work->event;
5294 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5296 /* Called before vblank count and timestamps have
5297 * been updated for the vblank interval of flip
5298 * completion? Need to increment vblank count and
5299 * add one videorefresh duration to returned timestamp
5300 * to account for this. We assume this happened if we
5301 * get called over 0.9 frame durations after the last
5302 * timestamped vblank.
5304 * This calculation can not be used with vrefresh rates
5305 * below 5Hz (10Hz to be on the safe side) without
5306 * promoting to 64 integers.
5308 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5309 9 * crtc->framedur_ns) {
5310 e->event.sequence++;
5311 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5312 crtc->framedur_ns);
5315 e->event.tv_sec = tvbl.tv_sec;
5316 e->event.tv_usec = tvbl.tv_usec;
5318 list_add_tail(&e->base.link,
5319 &e->base.file_priv->event_list);
5320 wake_up_interruptible(&e->base.file_priv->event_wait);
5323 drm_vblank_put(dev, intel_crtc->pipe);
5325 spin_unlock_irqrestore(&dev->event_lock, flags);
5327 obj = work->old_fb_obj;
5329 atomic_clear_mask(1 << intel_crtc->plane,
5330 &obj->pending_flip.counter);
5331 if (atomic_read(&obj->pending_flip) == 0)
5332 wake_up(&dev_priv->pending_flip_queue);
5334 schedule_work(&work->work);
5336 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5339 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5341 drm_i915_private_t *dev_priv = dev->dev_private;
5342 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5344 do_intel_finish_page_flip(dev, crtc);
5347 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5349 drm_i915_private_t *dev_priv = dev->dev_private;
5350 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5352 do_intel_finish_page_flip(dev, crtc);
5355 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5357 drm_i915_private_t *dev_priv = dev->dev_private;
5358 struct intel_crtc *intel_crtc =
5359 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5360 unsigned long flags;
5362 spin_lock_irqsave(&dev->event_lock, flags);
5363 if (intel_crtc->unpin_work) {
5364 if ((++intel_crtc->unpin_work->pending) > 1)
5365 DRM_ERROR("Prepared flip multiple times\n");
5366 } else {
5367 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5369 spin_unlock_irqrestore(&dev->event_lock, flags);
5372 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5373 struct drm_framebuffer *fb,
5374 struct drm_pending_vblank_event *event)
5376 struct drm_device *dev = crtc->dev;
5377 struct drm_i915_private *dev_priv = dev->dev_private;
5378 struct intel_framebuffer *intel_fb;
5379 struct drm_i915_gem_object *obj;
5380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5381 struct intel_unpin_work *work;
5382 unsigned long flags, offset;
5383 int pipe = intel_crtc->pipe;
5384 u32 pf, pipesrc;
5385 int ret;
5387 work = kzalloc(sizeof *work, GFP_KERNEL);
5388 if (work == NULL)
5389 return -ENOMEM;
5391 work->event = event;
5392 work->dev = crtc->dev;
5393 intel_fb = to_intel_framebuffer(crtc->fb);
5394 work->old_fb_obj = intel_fb->obj;
5395 INIT_WORK(&work->work, intel_unpin_work_fn);
5397 /* We borrow the event spin lock for protecting unpin_work */
5398 spin_lock_irqsave(&dev->event_lock, flags);
5399 if (intel_crtc->unpin_work) {
5400 spin_unlock_irqrestore(&dev->event_lock, flags);
5401 kfree(work);
5403 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5404 return -EBUSY;
5406 intel_crtc->unpin_work = work;
5407 spin_unlock_irqrestore(&dev->event_lock, flags);
5409 intel_fb = to_intel_framebuffer(fb);
5410 obj = intel_fb->obj;
5412 mutex_lock(&dev->struct_mutex);
5413 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5414 if (ret)
5415 goto cleanup_work;
5417 /* Reference the objects for the scheduled work. */
5418 drm_gem_object_reference(&work->old_fb_obj->base);
5419 drm_gem_object_reference(&obj->base);
5421 crtc->fb = fb;
5423 ret = drm_vblank_get(dev, intel_crtc->pipe);
5424 if (ret)
5425 goto cleanup_objs;
5427 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5428 u32 flip_mask;
5430 /* Can't queue multiple flips, so wait for the previous
5431 * one to finish before executing the next.
5433 ret = BEGIN_LP_RING(2);
5434 if (ret)
5435 goto cleanup_objs;
5437 if (intel_crtc->plane)
5438 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5439 else
5440 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5441 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5442 OUT_RING(MI_NOOP);
5443 ADVANCE_LP_RING();
5446 work->pending_flip_obj = obj;
5448 work->enable_stall_check = true;
5450 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5451 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5453 ret = BEGIN_LP_RING(4);
5454 if (ret)
5455 goto cleanup_objs;
5457 /* Block clients from rendering to the new back buffer until
5458 * the flip occurs and the object is no longer visible.
5460 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5462 switch (INTEL_INFO(dev)->gen) {
5463 case 2:
5464 OUT_RING(MI_DISPLAY_FLIP |
5465 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5466 OUT_RING(fb->pitch);
5467 OUT_RING(obj->gtt_offset + offset);
5468 OUT_RING(MI_NOOP);
5469 break;
5471 case 3:
5472 OUT_RING(MI_DISPLAY_FLIP_I915 |
5473 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5474 OUT_RING(fb->pitch);
5475 OUT_RING(obj->gtt_offset + offset);
5476 OUT_RING(MI_NOOP);
5477 break;
5479 case 4:
5480 case 5:
5481 /* i965+ uses the linear or tiled offsets from the
5482 * Display Registers (which do not change across a page-flip)
5483 * so we need only reprogram the base address.
5485 OUT_RING(MI_DISPLAY_FLIP |
5486 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5487 OUT_RING(fb->pitch);
5488 OUT_RING(obj->gtt_offset | obj->tiling_mode);
5490 /* XXX Enabling the panel-fitter across page-flip is so far
5491 * untested on non-native modes, so ignore it for now.
5492 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5494 pf = 0;
5495 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5496 OUT_RING(pf | pipesrc);
5497 break;
5499 case 6:
5500 OUT_RING(MI_DISPLAY_FLIP |
5501 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5502 OUT_RING(fb->pitch | obj->tiling_mode);
5503 OUT_RING(obj->gtt_offset);
5505 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5506 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5507 OUT_RING(pf | pipesrc);
5508 break;
5510 ADVANCE_LP_RING();
5512 mutex_unlock(&dev->struct_mutex);
5514 trace_i915_flip_request(intel_crtc->plane, obj);
5516 return 0;
5518 cleanup_objs:
5519 drm_gem_object_unreference(&work->old_fb_obj->base);
5520 drm_gem_object_unreference(&obj->base);
5521 cleanup_work:
5522 mutex_unlock(&dev->struct_mutex);
5524 spin_lock_irqsave(&dev->event_lock, flags);
5525 intel_crtc->unpin_work = NULL;
5526 spin_unlock_irqrestore(&dev->event_lock, flags);
5528 kfree(work);
5530 return ret;
5533 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5534 .dpms = intel_crtc_dpms,
5535 .mode_fixup = intel_crtc_mode_fixup,
5536 .mode_set = intel_crtc_mode_set,
5537 .mode_set_base = intel_pipe_set_base,
5538 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5539 .load_lut = intel_crtc_load_lut,
5540 .disable = intel_crtc_disable,
5543 static const struct drm_crtc_funcs intel_crtc_funcs = {
5544 .cursor_set = intel_crtc_cursor_set,
5545 .cursor_move = intel_crtc_cursor_move,
5546 .gamma_set = intel_crtc_gamma_set,
5547 .set_config = drm_crtc_helper_set_config,
5548 .destroy = intel_crtc_destroy,
5549 .page_flip = intel_crtc_page_flip,
5552 static void intel_sanitize_modesetting(struct drm_device *dev,
5553 int pipe, int plane)
5555 struct drm_i915_private *dev_priv = dev->dev_private;
5556 u32 reg, val;
5558 if (HAS_PCH_SPLIT(dev))
5559 return;
5561 /* Who knows what state these registers were left in by the BIOS or
5562 * grub?
5564 * If we leave the registers in a conflicting state (e.g. with the
5565 * display plane reading from the other pipe than the one we intend
5566 * to use) then when we attempt to teardown the active mode, we will
5567 * not disable the pipes and planes in the correct order -- leaving
5568 * a plane reading from a disabled pipe and possibly leading to
5569 * undefined behaviour.
5572 reg = DSPCNTR(plane);
5573 val = I915_READ(reg);
5575 if ((val & DISPLAY_PLANE_ENABLE) == 0)
5576 return;
5577 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5578 return;
5580 /* This display plane is active and attached to the other CPU pipe. */
5581 pipe = !pipe;
5583 /* Disable the plane and wait for it to stop reading from the pipe. */
5584 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
5585 intel_flush_display_plane(dev, plane);
5587 if (IS_GEN2(dev))
5588 intel_wait_for_vblank(dev, pipe);
5590 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
5591 return;
5593 /* Switch off the pipe. */
5594 reg = PIPECONF(pipe);
5595 val = I915_READ(reg);
5596 if (val & PIPECONF_ENABLE) {
5597 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
5598 intel_wait_for_pipe_off(dev, pipe);
5602 static void intel_crtc_init(struct drm_device *dev, int pipe)
5604 drm_i915_private_t *dev_priv = dev->dev_private;
5605 struct intel_crtc *intel_crtc;
5606 int i;
5608 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5609 if (intel_crtc == NULL)
5610 return;
5612 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5614 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5615 for (i = 0; i < 256; i++) {
5616 intel_crtc->lut_r[i] = i;
5617 intel_crtc->lut_g[i] = i;
5618 intel_crtc->lut_b[i] = i;
5621 /* Swap pipes & planes for FBC on pre-965 */
5622 intel_crtc->pipe = pipe;
5623 intel_crtc->plane = pipe;
5624 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5625 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5626 intel_crtc->plane = !pipe;
5629 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5630 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5631 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5632 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5634 intel_crtc->cursor_addr = 0;
5635 intel_crtc->dpms_mode = -1;
5636 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5638 if (HAS_PCH_SPLIT(dev)) {
5639 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5640 intel_helper_funcs.commit = ironlake_crtc_commit;
5641 } else {
5642 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5643 intel_helper_funcs.commit = i9xx_crtc_commit;
5646 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5648 intel_crtc->busy = false;
5650 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5651 (unsigned long)intel_crtc);
5653 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5656 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5657 struct drm_file *file)
5659 drm_i915_private_t *dev_priv = dev->dev_private;
5660 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5661 struct drm_mode_object *drmmode_obj;
5662 struct intel_crtc *crtc;
5664 if (!dev_priv) {
5665 DRM_ERROR("called with no initialization\n");
5666 return -EINVAL;
5669 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5670 DRM_MODE_OBJECT_CRTC);
5672 if (!drmmode_obj) {
5673 DRM_ERROR("no such CRTC id\n");
5674 return -EINVAL;
5677 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5678 pipe_from_crtc_id->pipe = crtc->pipe;
5680 return 0;
5683 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5685 struct intel_encoder *encoder;
5686 int index_mask = 0;
5687 int entry = 0;
5689 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5690 if (type_mask & encoder->clone_mask)
5691 index_mask |= (1 << entry);
5692 entry++;
5695 return index_mask;
5698 static bool has_edp_a(struct drm_device *dev)
5700 struct drm_i915_private *dev_priv = dev->dev_private;
5702 if (!IS_MOBILE(dev))
5703 return false;
5705 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
5706 return false;
5708 if (IS_GEN5(dev) &&
5709 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
5710 return false;
5712 return true;
5715 static void intel_setup_outputs(struct drm_device *dev)
5717 struct drm_i915_private *dev_priv = dev->dev_private;
5718 struct intel_encoder *encoder;
5719 bool dpd_is_edp = false;
5720 bool has_lvds = false;
5722 if (IS_MOBILE(dev) && !IS_I830(dev))
5723 has_lvds = intel_lvds_init(dev);
5724 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
5725 /* disable the panel fitter on everything but LVDS */
5726 I915_WRITE(PFIT_CONTROL, 0);
5729 if (HAS_PCH_SPLIT(dev)) {
5730 dpd_is_edp = intel_dpd_is_edp(dev);
5732 if (has_edp_a(dev))
5733 intel_dp_init(dev, DP_A);
5735 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5736 intel_dp_init(dev, PCH_DP_D);
5739 intel_crt_init(dev);
5741 if (HAS_PCH_SPLIT(dev)) {
5742 int found;
5744 if (I915_READ(HDMIB) & PORT_DETECTED) {
5745 /* PCH SDVOB multiplex with HDMIB */
5746 found = intel_sdvo_init(dev, PCH_SDVOB);
5747 if (!found)
5748 intel_hdmi_init(dev, HDMIB);
5749 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5750 intel_dp_init(dev, PCH_DP_B);
5753 if (I915_READ(HDMIC) & PORT_DETECTED)
5754 intel_hdmi_init(dev, HDMIC);
5756 if (I915_READ(HDMID) & PORT_DETECTED)
5757 intel_hdmi_init(dev, HDMID);
5759 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5760 intel_dp_init(dev, PCH_DP_C);
5762 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5763 intel_dp_init(dev, PCH_DP_D);
5765 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5766 bool found = false;
5768 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5769 DRM_DEBUG_KMS("probing SDVOB\n");
5770 found = intel_sdvo_init(dev, SDVOB);
5771 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5772 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5773 intel_hdmi_init(dev, SDVOB);
5776 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5777 DRM_DEBUG_KMS("probing DP_B\n");
5778 intel_dp_init(dev, DP_B);
5782 /* Before G4X SDVOC doesn't have its own detect register */
5784 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5785 DRM_DEBUG_KMS("probing SDVOC\n");
5786 found = intel_sdvo_init(dev, SDVOC);
5789 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5791 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5792 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5793 intel_hdmi_init(dev, SDVOC);
5795 if (SUPPORTS_INTEGRATED_DP(dev)) {
5796 DRM_DEBUG_KMS("probing DP_C\n");
5797 intel_dp_init(dev, DP_C);
5801 if (SUPPORTS_INTEGRATED_DP(dev) &&
5802 (I915_READ(DP_D) & DP_DETECTED)) {
5803 DRM_DEBUG_KMS("probing DP_D\n");
5804 intel_dp_init(dev, DP_D);
5806 } else if (IS_GEN2(dev))
5807 intel_dvo_init(dev);
5809 if (SUPPORTS_TV(dev))
5810 intel_tv_init(dev);
5812 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5813 encoder->base.possible_crtcs = encoder->crtc_mask;
5814 encoder->base.possible_clones =
5815 intel_encoder_clones(dev, encoder->clone_mask);
5818 intel_panel_setup_backlight(dev);
5821 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5823 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5825 drm_framebuffer_cleanup(fb);
5826 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
5828 kfree(intel_fb);
5831 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5832 struct drm_file *file,
5833 unsigned int *handle)
5835 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5836 struct drm_i915_gem_object *obj = intel_fb->obj;
5838 return drm_gem_handle_create(file, &obj->base, handle);
5841 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5842 .destroy = intel_user_framebuffer_destroy,
5843 .create_handle = intel_user_framebuffer_create_handle,
5846 int intel_framebuffer_init(struct drm_device *dev,
5847 struct intel_framebuffer *intel_fb,
5848 struct drm_mode_fb_cmd *mode_cmd,
5849 struct drm_i915_gem_object *obj)
5851 int ret;
5853 if (obj->tiling_mode == I915_TILING_Y)
5854 return -EINVAL;
5856 if (mode_cmd->pitch & 63)
5857 return -EINVAL;
5859 switch (mode_cmd->bpp) {
5860 case 8:
5861 case 16:
5862 case 24:
5863 case 32:
5864 break;
5865 default:
5866 return -EINVAL;
5869 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5870 if (ret) {
5871 DRM_ERROR("framebuffer init failed %d\n", ret);
5872 return ret;
5875 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5876 intel_fb->obj = obj;
5877 return 0;
5880 static struct drm_framebuffer *
5881 intel_user_framebuffer_create(struct drm_device *dev,
5882 struct drm_file *filp,
5883 struct drm_mode_fb_cmd *mode_cmd)
5885 struct drm_i915_gem_object *obj;
5886 struct intel_framebuffer *intel_fb;
5887 int ret;
5889 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
5890 if (!obj)
5891 return ERR_PTR(-ENOENT);
5893 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5894 if (!intel_fb)
5895 return ERR_PTR(-ENOMEM);
5897 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5898 if (ret) {
5899 drm_gem_object_unreference_unlocked(&obj->base);
5900 kfree(intel_fb);
5901 return ERR_PTR(ret);
5904 return &intel_fb->base;
5907 static const struct drm_mode_config_funcs intel_mode_funcs = {
5908 .fb_create = intel_user_framebuffer_create,
5909 .output_poll_changed = intel_fb_output_poll_changed,
5912 static struct drm_i915_gem_object *
5913 intel_alloc_context_page(struct drm_device *dev)
5915 struct drm_i915_gem_object *ctx;
5916 int ret;
5918 ctx = i915_gem_alloc_object(dev, 4096);
5919 if (!ctx) {
5920 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5921 return NULL;
5924 mutex_lock(&dev->struct_mutex);
5925 ret = i915_gem_object_pin(ctx, 4096, true);
5926 if (ret) {
5927 DRM_ERROR("failed to pin power context: %d\n", ret);
5928 goto err_unref;
5931 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5932 if (ret) {
5933 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5934 goto err_unpin;
5936 mutex_unlock(&dev->struct_mutex);
5938 return ctx;
5940 err_unpin:
5941 i915_gem_object_unpin(ctx);
5942 err_unref:
5943 drm_gem_object_unreference(&ctx->base);
5944 mutex_unlock(&dev->struct_mutex);
5945 return NULL;
5948 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5950 struct drm_i915_private *dev_priv = dev->dev_private;
5951 u16 rgvswctl;
5953 rgvswctl = I915_READ16(MEMSWCTL);
5954 if (rgvswctl & MEMCTL_CMD_STS) {
5955 DRM_DEBUG("gpu busy, RCS change rejected\n");
5956 return false; /* still busy with another command */
5959 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5960 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5961 I915_WRITE16(MEMSWCTL, rgvswctl);
5962 POSTING_READ16(MEMSWCTL);
5964 rgvswctl |= MEMCTL_CMD_STS;
5965 I915_WRITE16(MEMSWCTL, rgvswctl);
5967 return true;
5970 void ironlake_enable_drps(struct drm_device *dev)
5972 struct drm_i915_private *dev_priv = dev->dev_private;
5973 u32 rgvmodectl = I915_READ(MEMMODECTL);
5974 u8 fmax, fmin, fstart, vstart;
5976 /* Enable temp reporting */
5977 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5978 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5980 /* 100ms RC evaluation intervals */
5981 I915_WRITE(RCUPEI, 100000);
5982 I915_WRITE(RCDNEI, 100000);
5984 /* Set max/min thresholds to 90ms and 80ms respectively */
5985 I915_WRITE(RCBMAXAVG, 90000);
5986 I915_WRITE(RCBMINAVG, 80000);
5988 I915_WRITE(MEMIHYST, 1);
5990 /* Set up min, max, and cur for interrupt handling */
5991 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5992 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5993 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5994 MEMMODE_FSTART_SHIFT;
5996 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5997 PXVFREQ_PX_SHIFT;
5999 dev_priv->fmax = fmax; /* IPS callback will increase this */
6000 dev_priv->fstart = fstart;
6002 dev_priv->max_delay = fstart;
6003 dev_priv->min_delay = fmin;
6004 dev_priv->cur_delay = fstart;
6006 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6007 fmax, fmin, fstart);
6009 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6012 * Interrupts will be enabled in ironlake_irq_postinstall
6015 I915_WRITE(VIDSTART, vstart);
6016 POSTING_READ(VIDSTART);
6018 rgvmodectl |= MEMMODE_SWMODE_EN;
6019 I915_WRITE(MEMMODECTL, rgvmodectl);
6021 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6022 DRM_ERROR("stuck trying to change perf mode\n");
6023 msleep(1);
6025 ironlake_set_drps(dev, fstart);
6027 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6028 I915_READ(0x112e0);
6029 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6030 dev_priv->last_count2 = I915_READ(0x112f4);
6031 getrawmonotonic(&dev_priv->last_time2);
6034 void ironlake_disable_drps(struct drm_device *dev)
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037 u16 rgvswctl = I915_READ16(MEMSWCTL);
6039 /* Ack interrupts, disable EFC interrupt */
6040 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6041 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6042 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6043 I915_WRITE(DEIIR, DE_PCU_EVENT);
6044 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6046 /* Go back to the starting frequency */
6047 ironlake_set_drps(dev, dev_priv->fstart);
6048 msleep(1);
6049 rgvswctl |= MEMCTL_CMD_STS;
6050 I915_WRITE(MEMSWCTL, rgvswctl);
6051 msleep(1);
6055 void gen6_set_rps(struct drm_device *dev, u8 val)
6057 struct drm_i915_private *dev_priv = dev->dev_private;
6058 u32 swreq;
6060 swreq = (val & 0x3ff) << 25;
6061 I915_WRITE(GEN6_RPNSWREQ, swreq);
6064 void gen6_disable_rps(struct drm_device *dev)
6066 struct drm_i915_private *dev_priv = dev->dev_private;
6068 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6069 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6070 I915_WRITE(GEN6_PMIER, 0);
6071 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6074 static unsigned long intel_pxfreq(u32 vidfreq)
6076 unsigned long freq;
6077 int div = (vidfreq & 0x3f0000) >> 16;
6078 int post = (vidfreq & 0x3000) >> 12;
6079 int pre = (vidfreq & 0x7);
6081 if (!pre)
6082 return 0;
6084 freq = ((div * 133333) / ((1<<post) * pre));
6086 return freq;
6089 void intel_init_emon(struct drm_device *dev)
6091 struct drm_i915_private *dev_priv = dev->dev_private;
6092 u32 lcfuse;
6093 u8 pxw[16];
6094 int i;
6096 /* Disable to program */
6097 I915_WRITE(ECR, 0);
6098 POSTING_READ(ECR);
6100 /* Program energy weights for various events */
6101 I915_WRITE(SDEW, 0x15040d00);
6102 I915_WRITE(CSIEW0, 0x007f0000);
6103 I915_WRITE(CSIEW1, 0x1e220004);
6104 I915_WRITE(CSIEW2, 0x04000004);
6106 for (i = 0; i < 5; i++)
6107 I915_WRITE(PEW + (i * 4), 0);
6108 for (i = 0; i < 3; i++)
6109 I915_WRITE(DEW + (i * 4), 0);
6111 /* Program P-state weights to account for frequency power adjustment */
6112 for (i = 0; i < 16; i++) {
6113 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6114 unsigned long freq = intel_pxfreq(pxvidfreq);
6115 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6116 PXVFREQ_PX_SHIFT;
6117 unsigned long val;
6119 val = vid * vid;
6120 val *= (freq / 1000);
6121 val *= 255;
6122 val /= (127*127*900);
6123 if (val > 0xff)
6124 DRM_ERROR("bad pxval: %ld\n", val);
6125 pxw[i] = val;
6127 /* Render standby states get 0 weight */
6128 pxw[14] = 0;
6129 pxw[15] = 0;
6131 for (i = 0; i < 4; i++) {
6132 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6133 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6134 I915_WRITE(PXW + (i * 4), val);
6137 /* Adjust magic regs to magic values (more experimental results) */
6138 I915_WRITE(OGW0, 0);
6139 I915_WRITE(OGW1, 0);
6140 I915_WRITE(EG0, 0x00007f00);
6141 I915_WRITE(EG1, 0x0000000e);
6142 I915_WRITE(EG2, 0x000e0000);
6143 I915_WRITE(EG3, 0x68000300);
6144 I915_WRITE(EG4, 0x42000000);
6145 I915_WRITE(EG5, 0x00140031);
6146 I915_WRITE(EG6, 0);
6147 I915_WRITE(EG7, 0);
6149 for (i = 0; i < 8; i++)
6150 I915_WRITE(PXWL + (i * 4), 0);
6152 /* Enable PMON + select events */
6153 I915_WRITE(ECR, 0x80000019);
6155 lcfuse = I915_READ(LCFUSE02);
6157 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6160 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6162 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6163 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6164 u32 pcu_mbox;
6165 int cur_freq, min_freq, max_freq;
6166 int i;
6168 /* Here begins a magic sequence of register writes to enable
6169 * auto-downclocking.
6171 * Perhaps there might be some value in exposing these to
6172 * userspace...
6174 I915_WRITE(GEN6_RC_STATE, 0);
6175 __gen6_force_wake_get(dev_priv);
6177 /* disable the counters and set deterministic thresholds */
6178 I915_WRITE(GEN6_RC_CONTROL, 0);
6180 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6181 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6182 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6183 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6184 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6186 for (i = 0; i < I915_NUM_RINGS; i++)
6187 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6189 I915_WRITE(GEN6_RC_SLEEP, 0);
6190 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6191 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6192 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
6193 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6195 I915_WRITE(GEN6_RC_CONTROL,
6196 GEN6_RC_CTL_RC6p_ENABLE |
6197 GEN6_RC_CTL_RC6_ENABLE |
6198 GEN6_RC_CTL_EI_MODE(1) |
6199 GEN6_RC_CTL_HW_ENABLE);
6201 I915_WRITE(GEN6_RPNSWREQ,
6202 GEN6_FREQUENCY(10) |
6203 GEN6_OFFSET(0) |
6204 GEN6_AGGRESSIVE_TURBO);
6205 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6206 GEN6_FREQUENCY(12));
6208 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6209 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6210 18 << 24 |
6211 6 << 16);
6212 I915_WRITE(GEN6_RP_UP_THRESHOLD, 90000);
6213 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 100000);
6214 I915_WRITE(GEN6_RP_UP_EI, 100000);
6215 I915_WRITE(GEN6_RP_DOWN_EI, 300000);
6216 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6217 I915_WRITE(GEN6_RP_CONTROL,
6218 GEN6_RP_MEDIA_TURBO |
6219 GEN6_RP_USE_NORMAL_FREQ |
6220 GEN6_RP_MEDIA_IS_GFX |
6221 GEN6_RP_ENABLE |
6222 GEN6_RP_UP_BUSY_MAX |
6223 GEN6_RP_DOWN_BUSY_MIN);
6225 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6226 500))
6227 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6229 I915_WRITE(GEN6_PCODE_DATA, 0);
6230 I915_WRITE(GEN6_PCODE_MAILBOX,
6231 GEN6_PCODE_READY |
6232 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
6233 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6234 500))
6235 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6237 min_freq = (rp_state_cap & 0xff0000) >> 16;
6238 max_freq = rp_state_cap & 0xff;
6239 cur_freq = (gt_perf_status & 0xff00) >> 8;
6241 /* Check for overclock support */
6242 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6243 500))
6244 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6245 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
6246 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
6247 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6248 500))
6249 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6250 if (pcu_mbox & (1<<31)) { /* OC supported */
6251 max_freq = pcu_mbox & 0xff;
6252 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 100);
6255 /* In units of 100MHz */
6256 dev_priv->max_delay = max_freq;
6257 dev_priv->min_delay = min_freq;
6258 dev_priv->cur_delay = cur_freq;
6260 /* requires MSI enabled */
6261 I915_WRITE(GEN6_PMIER,
6262 GEN6_PM_MBOX_EVENT |
6263 GEN6_PM_THERMAL_EVENT |
6264 GEN6_PM_RP_DOWN_TIMEOUT |
6265 GEN6_PM_RP_UP_THRESHOLD |
6266 GEN6_PM_RP_DOWN_THRESHOLD |
6267 GEN6_PM_RP_UP_EI_EXPIRED |
6268 GEN6_PM_RP_DOWN_EI_EXPIRED);
6269 I915_WRITE(GEN6_PMIMR, 0);
6270 /* enable all PM interrupts */
6271 I915_WRITE(GEN6_PMINTRMSK, 0);
6273 __gen6_force_wake_put(dev_priv);
6276 void intel_enable_clock_gating(struct drm_device *dev)
6278 struct drm_i915_private *dev_priv = dev->dev_private;
6281 * Disable clock gating reported to work incorrectly according to the
6282 * specs, but enable as much else as we can.
6284 if (HAS_PCH_SPLIT(dev)) {
6285 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
6287 if (IS_GEN5(dev)) {
6288 /* Required for FBC */
6289 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
6290 DPFCRUNIT_CLOCK_GATE_DISABLE |
6291 DPFDUNIT_CLOCK_GATE_DISABLE;
6292 /* Required for CxSR */
6293 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
6295 I915_WRITE(PCH_3DCGDIS0,
6296 MARIUNIT_CLOCK_GATE_DISABLE |
6297 SVSMUNIT_CLOCK_GATE_DISABLE);
6298 I915_WRITE(PCH_3DCGDIS1,
6299 VFMUNIT_CLOCK_GATE_DISABLE);
6302 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
6305 * On Ibex Peak and Cougar Point, we need to disable clock
6306 * gating for the panel power sequencer or it will fail to
6307 * start up when no ports are active.
6309 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6312 * According to the spec the following bits should be set in
6313 * order to enable memory self-refresh
6314 * The bit 22/21 of 0x42004
6315 * The bit 5 of 0x42020
6316 * The bit 15 of 0x45000
6318 if (IS_GEN5(dev)) {
6319 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6320 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6321 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6322 I915_WRITE(ILK_DSPCLK_GATE,
6323 (I915_READ(ILK_DSPCLK_GATE) |
6324 ILK_DPARB_CLK_GATE));
6325 I915_WRITE(DISP_ARB_CTL,
6326 (I915_READ(DISP_ARB_CTL) |
6327 DISP_FBC_WM_DIS));
6328 I915_WRITE(WM3_LP_ILK, 0);
6329 I915_WRITE(WM2_LP_ILK, 0);
6330 I915_WRITE(WM1_LP_ILK, 0);
6333 * Based on the document from hardware guys the following bits
6334 * should be set unconditionally in order to enable FBC.
6335 * The bit 22 of 0x42000
6336 * The bit 22 of 0x42004
6337 * The bit 7,8,9 of 0x42020.
6339 if (IS_IRONLAKE_M(dev)) {
6340 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6341 I915_READ(ILK_DISPLAY_CHICKEN1) |
6342 ILK_FBCQ_DIS);
6343 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6344 I915_READ(ILK_DISPLAY_CHICKEN2) |
6345 ILK_DPARB_GATE);
6346 I915_WRITE(ILK_DSPCLK_GATE,
6347 I915_READ(ILK_DSPCLK_GATE) |
6348 ILK_DPFC_DIS1 |
6349 ILK_DPFC_DIS2 |
6350 ILK_CLK_FBC);
6353 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6354 I915_READ(ILK_DISPLAY_CHICKEN2) |
6355 ILK_ELPIN_409_SELECT);
6357 if (IS_GEN5(dev)) {
6358 I915_WRITE(_3D_CHICKEN2,
6359 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6360 _3D_CHICKEN2_WM_READ_PIPELINED);
6363 if (IS_GEN6(dev)) {
6364 I915_WRITE(WM3_LP_ILK, 0);
6365 I915_WRITE(WM2_LP_ILK, 0);
6366 I915_WRITE(WM1_LP_ILK, 0);
6369 * According to the spec the following bits should be
6370 * set in order to enable memory self-refresh and fbc:
6371 * The bit21 and bit22 of 0x42000
6372 * The bit21 and bit22 of 0x42004
6373 * The bit5 and bit7 of 0x42020
6374 * The bit14 of 0x70180
6375 * The bit14 of 0x71180
6377 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6378 I915_READ(ILK_DISPLAY_CHICKEN1) |
6379 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6380 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6381 I915_READ(ILK_DISPLAY_CHICKEN2) |
6382 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6383 I915_WRITE(ILK_DSPCLK_GATE,
6384 I915_READ(ILK_DSPCLK_GATE) |
6385 ILK_DPARB_CLK_GATE |
6386 ILK_DPFD_CLK_GATE);
6388 I915_WRITE(DSPACNTR,
6389 I915_READ(DSPACNTR) |
6390 DISPPLANE_TRICKLE_FEED_DISABLE);
6391 I915_WRITE(DSPBCNTR,
6392 I915_READ(DSPBCNTR) |
6393 DISPPLANE_TRICKLE_FEED_DISABLE);
6395 } else if (IS_G4X(dev)) {
6396 uint32_t dspclk_gate;
6397 I915_WRITE(RENCLK_GATE_D1, 0);
6398 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6399 GS_UNIT_CLOCK_GATE_DISABLE |
6400 CL_UNIT_CLOCK_GATE_DISABLE);
6401 I915_WRITE(RAMCLK_GATE_D, 0);
6402 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6403 OVRUNIT_CLOCK_GATE_DISABLE |
6404 OVCUNIT_CLOCK_GATE_DISABLE;
6405 if (IS_GM45(dev))
6406 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6407 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6408 } else if (IS_CRESTLINE(dev)) {
6409 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6410 I915_WRITE(RENCLK_GATE_D2, 0);
6411 I915_WRITE(DSPCLK_GATE_D, 0);
6412 I915_WRITE(RAMCLK_GATE_D, 0);
6413 I915_WRITE16(DEUC, 0);
6414 } else if (IS_BROADWATER(dev)) {
6415 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6416 I965_RCC_CLOCK_GATE_DISABLE |
6417 I965_RCPB_CLOCK_GATE_DISABLE |
6418 I965_ISC_CLOCK_GATE_DISABLE |
6419 I965_FBC_CLOCK_GATE_DISABLE);
6420 I915_WRITE(RENCLK_GATE_D2, 0);
6421 } else if (IS_GEN3(dev)) {
6422 u32 dstate = I915_READ(D_STATE);
6424 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6425 DSTATE_DOT_CLOCK_GATING;
6426 I915_WRITE(D_STATE, dstate);
6427 } else if (IS_I85X(dev) || IS_I865G(dev)) {
6428 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6429 } else if (IS_I830(dev)) {
6430 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6434 void intel_disable_clock_gating(struct drm_device *dev)
6436 struct drm_i915_private *dev_priv = dev->dev_private;
6438 if (dev_priv->renderctx) {
6439 struct drm_i915_gem_object *obj = dev_priv->renderctx;
6441 I915_WRITE(CCID, 0);
6442 POSTING_READ(CCID);
6444 i915_gem_object_unpin(obj);
6445 drm_gem_object_unreference(&obj->base);
6446 dev_priv->renderctx = NULL;
6449 if (dev_priv->pwrctx) {
6450 struct drm_i915_gem_object *obj = dev_priv->pwrctx;
6452 I915_WRITE(PWRCTXA, 0);
6453 POSTING_READ(PWRCTXA);
6455 i915_gem_object_unpin(obj);
6456 drm_gem_object_unreference(&obj->base);
6457 dev_priv->pwrctx = NULL;
6461 static void ironlake_disable_rc6(struct drm_device *dev)
6463 struct drm_i915_private *dev_priv = dev->dev_private;
6465 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
6466 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
6467 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
6468 10);
6469 POSTING_READ(CCID);
6470 I915_WRITE(PWRCTXA, 0);
6471 POSTING_READ(PWRCTXA);
6472 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
6473 POSTING_READ(RSTDBYCTL);
6474 i915_gem_object_unpin(dev_priv->renderctx);
6475 drm_gem_object_unreference(&dev_priv->renderctx->base);
6476 dev_priv->renderctx = NULL;
6477 i915_gem_object_unpin(dev_priv->pwrctx);
6478 drm_gem_object_unreference(&dev_priv->pwrctx->base);
6479 dev_priv->pwrctx = NULL;
6482 void ironlake_enable_rc6(struct drm_device *dev)
6484 struct drm_i915_private *dev_priv = dev->dev_private;
6485 int ret;
6488 * GPU can automatically power down the render unit if given a page
6489 * to save state.
6491 ret = BEGIN_LP_RING(6);
6492 if (ret) {
6493 ironlake_disable_rc6(dev);
6494 return;
6496 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
6497 OUT_RING(MI_SET_CONTEXT);
6498 OUT_RING(dev_priv->renderctx->gtt_offset |
6499 MI_MM_SPACE_GTT |
6500 MI_SAVE_EXT_STATE_EN |
6501 MI_RESTORE_EXT_STATE_EN |
6502 MI_RESTORE_INHIBIT);
6503 OUT_RING(MI_SUSPEND_FLUSH);
6504 OUT_RING(MI_NOOP);
6505 OUT_RING(MI_FLUSH);
6506 ADVANCE_LP_RING();
6508 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
6509 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
6512 /* Set up chip specific display functions */
6513 static void intel_init_display(struct drm_device *dev)
6515 struct drm_i915_private *dev_priv = dev->dev_private;
6517 /* We always want a DPMS function */
6518 if (HAS_PCH_SPLIT(dev))
6519 dev_priv->display.dpms = ironlake_crtc_dpms;
6520 else
6521 dev_priv->display.dpms = i9xx_crtc_dpms;
6523 if (I915_HAS_FBC(dev)) {
6524 if (HAS_PCH_SPLIT(dev)) {
6525 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6526 dev_priv->display.enable_fbc = ironlake_enable_fbc;
6527 dev_priv->display.disable_fbc = ironlake_disable_fbc;
6528 } else if (IS_GM45(dev)) {
6529 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6530 dev_priv->display.enable_fbc = g4x_enable_fbc;
6531 dev_priv->display.disable_fbc = g4x_disable_fbc;
6532 } else if (IS_CRESTLINE(dev)) {
6533 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6534 dev_priv->display.enable_fbc = i8xx_enable_fbc;
6535 dev_priv->display.disable_fbc = i8xx_disable_fbc;
6537 /* 855GM needs testing */
6540 /* Returns the core display clock speed */
6541 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
6542 dev_priv->display.get_display_clock_speed =
6543 i945_get_display_clock_speed;
6544 else if (IS_I915G(dev))
6545 dev_priv->display.get_display_clock_speed =
6546 i915_get_display_clock_speed;
6547 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6548 dev_priv->display.get_display_clock_speed =
6549 i9xx_misc_get_display_clock_speed;
6550 else if (IS_I915GM(dev))
6551 dev_priv->display.get_display_clock_speed =
6552 i915gm_get_display_clock_speed;
6553 else if (IS_I865G(dev))
6554 dev_priv->display.get_display_clock_speed =
6555 i865_get_display_clock_speed;
6556 else if (IS_I85X(dev))
6557 dev_priv->display.get_display_clock_speed =
6558 i855_get_display_clock_speed;
6559 else /* 852, 830 */
6560 dev_priv->display.get_display_clock_speed =
6561 i830_get_display_clock_speed;
6563 /* For FIFO watermark updates */
6564 if (HAS_PCH_SPLIT(dev)) {
6565 if (IS_GEN5(dev)) {
6566 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
6567 dev_priv->display.update_wm = ironlake_update_wm;
6568 else {
6569 DRM_DEBUG_KMS("Failed to get proper latency. "
6570 "Disable CxSR\n");
6571 dev_priv->display.update_wm = NULL;
6573 } else if (IS_GEN6(dev)) {
6574 if (SNB_READ_WM0_LATENCY()) {
6575 dev_priv->display.update_wm = sandybridge_update_wm;
6576 } else {
6577 DRM_DEBUG_KMS("Failed to read display plane latency. "
6578 "Disable CxSR\n");
6579 dev_priv->display.update_wm = NULL;
6581 } else
6582 dev_priv->display.update_wm = NULL;
6583 } else if (IS_PINEVIEW(dev)) {
6584 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6585 dev_priv->is_ddr3,
6586 dev_priv->fsb_freq,
6587 dev_priv->mem_freq)) {
6588 DRM_INFO("failed to find known CxSR latency "
6589 "(found ddr%s fsb freq %d, mem freq %d), "
6590 "disabling CxSR\n",
6591 (dev_priv->is_ddr3 == 1) ? "3": "2",
6592 dev_priv->fsb_freq, dev_priv->mem_freq);
6593 /* Disable CxSR and never update its watermark again */
6594 pineview_disable_cxsr(dev);
6595 dev_priv->display.update_wm = NULL;
6596 } else
6597 dev_priv->display.update_wm = pineview_update_wm;
6598 } else if (IS_G4X(dev))
6599 dev_priv->display.update_wm = g4x_update_wm;
6600 else if (IS_GEN4(dev))
6601 dev_priv->display.update_wm = i965_update_wm;
6602 else if (IS_GEN3(dev)) {
6603 dev_priv->display.update_wm = i9xx_update_wm;
6604 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6605 } else if (IS_I85X(dev)) {
6606 dev_priv->display.update_wm = i9xx_update_wm;
6607 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6608 } else {
6609 dev_priv->display.update_wm = i830_update_wm;
6610 if (IS_845G(dev))
6611 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6612 else
6613 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6618 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6619 * resume, or other times. This quirk makes sure that's the case for
6620 * affected systems.
6622 static void quirk_pipea_force (struct drm_device *dev)
6624 struct drm_i915_private *dev_priv = dev->dev_private;
6626 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6627 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6630 struct intel_quirk {
6631 int device;
6632 int subsystem_vendor;
6633 int subsystem_device;
6634 void (*hook)(struct drm_device *dev);
6637 struct intel_quirk intel_quirks[] = {
6638 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6639 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6640 /* HP Mini needs pipe A force quirk (LP: #322104) */
6641 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6643 /* Thinkpad R31 needs pipe A force quirk */
6644 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6645 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6646 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6648 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6649 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6650 /* ThinkPad X40 needs pipe A force quirk */
6652 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6653 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6655 /* 855 & before need to leave pipe A & dpll A up */
6656 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6657 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6660 static void intel_init_quirks(struct drm_device *dev)
6662 struct pci_dev *d = dev->pdev;
6663 int i;
6665 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6666 struct intel_quirk *q = &intel_quirks[i];
6668 if (d->device == q->device &&
6669 (d->subsystem_vendor == q->subsystem_vendor ||
6670 q->subsystem_vendor == PCI_ANY_ID) &&
6671 (d->subsystem_device == q->subsystem_device ||
6672 q->subsystem_device == PCI_ANY_ID))
6673 q->hook(dev);
6677 /* Disable the VGA plane that we never use */
6678 static void i915_disable_vga(struct drm_device *dev)
6680 struct drm_i915_private *dev_priv = dev->dev_private;
6681 u8 sr1;
6682 u32 vga_reg;
6684 if (HAS_PCH_SPLIT(dev))
6685 vga_reg = CPU_VGACNTRL;
6686 else
6687 vga_reg = VGACNTRL;
6689 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6690 outb(1, VGA_SR_INDEX);
6691 sr1 = inb(VGA_SR_DATA);
6692 outb(sr1 | 1<<5, VGA_SR_DATA);
6693 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6694 udelay(300);
6696 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6697 POSTING_READ(vga_reg);
6700 void intel_modeset_init(struct drm_device *dev)
6702 struct drm_i915_private *dev_priv = dev->dev_private;
6703 int i;
6705 drm_mode_config_init(dev);
6707 dev->mode_config.min_width = 0;
6708 dev->mode_config.min_height = 0;
6710 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6712 intel_init_quirks(dev);
6714 intel_init_display(dev);
6716 if (IS_GEN2(dev)) {
6717 dev->mode_config.max_width = 2048;
6718 dev->mode_config.max_height = 2048;
6719 } else if (IS_GEN3(dev)) {
6720 dev->mode_config.max_width = 4096;
6721 dev->mode_config.max_height = 4096;
6722 } else {
6723 dev->mode_config.max_width = 8192;
6724 dev->mode_config.max_height = 8192;
6726 dev->mode_config.fb_base = dev->agp->base;
6728 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6729 dev_priv->num_pipe = 2;
6730 else
6731 dev_priv->num_pipe = 1;
6732 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6733 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6735 for (i = 0; i < dev_priv->num_pipe; i++) {
6736 intel_crtc_init(dev, i);
6739 intel_setup_outputs(dev);
6741 intel_enable_clock_gating(dev);
6743 /* Just disable it once at startup */
6744 i915_disable_vga(dev);
6746 if (IS_IRONLAKE_M(dev)) {
6747 ironlake_enable_drps(dev);
6748 intel_init_emon(dev);
6751 if (IS_GEN6(dev))
6752 gen6_enable_rps(dev_priv);
6754 if (IS_IRONLAKE_M(dev)) {
6755 dev_priv->renderctx = intel_alloc_context_page(dev);
6756 if (!dev_priv->renderctx)
6757 goto skip_rc6;
6758 dev_priv->pwrctx = intel_alloc_context_page(dev);
6759 if (!dev_priv->pwrctx) {
6760 i915_gem_object_unpin(dev_priv->renderctx);
6761 drm_gem_object_unreference(&dev_priv->renderctx->base);
6762 dev_priv->renderctx = NULL;
6763 goto skip_rc6;
6765 ironlake_enable_rc6(dev);
6768 skip_rc6:
6769 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6770 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6771 (unsigned long)dev);
6773 intel_setup_overlay(dev);
6776 void intel_modeset_cleanup(struct drm_device *dev)
6778 struct drm_i915_private *dev_priv = dev->dev_private;
6779 struct drm_crtc *crtc;
6780 struct intel_crtc *intel_crtc;
6782 drm_kms_helper_poll_fini(dev);
6783 mutex_lock(&dev->struct_mutex);
6785 intel_unregister_dsm_handler();
6788 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6789 /* Skip inactive CRTCs */
6790 if (!crtc->fb)
6791 continue;
6793 intel_crtc = to_intel_crtc(crtc);
6794 intel_increase_pllclock(crtc);
6797 if (dev_priv->display.disable_fbc)
6798 dev_priv->display.disable_fbc(dev);
6800 if (IS_IRONLAKE_M(dev))
6801 ironlake_disable_drps(dev);
6802 if (IS_GEN6(dev))
6803 gen6_disable_rps(dev);
6805 if (IS_IRONLAKE_M(dev))
6806 ironlake_disable_rc6(dev);
6808 mutex_unlock(&dev->struct_mutex);
6810 /* Disable the irq before mode object teardown, for the irq might
6811 * enqueue unpin/hotplug work. */
6812 drm_irq_uninstall(dev);
6813 cancel_work_sync(&dev_priv->hotplug_work);
6815 /* Shut off idle work before the crtcs get freed. */
6816 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6817 intel_crtc = to_intel_crtc(crtc);
6818 del_timer_sync(&intel_crtc->idle_timer);
6820 del_timer_sync(&dev_priv->idle_timer);
6821 cancel_work_sync(&dev_priv->idle_work);
6823 drm_mode_config_cleanup(dev);
6827 * Return which encoder is currently attached for connector.
6829 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6831 return &intel_attached_encoder(connector)->base;
6834 void intel_connector_attach_encoder(struct intel_connector *connector,
6835 struct intel_encoder *encoder)
6837 connector->encoder = encoder;
6838 drm_mode_connector_attach_encoder(&connector->base,
6839 &encoder->base);
6843 * set vga decode state - true == enable VGA decode
6845 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6847 struct drm_i915_private *dev_priv = dev->dev_private;
6848 u16 gmch_ctrl;
6850 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6851 if (state)
6852 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6853 else
6854 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6855 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6856 return 0;
6859 #ifdef CONFIG_DEBUG_FS
6860 #include <linux/seq_file.h>
6862 struct intel_display_error_state {
6863 struct intel_cursor_error_state {
6864 u32 control;
6865 u32 position;
6866 u32 base;
6867 u32 size;
6868 } cursor[2];
6870 struct intel_pipe_error_state {
6871 u32 conf;
6872 u32 source;
6874 u32 htotal;
6875 u32 hblank;
6876 u32 hsync;
6877 u32 vtotal;
6878 u32 vblank;
6879 u32 vsync;
6880 } pipe[2];
6882 struct intel_plane_error_state {
6883 u32 control;
6884 u32 stride;
6885 u32 size;
6886 u32 pos;
6887 u32 addr;
6888 u32 surface;
6889 u32 tile_offset;
6890 } plane[2];
6893 struct intel_display_error_state *
6894 intel_display_capture_error_state(struct drm_device *dev)
6896 drm_i915_private_t *dev_priv = dev->dev_private;
6897 struct intel_display_error_state *error;
6898 int i;
6900 error = kmalloc(sizeof(*error), GFP_ATOMIC);
6901 if (error == NULL)
6902 return NULL;
6904 for (i = 0; i < 2; i++) {
6905 error->cursor[i].control = I915_READ(CURCNTR(i));
6906 error->cursor[i].position = I915_READ(CURPOS(i));
6907 error->cursor[i].base = I915_READ(CURBASE(i));
6909 error->plane[i].control = I915_READ(DSPCNTR(i));
6910 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6911 error->plane[i].size = I915_READ(DSPSIZE(i));
6912 error->plane[i].pos= I915_READ(DSPPOS(i));
6913 error->plane[i].addr = I915_READ(DSPADDR(i));
6914 if (INTEL_INFO(dev)->gen >= 4) {
6915 error->plane[i].surface = I915_READ(DSPSURF(i));
6916 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6919 error->pipe[i].conf = I915_READ(PIPECONF(i));
6920 error->pipe[i].source = I915_READ(PIPESRC(i));
6921 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6922 error->pipe[i].hblank = I915_READ(HBLANK(i));
6923 error->pipe[i].hsync = I915_READ(HSYNC(i));
6924 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6925 error->pipe[i].vblank = I915_READ(VBLANK(i));
6926 error->pipe[i].vsync = I915_READ(VSYNC(i));
6929 return error;
6932 void
6933 intel_display_print_error_state(struct seq_file *m,
6934 struct drm_device *dev,
6935 struct intel_display_error_state *error)
6937 int i;
6939 for (i = 0; i < 2; i++) {
6940 seq_printf(m, "Pipe [%d]:\n", i);
6941 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
6942 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
6943 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
6944 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
6945 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
6946 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
6947 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
6948 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
6950 seq_printf(m, "Plane [%d]:\n", i);
6951 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
6952 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
6953 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
6954 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
6955 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
6956 if (INTEL_INFO(dev)->gen >= 4) {
6957 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
6958 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
6961 seq_printf(m, "Cursor [%d]:\n", i);
6962 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
6963 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
6964 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
6967 #endif