4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
42 static long ratelimit_pages
= 32;
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than dirtied pages to ensure that reasonably
48 * large amounts of I/O are submitted.
50 static inline long sync_writeback_pages(unsigned long dirtied
)
52 if (dirtied
< ratelimit_pages
)
53 dirtied
= ratelimit_pages
;
55 return dirtied
+ dirtied
/ 2;
58 /* The following parameters are exported via /proc/sys/vm */
61 * Start background writeback (via writeback threads) at this percentage
63 int dirty_background_ratio
= 10;
66 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
67 * dirty_background_ratio * the amount of dirtyable memory
69 unsigned long dirty_background_bytes
;
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 int vm_highmem_is_dirtyable
;
78 * The generator of dirty data starts writeback at this percentage
80 int vm_dirty_ratio
= 20;
83 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
84 * vm_dirty_ratio * the amount of dirtyable memory
86 unsigned long vm_dirty_bytes
;
89 * The interval between `kupdate'-style writebacks
91 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
94 * The longest time for which data is allowed to remain dirty
96 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
99 * Flag that makes the machine dump writes/reads and block dirtyings.
104 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
105 * a full sync is triggered after this time elapses without any disk activity.
109 EXPORT_SYMBOL(laptop_mode
);
111 /* End of sysctl-exported parameters */
115 * Scale the writeback cache size proportional to the relative writeout speeds.
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
130 static struct prop_descriptor vm_completions
;
131 static struct prop_descriptor vm_dirties
;
134 * couple the period to the dirty_ratio:
136 * period/2 ~ roundup_pow_of_two(dirty limit)
138 static int calc_period_shift(void)
140 unsigned long dirty_total
;
143 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
145 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
147 return 2 + ilog2(dirty_total
- 1);
151 * update the period when the dirty threshold changes.
153 static void update_completion_period(void)
155 int shift
= calc_period_shift();
156 prop_change_shift(&vm_completions
, shift
);
157 prop_change_shift(&vm_dirties
, shift
);
160 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
161 void __user
*buffer
, size_t *lenp
,
166 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
167 if (ret
== 0 && write
)
168 dirty_background_bytes
= 0;
172 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
173 void __user
*buffer
, size_t *lenp
,
178 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
179 if (ret
== 0 && write
)
180 dirty_background_ratio
= 0;
184 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
185 void __user
*buffer
, size_t *lenp
,
188 int old_ratio
= vm_dirty_ratio
;
191 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
192 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
193 update_completion_period();
200 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
201 void __user
*buffer
, size_t *lenp
,
204 unsigned long old_bytes
= vm_dirty_bytes
;
207 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
208 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
209 update_completion_period();
216 * Increment the BDI's writeout completion count and the global writeout
217 * completion count. Called from test_clear_page_writeback().
219 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
221 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
225 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
229 local_irq_save(flags
);
230 __bdi_writeout_inc(bdi
);
231 local_irq_restore(flags
);
233 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
235 void task_dirty_inc(struct task_struct
*tsk
)
237 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
241 * Obtain an accurate fraction of the BDI's portion.
243 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
244 long *numerator
, long *denominator
)
246 if (bdi_cap_writeback_dirty(bdi
)) {
247 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
248 numerator
, denominator
);
256 * Clip the earned share of dirty pages to that which is actually available.
257 * This avoids exceeding the total dirty_limit when the floating averages
258 * fluctuate too quickly.
260 static void clip_bdi_dirty_limit(struct backing_dev_info
*bdi
,
261 unsigned long dirty
, unsigned long *pbdi_dirty
)
263 unsigned long avail_dirty
;
265 avail_dirty
= global_page_state(NR_FILE_DIRTY
) +
266 global_page_state(NR_WRITEBACK
) +
267 global_page_state(NR_UNSTABLE_NFS
) +
268 global_page_state(NR_WRITEBACK_TEMP
);
270 if (avail_dirty
< dirty
)
271 avail_dirty
= dirty
- avail_dirty
;
275 avail_dirty
+= bdi_stat(bdi
, BDI_RECLAIMABLE
) +
276 bdi_stat(bdi
, BDI_WRITEBACK
);
278 *pbdi_dirty
= min(*pbdi_dirty
, avail_dirty
);
281 static inline void task_dirties_fraction(struct task_struct
*tsk
,
282 long *numerator
, long *denominator
)
284 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
285 numerator
, denominator
);
289 * scale the dirty limit
291 * task specific dirty limit:
293 * dirty -= (dirty/8) * p_{t}
295 static void task_dirty_limit(struct task_struct
*tsk
, unsigned long *pdirty
)
297 long numerator
, denominator
;
298 unsigned long dirty
= *pdirty
;
299 u64 inv
= dirty
>> 3;
301 task_dirties_fraction(tsk
, &numerator
, &denominator
);
303 do_div(inv
, denominator
);
306 if (dirty
< *pdirty
/2)
315 static unsigned int bdi_min_ratio
;
317 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
321 spin_lock_bh(&bdi_lock
);
322 if (min_ratio
> bdi
->max_ratio
) {
325 min_ratio
-= bdi
->min_ratio
;
326 if (bdi_min_ratio
+ min_ratio
< 100) {
327 bdi_min_ratio
+= min_ratio
;
328 bdi
->min_ratio
+= min_ratio
;
333 spin_unlock_bh(&bdi_lock
);
338 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
345 spin_lock_bh(&bdi_lock
);
346 if (bdi
->min_ratio
> max_ratio
) {
349 bdi
->max_ratio
= max_ratio
;
350 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
352 spin_unlock_bh(&bdi_lock
);
356 EXPORT_SYMBOL(bdi_set_max_ratio
);
359 * Work out the current dirty-memory clamping and background writeout
362 * The main aim here is to lower them aggressively if there is a lot of mapped
363 * memory around. To avoid stressing page reclaim with lots of unreclaimable
364 * pages. It is better to clamp down on writers than to start swapping, and
365 * performing lots of scanning.
367 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
369 * We don't permit the clamping level to fall below 5% - that is getting rather
372 * We make sure that the background writeout level is below the adjusted
376 static unsigned long highmem_dirtyable_memory(unsigned long total
)
378 #ifdef CONFIG_HIGHMEM
382 for_each_node_state(node
, N_HIGH_MEMORY
) {
384 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
386 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
387 zone_reclaimable_pages(z
);
390 * Make sure that the number of highmem pages is never larger
391 * than the number of the total dirtyable memory. This can only
392 * occur in very strange VM situations but we want to make sure
393 * that this does not occur.
395 return min(x
, total
);
402 * determine_dirtyable_memory - amount of memory that may be used
404 * Returns the numebr of pages that can currently be freed and used
405 * by the kernel for direct mappings.
407 unsigned long determine_dirtyable_memory(void)
411 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
413 if (!vm_highmem_is_dirtyable
)
414 x
-= highmem_dirtyable_memory(x
);
416 return x
+ 1; /* Ensure that we never return 0 */
420 get_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
,
421 unsigned long *pbdi_dirty
, struct backing_dev_info
*bdi
)
423 unsigned long background
;
425 unsigned long available_memory
= determine_dirtyable_memory();
426 struct task_struct
*tsk
;
429 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
433 dirty_ratio
= vm_dirty_ratio
;
436 dirty
= (dirty_ratio
* available_memory
) / 100;
439 if (dirty_background_bytes
)
440 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
442 background
= (dirty_background_ratio
* available_memory
) / 100;
444 if (background
>= dirty
)
445 background
= dirty
/ 2;
447 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
448 background
+= background
/ 4;
451 *pbackground
= background
;
456 long numerator
, denominator
;
459 * Calculate this BDI's share of the dirty ratio.
461 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
463 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
464 bdi_dirty
*= numerator
;
465 do_div(bdi_dirty
, denominator
);
466 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
467 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
468 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
470 *pbdi_dirty
= bdi_dirty
;
471 clip_bdi_dirty_limit(bdi
, dirty
, pbdi_dirty
);
472 task_dirty_limit(current
, pbdi_dirty
);
477 * balance_dirty_pages() must be called by processes which are generating dirty
478 * data. It looks at the number of dirty pages in the machine and will force
479 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
480 * If we're over `background_thresh' then the writeback threads are woken to
481 * perform some writeout.
483 static void balance_dirty_pages(struct address_space
*mapping
,
484 unsigned long write_chunk
)
486 long nr_reclaimable
, bdi_nr_reclaimable
;
487 long nr_writeback
, bdi_nr_writeback
;
488 unsigned long background_thresh
;
489 unsigned long dirty_thresh
;
490 unsigned long bdi_thresh
;
491 unsigned long pages_written
= 0;
492 unsigned long pause
= 1;
494 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
497 struct writeback_control wbc
= {
499 .sync_mode
= WB_SYNC_NONE
,
500 .older_than_this
= NULL
,
501 .nr_to_write
= write_chunk
,
505 get_dirty_limits(&background_thresh
, &dirty_thresh
,
508 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
509 global_page_state(NR_UNSTABLE_NFS
);
510 nr_writeback
= global_page_state(NR_WRITEBACK
);
512 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
513 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
515 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
519 * Throttle it only when the background writeback cannot
520 * catch-up. This avoids (excessively) small writeouts
521 * when the bdi limits are ramping up.
523 if (nr_reclaimable
+ nr_writeback
<
524 (background_thresh
+ dirty_thresh
) / 2)
527 if (!bdi
->dirty_exceeded
)
528 bdi
->dirty_exceeded
= 1;
530 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
531 * Unstable writes are a feature of certain networked
532 * filesystems (i.e. NFS) in which data may have been
533 * written to the server's write cache, but has not yet
534 * been flushed to permanent storage.
535 * Only move pages to writeback if this bdi is over its
536 * threshold otherwise wait until the disk writes catch
539 if (bdi_nr_reclaimable
> bdi_thresh
) {
540 writeback_inodes_wbc(&wbc
);
541 pages_written
+= write_chunk
- wbc
.nr_to_write
;
542 get_dirty_limits(&background_thresh
, &dirty_thresh
,
547 * In order to avoid the stacked BDI deadlock we need
548 * to ensure we accurately count the 'dirty' pages when
549 * the threshold is low.
551 * Otherwise it would be possible to get thresh+n pages
552 * reported dirty, even though there are thresh-m pages
553 * actually dirty; with m+n sitting in the percpu
556 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
557 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
558 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
559 } else if (bdi_nr_reclaimable
) {
560 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
561 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
564 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
566 if (pages_written
>= write_chunk
)
567 break; /* We've done our duty */
569 __set_current_state(TASK_INTERRUPTIBLE
);
570 io_schedule_timeout(pause
);
573 * Increase the delay for each loop, up to our previous
574 * default of taking a 100ms nap.
581 if (bdi_nr_reclaimable
+ bdi_nr_writeback
< bdi_thresh
&&
583 bdi
->dirty_exceeded
= 0;
585 if (writeback_in_progress(bdi
))
589 * In laptop mode, we wait until hitting the higher threshold before
590 * starting background writeout, and then write out all the way down
591 * to the lower threshold. So slow writers cause minimal disk activity.
593 * In normal mode, we start background writeout at the lower
594 * background_thresh, to keep the amount of dirty memory low.
596 if ((laptop_mode
&& pages_written
) ||
597 (!laptop_mode
&& ((global_page_state(NR_FILE_DIRTY
)
598 + global_page_state(NR_UNSTABLE_NFS
))
599 > background_thresh
)))
600 bdi_start_writeback(bdi
, NULL
, 0);
603 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
605 if (set_page_dirty(page
) || page_mkwrite
) {
606 struct address_space
*mapping
= page_mapping(page
);
609 balance_dirty_pages_ratelimited(mapping
);
613 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits
) = 0;
616 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
617 * @mapping: address_space which was dirtied
618 * @nr_pages_dirtied: number of pages which the caller has just dirtied
620 * Processes which are dirtying memory should call in here once for each page
621 * which was newly dirtied. The function will periodically check the system's
622 * dirty state and will initiate writeback if needed.
624 * On really big machines, get_writeback_state is expensive, so try to avoid
625 * calling it too often (ratelimiting). But once we're over the dirty memory
626 * limit we decrease the ratelimiting by a lot, to prevent individual processes
627 * from overshooting the limit by (ratelimit_pages) each.
629 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
630 unsigned long nr_pages_dirtied
)
632 unsigned long ratelimit
;
635 ratelimit
= ratelimit_pages
;
636 if (mapping
->backing_dev_info
->dirty_exceeded
)
640 * Check the rate limiting. Also, we do not want to throttle real-time
641 * tasks in balance_dirty_pages(). Period.
644 p
= &__get_cpu_var(bdp_ratelimits
);
645 *p
+= nr_pages_dirtied
;
646 if (unlikely(*p
>= ratelimit
)) {
647 ratelimit
= sync_writeback_pages(*p
);
650 balance_dirty_pages(mapping
, ratelimit
);
655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
657 void throttle_vm_writeout(gfp_t gfp_mask
)
659 unsigned long background_thresh
;
660 unsigned long dirty_thresh
;
663 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
666 * Boost the allowable dirty threshold a bit for page
667 * allocators so they don't get DoS'ed by heavy writers
669 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
671 if (global_page_state(NR_UNSTABLE_NFS
) +
672 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
674 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
677 * The caller might hold locks which can prevent IO completion
678 * or progress in the filesystem. So we cannot just sit here
679 * waiting for IO to complete.
681 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
686 static void laptop_timer_fn(unsigned long unused
);
688 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
691 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
693 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
694 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
696 proc_dointvec(table
, write
, buffer
, length
, ppos
);
700 static void do_laptop_sync(struct work_struct
*work
)
702 wakeup_flusher_threads(0);
706 static void laptop_timer_fn(unsigned long unused
)
708 struct work_struct
*work
;
710 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
712 INIT_WORK(work
, do_laptop_sync
);
718 * We've spun up the disk and we're in laptop mode: schedule writeback
719 * of all dirty data a few seconds from now. If the flush is already scheduled
720 * then push it back - the user is still using the disk.
722 void laptop_io_completion(void)
724 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
728 * We're in laptop mode and we've just synced. The sync's writes will have
729 * caused another writeback to be scheduled by laptop_io_completion.
730 * Nothing needs to be written back anymore, so we unschedule the writeback.
732 void laptop_sync_completion(void)
734 del_timer(&laptop_mode_wb_timer
);
738 * If ratelimit_pages is too high then we can get into dirty-data overload
739 * if a large number of processes all perform writes at the same time.
740 * If it is too low then SMP machines will call the (expensive)
741 * get_writeback_state too often.
743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
745 * thresholds before writeback cuts in.
747 * But the limit should not be set too high. Because it also controls the
748 * amount of memory which the balance_dirty_pages() caller has to write back.
749 * If this is too large then the caller will block on the IO queue all the
750 * time. So limit it to four megabytes - the balance_dirty_pages() caller
751 * will write six megabyte chunks, max.
754 void writeback_set_ratelimit(void)
756 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
757 if (ratelimit_pages
< 16)
758 ratelimit_pages
= 16;
759 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
760 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
764 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
766 writeback_set_ratelimit();
770 static struct notifier_block __cpuinitdata ratelimit_nb
= {
771 .notifier_call
= ratelimit_handler
,
776 * Called early on to tune the page writeback dirty limits.
778 * We used to scale dirty pages according to how total memory
779 * related to pages that could be allocated for buffers (by
780 * comparing nr_free_buffer_pages() to vm_total_pages.
782 * However, that was when we used "dirty_ratio" to scale with
783 * all memory, and we don't do that any more. "dirty_ratio"
784 * is now applied to total non-HIGHPAGE memory (by subtracting
785 * totalhigh_pages from vm_total_pages), and as such we can't
786 * get into the old insane situation any more where we had
787 * large amounts of dirty pages compared to a small amount of
788 * non-HIGHMEM memory.
790 * But we might still want to scale the dirty_ratio by how
791 * much memory the box has..
793 void __init
page_writeback_init(void)
797 writeback_set_ratelimit();
798 register_cpu_notifier(&ratelimit_nb
);
800 shift
= calc_period_shift();
801 prop_descriptor_init(&vm_completions
, shift
);
802 prop_descriptor_init(&vm_dirties
, shift
);
806 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
807 * @mapping: address space structure to write
808 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
809 * @writepage: function called for each page
810 * @data: data passed to writepage function
812 * If a page is already under I/O, write_cache_pages() skips it, even
813 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
814 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
815 * and msync() need to guarantee that all the data which was dirty at the time
816 * the call was made get new I/O started against them. If wbc->sync_mode is
817 * WB_SYNC_ALL then we were called for data integrity and we must wait for
818 * existing IO to complete.
820 int write_cache_pages(struct address_space
*mapping
,
821 struct writeback_control
*wbc
, writepage_t writepage
,
828 pgoff_t
uninitialized_var(writeback_index
);
830 pgoff_t end
; /* Inclusive */
834 long nr_to_write
= wbc
->nr_to_write
;
836 pagevec_init(&pvec
, 0);
837 if (wbc
->range_cyclic
) {
838 writeback_index
= mapping
->writeback_index
; /* prev offset */
839 index
= writeback_index
;
846 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
847 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
848 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
850 cycled
= 1; /* ignore range_cyclic tests */
854 while (!done
&& (index
<= end
)) {
857 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
859 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
863 for (i
= 0; i
< nr_pages
; i
++) {
864 struct page
*page
= pvec
.pages
[i
];
867 * At this point, the page may be truncated or
868 * invalidated (changing page->mapping to NULL), or
869 * even swizzled back from swapper_space to tmpfs file
870 * mapping. However, page->index will not change
871 * because we have a reference on the page.
873 if (page
->index
> end
) {
875 * can't be range_cyclic (1st pass) because
876 * end == -1 in that case.
882 done_index
= page
->index
+ 1;
887 * Page truncated or invalidated. We can freely skip it
888 * then, even for data integrity operations: the page
889 * has disappeared concurrently, so there could be no
890 * real expectation of this data interity operation
891 * even if there is now a new, dirty page at the same
894 if (unlikely(page
->mapping
!= mapping
)) {
900 if (!PageDirty(page
)) {
901 /* someone wrote it for us */
902 goto continue_unlock
;
905 if (PageWriteback(page
)) {
906 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
907 wait_on_page_writeback(page
);
909 goto continue_unlock
;
912 BUG_ON(PageWriteback(page
));
913 if (!clear_page_dirty_for_io(page
))
914 goto continue_unlock
;
916 ret
= (*writepage
)(page
, wbc
, data
);
918 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
923 * done_index is set past this page,
924 * so media errors will not choke
925 * background writeout for the entire
926 * file. This has consequences for
927 * range_cyclic semantics (ie. it may
928 * not be suitable for data integrity
936 if (nr_to_write
> 0) {
938 if (nr_to_write
== 0 &&
939 wbc
->sync_mode
== WB_SYNC_NONE
) {
941 * We stop writing back only if we are
942 * not doing integrity sync. In case of
943 * integrity sync we have to keep going
944 * because someone may be concurrently
945 * dirtying pages, and we might have
946 * synced a lot of newly appeared dirty
947 * pages, but have not synced all of the
955 pagevec_release(&pvec
);
958 if (!cycled
&& !done
) {
961 * We hit the last page and there is more work to be done: wrap
962 * back to the start of the file
966 end
= writeback_index
- 1;
969 if (!wbc
->no_nrwrite_index_update
) {
970 if (wbc
->range_cyclic
|| (range_whole
&& nr_to_write
> 0))
971 mapping
->writeback_index
= done_index
;
972 wbc
->nr_to_write
= nr_to_write
;
977 EXPORT_SYMBOL(write_cache_pages
);
980 * Function used by generic_writepages to call the real writepage
981 * function and set the mapping flags on error
983 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
986 struct address_space
*mapping
= data
;
987 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
988 mapping_set_error(mapping
, ret
);
993 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
994 * @mapping: address space structure to write
995 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
997 * This is a library function, which implements the writepages()
998 * address_space_operation.
1000 int generic_writepages(struct address_space
*mapping
,
1001 struct writeback_control
*wbc
)
1003 /* deal with chardevs and other special file */
1004 if (!mapping
->a_ops
->writepage
)
1007 return write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1010 EXPORT_SYMBOL(generic_writepages
);
1012 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1016 if (wbc
->nr_to_write
<= 0)
1018 if (mapping
->a_ops
->writepages
)
1019 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1021 ret
= generic_writepages(mapping
, wbc
);
1026 * write_one_page - write out a single page and optionally wait on I/O
1027 * @page: the page to write
1028 * @wait: if true, wait on writeout
1030 * The page must be locked by the caller and will be unlocked upon return.
1032 * write_one_page() returns a negative error code if I/O failed.
1034 int write_one_page(struct page
*page
, int wait
)
1036 struct address_space
*mapping
= page
->mapping
;
1038 struct writeback_control wbc
= {
1039 .sync_mode
= WB_SYNC_ALL
,
1043 BUG_ON(!PageLocked(page
));
1046 wait_on_page_writeback(page
);
1048 if (clear_page_dirty_for_io(page
)) {
1049 page_cache_get(page
);
1050 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1051 if (ret
== 0 && wait
) {
1052 wait_on_page_writeback(page
);
1053 if (PageError(page
))
1056 page_cache_release(page
);
1062 EXPORT_SYMBOL(write_one_page
);
1065 * For address_spaces which do not use buffers nor write back.
1067 int __set_page_dirty_no_writeback(struct page
*page
)
1069 if (!PageDirty(page
))
1075 * Helper function for set_page_dirty family.
1076 * NOTE: This relies on being atomic wrt interrupts.
1078 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1080 if (mapping_cap_account_dirty(mapping
)) {
1081 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1082 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1083 task_dirty_inc(current
);
1084 task_io_account_write(PAGE_CACHE_SIZE
);
1089 * For address_spaces which do not use buffers. Just tag the page as dirty in
1092 * This is also used when a single buffer is being dirtied: we want to set the
1093 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1094 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1096 * Most callers have locked the page, which pins the address_space in memory.
1097 * But zap_pte_range() does not lock the page, however in that case the
1098 * mapping is pinned by the vma's ->vm_file reference.
1100 * We take care to handle the case where the page was truncated from the
1101 * mapping by re-checking page_mapping() inside tree_lock.
1103 int __set_page_dirty_nobuffers(struct page
*page
)
1105 if (!TestSetPageDirty(page
)) {
1106 struct address_space
*mapping
= page_mapping(page
);
1107 struct address_space
*mapping2
;
1112 spin_lock_irq(&mapping
->tree_lock
);
1113 mapping2
= page_mapping(page
);
1114 if (mapping2
) { /* Race with truncate? */
1115 BUG_ON(mapping2
!= mapping
);
1116 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1117 account_page_dirtied(page
, mapping
);
1118 radix_tree_tag_set(&mapping
->page_tree
,
1119 page_index(page
), PAGECACHE_TAG_DIRTY
);
1121 spin_unlock_irq(&mapping
->tree_lock
);
1122 if (mapping
->host
) {
1123 /* !PageAnon && !swapper_space */
1124 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1130 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1133 * When a writepage implementation decides that it doesn't want to write this
1134 * page for some reason, it should redirty the locked page via
1135 * redirty_page_for_writepage() and it should then unlock the page and return 0
1137 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1139 wbc
->pages_skipped
++;
1140 return __set_page_dirty_nobuffers(page
);
1142 EXPORT_SYMBOL(redirty_page_for_writepage
);
1147 * For pages with a mapping this should be done under the page lock
1148 * for the benefit of asynchronous memory errors who prefer a consistent
1149 * dirty state. This rule can be broken in some special cases,
1150 * but should be better not to.
1152 * If the mapping doesn't provide a set_page_dirty a_op, then
1153 * just fall through and assume that it wants buffer_heads.
1155 int set_page_dirty(struct page
*page
)
1157 struct address_space
*mapping
= page_mapping(page
);
1159 if (likely(mapping
)) {
1160 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1163 spd
= __set_page_dirty_buffers
;
1165 return (*spd
)(page
);
1167 if (!PageDirty(page
)) {
1168 if (!TestSetPageDirty(page
))
1173 EXPORT_SYMBOL(set_page_dirty
);
1176 * set_page_dirty() is racy if the caller has no reference against
1177 * page->mapping->host, and if the page is unlocked. This is because another
1178 * CPU could truncate the page off the mapping and then free the mapping.
1180 * Usually, the page _is_ locked, or the caller is a user-space process which
1181 * holds a reference on the inode by having an open file.
1183 * In other cases, the page should be locked before running set_page_dirty().
1185 int set_page_dirty_lock(struct page
*page
)
1189 lock_page_nosync(page
);
1190 ret
= set_page_dirty(page
);
1194 EXPORT_SYMBOL(set_page_dirty_lock
);
1197 * Clear a page's dirty flag, while caring for dirty memory accounting.
1198 * Returns true if the page was previously dirty.
1200 * This is for preparing to put the page under writeout. We leave the page
1201 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1202 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1203 * implementation will run either set_page_writeback() or set_page_dirty(),
1204 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1207 * This incoherency between the page's dirty flag and radix-tree tag is
1208 * unfortunate, but it only exists while the page is locked.
1210 int clear_page_dirty_for_io(struct page
*page
)
1212 struct address_space
*mapping
= page_mapping(page
);
1214 BUG_ON(!PageLocked(page
));
1216 ClearPageReclaim(page
);
1217 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1219 * Yes, Virginia, this is indeed insane.
1221 * We use this sequence to make sure that
1222 * (a) we account for dirty stats properly
1223 * (b) we tell the low-level filesystem to
1224 * mark the whole page dirty if it was
1225 * dirty in a pagetable. Only to then
1226 * (c) clean the page again and return 1 to
1227 * cause the writeback.
1229 * This way we avoid all nasty races with the
1230 * dirty bit in multiple places and clearing
1231 * them concurrently from different threads.
1233 * Note! Normally the "set_page_dirty(page)"
1234 * has no effect on the actual dirty bit - since
1235 * that will already usually be set. But we
1236 * need the side effects, and it can help us
1239 * We basically use the page "master dirty bit"
1240 * as a serialization point for all the different
1241 * threads doing their things.
1243 if (page_mkclean(page
))
1244 set_page_dirty(page
);
1246 * We carefully synchronise fault handlers against
1247 * installing a dirty pte and marking the page dirty
1248 * at this point. We do this by having them hold the
1249 * page lock at some point after installing their
1250 * pte, but before marking the page dirty.
1251 * Pages are always locked coming in here, so we get
1252 * the desired exclusion. See mm/memory.c:do_wp_page()
1253 * for more comments.
1255 if (TestClearPageDirty(page
)) {
1256 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1257 dec_bdi_stat(mapping
->backing_dev_info
,
1263 return TestClearPageDirty(page
);
1265 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1267 int test_clear_page_writeback(struct page
*page
)
1269 struct address_space
*mapping
= page_mapping(page
);
1273 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1274 unsigned long flags
;
1276 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1277 ret
= TestClearPageWriteback(page
);
1279 radix_tree_tag_clear(&mapping
->page_tree
,
1281 PAGECACHE_TAG_WRITEBACK
);
1282 if (bdi_cap_account_writeback(bdi
)) {
1283 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1284 __bdi_writeout_inc(bdi
);
1287 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1289 ret
= TestClearPageWriteback(page
);
1292 dec_zone_page_state(page
, NR_WRITEBACK
);
1296 int test_set_page_writeback(struct page
*page
)
1298 struct address_space
*mapping
= page_mapping(page
);
1302 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1303 unsigned long flags
;
1305 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1306 ret
= TestSetPageWriteback(page
);
1308 radix_tree_tag_set(&mapping
->page_tree
,
1310 PAGECACHE_TAG_WRITEBACK
);
1311 if (bdi_cap_account_writeback(bdi
))
1312 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1314 if (!PageDirty(page
))
1315 radix_tree_tag_clear(&mapping
->page_tree
,
1317 PAGECACHE_TAG_DIRTY
);
1318 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1320 ret
= TestSetPageWriteback(page
);
1323 inc_zone_page_state(page
, NR_WRITEBACK
);
1327 EXPORT_SYMBOL(test_set_page_writeback
);
1330 * Return true if any of the pages in the mapping are marked with the
1333 int mapping_tagged(struct address_space
*mapping
, int tag
)
1337 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1341 EXPORT_SYMBOL(mapping_tagged
);