mtd: nand: r852: declare inline functions static
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob2ae7409bf38f80cc7cbd5dbd472f614c3d694d37
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 raw_spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 raw_spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
249 static inline u64 perf_clock(void)
251 return cpu_clock(smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context *ctx)
259 u64 now = perf_clock();
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event *event)
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
282 event->total_time_enabled = run_end - event->tstamp_enabled;
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
289 event->total_time_running = run_end - event->tstamp_running;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
299 struct perf_event *group_leader = event->group_leader;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
326 struct perf_event *sibling, *tmp;
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
340 update_event_times(event);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
393 struct perf_event *event;
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
398 event_sched_out(group_event, cpuctx, ctx);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info)
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
430 raw_spin_lock(&ctx->lock);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
435 perf_disable();
437 event_sched_out(event, cpuctx, ctx);
439 list_del_event(event, ctx);
441 if (!ctx->task) {
443 * Allow more per task events with respect to the
444 * reservation:
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
451 perf_enable();
452 raw_spin_unlock(&ctx->lock);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event *event)
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
476 if (!task) {
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
491 raw_spin_lock_irq(&ctx->lock);
493 * If the context is active we need to retry the smp call.
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 raw_spin_unlock_irq(&ctx->lock);
497 goto retry;
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 raw_spin_unlock_irq(&ctx->lock);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event *leader)
515 struct perf_event *event;
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info)
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
538 raw_spin_lock(&ctx->lock);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
554 raw_spin_unlock(&ctx->lock);
558 * Disable a event.
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event *event)
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
575 if (!task) {
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
587 raw_spin_lock_irq(&ctx->lock);
589 * If the event is still active, we need to retry the cross-call.
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 raw_spin_unlock_irq(&ctx->lock);
593 goto retry;
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
605 raw_spin_unlock_irq(&ctx->lock);
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
648 struct perf_event *event, *partial_group;
649 int ret;
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
671 return 0;
673 group_error:
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
683 event_sched_out(group_event, cpuctx, ctx);
685 return -EAGAIN;
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event *leader)
694 struct perf_event *event;
696 if (!is_software_event(leader))
697 return 0;
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
703 return 1;
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event))
717 return 1;
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
722 if (cpuctx->exclusive)
723 return 0;
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
734 return can_add_hw;
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info)
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
773 raw_spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
781 perf_disable();
783 add_event_to_ctx(event, ctx);
785 if (event->cpu != -1 && event->cpu != smp_processor_id())
786 goto unlock;
789 * Don't put the event on if it is disabled or if
790 * it is in a group and the group isn't on.
792 if (event->state != PERF_EVENT_STATE_INACTIVE ||
793 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 goto unlock;
797 * An exclusive event can't go on if there are already active
798 * hardware events, and no hardware event can go on if there
799 * is already an exclusive event on.
801 if (!group_can_go_on(event, cpuctx, 1))
802 err = -EEXIST;
803 else
804 err = event_sched_in(event, cpuctx, ctx, cpu);
806 if (err) {
808 * This event couldn't go on. If it is in a group
809 * then we have to pull the whole group off.
810 * If the event group is pinned then put it in error state.
812 if (leader != event)
813 group_sched_out(leader, cpuctx, ctx);
814 if (leader->attr.pinned) {
815 update_group_times(leader);
816 leader->state = PERF_EVENT_STATE_ERROR;
820 if (!err && !ctx->task && cpuctx->max_pertask)
821 cpuctx->max_pertask--;
823 unlock:
824 perf_enable();
826 raw_spin_unlock(&ctx->lock);
830 * Attach a performance event to a context
832 * First we add the event to the list with the hardware enable bit
833 * in event->hw_config cleared.
835 * If the event is attached to a task which is on a CPU we use a smp
836 * call to enable it in the task context. The task might have been
837 * scheduled away, but we check this in the smp call again.
839 * Must be called with ctx->mutex held.
841 static void
842 perf_install_in_context(struct perf_event_context *ctx,
843 struct perf_event *event,
844 int cpu)
846 struct task_struct *task = ctx->task;
848 if (!task) {
850 * Per cpu events are installed via an smp call and
851 * the install is always successful.
853 smp_call_function_single(cpu, __perf_install_in_context,
854 event, 1);
855 return;
858 retry:
859 task_oncpu_function_call(task, __perf_install_in_context,
860 event);
862 raw_spin_lock_irq(&ctx->lock);
864 * we need to retry the smp call.
866 if (ctx->is_active && list_empty(&event->group_entry)) {
867 raw_spin_unlock_irq(&ctx->lock);
868 goto retry;
872 * The lock prevents that this context is scheduled in so we
873 * can add the event safely, if it the call above did not
874 * succeed.
876 if (list_empty(&event->group_entry))
877 add_event_to_ctx(event, ctx);
878 raw_spin_unlock_irq(&ctx->lock);
882 * Put a event into inactive state and update time fields.
883 * Enabling the leader of a group effectively enables all
884 * the group members that aren't explicitly disabled, so we
885 * have to update their ->tstamp_enabled also.
886 * Note: this works for group members as well as group leaders
887 * since the non-leader members' sibling_lists will be empty.
889 static void __perf_event_mark_enabled(struct perf_event *event,
890 struct perf_event_context *ctx)
892 struct perf_event *sub;
894 event->state = PERF_EVENT_STATE_INACTIVE;
895 event->tstamp_enabled = ctx->time - event->total_time_enabled;
896 list_for_each_entry(sub, &event->sibling_list, group_entry)
897 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 sub->tstamp_enabled =
899 ctx->time - sub->total_time_enabled;
903 * Cross CPU call to enable a performance event
905 static void __perf_event_enable(void *info)
907 struct perf_event *event = info;
908 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 struct perf_event_context *ctx = event->ctx;
910 struct perf_event *leader = event->group_leader;
911 int err;
914 * If this is a per-task event, need to check whether this
915 * event's task is the current task on this cpu.
917 if (ctx->task && cpuctx->task_ctx != ctx) {
918 if (cpuctx->task_ctx || ctx->task != current)
919 return;
920 cpuctx->task_ctx = ctx;
923 raw_spin_lock(&ctx->lock);
924 ctx->is_active = 1;
925 update_context_time(ctx);
927 if (event->state >= PERF_EVENT_STATE_INACTIVE)
928 goto unlock;
929 __perf_event_mark_enabled(event, ctx);
931 if (event->cpu != -1 && event->cpu != smp_processor_id())
932 goto unlock;
935 * If the event is in a group and isn't the group leader,
936 * then don't put it on unless the group is on.
938 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939 goto unlock;
941 if (!group_can_go_on(event, cpuctx, 1)) {
942 err = -EEXIST;
943 } else {
944 perf_disable();
945 if (event == leader)
946 err = group_sched_in(event, cpuctx, ctx,
947 smp_processor_id());
948 else
949 err = event_sched_in(event, cpuctx, ctx,
950 smp_processor_id());
951 perf_enable();
954 if (err) {
956 * If this event can't go on and it's part of a
957 * group, then the whole group has to come off.
959 if (leader != event)
960 group_sched_out(leader, cpuctx, ctx);
961 if (leader->attr.pinned) {
962 update_group_times(leader);
963 leader->state = PERF_EVENT_STATE_ERROR;
967 unlock:
968 raw_spin_unlock(&ctx->lock);
972 * Enable a event.
974 * If event->ctx is a cloned context, callers must make sure that
975 * every task struct that event->ctx->task could possibly point to
976 * remains valid. This condition is satisfied when called through
977 * perf_event_for_each_child or perf_event_for_each as described
978 * for perf_event_disable.
980 void perf_event_enable(struct perf_event *event)
982 struct perf_event_context *ctx = event->ctx;
983 struct task_struct *task = ctx->task;
985 if (!task) {
987 * Enable the event on the cpu that it's on
989 smp_call_function_single(event->cpu, __perf_event_enable,
990 event, 1);
991 return;
994 raw_spin_lock_irq(&ctx->lock);
995 if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 goto out;
999 * If the event is in error state, clear that first.
1000 * That way, if we see the event in error state below, we
1001 * know that it has gone back into error state, as distinct
1002 * from the task having been scheduled away before the
1003 * cross-call arrived.
1005 if (event->state == PERF_EVENT_STATE_ERROR)
1006 event->state = PERF_EVENT_STATE_OFF;
1008 retry:
1009 raw_spin_unlock_irq(&ctx->lock);
1010 task_oncpu_function_call(task, __perf_event_enable, event);
1012 raw_spin_lock_irq(&ctx->lock);
1015 * If the context is active and the event is still off,
1016 * we need to retry the cross-call.
1018 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 goto retry;
1022 * Since we have the lock this context can't be scheduled
1023 * in, so we can change the state safely.
1025 if (event->state == PERF_EVENT_STATE_OFF)
1026 __perf_event_mark_enabled(event, ctx);
1028 out:
1029 raw_spin_unlock_irq(&ctx->lock);
1032 static int perf_event_refresh(struct perf_event *event, int refresh)
1035 * not supported on inherited events
1037 if (event->attr.inherit)
1038 return -EINVAL;
1040 atomic_add(refresh, &event->event_limit);
1041 perf_event_enable(event);
1043 return 0;
1046 void __perf_event_sched_out(struct perf_event_context *ctx,
1047 struct perf_cpu_context *cpuctx)
1049 struct perf_event *event;
1051 raw_spin_lock(&ctx->lock);
1052 ctx->is_active = 0;
1053 if (likely(!ctx->nr_events))
1054 goto out;
1055 update_context_time(ctx);
1057 perf_disable();
1058 if (ctx->nr_active) {
1059 list_for_each_entry(event, &ctx->group_list, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1062 perf_enable();
1063 out:
1064 raw_spin_unlock(&ctx->lock);
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1078 static int context_equiv(struct perf_event_context *ctx1,
1079 struct perf_event_context *ctx2)
1081 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082 && ctx1->parent_gen == ctx2->parent_gen
1083 && !ctx1->pin_count && !ctx2->pin_count;
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087 struct perf_event *next_event)
1089 u64 value;
1091 if (!event->attr.inherit_stat)
1092 return;
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1101 switch (event->state) {
1102 case PERF_EVENT_STATE_ACTIVE:
1103 event->pmu->read(event);
1104 /* fall-through */
1106 case PERF_EVENT_STATE_INACTIVE:
1107 update_event_times(event);
1108 break;
1110 default:
1111 break;
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1118 value = atomic64_read(&next_event->count);
1119 value = atomic64_xchg(&event->count, value);
1120 atomic64_set(&next_event->count, value);
1122 swap(event->total_time_enabled, next_event->total_time_enabled);
1123 swap(event->total_time_running, next_event->total_time_running);
1126 * Since we swizzled the values, update the user visible data too.
1128 perf_event_update_userpage(event);
1129 perf_event_update_userpage(next_event);
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136 struct perf_event_context *next_ctx)
1138 struct perf_event *event, *next_event;
1140 if (!ctx->nr_stat)
1141 return;
1143 update_context_time(ctx);
1145 event = list_first_entry(&ctx->event_list,
1146 struct perf_event, event_entry);
1148 next_event = list_first_entry(&next_ctx->event_list,
1149 struct perf_event, event_entry);
1151 while (&event->event_entry != &ctx->event_list &&
1152 &next_event->event_entry != &next_ctx->event_list) {
1154 __perf_event_sync_stat(event, next_event);
1156 event = list_next_entry(event, event_entry);
1157 next_event = list_next_entry(next_event, event_entry);
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1165 * We stop each event and update the event value in event->count.
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1172 void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next, int cpu)
1175 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent;
1179 struct pt_regs *regs;
1180 int do_switch = 1;
1182 regs = task_pt_regs(task);
1183 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1185 if (likely(!ctx || !cpuctx->task_ctx))
1186 return;
1188 rcu_read_lock();
1189 parent = rcu_dereference(ctx->parent_ctx);
1190 next_ctx = next->perf_event_ctxp;
1191 if (parent && next_ctx &&
1192 rcu_dereference(next_ctx->parent_ctx) == parent) {
1194 * Looks like the two contexts are clones, so we might be
1195 * able to optimize the context switch. We lock both
1196 * contexts and check that they are clones under the
1197 * lock (including re-checking that neither has been
1198 * uncloned in the meantime). It doesn't matter which
1199 * order we take the locks because no other cpu could
1200 * be trying to lock both of these tasks.
1202 raw_spin_lock(&ctx->lock);
1203 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204 if (context_equiv(ctx, next_ctx)) {
1206 * XXX do we need a memory barrier of sorts
1207 * wrt to rcu_dereference() of perf_event_ctxp
1209 task->perf_event_ctxp = next_ctx;
1210 next->perf_event_ctxp = ctx;
1211 ctx->task = next;
1212 next_ctx->task = task;
1213 do_switch = 0;
1215 perf_event_sync_stat(ctx, next_ctx);
1217 raw_spin_unlock(&next_ctx->lock);
1218 raw_spin_unlock(&ctx->lock);
1220 rcu_read_unlock();
1222 if (do_switch) {
1223 __perf_event_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1229 * Called with IRQs disabled
1231 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1235 if (!cpuctx->task_ctx)
1236 return;
1238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239 return;
1241 __perf_event_sched_out(ctx, cpuctx);
1242 cpuctx->task_ctx = NULL;
1246 * Called with IRQs disabled
1248 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1250 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1253 static void
1254 __perf_event_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx, int cpu)
1257 struct perf_event *event;
1258 int can_add_hw = 1;
1260 raw_spin_lock(&ctx->lock);
1261 ctx->is_active = 1;
1262 if (likely(!ctx->nr_events))
1263 goto out;
1265 ctx->timestamp = perf_clock();
1267 perf_disable();
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 if (event->state <= PERF_EVENT_STATE_OFF ||
1275 !event->attr.pinned)
1276 continue;
1277 if (event->cpu != -1 && event->cpu != cpu)
1278 continue;
1280 if (group_can_go_on(event, cpuctx, 1))
1281 group_sched_in(event, cpuctx, ctx, cpu);
1284 * If this pinned group hasn't been scheduled,
1285 * put it in error state.
1287 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1288 update_group_times(event);
1289 event->state = PERF_EVENT_STATE_ERROR;
1293 list_for_each_entry(event, &ctx->group_list, group_entry) {
1295 * Ignore events in OFF or ERROR state, and
1296 * ignore pinned events since we did them already.
1298 if (event->state <= PERF_EVENT_STATE_OFF ||
1299 event->attr.pinned)
1300 continue;
1303 * Listen to the 'cpu' scheduling filter constraint
1304 * of events:
1306 if (event->cpu != -1 && event->cpu != cpu)
1307 continue;
1309 if (group_can_go_on(event, cpuctx, can_add_hw))
1310 if (group_sched_in(event, cpuctx, ctx, cpu))
1311 can_add_hw = 0;
1313 perf_enable();
1314 out:
1315 raw_spin_unlock(&ctx->lock);
1319 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled.
1322 * We restore the event value and then enable it.
1324 * This does not protect us against NMI, but enable()
1325 * sets the enabled bit in the control field of event _before_
1326 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running.
1329 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332 struct perf_event_context *ctx = task->perf_event_ctxp;
1334 if (likely(!ctx))
1335 return;
1336 if (cpuctx->task_ctx == ctx)
1337 return;
1338 __perf_event_sched_in(ctx, cpuctx, cpu);
1339 cpuctx->task_ctx = ctx;
1342 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1344 struct perf_event_context *ctx = &cpuctx->ctx;
1346 __perf_event_sched_in(ctx, cpuctx, cpu);
1349 #define MAX_INTERRUPTS (~0ULL)
1351 static void perf_log_throttle(struct perf_event *event, int enable);
1353 static void perf_adjust_period(struct perf_event *event, u64 events)
1355 struct hw_perf_event *hwc = &event->hw;
1356 u64 period, sample_period;
1357 s64 delta;
1359 events *= hwc->sample_period;
1360 period = div64_u64(events, event->attr.sample_freq);
1362 delta = (s64)(period - hwc->sample_period);
1363 delta = (delta + 7) / 8; /* low pass filter */
1365 sample_period = hwc->sample_period + delta;
1367 if (!sample_period)
1368 sample_period = 1;
1370 hwc->sample_period = sample_period;
1373 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1375 struct perf_event *event;
1376 struct hw_perf_event *hwc;
1377 u64 interrupts, freq;
1379 raw_spin_lock(&ctx->lock);
1380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1381 if (event->state != PERF_EVENT_STATE_ACTIVE)
1382 continue;
1384 if (event->cpu != -1 && event->cpu != smp_processor_id())
1385 continue;
1387 hwc = &event->hw;
1389 interrupts = hwc->interrupts;
1390 hwc->interrupts = 0;
1393 * unthrottle events on the tick
1395 if (interrupts == MAX_INTERRUPTS) {
1396 perf_log_throttle(event, 1);
1397 event->pmu->unthrottle(event);
1398 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1401 if (!event->attr.freq || !event->attr.sample_freq)
1402 continue;
1405 * if the specified freq < HZ then we need to skip ticks
1407 if (event->attr.sample_freq < HZ) {
1408 freq = event->attr.sample_freq;
1410 hwc->freq_count += freq;
1411 hwc->freq_interrupts += interrupts;
1413 if (hwc->freq_count < HZ)
1414 continue;
1416 interrupts = hwc->freq_interrupts;
1417 hwc->freq_interrupts = 0;
1418 hwc->freq_count -= HZ;
1419 } else
1420 freq = HZ;
1422 perf_adjust_period(event, freq * interrupts);
1425 * In order to avoid being stalled by an (accidental) huge
1426 * sample period, force reset the sample period if we didn't
1427 * get any events in this freq period.
1429 if (!interrupts) {
1430 perf_disable();
1431 event->pmu->disable(event);
1432 atomic64_set(&hwc->period_left, 0);
1433 event->pmu->enable(event);
1434 perf_enable();
1437 raw_spin_unlock(&ctx->lock);
1441 * Round-robin a context's events:
1443 static void rotate_ctx(struct perf_event_context *ctx)
1445 struct perf_event *event;
1447 if (!ctx->nr_events)
1448 return;
1450 raw_spin_lock(&ctx->lock);
1452 * Rotate the first entry last (works just fine for group events too):
1454 perf_disable();
1455 list_for_each_entry(event, &ctx->group_list, group_entry) {
1456 list_move_tail(&event->group_entry, &ctx->group_list);
1457 break;
1459 perf_enable();
1461 raw_spin_unlock(&ctx->lock);
1464 void perf_event_task_tick(struct task_struct *curr, int cpu)
1466 struct perf_cpu_context *cpuctx;
1467 struct perf_event_context *ctx;
1469 if (!atomic_read(&nr_events))
1470 return;
1472 cpuctx = &per_cpu(perf_cpu_context, cpu);
1473 ctx = curr->perf_event_ctxp;
1475 perf_ctx_adjust_freq(&cpuctx->ctx);
1476 if (ctx)
1477 perf_ctx_adjust_freq(ctx);
1479 perf_event_cpu_sched_out(cpuctx);
1480 if (ctx)
1481 __perf_event_task_sched_out(ctx);
1483 rotate_ctx(&cpuctx->ctx);
1484 if (ctx)
1485 rotate_ctx(ctx);
1487 perf_event_cpu_sched_in(cpuctx, cpu);
1488 if (ctx)
1489 perf_event_task_sched_in(curr, cpu);
1493 * Enable all of a task's events that have been marked enable-on-exec.
1494 * This expects task == current.
1496 static void perf_event_enable_on_exec(struct task_struct *task)
1498 struct perf_event_context *ctx;
1499 struct perf_event *event;
1500 unsigned long flags;
1501 int enabled = 0;
1503 local_irq_save(flags);
1504 ctx = task->perf_event_ctxp;
1505 if (!ctx || !ctx->nr_events)
1506 goto out;
1508 __perf_event_task_sched_out(ctx);
1510 raw_spin_lock(&ctx->lock);
1512 list_for_each_entry(event, &ctx->group_list, group_entry) {
1513 if (!event->attr.enable_on_exec)
1514 continue;
1515 event->attr.enable_on_exec = 0;
1516 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1517 continue;
1518 __perf_event_mark_enabled(event, ctx);
1519 enabled = 1;
1523 * Unclone this context if we enabled any event.
1525 if (enabled)
1526 unclone_ctx(ctx);
1528 raw_spin_unlock(&ctx->lock);
1530 perf_event_task_sched_in(task, smp_processor_id());
1531 out:
1532 local_irq_restore(flags);
1536 * Cross CPU call to read the hardware event
1538 static void __perf_event_read(void *info)
1540 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1541 struct perf_event *event = info;
1542 struct perf_event_context *ctx = event->ctx;
1545 * If this is a task context, we need to check whether it is
1546 * the current task context of this cpu. If not it has been
1547 * scheduled out before the smp call arrived. In that case
1548 * event->count would have been updated to a recent sample
1549 * when the event was scheduled out.
1551 if (ctx->task && cpuctx->task_ctx != ctx)
1552 return;
1554 raw_spin_lock(&ctx->lock);
1555 update_context_time(ctx);
1556 update_event_times(event);
1557 raw_spin_unlock(&ctx->lock);
1559 event->pmu->read(event);
1562 static u64 perf_event_read(struct perf_event *event)
1565 * If event is enabled and currently active on a CPU, update the
1566 * value in the event structure:
1568 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1569 smp_call_function_single(event->oncpu,
1570 __perf_event_read, event, 1);
1571 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1572 struct perf_event_context *ctx = event->ctx;
1573 unsigned long flags;
1575 raw_spin_lock_irqsave(&ctx->lock, flags);
1576 update_context_time(ctx);
1577 update_event_times(event);
1578 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1581 return atomic64_read(&event->count);
1585 * Initialize the perf_event context in a task_struct:
1587 static void
1588 __perf_event_init_context(struct perf_event_context *ctx,
1589 struct task_struct *task)
1591 raw_spin_lock_init(&ctx->lock);
1592 mutex_init(&ctx->mutex);
1593 INIT_LIST_HEAD(&ctx->group_list);
1594 INIT_LIST_HEAD(&ctx->event_list);
1595 atomic_set(&ctx->refcount, 1);
1596 ctx->task = task;
1599 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1601 struct perf_event_context *ctx;
1602 struct perf_cpu_context *cpuctx;
1603 struct task_struct *task;
1604 unsigned long flags;
1605 int err;
1607 if (pid == -1 && cpu != -1) {
1608 /* Must be root to operate on a CPU event: */
1609 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1610 return ERR_PTR(-EACCES);
1612 if (cpu < 0 || cpu >= nr_cpumask_bits)
1613 return ERR_PTR(-EINVAL);
1616 * We could be clever and allow to attach a event to an
1617 * offline CPU and activate it when the CPU comes up, but
1618 * that's for later.
1620 if (!cpu_online(cpu))
1621 return ERR_PTR(-ENODEV);
1623 cpuctx = &per_cpu(perf_cpu_context, cpu);
1624 ctx = &cpuctx->ctx;
1625 get_ctx(ctx);
1627 return ctx;
1630 rcu_read_lock();
1631 if (!pid)
1632 task = current;
1633 else
1634 task = find_task_by_vpid(pid);
1635 if (task)
1636 get_task_struct(task);
1637 rcu_read_unlock();
1639 if (!task)
1640 return ERR_PTR(-ESRCH);
1643 * Can't attach events to a dying task.
1645 err = -ESRCH;
1646 if (task->flags & PF_EXITING)
1647 goto errout;
1649 /* Reuse ptrace permission checks for now. */
1650 err = -EACCES;
1651 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1652 goto errout;
1654 retry:
1655 ctx = perf_lock_task_context(task, &flags);
1656 if (ctx) {
1657 unclone_ctx(ctx);
1658 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1661 if (!ctx) {
1662 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1663 err = -ENOMEM;
1664 if (!ctx)
1665 goto errout;
1666 __perf_event_init_context(ctx, task);
1667 get_ctx(ctx);
1668 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1670 * We raced with some other task; use
1671 * the context they set.
1673 kfree(ctx);
1674 goto retry;
1676 get_task_struct(task);
1679 put_task_struct(task);
1680 return ctx;
1682 errout:
1683 put_task_struct(task);
1684 return ERR_PTR(err);
1687 static void perf_event_free_filter(struct perf_event *event);
1689 static void free_event_rcu(struct rcu_head *head)
1691 struct perf_event *event;
1693 event = container_of(head, struct perf_event, rcu_head);
1694 if (event->ns)
1695 put_pid_ns(event->ns);
1696 perf_event_free_filter(event);
1697 kfree(event);
1700 static void perf_pending_sync(struct perf_event *event);
1702 static void free_event(struct perf_event *event)
1704 perf_pending_sync(event);
1706 if (!event->parent) {
1707 atomic_dec(&nr_events);
1708 if (event->attr.mmap)
1709 atomic_dec(&nr_mmap_events);
1710 if (event->attr.comm)
1711 atomic_dec(&nr_comm_events);
1712 if (event->attr.task)
1713 atomic_dec(&nr_task_events);
1716 if (event->output) {
1717 fput(event->output->filp);
1718 event->output = NULL;
1721 if (event->destroy)
1722 event->destroy(event);
1724 put_ctx(event->ctx);
1725 call_rcu(&event->rcu_head, free_event_rcu);
1728 int perf_event_release_kernel(struct perf_event *event)
1730 struct perf_event_context *ctx = event->ctx;
1732 WARN_ON_ONCE(ctx->parent_ctx);
1733 mutex_lock(&ctx->mutex);
1734 perf_event_remove_from_context(event);
1735 mutex_unlock(&ctx->mutex);
1737 mutex_lock(&event->owner->perf_event_mutex);
1738 list_del_init(&event->owner_entry);
1739 mutex_unlock(&event->owner->perf_event_mutex);
1740 put_task_struct(event->owner);
1742 free_event(event);
1744 return 0;
1746 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1749 * Called when the last reference to the file is gone.
1751 static int perf_release(struct inode *inode, struct file *file)
1753 struct perf_event *event = file->private_data;
1755 file->private_data = NULL;
1757 return perf_event_release_kernel(event);
1760 static int perf_event_read_size(struct perf_event *event)
1762 int entry = sizeof(u64); /* value */
1763 int size = 0;
1764 int nr = 1;
1766 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1767 size += sizeof(u64);
1769 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1770 size += sizeof(u64);
1772 if (event->attr.read_format & PERF_FORMAT_ID)
1773 entry += sizeof(u64);
1775 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1776 nr += event->group_leader->nr_siblings;
1777 size += sizeof(u64);
1780 size += entry * nr;
1782 return size;
1785 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1787 struct perf_event *child;
1788 u64 total = 0;
1790 *enabled = 0;
1791 *running = 0;
1793 mutex_lock(&event->child_mutex);
1794 total += perf_event_read(event);
1795 *enabled += event->total_time_enabled +
1796 atomic64_read(&event->child_total_time_enabled);
1797 *running += event->total_time_running +
1798 atomic64_read(&event->child_total_time_running);
1800 list_for_each_entry(child, &event->child_list, child_list) {
1801 total += perf_event_read(child);
1802 *enabled += child->total_time_enabled;
1803 *running += child->total_time_running;
1805 mutex_unlock(&event->child_mutex);
1807 return total;
1809 EXPORT_SYMBOL_GPL(perf_event_read_value);
1811 static int perf_event_read_group(struct perf_event *event,
1812 u64 read_format, char __user *buf)
1814 struct perf_event *leader = event->group_leader, *sub;
1815 int n = 0, size = 0, ret = -EFAULT;
1816 struct perf_event_context *ctx = leader->ctx;
1817 u64 values[5];
1818 u64 count, enabled, running;
1820 mutex_lock(&ctx->mutex);
1821 count = perf_event_read_value(leader, &enabled, &running);
1823 values[n++] = 1 + leader->nr_siblings;
1824 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1825 values[n++] = enabled;
1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 values[n++] = running;
1828 values[n++] = count;
1829 if (read_format & PERF_FORMAT_ID)
1830 values[n++] = primary_event_id(leader);
1832 size = n * sizeof(u64);
1834 if (copy_to_user(buf, values, size))
1835 goto unlock;
1837 ret = size;
1839 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1840 n = 0;
1842 values[n++] = perf_event_read_value(sub, &enabled, &running);
1843 if (read_format & PERF_FORMAT_ID)
1844 values[n++] = primary_event_id(sub);
1846 size = n * sizeof(u64);
1848 if (copy_to_user(buf + ret, values, size)) {
1849 ret = -EFAULT;
1850 goto unlock;
1853 ret += size;
1855 unlock:
1856 mutex_unlock(&ctx->mutex);
1858 return ret;
1861 static int perf_event_read_one(struct perf_event *event,
1862 u64 read_format, char __user *buf)
1864 u64 enabled, running;
1865 u64 values[4];
1866 int n = 0;
1868 values[n++] = perf_event_read_value(event, &enabled, &running);
1869 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1870 values[n++] = enabled;
1871 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1872 values[n++] = running;
1873 if (read_format & PERF_FORMAT_ID)
1874 values[n++] = primary_event_id(event);
1876 if (copy_to_user(buf, values, n * sizeof(u64)))
1877 return -EFAULT;
1879 return n * sizeof(u64);
1883 * Read the performance event - simple non blocking version for now
1885 static ssize_t
1886 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1888 u64 read_format = event->attr.read_format;
1889 int ret;
1892 * Return end-of-file for a read on a event that is in
1893 * error state (i.e. because it was pinned but it couldn't be
1894 * scheduled on to the CPU at some point).
1896 if (event->state == PERF_EVENT_STATE_ERROR)
1897 return 0;
1899 if (count < perf_event_read_size(event))
1900 return -ENOSPC;
1902 WARN_ON_ONCE(event->ctx->parent_ctx);
1903 if (read_format & PERF_FORMAT_GROUP)
1904 ret = perf_event_read_group(event, read_format, buf);
1905 else
1906 ret = perf_event_read_one(event, read_format, buf);
1908 return ret;
1911 static ssize_t
1912 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1914 struct perf_event *event = file->private_data;
1916 return perf_read_hw(event, buf, count);
1919 static unsigned int perf_poll(struct file *file, poll_table *wait)
1921 struct perf_event *event = file->private_data;
1922 struct perf_mmap_data *data;
1923 unsigned int events = POLL_HUP;
1925 rcu_read_lock();
1926 data = rcu_dereference(event->data);
1927 if (data)
1928 events = atomic_xchg(&data->poll, 0);
1929 rcu_read_unlock();
1931 poll_wait(file, &event->waitq, wait);
1933 return events;
1936 static void perf_event_reset(struct perf_event *event)
1938 (void)perf_event_read(event);
1939 atomic64_set(&event->count, 0);
1940 perf_event_update_userpage(event);
1944 * Holding the top-level event's child_mutex means that any
1945 * descendant process that has inherited this event will block
1946 * in sync_child_event if it goes to exit, thus satisfying the
1947 * task existence requirements of perf_event_enable/disable.
1949 static void perf_event_for_each_child(struct perf_event *event,
1950 void (*func)(struct perf_event *))
1952 struct perf_event *child;
1954 WARN_ON_ONCE(event->ctx->parent_ctx);
1955 mutex_lock(&event->child_mutex);
1956 func(event);
1957 list_for_each_entry(child, &event->child_list, child_list)
1958 func(child);
1959 mutex_unlock(&event->child_mutex);
1962 static void perf_event_for_each(struct perf_event *event,
1963 void (*func)(struct perf_event *))
1965 struct perf_event_context *ctx = event->ctx;
1966 struct perf_event *sibling;
1968 WARN_ON_ONCE(ctx->parent_ctx);
1969 mutex_lock(&ctx->mutex);
1970 event = event->group_leader;
1972 perf_event_for_each_child(event, func);
1973 func(event);
1974 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1975 perf_event_for_each_child(event, func);
1976 mutex_unlock(&ctx->mutex);
1979 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1981 struct perf_event_context *ctx = event->ctx;
1982 unsigned long size;
1983 int ret = 0;
1984 u64 value;
1986 if (!event->attr.sample_period)
1987 return -EINVAL;
1989 size = copy_from_user(&value, arg, sizeof(value));
1990 if (size != sizeof(value))
1991 return -EFAULT;
1993 if (!value)
1994 return -EINVAL;
1996 raw_spin_lock_irq(&ctx->lock);
1997 if (event->attr.freq) {
1998 if (value > sysctl_perf_event_sample_rate) {
1999 ret = -EINVAL;
2000 goto unlock;
2003 event->attr.sample_freq = value;
2004 } else {
2005 event->attr.sample_period = value;
2006 event->hw.sample_period = value;
2008 unlock:
2009 raw_spin_unlock_irq(&ctx->lock);
2011 return ret;
2014 static int perf_event_set_output(struct perf_event *event, int output_fd);
2015 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2017 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2019 struct perf_event *event = file->private_data;
2020 void (*func)(struct perf_event *);
2021 u32 flags = arg;
2023 switch (cmd) {
2024 case PERF_EVENT_IOC_ENABLE:
2025 func = perf_event_enable;
2026 break;
2027 case PERF_EVENT_IOC_DISABLE:
2028 func = perf_event_disable;
2029 break;
2030 case PERF_EVENT_IOC_RESET:
2031 func = perf_event_reset;
2032 break;
2034 case PERF_EVENT_IOC_REFRESH:
2035 return perf_event_refresh(event, arg);
2037 case PERF_EVENT_IOC_PERIOD:
2038 return perf_event_period(event, (u64 __user *)arg);
2040 case PERF_EVENT_IOC_SET_OUTPUT:
2041 return perf_event_set_output(event, arg);
2043 case PERF_EVENT_IOC_SET_FILTER:
2044 return perf_event_set_filter(event, (void __user *)arg);
2046 default:
2047 return -ENOTTY;
2050 if (flags & PERF_IOC_FLAG_GROUP)
2051 perf_event_for_each(event, func);
2052 else
2053 perf_event_for_each_child(event, func);
2055 return 0;
2058 int perf_event_task_enable(void)
2060 struct perf_event *event;
2062 mutex_lock(&current->perf_event_mutex);
2063 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2064 perf_event_for_each_child(event, perf_event_enable);
2065 mutex_unlock(&current->perf_event_mutex);
2067 return 0;
2070 int perf_event_task_disable(void)
2072 struct perf_event *event;
2074 mutex_lock(&current->perf_event_mutex);
2075 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2076 perf_event_for_each_child(event, perf_event_disable);
2077 mutex_unlock(&current->perf_event_mutex);
2079 return 0;
2082 #ifndef PERF_EVENT_INDEX_OFFSET
2083 # define PERF_EVENT_INDEX_OFFSET 0
2084 #endif
2086 static int perf_event_index(struct perf_event *event)
2088 if (event->state != PERF_EVENT_STATE_ACTIVE)
2089 return 0;
2091 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2095 * Callers need to ensure there can be no nesting of this function, otherwise
2096 * the seqlock logic goes bad. We can not serialize this because the arch
2097 * code calls this from NMI context.
2099 void perf_event_update_userpage(struct perf_event *event)
2101 struct perf_event_mmap_page *userpg;
2102 struct perf_mmap_data *data;
2104 rcu_read_lock();
2105 data = rcu_dereference(event->data);
2106 if (!data)
2107 goto unlock;
2109 userpg = data->user_page;
2112 * Disable preemption so as to not let the corresponding user-space
2113 * spin too long if we get preempted.
2115 preempt_disable();
2116 ++userpg->lock;
2117 barrier();
2118 userpg->index = perf_event_index(event);
2119 userpg->offset = atomic64_read(&event->count);
2120 if (event->state == PERF_EVENT_STATE_ACTIVE)
2121 userpg->offset -= atomic64_read(&event->hw.prev_count);
2123 userpg->time_enabled = event->total_time_enabled +
2124 atomic64_read(&event->child_total_time_enabled);
2126 userpg->time_running = event->total_time_running +
2127 atomic64_read(&event->child_total_time_running);
2129 barrier();
2130 ++userpg->lock;
2131 preempt_enable();
2132 unlock:
2133 rcu_read_unlock();
2136 static unsigned long perf_data_size(struct perf_mmap_data *data)
2138 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2141 #ifndef CONFIG_PERF_USE_VMALLOC
2144 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2147 static struct page *
2148 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2150 if (pgoff > data->nr_pages)
2151 return NULL;
2153 if (pgoff == 0)
2154 return virt_to_page(data->user_page);
2156 return virt_to_page(data->data_pages[pgoff - 1]);
2159 static struct perf_mmap_data *
2160 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2162 struct perf_mmap_data *data;
2163 unsigned long size;
2164 int i;
2166 WARN_ON(atomic_read(&event->mmap_count));
2168 size = sizeof(struct perf_mmap_data);
2169 size += nr_pages * sizeof(void *);
2171 data = kzalloc(size, GFP_KERNEL);
2172 if (!data)
2173 goto fail;
2175 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2176 if (!data->user_page)
2177 goto fail_user_page;
2179 for (i = 0; i < nr_pages; i++) {
2180 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2181 if (!data->data_pages[i])
2182 goto fail_data_pages;
2185 data->data_order = 0;
2186 data->nr_pages = nr_pages;
2188 return data;
2190 fail_data_pages:
2191 for (i--; i >= 0; i--)
2192 free_page((unsigned long)data->data_pages[i]);
2194 free_page((unsigned long)data->user_page);
2196 fail_user_page:
2197 kfree(data);
2199 fail:
2200 return NULL;
2203 static void perf_mmap_free_page(unsigned long addr)
2205 struct page *page = virt_to_page((void *)addr);
2207 page->mapping = NULL;
2208 __free_page(page);
2211 static void perf_mmap_data_free(struct perf_mmap_data *data)
2213 int i;
2215 perf_mmap_free_page((unsigned long)data->user_page);
2216 for (i = 0; i < data->nr_pages; i++)
2217 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2218 kfree(data);
2221 #else
2224 * Back perf_mmap() with vmalloc memory.
2226 * Required for architectures that have d-cache aliasing issues.
2229 static struct page *
2230 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2232 if (pgoff > (1UL << data->data_order))
2233 return NULL;
2235 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2238 static void perf_mmap_unmark_page(void *addr)
2240 struct page *page = vmalloc_to_page(addr);
2242 page->mapping = NULL;
2245 static void perf_mmap_data_free_work(struct work_struct *work)
2247 struct perf_mmap_data *data;
2248 void *base;
2249 int i, nr;
2251 data = container_of(work, struct perf_mmap_data, work);
2252 nr = 1 << data->data_order;
2254 base = data->user_page;
2255 for (i = 0; i < nr + 1; i++)
2256 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2258 vfree(base);
2259 kfree(data);
2262 static void perf_mmap_data_free(struct perf_mmap_data *data)
2264 schedule_work(&data->work);
2267 static struct perf_mmap_data *
2268 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2270 struct perf_mmap_data *data;
2271 unsigned long size;
2272 void *all_buf;
2274 WARN_ON(atomic_read(&event->mmap_count));
2276 size = sizeof(struct perf_mmap_data);
2277 size += sizeof(void *);
2279 data = kzalloc(size, GFP_KERNEL);
2280 if (!data)
2281 goto fail;
2283 INIT_WORK(&data->work, perf_mmap_data_free_work);
2285 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2286 if (!all_buf)
2287 goto fail_all_buf;
2289 data->user_page = all_buf;
2290 data->data_pages[0] = all_buf + PAGE_SIZE;
2291 data->data_order = ilog2(nr_pages);
2292 data->nr_pages = 1;
2294 return data;
2296 fail_all_buf:
2297 kfree(data);
2299 fail:
2300 return NULL;
2303 #endif
2305 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2307 struct perf_event *event = vma->vm_file->private_data;
2308 struct perf_mmap_data *data;
2309 int ret = VM_FAULT_SIGBUS;
2311 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2312 if (vmf->pgoff == 0)
2313 ret = 0;
2314 return ret;
2317 rcu_read_lock();
2318 data = rcu_dereference(event->data);
2319 if (!data)
2320 goto unlock;
2322 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2323 goto unlock;
2325 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2326 if (!vmf->page)
2327 goto unlock;
2329 get_page(vmf->page);
2330 vmf->page->mapping = vma->vm_file->f_mapping;
2331 vmf->page->index = vmf->pgoff;
2333 ret = 0;
2334 unlock:
2335 rcu_read_unlock();
2337 return ret;
2340 static void
2341 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2343 long max_size = perf_data_size(data);
2345 atomic_set(&data->lock, -1);
2347 if (event->attr.watermark) {
2348 data->watermark = min_t(long, max_size,
2349 event->attr.wakeup_watermark);
2352 if (!data->watermark)
2353 data->watermark = max_size / 2;
2356 rcu_assign_pointer(event->data, data);
2359 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2361 struct perf_mmap_data *data;
2363 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2364 perf_mmap_data_free(data);
2367 static void perf_mmap_data_release(struct perf_event *event)
2369 struct perf_mmap_data *data = event->data;
2371 WARN_ON(atomic_read(&event->mmap_count));
2373 rcu_assign_pointer(event->data, NULL);
2374 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2377 static void perf_mmap_open(struct vm_area_struct *vma)
2379 struct perf_event *event = vma->vm_file->private_data;
2381 atomic_inc(&event->mmap_count);
2384 static void perf_mmap_close(struct vm_area_struct *vma)
2386 struct perf_event *event = vma->vm_file->private_data;
2388 WARN_ON_ONCE(event->ctx->parent_ctx);
2389 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2390 unsigned long size = perf_data_size(event->data);
2391 struct user_struct *user = current_user();
2393 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2394 vma->vm_mm->locked_vm -= event->data->nr_locked;
2395 perf_mmap_data_release(event);
2396 mutex_unlock(&event->mmap_mutex);
2400 static const struct vm_operations_struct perf_mmap_vmops = {
2401 .open = perf_mmap_open,
2402 .close = perf_mmap_close,
2403 .fault = perf_mmap_fault,
2404 .page_mkwrite = perf_mmap_fault,
2407 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2409 struct perf_event *event = file->private_data;
2410 unsigned long user_locked, user_lock_limit;
2411 struct user_struct *user = current_user();
2412 unsigned long locked, lock_limit;
2413 struct perf_mmap_data *data;
2414 unsigned long vma_size;
2415 unsigned long nr_pages;
2416 long user_extra, extra;
2417 int ret = 0;
2419 if (!(vma->vm_flags & VM_SHARED))
2420 return -EINVAL;
2422 vma_size = vma->vm_end - vma->vm_start;
2423 nr_pages = (vma_size / PAGE_SIZE) - 1;
2426 * If we have data pages ensure they're a power-of-two number, so we
2427 * can do bitmasks instead of modulo.
2429 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2430 return -EINVAL;
2432 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2433 return -EINVAL;
2435 if (vma->vm_pgoff != 0)
2436 return -EINVAL;
2438 WARN_ON_ONCE(event->ctx->parent_ctx);
2439 mutex_lock(&event->mmap_mutex);
2440 if (event->output) {
2441 ret = -EINVAL;
2442 goto unlock;
2445 if (atomic_inc_not_zero(&event->mmap_count)) {
2446 if (nr_pages != event->data->nr_pages)
2447 ret = -EINVAL;
2448 goto unlock;
2451 user_extra = nr_pages + 1;
2452 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2455 * Increase the limit linearly with more CPUs:
2457 user_lock_limit *= num_online_cpus();
2459 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2461 extra = 0;
2462 if (user_locked > user_lock_limit)
2463 extra = user_locked - user_lock_limit;
2465 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2466 lock_limit >>= PAGE_SHIFT;
2467 locked = vma->vm_mm->locked_vm + extra;
2469 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2470 !capable(CAP_IPC_LOCK)) {
2471 ret = -EPERM;
2472 goto unlock;
2475 WARN_ON(event->data);
2477 data = perf_mmap_data_alloc(event, nr_pages);
2478 ret = -ENOMEM;
2479 if (!data)
2480 goto unlock;
2482 ret = 0;
2483 perf_mmap_data_init(event, data);
2485 atomic_set(&event->mmap_count, 1);
2486 atomic_long_add(user_extra, &user->locked_vm);
2487 vma->vm_mm->locked_vm += extra;
2488 event->data->nr_locked = extra;
2489 if (vma->vm_flags & VM_WRITE)
2490 event->data->writable = 1;
2492 unlock:
2493 mutex_unlock(&event->mmap_mutex);
2495 vma->vm_flags |= VM_RESERVED;
2496 vma->vm_ops = &perf_mmap_vmops;
2498 return ret;
2501 static int perf_fasync(int fd, struct file *filp, int on)
2503 struct inode *inode = filp->f_path.dentry->d_inode;
2504 struct perf_event *event = filp->private_data;
2505 int retval;
2507 mutex_lock(&inode->i_mutex);
2508 retval = fasync_helper(fd, filp, on, &event->fasync);
2509 mutex_unlock(&inode->i_mutex);
2511 if (retval < 0)
2512 return retval;
2514 return 0;
2517 static const struct file_operations perf_fops = {
2518 .release = perf_release,
2519 .read = perf_read,
2520 .poll = perf_poll,
2521 .unlocked_ioctl = perf_ioctl,
2522 .compat_ioctl = perf_ioctl,
2523 .mmap = perf_mmap,
2524 .fasync = perf_fasync,
2528 * Perf event wakeup
2530 * If there's data, ensure we set the poll() state and publish everything
2531 * to user-space before waking everybody up.
2534 void perf_event_wakeup(struct perf_event *event)
2536 wake_up_all(&event->waitq);
2538 if (event->pending_kill) {
2539 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2540 event->pending_kill = 0;
2545 * Pending wakeups
2547 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2549 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2550 * single linked list and use cmpxchg() to add entries lockless.
2553 static void perf_pending_event(struct perf_pending_entry *entry)
2555 struct perf_event *event = container_of(entry,
2556 struct perf_event, pending);
2558 if (event->pending_disable) {
2559 event->pending_disable = 0;
2560 __perf_event_disable(event);
2563 if (event->pending_wakeup) {
2564 event->pending_wakeup = 0;
2565 perf_event_wakeup(event);
2569 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2571 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2572 PENDING_TAIL,
2575 static void perf_pending_queue(struct perf_pending_entry *entry,
2576 void (*func)(struct perf_pending_entry *))
2578 struct perf_pending_entry **head;
2580 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2581 return;
2583 entry->func = func;
2585 head = &get_cpu_var(perf_pending_head);
2587 do {
2588 entry->next = *head;
2589 } while (cmpxchg(head, entry->next, entry) != entry->next);
2591 set_perf_event_pending();
2593 put_cpu_var(perf_pending_head);
2596 static int __perf_pending_run(void)
2598 struct perf_pending_entry *list;
2599 int nr = 0;
2601 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2602 while (list != PENDING_TAIL) {
2603 void (*func)(struct perf_pending_entry *);
2604 struct perf_pending_entry *entry = list;
2606 list = list->next;
2608 func = entry->func;
2609 entry->next = NULL;
2611 * Ensure we observe the unqueue before we issue the wakeup,
2612 * so that we won't be waiting forever.
2613 * -- see perf_not_pending().
2615 smp_wmb();
2617 func(entry);
2618 nr++;
2621 return nr;
2624 static inline int perf_not_pending(struct perf_event *event)
2627 * If we flush on whatever cpu we run, there is a chance we don't
2628 * need to wait.
2630 get_cpu();
2631 __perf_pending_run();
2632 put_cpu();
2635 * Ensure we see the proper queue state before going to sleep
2636 * so that we do not miss the wakeup. -- see perf_pending_handle()
2638 smp_rmb();
2639 return event->pending.next == NULL;
2642 static void perf_pending_sync(struct perf_event *event)
2644 wait_event(event->waitq, perf_not_pending(event));
2647 void perf_event_do_pending(void)
2649 __perf_pending_run();
2653 * Callchain support -- arch specific
2656 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2658 return NULL;
2662 * Output
2664 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2665 unsigned long offset, unsigned long head)
2667 unsigned long mask;
2669 if (!data->writable)
2670 return true;
2672 mask = perf_data_size(data) - 1;
2674 offset = (offset - tail) & mask;
2675 head = (head - tail) & mask;
2677 if ((int)(head - offset) < 0)
2678 return false;
2680 return true;
2683 static void perf_output_wakeup(struct perf_output_handle *handle)
2685 atomic_set(&handle->data->poll, POLL_IN);
2687 if (handle->nmi) {
2688 handle->event->pending_wakeup = 1;
2689 perf_pending_queue(&handle->event->pending,
2690 perf_pending_event);
2691 } else
2692 perf_event_wakeup(handle->event);
2696 * Curious locking construct.
2698 * We need to ensure a later event_id doesn't publish a head when a former
2699 * event_id isn't done writing. However since we need to deal with NMIs we
2700 * cannot fully serialize things.
2702 * What we do is serialize between CPUs so we only have to deal with NMI
2703 * nesting on a single CPU.
2705 * We only publish the head (and generate a wakeup) when the outer-most
2706 * event_id completes.
2708 static void perf_output_lock(struct perf_output_handle *handle)
2710 struct perf_mmap_data *data = handle->data;
2711 int cur, cpu = get_cpu();
2713 handle->locked = 0;
2715 for (;;) {
2716 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2717 if (cur == -1) {
2718 handle->locked = 1;
2719 break;
2721 if (cur == cpu)
2722 break;
2724 cpu_relax();
2728 static void perf_output_unlock(struct perf_output_handle *handle)
2730 struct perf_mmap_data *data = handle->data;
2731 unsigned long head;
2732 int cpu;
2734 data->done_head = data->head;
2736 if (!handle->locked)
2737 goto out;
2739 again:
2741 * The xchg implies a full barrier that ensures all writes are done
2742 * before we publish the new head, matched by a rmb() in userspace when
2743 * reading this position.
2745 while ((head = atomic_long_xchg(&data->done_head, 0)))
2746 data->user_page->data_head = head;
2749 * NMI can happen here, which means we can miss a done_head update.
2752 cpu = atomic_xchg(&data->lock, -1);
2753 WARN_ON_ONCE(cpu != smp_processor_id());
2756 * Therefore we have to validate we did not indeed do so.
2758 if (unlikely(atomic_long_read(&data->done_head))) {
2760 * Since we had it locked, we can lock it again.
2762 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2763 cpu_relax();
2765 goto again;
2768 if (atomic_xchg(&data->wakeup, 0))
2769 perf_output_wakeup(handle);
2770 out:
2771 put_cpu();
2774 void perf_output_copy(struct perf_output_handle *handle,
2775 const void *buf, unsigned int len)
2777 unsigned int pages_mask;
2778 unsigned long offset;
2779 unsigned int size;
2780 void **pages;
2782 offset = handle->offset;
2783 pages_mask = handle->data->nr_pages - 1;
2784 pages = handle->data->data_pages;
2786 do {
2787 unsigned long page_offset;
2788 unsigned long page_size;
2789 int nr;
2791 nr = (offset >> PAGE_SHIFT) & pages_mask;
2792 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2793 page_offset = offset & (page_size - 1);
2794 size = min_t(unsigned int, page_size - page_offset, len);
2796 memcpy(pages[nr] + page_offset, buf, size);
2798 len -= size;
2799 buf += size;
2800 offset += size;
2801 } while (len);
2803 handle->offset = offset;
2806 * Check we didn't copy past our reservation window, taking the
2807 * possible unsigned int wrap into account.
2809 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2812 int perf_output_begin(struct perf_output_handle *handle,
2813 struct perf_event *event, unsigned int size,
2814 int nmi, int sample)
2816 struct perf_event *output_event;
2817 struct perf_mmap_data *data;
2818 unsigned long tail, offset, head;
2819 int have_lost;
2820 struct {
2821 struct perf_event_header header;
2822 u64 id;
2823 u64 lost;
2824 } lost_event;
2826 rcu_read_lock();
2828 * For inherited events we send all the output towards the parent.
2830 if (event->parent)
2831 event = event->parent;
2833 output_event = rcu_dereference(event->output);
2834 if (output_event)
2835 event = output_event;
2837 data = rcu_dereference(event->data);
2838 if (!data)
2839 goto out;
2841 handle->data = data;
2842 handle->event = event;
2843 handle->nmi = nmi;
2844 handle->sample = sample;
2846 if (!data->nr_pages)
2847 goto fail;
2849 have_lost = atomic_read(&data->lost);
2850 if (have_lost)
2851 size += sizeof(lost_event);
2853 perf_output_lock(handle);
2855 do {
2857 * Userspace could choose to issue a mb() before updating the
2858 * tail pointer. So that all reads will be completed before the
2859 * write is issued.
2861 tail = ACCESS_ONCE(data->user_page->data_tail);
2862 smp_rmb();
2863 offset = head = atomic_long_read(&data->head);
2864 head += size;
2865 if (unlikely(!perf_output_space(data, tail, offset, head)))
2866 goto fail;
2867 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2869 handle->offset = offset;
2870 handle->head = head;
2872 if (head - tail > data->watermark)
2873 atomic_set(&data->wakeup, 1);
2875 if (have_lost) {
2876 lost_event.header.type = PERF_RECORD_LOST;
2877 lost_event.header.misc = 0;
2878 lost_event.header.size = sizeof(lost_event);
2879 lost_event.id = event->id;
2880 lost_event.lost = atomic_xchg(&data->lost, 0);
2882 perf_output_put(handle, lost_event);
2885 return 0;
2887 fail:
2888 atomic_inc(&data->lost);
2889 perf_output_unlock(handle);
2890 out:
2891 rcu_read_unlock();
2893 return -ENOSPC;
2896 void perf_output_end(struct perf_output_handle *handle)
2898 struct perf_event *event = handle->event;
2899 struct perf_mmap_data *data = handle->data;
2901 int wakeup_events = event->attr.wakeup_events;
2903 if (handle->sample && wakeup_events) {
2904 int events = atomic_inc_return(&data->events);
2905 if (events >= wakeup_events) {
2906 atomic_sub(wakeup_events, &data->events);
2907 atomic_set(&data->wakeup, 1);
2911 perf_output_unlock(handle);
2912 rcu_read_unlock();
2915 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2918 * only top level events have the pid namespace they were created in
2920 if (event->parent)
2921 event = event->parent;
2923 return task_tgid_nr_ns(p, event->ns);
2926 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2929 * only top level events have the pid namespace they were created in
2931 if (event->parent)
2932 event = event->parent;
2934 return task_pid_nr_ns(p, event->ns);
2937 static void perf_output_read_one(struct perf_output_handle *handle,
2938 struct perf_event *event)
2940 u64 read_format = event->attr.read_format;
2941 u64 values[4];
2942 int n = 0;
2944 values[n++] = atomic64_read(&event->count);
2945 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2946 values[n++] = event->total_time_enabled +
2947 atomic64_read(&event->child_total_time_enabled);
2949 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2950 values[n++] = event->total_time_running +
2951 atomic64_read(&event->child_total_time_running);
2953 if (read_format & PERF_FORMAT_ID)
2954 values[n++] = primary_event_id(event);
2956 perf_output_copy(handle, values, n * sizeof(u64));
2960 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2962 static void perf_output_read_group(struct perf_output_handle *handle,
2963 struct perf_event *event)
2965 struct perf_event *leader = event->group_leader, *sub;
2966 u64 read_format = event->attr.read_format;
2967 u64 values[5];
2968 int n = 0;
2970 values[n++] = 1 + leader->nr_siblings;
2972 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2973 values[n++] = leader->total_time_enabled;
2975 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2976 values[n++] = leader->total_time_running;
2978 if (leader != event)
2979 leader->pmu->read(leader);
2981 values[n++] = atomic64_read(&leader->count);
2982 if (read_format & PERF_FORMAT_ID)
2983 values[n++] = primary_event_id(leader);
2985 perf_output_copy(handle, values, n * sizeof(u64));
2987 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2988 n = 0;
2990 if (sub != event)
2991 sub->pmu->read(sub);
2993 values[n++] = atomic64_read(&sub->count);
2994 if (read_format & PERF_FORMAT_ID)
2995 values[n++] = primary_event_id(sub);
2997 perf_output_copy(handle, values, n * sizeof(u64));
3001 static void perf_output_read(struct perf_output_handle *handle,
3002 struct perf_event *event)
3004 if (event->attr.read_format & PERF_FORMAT_GROUP)
3005 perf_output_read_group(handle, event);
3006 else
3007 perf_output_read_one(handle, event);
3010 void perf_output_sample(struct perf_output_handle *handle,
3011 struct perf_event_header *header,
3012 struct perf_sample_data *data,
3013 struct perf_event *event)
3015 u64 sample_type = data->type;
3017 perf_output_put(handle, *header);
3019 if (sample_type & PERF_SAMPLE_IP)
3020 perf_output_put(handle, data->ip);
3022 if (sample_type & PERF_SAMPLE_TID)
3023 perf_output_put(handle, data->tid_entry);
3025 if (sample_type & PERF_SAMPLE_TIME)
3026 perf_output_put(handle, data->time);
3028 if (sample_type & PERF_SAMPLE_ADDR)
3029 perf_output_put(handle, data->addr);
3031 if (sample_type & PERF_SAMPLE_ID)
3032 perf_output_put(handle, data->id);
3034 if (sample_type & PERF_SAMPLE_STREAM_ID)
3035 perf_output_put(handle, data->stream_id);
3037 if (sample_type & PERF_SAMPLE_CPU)
3038 perf_output_put(handle, data->cpu_entry);
3040 if (sample_type & PERF_SAMPLE_PERIOD)
3041 perf_output_put(handle, data->period);
3043 if (sample_type & PERF_SAMPLE_READ)
3044 perf_output_read(handle, event);
3046 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3047 if (data->callchain) {
3048 int size = 1;
3050 if (data->callchain)
3051 size += data->callchain->nr;
3053 size *= sizeof(u64);
3055 perf_output_copy(handle, data->callchain, size);
3056 } else {
3057 u64 nr = 0;
3058 perf_output_put(handle, nr);
3062 if (sample_type & PERF_SAMPLE_RAW) {
3063 if (data->raw) {
3064 perf_output_put(handle, data->raw->size);
3065 perf_output_copy(handle, data->raw->data,
3066 data->raw->size);
3067 } else {
3068 struct {
3069 u32 size;
3070 u32 data;
3071 } raw = {
3072 .size = sizeof(u32),
3073 .data = 0,
3075 perf_output_put(handle, raw);
3080 void perf_prepare_sample(struct perf_event_header *header,
3081 struct perf_sample_data *data,
3082 struct perf_event *event,
3083 struct pt_regs *regs)
3085 u64 sample_type = event->attr.sample_type;
3087 data->type = sample_type;
3089 header->type = PERF_RECORD_SAMPLE;
3090 header->size = sizeof(*header);
3092 header->misc = 0;
3093 header->misc |= perf_misc_flags(regs);
3095 if (sample_type & PERF_SAMPLE_IP) {
3096 data->ip = perf_instruction_pointer(regs);
3098 header->size += sizeof(data->ip);
3101 if (sample_type & PERF_SAMPLE_TID) {
3102 /* namespace issues */
3103 data->tid_entry.pid = perf_event_pid(event, current);
3104 data->tid_entry.tid = perf_event_tid(event, current);
3106 header->size += sizeof(data->tid_entry);
3109 if (sample_type & PERF_SAMPLE_TIME) {
3110 data->time = perf_clock();
3112 header->size += sizeof(data->time);
3115 if (sample_type & PERF_SAMPLE_ADDR)
3116 header->size += sizeof(data->addr);
3118 if (sample_type & PERF_SAMPLE_ID) {
3119 data->id = primary_event_id(event);
3121 header->size += sizeof(data->id);
3124 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3125 data->stream_id = event->id;
3127 header->size += sizeof(data->stream_id);
3130 if (sample_type & PERF_SAMPLE_CPU) {
3131 data->cpu_entry.cpu = raw_smp_processor_id();
3132 data->cpu_entry.reserved = 0;
3134 header->size += sizeof(data->cpu_entry);
3137 if (sample_type & PERF_SAMPLE_PERIOD)
3138 header->size += sizeof(data->period);
3140 if (sample_type & PERF_SAMPLE_READ)
3141 header->size += perf_event_read_size(event);
3143 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3144 int size = 1;
3146 data->callchain = perf_callchain(regs);
3148 if (data->callchain)
3149 size += data->callchain->nr;
3151 header->size += size * sizeof(u64);
3154 if (sample_type & PERF_SAMPLE_RAW) {
3155 int size = sizeof(u32);
3157 if (data->raw)
3158 size += data->raw->size;
3159 else
3160 size += sizeof(u32);
3162 WARN_ON_ONCE(size & (sizeof(u64)-1));
3163 header->size += size;
3167 static void perf_event_output(struct perf_event *event, int nmi,
3168 struct perf_sample_data *data,
3169 struct pt_regs *regs)
3171 struct perf_output_handle handle;
3172 struct perf_event_header header;
3174 perf_prepare_sample(&header, data, event, regs);
3176 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3177 return;
3179 perf_output_sample(&handle, &header, data, event);
3181 perf_output_end(&handle);
3185 * read event_id
3188 struct perf_read_event {
3189 struct perf_event_header header;
3191 u32 pid;
3192 u32 tid;
3195 static void
3196 perf_event_read_event(struct perf_event *event,
3197 struct task_struct *task)
3199 struct perf_output_handle handle;
3200 struct perf_read_event read_event = {
3201 .header = {
3202 .type = PERF_RECORD_READ,
3203 .misc = 0,
3204 .size = sizeof(read_event) + perf_event_read_size(event),
3206 .pid = perf_event_pid(event, task),
3207 .tid = perf_event_tid(event, task),
3209 int ret;
3211 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3212 if (ret)
3213 return;
3215 perf_output_put(&handle, read_event);
3216 perf_output_read(&handle, event);
3218 perf_output_end(&handle);
3222 * task tracking -- fork/exit
3224 * enabled by: attr.comm | attr.mmap | attr.task
3227 struct perf_task_event {
3228 struct task_struct *task;
3229 struct perf_event_context *task_ctx;
3231 struct {
3232 struct perf_event_header header;
3234 u32 pid;
3235 u32 ppid;
3236 u32 tid;
3237 u32 ptid;
3238 u64 time;
3239 } event_id;
3242 static void perf_event_task_output(struct perf_event *event,
3243 struct perf_task_event *task_event)
3245 struct perf_output_handle handle;
3246 int size;
3247 struct task_struct *task = task_event->task;
3248 int ret;
3250 size = task_event->event_id.header.size;
3251 ret = perf_output_begin(&handle, event, size, 0, 0);
3253 if (ret)
3254 return;
3256 task_event->event_id.pid = perf_event_pid(event, task);
3257 task_event->event_id.ppid = perf_event_pid(event, current);
3259 task_event->event_id.tid = perf_event_tid(event, task);
3260 task_event->event_id.ptid = perf_event_tid(event, current);
3262 perf_output_put(&handle, task_event->event_id);
3264 perf_output_end(&handle);
3267 static int perf_event_task_match(struct perf_event *event)
3269 if (event->state < PERF_EVENT_STATE_INACTIVE)
3270 return 0;
3272 if (event->cpu != -1 && event->cpu != smp_processor_id())
3273 return 0;
3275 if (event->attr.comm || event->attr.mmap || event->attr.task)
3276 return 1;
3278 return 0;
3281 static void perf_event_task_ctx(struct perf_event_context *ctx,
3282 struct perf_task_event *task_event)
3284 struct perf_event *event;
3286 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3287 if (perf_event_task_match(event))
3288 perf_event_task_output(event, task_event);
3292 static void perf_event_task_event(struct perf_task_event *task_event)
3294 struct perf_cpu_context *cpuctx;
3295 struct perf_event_context *ctx = task_event->task_ctx;
3297 rcu_read_lock();
3298 cpuctx = &get_cpu_var(perf_cpu_context);
3299 perf_event_task_ctx(&cpuctx->ctx, task_event);
3300 if (!ctx)
3301 ctx = rcu_dereference(current->perf_event_ctxp);
3302 if (ctx)
3303 perf_event_task_ctx(ctx, task_event);
3304 put_cpu_var(perf_cpu_context);
3305 rcu_read_unlock();
3308 static void perf_event_task(struct task_struct *task,
3309 struct perf_event_context *task_ctx,
3310 int new)
3312 struct perf_task_event task_event;
3314 if (!atomic_read(&nr_comm_events) &&
3315 !atomic_read(&nr_mmap_events) &&
3316 !atomic_read(&nr_task_events))
3317 return;
3319 task_event = (struct perf_task_event){
3320 .task = task,
3321 .task_ctx = task_ctx,
3322 .event_id = {
3323 .header = {
3324 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3325 .misc = 0,
3326 .size = sizeof(task_event.event_id),
3328 /* .pid */
3329 /* .ppid */
3330 /* .tid */
3331 /* .ptid */
3332 .time = perf_clock(),
3336 perf_event_task_event(&task_event);
3339 void perf_event_fork(struct task_struct *task)
3341 perf_event_task(task, NULL, 1);
3345 * comm tracking
3348 struct perf_comm_event {
3349 struct task_struct *task;
3350 char *comm;
3351 int comm_size;
3353 struct {
3354 struct perf_event_header header;
3356 u32 pid;
3357 u32 tid;
3358 } event_id;
3361 static void perf_event_comm_output(struct perf_event *event,
3362 struct perf_comm_event *comm_event)
3364 struct perf_output_handle handle;
3365 int size = comm_event->event_id.header.size;
3366 int ret = perf_output_begin(&handle, event, size, 0, 0);
3368 if (ret)
3369 return;
3371 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3372 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3374 perf_output_put(&handle, comm_event->event_id);
3375 perf_output_copy(&handle, comm_event->comm,
3376 comm_event->comm_size);
3377 perf_output_end(&handle);
3380 static int perf_event_comm_match(struct perf_event *event)
3382 if (event->state < PERF_EVENT_STATE_INACTIVE)
3383 return 0;
3385 if (event->cpu != -1 && event->cpu != smp_processor_id())
3386 return 0;
3388 if (event->attr.comm)
3389 return 1;
3391 return 0;
3394 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3395 struct perf_comm_event *comm_event)
3397 struct perf_event *event;
3399 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3400 if (perf_event_comm_match(event))
3401 perf_event_comm_output(event, comm_event);
3405 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3407 struct perf_cpu_context *cpuctx;
3408 struct perf_event_context *ctx;
3409 unsigned int size;
3410 char comm[TASK_COMM_LEN];
3412 memset(comm, 0, sizeof(comm));
3413 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3414 size = ALIGN(strlen(comm)+1, sizeof(u64));
3416 comm_event->comm = comm;
3417 comm_event->comm_size = size;
3419 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3421 rcu_read_lock();
3422 cpuctx = &get_cpu_var(perf_cpu_context);
3423 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3424 ctx = rcu_dereference(current->perf_event_ctxp);
3425 if (ctx)
3426 perf_event_comm_ctx(ctx, comm_event);
3427 put_cpu_var(perf_cpu_context);
3428 rcu_read_unlock();
3431 void perf_event_comm(struct task_struct *task)
3433 struct perf_comm_event comm_event;
3435 if (task->perf_event_ctxp)
3436 perf_event_enable_on_exec(task);
3438 if (!atomic_read(&nr_comm_events))
3439 return;
3441 comm_event = (struct perf_comm_event){
3442 .task = task,
3443 /* .comm */
3444 /* .comm_size */
3445 .event_id = {
3446 .header = {
3447 .type = PERF_RECORD_COMM,
3448 .misc = 0,
3449 /* .size */
3451 /* .pid */
3452 /* .tid */
3456 perf_event_comm_event(&comm_event);
3460 * mmap tracking
3463 struct perf_mmap_event {
3464 struct vm_area_struct *vma;
3466 const char *file_name;
3467 int file_size;
3469 struct {
3470 struct perf_event_header header;
3472 u32 pid;
3473 u32 tid;
3474 u64 start;
3475 u64 len;
3476 u64 pgoff;
3477 } event_id;
3480 static void perf_event_mmap_output(struct perf_event *event,
3481 struct perf_mmap_event *mmap_event)
3483 struct perf_output_handle handle;
3484 int size = mmap_event->event_id.header.size;
3485 int ret = perf_output_begin(&handle, event, size, 0, 0);
3487 if (ret)
3488 return;
3490 mmap_event->event_id.pid = perf_event_pid(event, current);
3491 mmap_event->event_id.tid = perf_event_tid(event, current);
3493 perf_output_put(&handle, mmap_event->event_id);
3494 perf_output_copy(&handle, mmap_event->file_name,
3495 mmap_event->file_size);
3496 perf_output_end(&handle);
3499 static int perf_event_mmap_match(struct perf_event *event,
3500 struct perf_mmap_event *mmap_event)
3502 if (event->state < PERF_EVENT_STATE_INACTIVE)
3503 return 0;
3505 if (event->cpu != -1 && event->cpu != smp_processor_id())
3506 return 0;
3508 if (event->attr.mmap)
3509 return 1;
3511 return 0;
3514 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3515 struct perf_mmap_event *mmap_event)
3517 struct perf_event *event;
3519 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3520 if (perf_event_mmap_match(event, mmap_event))
3521 perf_event_mmap_output(event, mmap_event);
3525 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3527 struct perf_cpu_context *cpuctx;
3528 struct perf_event_context *ctx;
3529 struct vm_area_struct *vma = mmap_event->vma;
3530 struct file *file = vma->vm_file;
3531 unsigned int size;
3532 char tmp[16];
3533 char *buf = NULL;
3534 const char *name;
3536 memset(tmp, 0, sizeof(tmp));
3538 if (file) {
3540 * d_path works from the end of the buffer backwards, so we
3541 * need to add enough zero bytes after the string to handle
3542 * the 64bit alignment we do later.
3544 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3545 if (!buf) {
3546 name = strncpy(tmp, "//enomem", sizeof(tmp));
3547 goto got_name;
3549 name = d_path(&file->f_path, buf, PATH_MAX);
3550 if (IS_ERR(name)) {
3551 name = strncpy(tmp, "//toolong", sizeof(tmp));
3552 goto got_name;
3554 } else {
3555 if (arch_vma_name(mmap_event->vma)) {
3556 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3557 sizeof(tmp));
3558 goto got_name;
3561 if (!vma->vm_mm) {
3562 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3563 goto got_name;
3566 name = strncpy(tmp, "//anon", sizeof(tmp));
3567 goto got_name;
3570 got_name:
3571 size = ALIGN(strlen(name)+1, sizeof(u64));
3573 mmap_event->file_name = name;
3574 mmap_event->file_size = size;
3576 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3578 rcu_read_lock();
3579 cpuctx = &get_cpu_var(perf_cpu_context);
3580 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3581 ctx = rcu_dereference(current->perf_event_ctxp);
3582 if (ctx)
3583 perf_event_mmap_ctx(ctx, mmap_event);
3584 put_cpu_var(perf_cpu_context);
3585 rcu_read_unlock();
3587 kfree(buf);
3590 void __perf_event_mmap(struct vm_area_struct *vma)
3592 struct perf_mmap_event mmap_event;
3594 if (!atomic_read(&nr_mmap_events))
3595 return;
3597 mmap_event = (struct perf_mmap_event){
3598 .vma = vma,
3599 /* .file_name */
3600 /* .file_size */
3601 .event_id = {
3602 .header = {
3603 .type = PERF_RECORD_MMAP,
3604 .misc = 0,
3605 /* .size */
3607 /* .pid */
3608 /* .tid */
3609 .start = vma->vm_start,
3610 .len = vma->vm_end - vma->vm_start,
3611 .pgoff = vma->vm_pgoff,
3615 perf_event_mmap_event(&mmap_event);
3619 * IRQ throttle logging
3622 static void perf_log_throttle(struct perf_event *event, int enable)
3624 struct perf_output_handle handle;
3625 int ret;
3627 struct {
3628 struct perf_event_header header;
3629 u64 time;
3630 u64 id;
3631 u64 stream_id;
3632 } throttle_event = {
3633 .header = {
3634 .type = PERF_RECORD_THROTTLE,
3635 .misc = 0,
3636 .size = sizeof(throttle_event),
3638 .time = perf_clock(),
3639 .id = primary_event_id(event),
3640 .stream_id = event->id,
3643 if (enable)
3644 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3646 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3647 if (ret)
3648 return;
3650 perf_output_put(&handle, throttle_event);
3651 perf_output_end(&handle);
3655 * Generic event overflow handling, sampling.
3658 static int __perf_event_overflow(struct perf_event *event, int nmi,
3659 int throttle, struct perf_sample_data *data,
3660 struct pt_regs *regs)
3662 int events = atomic_read(&event->event_limit);
3663 struct hw_perf_event *hwc = &event->hw;
3664 int ret = 0;
3666 throttle = (throttle && event->pmu->unthrottle != NULL);
3668 if (!throttle) {
3669 hwc->interrupts++;
3670 } else {
3671 if (hwc->interrupts != MAX_INTERRUPTS) {
3672 hwc->interrupts++;
3673 if (HZ * hwc->interrupts >
3674 (u64)sysctl_perf_event_sample_rate) {
3675 hwc->interrupts = MAX_INTERRUPTS;
3676 perf_log_throttle(event, 0);
3677 ret = 1;
3679 } else {
3681 * Keep re-disabling events even though on the previous
3682 * pass we disabled it - just in case we raced with a
3683 * sched-in and the event got enabled again:
3685 ret = 1;
3689 if (event->attr.freq) {
3690 u64 now = perf_clock();
3691 s64 delta = now - hwc->freq_stamp;
3693 hwc->freq_stamp = now;
3695 if (delta > 0 && delta < TICK_NSEC)
3696 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3700 * XXX event_limit might not quite work as expected on inherited
3701 * events
3704 event->pending_kill = POLL_IN;
3705 if (events && atomic_dec_and_test(&event->event_limit)) {
3706 ret = 1;
3707 event->pending_kill = POLL_HUP;
3708 if (nmi) {
3709 event->pending_disable = 1;
3710 perf_pending_queue(&event->pending,
3711 perf_pending_event);
3712 } else
3713 perf_event_disable(event);
3716 if (event->overflow_handler)
3717 event->overflow_handler(event, nmi, data, regs);
3718 else
3719 perf_event_output(event, nmi, data, regs);
3721 return ret;
3724 int perf_event_overflow(struct perf_event *event, int nmi,
3725 struct perf_sample_data *data,
3726 struct pt_regs *regs)
3728 return __perf_event_overflow(event, nmi, 1, data, regs);
3732 * Generic software event infrastructure
3736 * We directly increment event->count and keep a second value in
3737 * event->hw.period_left to count intervals. This period event
3738 * is kept in the range [-sample_period, 0] so that we can use the
3739 * sign as trigger.
3742 static u64 perf_swevent_set_period(struct perf_event *event)
3744 struct hw_perf_event *hwc = &event->hw;
3745 u64 period = hwc->last_period;
3746 u64 nr, offset;
3747 s64 old, val;
3749 hwc->last_period = hwc->sample_period;
3751 again:
3752 old = val = atomic64_read(&hwc->period_left);
3753 if (val < 0)
3754 return 0;
3756 nr = div64_u64(period + val, period);
3757 offset = nr * period;
3758 val -= offset;
3759 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3760 goto again;
3762 return nr;
3765 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3766 int nmi, struct perf_sample_data *data,
3767 struct pt_regs *regs)
3769 struct hw_perf_event *hwc = &event->hw;
3770 int throttle = 0;
3772 data->period = event->hw.last_period;
3773 if (!overflow)
3774 overflow = perf_swevent_set_period(event);
3776 if (hwc->interrupts == MAX_INTERRUPTS)
3777 return;
3779 for (; overflow; overflow--) {
3780 if (__perf_event_overflow(event, nmi, throttle,
3781 data, regs)) {
3783 * We inhibit the overflow from happening when
3784 * hwc->interrupts == MAX_INTERRUPTS.
3786 break;
3788 throttle = 1;
3792 static void perf_swevent_unthrottle(struct perf_event *event)
3795 * Nothing to do, we already reset hwc->interrupts.
3799 static void perf_swevent_add(struct perf_event *event, u64 nr,
3800 int nmi, struct perf_sample_data *data,
3801 struct pt_regs *regs)
3803 struct hw_perf_event *hwc = &event->hw;
3805 atomic64_add(nr, &event->count);
3807 if (!regs)
3808 return;
3810 if (!hwc->sample_period)
3811 return;
3813 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3814 return perf_swevent_overflow(event, 1, nmi, data, regs);
3816 if (atomic64_add_negative(nr, &hwc->period_left))
3817 return;
3819 perf_swevent_overflow(event, 0, nmi, data, regs);
3822 static int perf_swevent_is_counting(struct perf_event *event)
3825 * The event is active, we're good!
3827 if (event->state == PERF_EVENT_STATE_ACTIVE)
3828 return 1;
3831 * The event is off/error, not counting.
3833 if (event->state != PERF_EVENT_STATE_INACTIVE)
3834 return 0;
3837 * The event is inactive, if the context is active
3838 * we're part of a group that didn't make it on the 'pmu',
3839 * not counting.
3841 if (event->ctx->is_active)
3842 return 0;
3845 * We're inactive and the context is too, this means the
3846 * task is scheduled out, we're counting events that happen
3847 * to us, like migration events.
3849 return 1;
3852 static int perf_tp_event_match(struct perf_event *event,
3853 struct perf_sample_data *data);
3855 static int perf_exclude_event(struct perf_event *event,
3856 struct pt_regs *regs)
3858 if (regs) {
3859 if (event->attr.exclude_user && user_mode(regs))
3860 return 1;
3862 if (event->attr.exclude_kernel && !user_mode(regs))
3863 return 1;
3866 return 0;
3869 static int perf_swevent_match(struct perf_event *event,
3870 enum perf_type_id type,
3871 u32 event_id,
3872 struct perf_sample_data *data,
3873 struct pt_regs *regs)
3875 if (event->cpu != -1 && event->cpu != smp_processor_id())
3876 return 0;
3878 if (!perf_swevent_is_counting(event))
3879 return 0;
3881 if (event->attr.type != type)
3882 return 0;
3884 if (event->attr.config != event_id)
3885 return 0;
3887 if (perf_exclude_event(event, regs))
3888 return 0;
3890 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3891 !perf_tp_event_match(event, data))
3892 return 0;
3894 return 1;
3897 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3898 enum perf_type_id type,
3899 u32 event_id, u64 nr, int nmi,
3900 struct perf_sample_data *data,
3901 struct pt_regs *regs)
3903 struct perf_event *event;
3905 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3906 if (perf_swevent_match(event, type, event_id, data, regs))
3907 perf_swevent_add(event, nr, nmi, data, regs);
3911 int perf_swevent_get_recursion_context(void)
3913 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3914 int rctx;
3916 if (in_nmi())
3917 rctx = 3;
3918 else if (in_irq())
3919 rctx = 2;
3920 else if (in_softirq())
3921 rctx = 1;
3922 else
3923 rctx = 0;
3925 if (cpuctx->recursion[rctx]) {
3926 put_cpu_var(perf_cpu_context);
3927 return -1;
3930 cpuctx->recursion[rctx]++;
3931 barrier();
3933 return rctx;
3935 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3937 void perf_swevent_put_recursion_context(int rctx)
3939 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3940 barrier();
3941 cpuctx->recursion[rctx]--;
3942 put_cpu_var(perf_cpu_context);
3944 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
3946 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3947 u64 nr, int nmi,
3948 struct perf_sample_data *data,
3949 struct pt_regs *regs)
3951 struct perf_cpu_context *cpuctx;
3952 struct perf_event_context *ctx;
3954 cpuctx = &__get_cpu_var(perf_cpu_context);
3955 rcu_read_lock();
3956 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3957 nr, nmi, data, regs);
3959 * doesn't really matter which of the child contexts the
3960 * events ends up in.
3962 ctx = rcu_dereference(current->perf_event_ctxp);
3963 if (ctx)
3964 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3965 rcu_read_unlock();
3968 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3969 struct pt_regs *regs, u64 addr)
3971 struct perf_sample_data data;
3972 int rctx;
3974 rctx = perf_swevent_get_recursion_context();
3975 if (rctx < 0)
3976 return;
3978 data.addr = addr;
3979 data.raw = NULL;
3981 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3983 perf_swevent_put_recursion_context(rctx);
3986 static void perf_swevent_read(struct perf_event *event)
3990 static int perf_swevent_enable(struct perf_event *event)
3992 struct hw_perf_event *hwc = &event->hw;
3994 if (hwc->sample_period) {
3995 hwc->last_period = hwc->sample_period;
3996 perf_swevent_set_period(event);
3998 return 0;
4001 static void perf_swevent_disable(struct perf_event *event)
4005 static const struct pmu perf_ops_generic = {
4006 .enable = perf_swevent_enable,
4007 .disable = perf_swevent_disable,
4008 .read = perf_swevent_read,
4009 .unthrottle = perf_swevent_unthrottle,
4013 * hrtimer based swevent callback
4016 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4018 enum hrtimer_restart ret = HRTIMER_RESTART;
4019 struct perf_sample_data data;
4020 struct pt_regs *regs;
4021 struct perf_event *event;
4022 u64 period;
4024 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4025 event->pmu->read(event);
4027 data.addr = 0;
4028 data.raw = NULL;
4029 data.period = event->hw.last_period;
4030 regs = get_irq_regs();
4032 * In case we exclude kernel IPs or are somehow not in interrupt
4033 * context, provide the next best thing, the user IP.
4035 if ((event->attr.exclude_kernel || !regs) &&
4036 !event->attr.exclude_user)
4037 regs = task_pt_regs(current);
4039 if (regs) {
4040 if (!(event->attr.exclude_idle && current->pid == 0))
4041 if (perf_event_overflow(event, 0, &data, regs))
4042 ret = HRTIMER_NORESTART;
4045 period = max_t(u64, 10000, event->hw.sample_period);
4046 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4048 return ret;
4051 static void perf_swevent_start_hrtimer(struct perf_event *event)
4053 struct hw_perf_event *hwc = &event->hw;
4055 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4056 hwc->hrtimer.function = perf_swevent_hrtimer;
4057 if (hwc->sample_period) {
4058 u64 period;
4060 if (hwc->remaining) {
4061 if (hwc->remaining < 0)
4062 period = 10000;
4063 else
4064 period = hwc->remaining;
4065 hwc->remaining = 0;
4066 } else {
4067 period = max_t(u64, 10000, hwc->sample_period);
4069 __hrtimer_start_range_ns(&hwc->hrtimer,
4070 ns_to_ktime(period), 0,
4071 HRTIMER_MODE_REL, 0);
4075 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4077 struct hw_perf_event *hwc = &event->hw;
4079 if (hwc->sample_period) {
4080 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4081 hwc->remaining = ktime_to_ns(remaining);
4083 hrtimer_cancel(&hwc->hrtimer);
4088 * Software event: cpu wall time clock
4091 static void cpu_clock_perf_event_update(struct perf_event *event)
4093 int cpu = raw_smp_processor_id();
4094 s64 prev;
4095 u64 now;
4097 now = cpu_clock(cpu);
4098 prev = atomic64_xchg(&event->hw.prev_count, now);
4099 atomic64_add(now - prev, &event->count);
4102 static int cpu_clock_perf_event_enable(struct perf_event *event)
4104 struct hw_perf_event *hwc = &event->hw;
4105 int cpu = raw_smp_processor_id();
4107 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4108 perf_swevent_start_hrtimer(event);
4110 return 0;
4113 static void cpu_clock_perf_event_disable(struct perf_event *event)
4115 perf_swevent_cancel_hrtimer(event);
4116 cpu_clock_perf_event_update(event);
4119 static void cpu_clock_perf_event_read(struct perf_event *event)
4121 cpu_clock_perf_event_update(event);
4124 static const struct pmu perf_ops_cpu_clock = {
4125 .enable = cpu_clock_perf_event_enable,
4126 .disable = cpu_clock_perf_event_disable,
4127 .read = cpu_clock_perf_event_read,
4131 * Software event: task time clock
4134 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4136 u64 prev;
4137 s64 delta;
4139 prev = atomic64_xchg(&event->hw.prev_count, now);
4140 delta = now - prev;
4141 atomic64_add(delta, &event->count);
4144 static int task_clock_perf_event_enable(struct perf_event *event)
4146 struct hw_perf_event *hwc = &event->hw;
4147 u64 now;
4149 now = event->ctx->time;
4151 atomic64_set(&hwc->prev_count, now);
4153 perf_swevent_start_hrtimer(event);
4155 return 0;
4158 static void task_clock_perf_event_disable(struct perf_event *event)
4160 perf_swevent_cancel_hrtimer(event);
4161 task_clock_perf_event_update(event, event->ctx->time);
4165 static void task_clock_perf_event_read(struct perf_event *event)
4167 u64 time;
4169 if (!in_nmi()) {
4170 update_context_time(event->ctx);
4171 time = event->ctx->time;
4172 } else {
4173 u64 now = perf_clock();
4174 u64 delta = now - event->ctx->timestamp;
4175 time = event->ctx->time + delta;
4178 task_clock_perf_event_update(event, time);
4181 static const struct pmu perf_ops_task_clock = {
4182 .enable = task_clock_perf_event_enable,
4183 .disable = task_clock_perf_event_disable,
4184 .read = task_clock_perf_event_read,
4187 #ifdef CONFIG_EVENT_PROFILE
4189 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4190 int entry_size)
4192 struct perf_raw_record raw = {
4193 .size = entry_size,
4194 .data = record,
4197 struct perf_sample_data data = {
4198 .addr = addr,
4199 .raw = &raw,
4202 struct pt_regs *regs = get_irq_regs();
4204 if (!regs)
4205 regs = task_pt_regs(current);
4207 /* Trace events already protected against recursion */
4208 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4209 &data, regs);
4211 EXPORT_SYMBOL_GPL(perf_tp_event);
4213 static int perf_tp_event_match(struct perf_event *event,
4214 struct perf_sample_data *data)
4216 void *record = data->raw->data;
4218 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4219 return 1;
4220 return 0;
4223 static void tp_perf_event_destroy(struct perf_event *event)
4225 ftrace_profile_disable(event->attr.config);
4228 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4231 * Raw tracepoint data is a severe data leak, only allow root to
4232 * have these.
4234 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4235 perf_paranoid_tracepoint_raw() &&
4236 !capable(CAP_SYS_ADMIN))
4237 return ERR_PTR(-EPERM);
4239 if (ftrace_profile_enable(event->attr.config))
4240 return NULL;
4242 event->destroy = tp_perf_event_destroy;
4244 return &perf_ops_generic;
4247 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4249 char *filter_str;
4250 int ret;
4252 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4253 return -EINVAL;
4255 filter_str = strndup_user(arg, PAGE_SIZE);
4256 if (IS_ERR(filter_str))
4257 return PTR_ERR(filter_str);
4259 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4261 kfree(filter_str);
4262 return ret;
4265 static void perf_event_free_filter(struct perf_event *event)
4267 ftrace_profile_free_filter(event);
4270 #else
4272 static int perf_tp_event_match(struct perf_event *event,
4273 struct perf_sample_data *data)
4275 return 1;
4278 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4280 return NULL;
4283 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4285 return -ENOENT;
4288 static void perf_event_free_filter(struct perf_event *event)
4292 #endif /* CONFIG_EVENT_PROFILE */
4294 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4295 static void bp_perf_event_destroy(struct perf_event *event)
4297 release_bp_slot(event);
4300 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4302 int err;
4304 err = register_perf_hw_breakpoint(bp);
4305 if (err)
4306 return ERR_PTR(err);
4308 bp->destroy = bp_perf_event_destroy;
4310 return &perf_ops_bp;
4313 void perf_bp_event(struct perf_event *bp, void *data)
4315 struct perf_sample_data sample;
4316 struct pt_regs *regs = data;
4318 sample.raw = NULL;
4319 sample.addr = bp->attr.bp_addr;
4321 if (!perf_exclude_event(bp, regs))
4322 perf_swevent_add(bp, 1, 1, &sample, regs);
4324 #else
4325 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4327 return NULL;
4330 void perf_bp_event(struct perf_event *bp, void *regs)
4333 #endif
4335 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4337 static void sw_perf_event_destroy(struct perf_event *event)
4339 u64 event_id = event->attr.config;
4341 WARN_ON(event->parent);
4343 atomic_dec(&perf_swevent_enabled[event_id]);
4346 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4348 const struct pmu *pmu = NULL;
4349 u64 event_id = event->attr.config;
4352 * Software events (currently) can't in general distinguish
4353 * between user, kernel and hypervisor events.
4354 * However, context switches and cpu migrations are considered
4355 * to be kernel events, and page faults are never hypervisor
4356 * events.
4358 switch (event_id) {
4359 case PERF_COUNT_SW_CPU_CLOCK:
4360 pmu = &perf_ops_cpu_clock;
4362 break;
4363 case PERF_COUNT_SW_TASK_CLOCK:
4365 * If the user instantiates this as a per-cpu event,
4366 * use the cpu_clock event instead.
4368 if (event->ctx->task)
4369 pmu = &perf_ops_task_clock;
4370 else
4371 pmu = &perf_ops_cpu_clock;
4373 break;
4374 case PERF_COUNT_SW_PAGE_FAULTS:
4375 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4376 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4377 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4378 case PERF_COUNT_SW_CPU_MIGRATIONS:
4379 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4380 case PERF_COUNT_SW_EMULATION_FAULTS:
4381 if (!event->parent) {
4382 atomic_inc(&perf_swevent_enabled[event_id]);
4383 event->destroy = sw_perf_event_destroy;
4385 pmu = &perf_ops_generic;
4386 break;
4389 return pmu;
4393 * Allocate and initialize a event structure
4395 static struct perf_event *
4396 perf_event_alloc(struct perf_event_attr *attr,
4397 int cpu,
4398 struct perf_event_context *ctx,
4399 struct perf_event *group_leader,
4400 struct perf_event *parent_event,
4401 perf_overflow_handler_t overflow_handler,
4402 gfp_t gfpflags)
4404 const struct pmu *pmu;
4405 struct perf_event *event;
4406 struct hw_perf_event *hwc;
4407 long err;
4409 event = kzalloc(sizeof(*event), gfpflags);
4410 if (!event)
4411 return ERR_PTR(-ENOMEM);
4414 * Single events are their own group leaders, with an
4415 * empty sibling list:
4417 if (!group_leader)
4418 group_leader = event;
4420 mutex_init(&event->child_mutex);
4421 INIT_LIST_HEAD(&event->child_list);
4423 INIT_LIST_HEAD(&event->group_entry);
4424 INIT_LIST_HEAD(&event->event_entry);
4425 INIT_LIST_HEAD(&event->sibling_list);
4426 init_waitqueue_head(&event->waitq);
4428 mutex_init(&event->mmap_mutex);
4430 event->cpu = cpu;
4431 event->attr = *attr;
4432 event->group_leader = group_leader;
4433 event->pmu = NULL;
4434 event->ctx = ctx;
4435 event->oncpu = -1;
4437 event->parent = parent_event;
4439 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4440 event->id = atomic64_inc_return(&perf_event_id);
4442 event->state = PERF_EVENT_STATE_INACTIVE;
4444 if (!overflow_handler && parent_event)
4445 overflow_handler = parent_event->overflow_handler;
4447 event->overflow_handler = overflow_handler;
4449 if (attr->disabled)
4450 event->state = PERF_EVENT_STATE_OFF;
4452 pmu = NULL;
4454 hwc = &event->hw;
4455 hwc->sample_period = attr->sample_period;
4456 if (attr->freq && attr->sample_freq)
4457 hwc->sample_period = 1;
4458 hwc->last_period = hwc->sample_period;
4460 atomic64_set(&hwc->period_left, hwc->sample_period);
4463 * we currently do not support PERF_FORMAT_GROUP on inherited events
4465 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4466 goto done;
4468 switch (attr->type) {
4469 case PERF_TYPE_RAW:
4470 case PERF_TYPE_HARDWARE:
4471 case PERF_TYPE_HW_CACHE:
4472 pmu = hw_perf_event_init(event);
4473 break;
4475 case PERF_TYPE_SOFTWARE:
4476 pmu = sw_perf_event_init(event);
4477 break;
4479 case PERF_TYPE_TRACEPOINT:
4480 pmu = tp_perf_event_init(event);
4481 break;
4483 case PERF_TYPE_BREAKPOINT:
4484 pmu = bp_perf_event_init(event);
4485 break;
4488 default:
4489 break;
4491 done:
4492 err = 0;
4493 if (!pmu)
4494 err = -EINVAL;
4495 else if (IS_ERR(pmu))
4496 err = PTR_ERR(pmu);
4498 if (err) {
4499 if (event->ns)
4500 put_pid_ns(event->ns);
4501 kfree(event);
4502 return ERR_PTR(err);
4505 event->pmu = pmu;
4507 if (!event->parent) {
4508 atomic_inc(&nr_events);
4509 if (event->attr.mmap)
4510 atomic_inc(&nr_mmap_events);
4511 if (event->attr.comm)
4512 atomic_inc(&nr_comm_events);
4513 if (event->attr.task)
4514 atomic_inc(&nr_task_events);
4517 return event;
4520 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4521 struct perf_event_attr *attr)
4523 u32 size;
4524 int ret;
4526 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4527 return -EFAULT;
4530 * zero the full structure, so that a short copy will be nice.
4532 memset(attr, 0, sizeof(*attr));
4534 ret = get_user(size, &uattr->size);
4535 if (ret)
4536 return ret;
4538 if (size > PAGE_SIZE) /* silly large */
4539 goto err_size;
4541 if (!size) /* abi compat */
4542 size = PERF_ATTR_SIZE_VER0;
4544 if (size < PERF_ATTR_SIZE_VER0)
4545 goto err_size;
4548 * If we're handed a bigger struct than we know of,
4549 * ensure all the unknown bits are 0 - i.e. new
4550 * user-space does not rely on any kernel feature
4551 * extensions we dont know about yet.
4553 if (size > sizeof(*attr)) {
4554 unsigned char __user *addr;
4555 unsigned char __user *end;
4556 unsigned char val;
4558 addr = (void __user *)uattr + sizeof(*attr);
4559 end = (void __user *)uattr + size;
4561 for (; addr < end; addr++) {
4562 ret = get_user(val, addr);
4563 if (ret)
4564 return ret;
4565 if (val)
4566 goto err_size;
4568 size = sizeof(*attr);
4571 ret = copy_from_user(attr, uattr, size);
4572 if (ret)
4573 return -EFAULT;
4576 * If the type exists, the corresponding creation will verify
4577 * the attr->config.
4579 if (attr->type >= PERF_TYPE_MAX)
4580 return -EINVAL;
4582 if (attr->__reserved_1)
4583 return -EINVAL;
4585 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4586 return -EINVAL;
4588 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4589 return -EINVAL;
4591 out:
4592 return ret;
4594 err_size:
4595 put_user(sizeof(*attr), &uattr->size);
4596 ret = -E2BIG;
4597 goto out;
4600 static int perf_event_set_output(struct perf_event *event, int output_fd)
4602 struct perf_event *output_event = NULL;
4603 struct file *output_file = NULL;
4604 struct perf_event *old_output;
4605 int fput_needed = 0;
4606 int ret = -EINVAL;
4608 if (!output_fd)
4609 goto set;
4611 output_file = fget_light(output_fd, &fput_needed);
4612 if (!output_file)
4613 return -EBADF;
4615 if (output_file->f_op != &perf_fops)
4616 goto out;
4618 output_event = output_file->private_data;
4620 /* Don't chain output fds */
4621 if (output_event->output)
4622 goto out;
4624 /* Don't set an output fd when we already have an output channel */
4625 if (event->data)
4626 goto out;
4628 atomic_long_inc(&output_file->f_count);
4630 set:
4631 mutex_lock(&event->mmap_mutex);
4632 old_output = event->output;
4633 rcu_assign_pointer(event->output, output_event);
4634 mutex_unlock(&event->mmap_mutex);
4636 if (old_output) {
4638 * we need to make sure no existing perf_output_*()
4639 * is still referencing this event.
4641 synchronize_rcu();
4642 fput(old_output->filp);
4645 ret = 0;
4646 out:
4647 fput_light(output_file, fput_needed);
4648 return ret;
4652 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4654 * @attr_uptr: event_id type attributes for monitoring/sampling
4655 * @pid: target pid
4656 * @cpu: target cpu
4657 * @group_fd: group leader event fd
4659 SYSCALL_DEFINE5(perf_event_open,
4660 struct perf_event_attr __user *, attr_uptr,
4661 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4663 struct perf_event *event, *group_leader;
4664 struct perf_event_attr attr;
4665 struct perf_event_context *ctx;
4666 struct file *event_file = NULL;
4667 struct file *group_file = NULL;
4668 int fput_needed = 0;
4669 int fput_needed2 = 0;
4670 int err;
4672 /* for future expandability... */
4673 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4674 return -EINVAL;
4676 err = perf_copy_attr(attr_uptr, &attr);
4677 if (err)
4678 return err;
4680 if (!attr.exclude_kernel) {
4681 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4682 return -EACCES;
4685 if (attr.freq) {
4686 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4687 return -EINVAL;
4691 * Get the target context (task or percpu):
4693 ctx = find_get_context(pid, cpu);
4694 if (IS_ERR(ctx))
4695 return PTR_ERR(ctx);
4698 * Look up the group leader (we will attach this event to it):
4700 group_leader = NULL;
4701 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4702 err = -EINVAL;
4703 group_file = fget_light(group_fd, &fput_needed);
4704 if (!group_file)
4705 goto err_put_context;
4706 if (group_file->f_op != &perf_fops)
4707 goto err_put_context;
4709 group_leader = group_file->private_data;
4711 * Do not allow a recursive hierarchy (this new sibling
4712 * becoming part of another group-sibling):
4714 if (group_leader->group_leader != group_leader)
4715 goto err_put_context;
4717 * Do not allow to attach to a group in a different
4718 * task or CPU context:
4720 if (group_leader->ctx != ctx)
4721 goto err_put_context;
4723 * Only a group leader can be exclusive or pinned
4725 if (attr.exclusive || attr.pinned)
4726 goto err_put_context;
4729 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4730 NULL, NULL, GFP_KERNEL);
4731 err = PTR_ERR(event);
4732 if (IS_ERR(event))
4733 goto err_put_context;
4735 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4736 if (err < 0)
4737 goto err_free_put_context;
4739 event_file = fget_light(err, &fput_needed2);
4740 if (!event_file)
4741 goto err_free_put_context;
4743 if (flags & PERF_FLAG_FD_OUTPUT) {
4744 err = perf_event_set_output(event, group_fd);
4745 if (err)
4746 goto err_fput_free_put_context;
4749 event->filp = event_file;
4750 WARN_ON_ONCE(ctx->parent_ctx);
4751 mutex_lock(&ctx->mutex);
4752 perf_install_in_context(ctx, event, cpu);
4753 ++ctx->generation;
4754 mutex_unlock(&ctx->mutex);
4756 event->owner = current;
4757 get_task_struct(current);
4758 mutex_lock(&current->perf_event_mutex);
4759 list_add_tail(&event->owner_entry, &current->perf_event_list);
4760 mutex_unlock(&current->perf_event_mutex);
4762 err_fput_free_put_context:
4763 fput_light(event_file, fput_needed2);
4765 err_free_put_context:
4766 if (err < 0)
4767 kfree(event);
4769 err_put_context:
4770 if (err < 0)
4771 put_ctx(ctx);
4773 fput_light(group_file, fput_needed);
4775 return err;
4779 * perf_event_create_kernel_counter
4781 * @attr: attributes of the counter to create
4782 * @cpu: cpu in which the counter is bound
4783 * @pid: task to profile
4785 struct perf_event *
4786 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4787 pid_t pid,
4788 perf_overflow_handler_t overflow_handler)
4790 struct perf_event *event;
4791 struct perf_event_context *ctx;
4792 int err;
4795 * Get the target context (task or percpu):
4798 ctx = find_get_context(pid, cpu);
4799 if (IS_ERR(ctx)) {
4800 err = PTR_ERR(ctx);
4801 goto err_exit;
4804 event = perf_event_alloc(attr, cpu, ctx, NULL,
4805 NULL, overflow_handler, GFP_KERNEL);
4806 if (IS_ERR(event)) {
4807 err = PTR_ERR(event);
4808 goto err_put_context;
4811 event->filp = NULL;
4812 WARN_ON_ONCE(ctx->parent_ctx);
4813 mutex_lock(&ctx->mutex);
4814 perf_install_in_context(ctx, event, cpu);
4815 ++ctx->generation;
4816 mutex_unlock(&ctx->mutex);
4818 event->owner = current;
4819 get_task_struct(current);
4820 mutex_lock(&current->perf_event_mutex);
4821 list_add_tail(&event->owner_entry, &current->perf_event_list);
4822 mutex_unlock(&current->perf_event_mutex);
4824 return event;
4826 err_put_context:
4827 put_ctx(ctx);
4828 err_exit:
4829 return ERR_PTR(err);
4831 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4834 * inherit a event from parent task to child task:
4836 static struct perf_event *
4837 inherit_event(struct perf_event *parent_event,
4838 struct task_struct *parent,
4839 struct perf_event_context *parent_ctx,
4840 struct task_struct *child,
4841 struct perf_event *group_leader,
4842 struct perf_event_context *child_ctx)
4844 struct perf_event *child_event;
4847 * Instead of creating recursive hierarchies of events,
4848 * we link inherited events back to the original parent,
4849 * which has a filp for sure, which we use as the reference
4850 * count:
4852 if (parent_event->parent)
4853 parent_event = parent_event->parent;
4855 child_event = perf_event_alloc(&parent_event->attr,
4856 parent_event->cpu, child_ctx,
4857 group_leader, parent_event,
4858 NULL, GFP_KERNEL);
4859 if (IS_ERR(child_event))
4860 return child_event;
4861 get_ctx(child_ctx);
4864 * Make the child state follow the state of the parent event,
4865 * not its attr.disabled bit. We hold the parent's mutex,
4866 * so we won't race with perf_event_{en, dis}able_family.
4868 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4869 child_event->state = PERF_EVENT_STATE_INACTIVE;
4870 else
4871 child_event->state = PERF_EVENT_STATE_OFF;
4873 if (parent_event->attr.freq)
4874 child_event->hw.sample_period = parent_event->hw.sample_period;
4876 child_event->overflow_handler = parent_event->overflow_handler;
4879 * Link it up in the child's context:
4881 add_event_to_ctx(child_event, child_ctx);
4884 * Get a reference to the parent filp - we will fput it
4885 * when the child event exits. This is safe to do because
4886 * we are in the parent and we know that the filp still
4887 * exists and has a nonzero count:
4889 atomic_long_inc(&parent_event->filp->f_count);
4892 * Link this into the parent event's child list
4894 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4895 mutex_lock(&parent_event->child_mutex);
4896 list_add_tail(&child_event->child_list, &parent_event->child_list);
4897 mutex_unlock(&parent_event->child_mutex);
4899 return child_event;
4902 static int inherit_group(struct perf_event *parent_event,
4903 struct task_struct *parent,
4904 struct perf_event_context *parent_ctx,
4905 struct task_struct *child,
4906 struct perf_event_context *child_ctx)
4908 struct perf_event *leader;
4909 struct perf_event *sub;
4910 struct perf_event *child_ctr;
4912 leader = inherit_event(parent_event, parent, parent_ctx,
4913 child, NULL, child_ctx);
4914 if (IS_ERR(leader))
4915 return PTR_ERR(leader);
4916 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4917 child_ctr = inherit_event(sub, parent, parent_ctx,
4918 child, leader, child_ctx);
4919 if (IS_ERR(child_ctr))
4920 return PTR_ERR(child_ctr);
4922 return 0;
4925 static void sync_child_event(struct perf_event *child_event,
4926 struct task_struct *child)
4928 struct perf_event *parent_event = child_event->parent;
4929 u64 child_val;
4931 if (child_event->attr.inherit_stat)
4932 perf_event_read_event(child_event, child);
4934 child_val = atomic64_read(&child_event->count);
4937 * Add back the child's count to the parent's count:
4939 atomic64_add(child_val, &parent_event->count);
4940 atomic64_add(child_event->total_time_enabled,
4941 &parent_event->child_total_time_enabled);
4942 atomic64_add(child_event->total_time_running,
4943 &parent_event->child_total_time_running);
4946 * Remove this event from the parent's list
4948 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4949 mutex_lock(&parent_event->child_mutex);
4950 list_del_init(&child_event->child_list);
4951 mutex_unlock(&parent_event->child_mutex);
4954 * Release the parent event, if this was the last
4955 * reference to it.
4957 fput(parent_event->filp);
4960 static void
4961 __perf_event_exit_task(struct perf_event *child_event,
4962 struct perf_event_context *child_ctx,
4963 struct task_struct *child)
4965 struct perf_event *parent_event;
4967 perf_event_remove_from_context(child_event);
4969 parent_event = child_event->parent;
4971 * It can happen that parent exits first, and has events
4972 * that are still around due to the child reference. These
4973 * events need to be zapped - but otherwise linger.
4975 if (parent_event) {
4976 sync_child_event(child_event, child);
4977 free_event(child_event);
4982 * When a child task exits, feed back event values to parent events.
4984 void perf_event_exit_task(struct task_struct *child)
4986 struct perf_event *child_event, *tmp;
4987 struct perf_event_context *child_ctx;
4988 unsigned long flags;
4990 if (likely(!child->perf_event_ctxp)) {
4991 perf_event_task(child, NULL, 0);
4992 return;
4995 local_irq_save(flags);
4997 * We can't reschedule here because interrupts are disabled,
4998 * and either child is current or it is a task that can't be
4999 * scheduled, so we are now safe from rescheduling changing
5000 * our context.
5002 child_ctx = child->perf_event_ctxp;
5003 __perf_event_task_sched_out(child_ctx);
5006 * Take the context lock here so that if find_get_context is
5007 * reading child->perf_event_ctxp, we wait until it has
5008 * incremented the context's refcount before we do put_ctx below.
5010 raw_spin_lock(&child_ctx->lock);
5011 child->perf_event_ctxp = NULL;
5013 * If this context is a clone; unclone it so it can't get
5014 * swapped to another process while we're removing all
5015 * the events from it.
5017 unclone_ctx(child_ctx);
5018 update_context_time(child_ctx);
5019 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5022 * Report the task dead after unscheduling the events so that we
5023 * won't get any samples after PERF_RECORD_EXIT. We can however still
5024 * get a few PERF_RECORD_READ events.
5026 perf_event_task(child, child_ctx, 0);
5029 * We can recurse on the same lock type through:
5031 * __perf_event_exit_task()
5032 * sync_child_event()
5033 * fput(parent_event->filp)
5034 * perf_release()
5035 * mutex_lock(&ctx->mutex)
5037 * But since its the parent context it won't be the same instance.
5039 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5041 again:
5042 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5043 group_entry)
5044 __perf_event_exit_task(child_event, child_ctx, child);
5047 * If the last event was a group event, it will have appended all
5048 * its siblings to the list, but we obtained 'tmp' before that which
5049 * will still point to the list head terminating the iteration.
5051 if (!list_empty(&child_ctx->group_list))
5052 goto again;
5054 mutex_unlock(&child_ctx->mutex);
5056 put_ctx(child_ctx);
5060 * free an unexposed, unused context as created by inheritance by
5061 * init_task below, used by fork() in case of fail.
5063 void perf_event_free_task(struct task_struct *task)
5065 struct perf_event_context *ctx = task->perf_event_ctxp;
5066 struct perf_event *event, *tmp;
5068 if (!ctx)
5069 return;
5071 mutex_lock(&ctx->mutex);
5072 again:
5073 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5074 struct perf_event *parent = event->parent;
5076 if (WARN_ON_ONCE(!parent))
5077 continue;
5079 mutex_lock(&parent->child_mutex);
5080 list_del_init(&event->child_list);
5081 mutex_unlock(&parent->child_mutex);
5083 fput(parent->filp);
5085 list_del_event(event, ctx);
5086 free_event(event);
5089 if (!list_empty(&ctx->group_list))
5090 goto again;
5092 mutex_unlock(&ctx->mutex);
5094 put_ctx(ctx);
5098 * Initialize the perf_event context in task_struct
5100 int perf_event_init_task(struct task_struct *child)
5102 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5103 struct perf_event_context *cloned_ctx;
5104 struct perf_event *event;
5105 struct task_struct *parent = current;
5106 int inherited_all = 1;
5107 int ret = 0;
5109 child->perf_event_ctxp = NULL;
5111 mutex_init(&child->perf_event_mutex);
5112 INIT_LIST_HEAD(&child->perf_event_list);
5114 if (likely(!parent->perf_event_ctxp))
5115 return 0;
5118 * If the parent's context is a clone, pin it so it won't get
5119 * swapped under us.
5121 parent_ctx = perf_pin_task_context(parent);
5124 * No need to check if parent_ctx != NULL here; since we saw
5125 * it non-NULL earlier, the only reason for it to become NULL
5126 * is if we exit, and since we're currently in the middle of
5127 * a fork we can't be exiting at the same time.
5131 * Lock the parent list. No need to lock the child - not PID
5132 * hashed yet and not running, so nobody can access it.
5134 mutex_lock(&parent_ctx->mutex);
5137 * We dont have to disable NMIs - we are only looking at
5138 * the list, not manipulating it:
5140 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5142 if (!event->attr.inherit) {
5143 inherited_all = 0;
5144 continue;
5147 if (!child->perf_event_ctxp) {
5149 * This is executed from the parent task context, so
5150 * inherit events that have been marked for cloning.
5151 * First allocate and initialize a context for the
5152 * child.
5155 child_ctx = kzalloc(sizeof(struct perf_event_context),
5156 GFP_KERNEL);
5157 if (!child_ctx) {
5158 ret = -ENOMEM;
5159 break;
5162 __perf_event_init_context(child_ctx, child);
5163 child->perf_event_ctxp = child_ctx;
5164 get_task_struct(child);
5167 ret = inherit_group(event, parent, parent_ctx,
5168 child, child_ctx);
5169 if (ret) {
5170 inherited_all = 0;
5171 break;
5175 if (child_ctx && inherited_all) {
5177 * Mark the child context as a clone of the parent
5178 * context, or of whatever the parent is a clone of.
5179 * Note that if the parent is a clone, it could get
5180 * uncloned at any point, but that doesn't matter
5181 * because the list of events and the generation
5182 * count can't have changed since we took the mutex.
5184 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5185 if (cloned_ctx) {
5186 child_ctx->parent_ctx = cloned_ctx;
5187 child_ctx->parent_gen = parent_ctx->parent_gen;
5188 } else {
5189 child_ctx->parent_ctx = parent_ctx;
5190 child_ctx->parent_gen = parent_ctx->generation;
5192 get_ctx(child_ctx->parent_ctx);
5195 mutex_unlock(&parent_ctx->mutex);
5197 perf_unpin_context(parent_ctx);
5199 return ret;
5202 static void __cpuinit perf_event_init_cpu(int cpu)
5204 struct perf_cpu_context *cpuctx;
5206 cpuctx = &per_cpu(perf_cpu_context, cpu);
5207 __perf_event_init_context(&cpuctx->ctx, NULL);
5209 spin_lock(&perf_resource_lock);
5210 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5211 spin_unlock(&perf_resource_lock);
5213 hw_perf_event_setup(cpu);
5216 #ifdef CONFIG_HOTPLUG_CPU
5217 static void __perf_event_exit_cpu(void *info)
5219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5220 struct perf_event_context *ctx = &cpuctx->ctx;
5221 struct perf_event *event, *tmp;
5223 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5224 __perf_event_remove_from_context(event);
5226 static void perf_event_exit_cpu(int cpu)
5228 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5229 struct perf_event_context *ctx = &cpuctx->ctx;
5231 mutex_lock(&ctx->mutex);
5232 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5233 mutex_unlock(&ctx->mutex);
5235 #else
5236 static inline void perf_event_exit_cpu(int cpu) { }
5237 #endif
5239 static int __cpuinit
5240 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5242 unsigned int cpu = (long)hcpu;
5244 switch (action) {
5246 case CPU_UP_PREPARE:
5247 case CPU_UP_PREPARE_FROZEN:
5248 perf_event_init_cpu(cpu);
5249 break;
5251 case CPU_ONLINE:
5252 case CPU_ONLINE_FROZEN:
5253 hw_perf_event_setup_online(cpu);
5254 break;
5256 case CPU_DOWN_PREPARE:
5257 case CPU_DOWN_PREPARE_FROZEN:
5258 perf_event_exit_cpu(cpu);
5259 break;
5261 default:
5262 break;
5265 return NOTIFY_OK;
5269 * This has to have a higher priority than migration_notifier in sched.c.
5271 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5272 .notifier_call = perf_cpu_notify,
5273 .priority = 20,
5276 void __init perf_event_init(void)
5278 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5279 (void *)(long)smp_processor_id());
5280 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5281 (void *)(long)smp_processor_id());
5282 register_cpu_notifier(&perf_cpu_nb);
5285 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5287 return sprintf(buf, "%d\n", perf_reserved_percpu);
5290 static ssize_t
5291 perf_set_reserve_percpu(struct sysdev_class *class,
5292 const char *buf,
5293 size_t count)
5295 struct perf_cpu_context *cpuctx;
5296 unsigned long val;
5297 int err, cpu, mpt;
5299 err = strict_strtoul(buf, 10, &val);
5300 if (err)
5301 return err;
5302 if (val > perf_max_events)
5303 return -EINVAL;
5305 spin_lock(&perf_resource_lock);
5306 perf_reserved_percpu = val;
5307 for_each_online_cpu(cpu) {
5308 cpuctx = &per_cpu(perf_cpu_context, cpu);
5309 raw_spin_lock_irq(&cpuctx->ctx.lock);
5310 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5311 perf_max_events - perf_reserved_percpu);
5312 cpuctx->max_pertask = mpt;
5313 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5315 spin_unlock(&perf_resource_lock);
5317 return count;
5320 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5322 return sprintf(buf, "%d\n", perf_overcommit);
5325 static ssize_t
5326 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5328 unsigned long val;
5329 int err;
5331 err = strict_strtoul(buf, 10, &val);
5332 if (err)
5333 return err;
5334 if (val > 1)
5335 return -EINVAL;
5337 spin_lock(&perf_resource_lock);
5338 perf_overcommit = val;
5339 spin_unlock(&perf_resource_lock);
5341 return count;
5344 static SYSDEV_CLASS_ATTR(
5345 reserve_percpu,
5346 0644,
5347 perf_show_reserve_percpu,
5348 perf_set_reserve_percpu
5351 static SYSDEV_CLASS_ATTR(
5352 overcommit,
5353 0644,
5354 perf_show_overcommit,
5355 perf_set_overcommit
5358 static struct attribute *perfclass_attrs[] = {
5359 &attr_reserve_percpu.attr,
5360 &attr_overcommit.attr,
5361 NULL
5364 static struct attribute_group perfclass_attr_group = {
5365 .attrs = perfclass_attrs,
5366 .name = "perf_events",
5369 static int __init perf_event_sysfs_init(void)
5371 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5372 &perfclass_attr_group);
5374 device_initcall(perf_event_sysfs_init);