1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
52 struct buffer_head
*bh_result
, int create
)
56 struct ocfs2_dinode
*fe
= NULL
;
57 struct buffer_head
*bh
= NULL
;
58 struct buffer_head
*buffer_cache_bh
= NULL
;
59 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
63 (unsigned long long)iblock
, bh_result
, create
);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
67 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
68 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock
);
73 status
= ocfs2_read_inode_block(inode
, &bh
);
78 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
80 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
81 le32_to_cpu(fe
->i_clusters
))) {
82 mlog(ML_ERROR
, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock
);
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
90 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
92 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
93 if (!buffer_cache_bh
) {
94 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh
)
103 && ocfs2_inode_is_new(inode
)) {
104 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
106 mlog(ML_ERROR
, "couldn't kmap!\n");
109 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
110 buffer_cache_bh
->b_data
,
112 kunmap_atomic(kaddr
, KM_USER0
);
113 set_buffer_uptodate(bh_result
);
115 brelse(buffer_cache_bh
);
118 map_bh(bh_result
, inode
->i_sb
,
119 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
130 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
131 struct buffer_head
*bh_result
, int create
)
134 unsigned int ext_flags
;
135 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
136 u64 p_blkno
, count
, past_eof
;
137 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
140 (unsigned long long)iblock
, bh_result
, create
);
142 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
143 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
144 inode
, inode
->i_ino
);
146 if (S_ISLNK(inode
->i_mode
)) {
147 /* this always does I/O for some reason. */
148 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
152 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
155 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
157 (unsigned long long)p_blkno
);
161 if (max_blocks
< count
)
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
176 clear_buffer_dirty(bh_result
);
177 clear_buffer_uptodate(bh_result
);
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
183 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
185 bh_result
->b_size
= count
<< inode
->i_blkbits
;
187 if (!ocfs2_sparse_alloc(osb
)) {
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock
,
193 (unsigned long long)p_blkno
,
194 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
195 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
201 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
203 (unsigned long long)past_eof
);
204 if (create
&& (iblock
>= past_eof
))
205 set_buffer_new(bh_result
);
215 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
216 struct buffer_head
*di_bh
)
220 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
222 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
223 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
228 size
= i_size_read(inode
);
230 if (size
> PAGE_CACHE_SIZE
||
231 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
232 ocfs2_error(inode
->i_sb
,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
235 (unsigned long long)size
);
239 kaddr
= kmap_atomic(page
, KM_USER0
);
241 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
242 /* Clear the remaining part of the page */
243 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
244 flush_dcache_page(page
);
245 kunmap_atomic(kaddr
, KM_USER0
);
247 SetPageUptodate(page
);
252 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
255 struct buffer_head
*di_bh
= NULL
;
257 BUG_ON(!PageLocked(page
));
258 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
260 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
266 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
274 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
276 struct inode
*inode
= page
->mapping
->host
;
277 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
278 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
281 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
283 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
285 if (ret
== AOP_TRUNCATED_PAGE
)
291 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
292 ret
= AOP_TRUNCATED_PAGE
;
293 goto out_inode_unlock
;
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 * and notice that the page they just read isn't needed.
304 * XXX sys_readahead() seems to get that wrong?
306 if (start
>= i_size_read(inode
)) {
307 zero_user(page
, 0, PAGE_SIZE
);
308 SetPageUptodate(page
);
313 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
314 ret
= ocfs2_readpage_inline(inode
, page
);
316 ret
= block_read_full_page(page
, ocfs2_get_block
);
320 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
322 ocfs2_inode_unlock(inode
, 0);
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
340 struct list_head
*pages
, unsigned nr_pages
)
343 struct inode
*inode
= mapping
->host
;
344 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
356 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
357 ocfs2_inode_unlock(inode
, 0);
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last
= list_entry(pages
->prev
, struct page
, lru
);
373 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
374 if (start
>= i_size_read(inode
))
377 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
380 up_read(&oi
->ip_alloc_sem
);
381 ocfs2_inode_unlock(inode
, 0);
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
401 mlog_entry("(0x%p)\n", page
);
403 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
415 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
416 unsigned from
, unsigned to
)
420 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
425 /* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
429 int walk_page_buffers( handle_t
*handle
,
430 struct buffer_head
*head
,
434 int (*fn
)( handle_t
*handle
,
435 struct buffer_head
*bh
))
437 struct buffer_head
*bh
;
438 unsigned block_start
, block_end
;
439 unsigned blocksize
= head
->b_size
;
441 struct buffer_head
*next
;
443 for ( bh
= head
, block_start
= 0;
444 ret
== 0 && (bh
!= head
|| !block_start
);
445 block_start
= block_end
, bh
= next
)
447 next
= bh
->b_this_page
;
448 block_end
= block_start
+ blocksize
;
449 if (block_end
<= from
|| block_start
>= to
) {
450 if (partial
&& !buffer_uptodate(bh
))
454 err
= (*fn
)(handle
, bh
);
461 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
466 struct inode
*inode
= mapping
->host
;
468 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
470 /* We don't need to lock journal system files, since they aren't
471 * accessed concurrently from multiple nodes.
473 if (!INODE_JOURNAL(inode
)) {
474 err
= ocfs2_inode_lock(inode
, NULL
, 0);
480 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
483 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
484 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
487 if (!INODE_JOURNAL(inode
)) {
488 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
489 ocfs2_inode_unlock(inode
, 0);
493 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
494 (unsigned long long)block
);
500 status
= err
? 0 : p_blkno
;
502 mlog_exit((int)status
);
508 * TODO: Make this into a generic get_blocks function.
510 * From do_direct_io in direct-io.c:
511 * "So what we do is to permit the ->get_blocks function to populate
512 * bh.b_size with the size of IO which is permitted at this offset and
515 * This function is called directly from get_more_blocks in direct-io.c.
517 * called like this: dio->get_blocks(dio->inode, fs_startblk,
518 * fs_count, map_bh, dio->rw == WRITE);
520 * Note that we never bother to allocate blocks here, and thus ignore the
523 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
524 struct buffer_head
*bh_result
, int create
)
527 u64 p_blkno
, inode_blocks
, contig_blocks
;
528 unsigned int ext_flags
;
529 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
530 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
532 /* This function won't even be called if the request isn't all
533 * nicely aligned and of the right size, so there's no need
534 * for us to check any of that. */
536 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
540 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
541 &contig_blocks
, &ext_flags
);
543 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
544 (unsigned long long)iblock
);
549 /* We should already CoW the refcounted extent in case of create. */
550 BUG_ON(create
&& (ext_flags
& OCFS2_EXT_REFCOUNTED
));
553 * get_more_blocks() expects us to describe a hole by clearing
554 * the mapped bit on bh_result().
556 * Consider an unwritten extent as a hole.
558 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
559 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
561 clear_buffer_mapped(bh_result
);
563 /* make sure we don't map more than max_blocks blocks here as
564 that's all the kernel will handle at this point. */
565 if (max_blocks
< contig_blocks
)
566 contig_blocks
= max_blocks
;
567 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
573 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
574 * particularly interested in the aio/dio case. Like the core uses
575 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576 * truncation on another.
578 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
583 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
586 /* this io's submitter should not have unlocked this before we could */
587 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
589 ocfs2_iocb_clear_rw_locked(iocb
);
591 level
= ocfs2_iocb_rw_locked_level(iocb
);
593 up_read(&inode
->i_alloc_sem
);
594 ocfs2_rw_unlock(inode
, level
);
598 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
599 * from ext3. PageChecked() bits have been removed as OCFS2 does not
600 * do journalled data.
602 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
604 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
606 jbd2_journal_invalidatepage(journal
, page
, offset
);
609 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
611 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
613 if (!page_has_buffers(page
))
615 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
618 static ssize_t
ocfs2_direct_IO(int rw
,
620 const struct iovec
*iov
,
622 unsigned long nr_segs
)
624 struct file
*file
= iocb
->ki_filp
;
625 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
631 * Fallback to buffered I/O if we see an inode without
634 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
637 /* Fallback to buffered I/O if we are appending. */
638 if (i_size_read(inode
) <= offset
)
641 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
642 inode
->i_sb
->s_bdev
, iov
, offset
,
644 ocfs2_direct_IO_get_blocks
,
651 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
656 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
658 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
661 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
663 cluster_start
= cpos
% cpp
;
664 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
666 cluster_end
= cluster_start
+ osb
->s_clustersize
;
669 BUG_ON(cluster_start
> PAGE_SIZE
);
670 BUG_ON(cluster_end
> PAGE_SIZE
);
673 *start
= cluster_start
;
679 * 'from' and 'to' are the region in the page to avoid zeroing.
681 * If pagesize > clustersize, this function will avoid zeroing outside
682 * of the cluster boundary.
684 * from == to == 0 is code for "zero the entire cluster region"
686 static void ocfs2_clear_page_regions(struct page
*page
,
687 struct ocfs2_super
*osb
, u32 cpos
,
688 unsigned from
, unsigned to
)
691 unsigned int cluster_start
, cluster_end
;
693 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
695 kaddr
= kmap_atomic(page
, KM_USER0
);
698 if (from
> cluster_start
)
699 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
700 if (to
< cluster_end
)
701 memset(kaddr
+ to
, 0, cluster_end
- to
);
703 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
706 kunmap_atomic(kaddr
, KM_USER0
);
710 * Nonsparse file systems fully allocate before we get to the write
711 * code. This prevents ocfs2_write() from tagging the write as an
712 * allocating one, which means ocfs2_map_page_blocks() might try to
713 * read-in the blocks at the tail of our file. Avoid reading them by
714 * testing i_size against each block offset.
716 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
717 unsigned int block_start
)
719 u64 offset
= page_offset(page
) + block_start
;
721 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
724 if (i_size_read(inode
) > offset
)
731 * Some of this taken from block_prepare_write(). We already have our
732 * mapping by now though, and the entire write will be allocating or
733 * it won't, so not much need to use BH_New.
735 * This will also skip zeroing, which is handled externally.
737 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
738 struct inode
*inode
, unsigned int from
,
739 unsigned int to
, int new)
742 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
743 unsigned int block_end
, block_start
;
744 unsigned int bsize
= 1 << inode
->i_blkbits
;
746 if (!page_has_buffers(page
))
747 create_empty_buffers(page
, bsize
, 0);
749 head
= page_buffers(page
);
750 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
751 bh
= bh
->b_this_page
, block_start
+= bsize
) {
752 block_end
= block_start
+ bsize
;
754 clear_buffer_new(bh
);
757 * Ignore blocks outside of our i/o range -
758 * they may belong to unallocated clusters.
760 if (block_start
>= to
|| block_end
<= from
) {
761 if (PageUptodate(page
))
762 set_buffer_uptodate(bh
);
767 * For an allocating write with cluster size >= page
768 * size, we always write the entire page.
773 if (!buffer_mapped(bh
)) {
774 map_bh(bh
, inode
->i_sb
, *p_blkno
);
775 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
778 if (PageUptodate(page
)) {
779 if (!buffer_uptodate(bh
))
780 set_buffer_uptodate(bh
);
781 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
783 ocfs2_should_read_blk(inode
, page
, block_start
) &&
784 (block_start
< from
|| block_end
> to
)) {
785 ll_rw_block(READ
, 1, &bh
);
789 *p_blkno
= *p_blkno
+ 1;
793 * If we issued read requests - let them complete.
795 while(wait_bh
> wait
) {
796 wait_on_buffer(*--wait_bh
);
797 if (!buffer_uptodate(*wait_bh
))
801 if (ret
== 0 || !new)
805 * If we get -EIO above, zero out any newly allocated blocks
806 * to avoid exposing stale data.
811 block_end
= block_start
+ bsize
;
812 if (block_end
<= from
)
814 if (block_start
>= to
)
817 zero_user(page
, block_start
, bh
->b_size
);
818 set_buffer_uptodate(bh
);
819 mark_buffer_dirty(bh
);
822 block_start
= block_end
;
823 bh
= bh
->b_this_page
;
824 } while (bh
!= head
);
829 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
830 #define OCFS2_MAX_CTXT_PAGES 1
832 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
835 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
838 * Describe the state of a single cluster to be written to.
840 struct ocfs2_write_cluster_desc
{
844 * Give this a unique field because c_phys eventually gets
848 unsigned c_unwritten
;
849 unsigned c_needs_zero
;
852 struct ocfs2_write_ctxt
{
853 /* Logical cluster position / len of write */
857 /* First cluster allocated in a nonsparse extend */
858 u32 w_first_new_cpos
;
860 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
863 * This is true if page_size > cluster_size.
865 * It triggers a set of special cases during write which might
866 * have to deal with allocating writes to partial pages.
868 unsigned int w_large_pages
;
871 * Pages involved in this write.
873 * w_target_page is the page being written to by the user.
875 * w_pages is an array of pages which always contains
876 * w_target_page, and in the case of an allocating write with
877 * page_size < cluster size, it will contain zero'd and mapped
878 * pages adjacent to w_target_page which need to be written
879 * out in so that future reads from that region will get
882 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
883 unsigned int w_num_pages
;
884 struct page
*w_target_page
;
887 * ocfs2_write_end() uses this to know what the real range to
888 * write in the target should be.
890 unsigned int w_target_from
;
891 unsigned int w_target_to
;
894 * We could use journal_current_handle() but this is cleaner,
899 struct buffer_head
*w_di_bh
;
901 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
904 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
908 for(i
= 0; i
< num_pages
; i
++) {
910 unlock_page(pages
[i
]);
911 mark_page_accessed(pages
[i
]);
912 page_cache_release(pages
[i
]);
917 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
919 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
925 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
926 struct ocfs2_super
*osb
, loff_t pos
,
927 unsigned len
, struct buffer_head
*di_bh
)
930 struct ocfs2_write_ctxt
*wc
;
932 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
936 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
937 wc
->w_first_new_cpos
= UINT_MAX
;
938 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
939 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
943 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
944 wc
->w_large_pages
= 1;
946 wc
->w_large_pages
= 0;
948 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
956 * If a page has any new buffers, zero them out here, and mark them uptodate
957 * and dirty so they'll be written out (in order to prevent uninitialised
958 * block data from leaking). And clear the new bit.
960 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
962 unsigned int block_start
, block_end
;
963 struct buffer_head
*head
, *bh
;
965 BUG_ON(!PageLocked(page
));
966 if (!page_has_buffers(page
))
969 bh
= head
= page_buffers(page
);
972 block_end
= block_start
+ bh
->b_size
;
974 if (buffer_new(bh
)) {
975 if (block_end
> from
&& block_start
< to
) {
976 if (!PageUptodate(page
)) {
979 start
= max(from
, block_start
);
980 end
= min(to
, block_end
);
982 zero_user_segment(page
, start
, end
);
983 set_buffer_uptodate(bh
);
986 clear_buffer_new(bh
);
987 mark_buffer_dirty(bh
);
991 block_start
= block_end
;
992 bh
= bh
->b_this_page
;
993 } while (bh
!= head
);
997 * Only called when we have a failure during allocating write to write
998 * zero's to the newly allocated region.
1000 static void ocfs2_write_failure(struct inode
*inode
,
1001 struct ocfs2_write_ctxt
*wc
,
1002 loff_t user_pos
, unsigned user_len
)
1005 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
1006 to
= user_pos
+ user_len
;
1007 struct page
*tmppage
;
1009 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
1011 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1012 tmppage
= wc
->w_pages
[i
];
1014 if (page_has_buffers(tmppage
)) {
1015 if (ocfs2_should_order_data(inode
))
1016 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1018 block_commit_write(tmppage
, from
, to
);
1023 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1024 struct ocfs2_write_ctxt
*wc
,
1025 struct page
*page
, u32 cpos
,
1026 loff_t user_pos
, unsigned user_len
,
1030 unsigned int map_from
= 0, map_to
= 0;
1031 unsigned int cluster_start
, cluster_end
;
1032 unsigned int user_data_from
= 0, user_data_to
= 0;
1034 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1035 &cluster_start
, &cluster_end
);
1037 if (page
== wc
->w_target_page
) {
1038 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1039 map_to
= map_from
+ user_len
;
1042 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1043 cluster_start
, cluster_end
,
1046 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1047 map_from
, map_to
, new);
1053 user_data_from
= map_from
;
1054 user_data_to
= map_to
;
1056 map_from
= cluster_start
;
1057 map_to
= cluster_end
;
1061 * If we haven't allocated the new page yet, we
1062 * shouldn't be writing it out without copying user
1063 * data. This is likely a math error from the caller.
1067 map_from
= cluster_start
;
1068 map_to
= cluster_end
;
1070 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1071 cluster_start
, cluster_end
, new);
1079 * Parts of newly allocated pages need to be zero'd.
1081 * Above, we have also rewritten 'to' and 'from' - as far as
1082 * the rest of the function is concerned, the entire cluster
1083 * range inside of a page needs to be written.
1085 * We can skip this if the page is up to date - it's already
1086 * been zero'd from being read in as a hole.
1088 if (new && !PageUptodate(page
))
1089 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1090 cpos
, user_data_from
, user_data_to
);
1092 flush_dcache_page(page
);
1099 * This function will only grab one clusters worth of pages.
1101 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1102 struct ocfs2_write_ctxt
*wc
,
1103 u32 cpos
, loff_t user_pos
,
1104 unsigned user_len
, int new,
1105 struct page
*mmap_page
)
1108 unsigned long start
, target_index
, end_index
, index
;
1109 struct inode
*inode
= mapping
->host
;
1112 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1115 * Figure out how many pages we'll be manipulating here. For
1116 * non allocating write, we just change the one
1117 * page. Otherwise, we'll need a whole clusters worth. If we're
1118 * writing past i_size, we only need enough pages to cover the
1119 * last page of the write.
1122 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1123 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1125 * We need the index *past* the last page we could possibly
1126 * touch. This is the page past the end of the write or
1127 * i_size, whichever is greater.
1129 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1130 BUG_ON(last_byte
< 1);
1131 end_index
= ((last_byte
- 1) >> PAGE_CACHE_SHIFT
) + 1;
1132 if ((start
+ wc
->w_num_pages
) > end_index
)
1133 wc
->w_num_pages
= end_index
- start
;
1135 wc
->w_num_pages
= 1;
1136 start
= target_index
;
1139 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1142 if (index
== target_index
&& mmap_page
) {
1144 * ocfs2_pagemkwrite() is a little different
1145 * and wants us to directly use the page
1148 lock_page(mmap_page
);
1150 if (mmap_page
->mapping
!= mapping
) {
1151 unlock_page(mmap_page
);
1153 * Sanity check - the locking in
1154 * ocfs2_pagemkwrite() should ensure
1155 * that this code doesn't trigger.
1162 page_cache_get(mmap_page
);
1163 wc
->w_pages
[i
] = mmap_page
;
1165 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1167 if (!wc
->w_pages
[i
]) {
1174 if (index
== target_index
)
1175 wc
->w_target_page
= wc
->w_pages
[i
];
1182 * Prepare a single cluster for write one cluster into the file.
1184 static int ocfs2_write_cluster(struct address_space
*mapping
,
1185 u32 phys
, unsigned int unwritten
,
1186 unsigned int should_zero
,
1187 struct ocfs2_alloc_context
*data_ac
,
1188 struct ocfs2_alloc_context
*meta_ac
,
1189 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1190 loff_t user_pos
, unsigned user_len
)
1193 u64 v_blkno
, p_blkno
;
1194 struct inode
*inode
= mapping
->host
;
1195 struct ocfs2_extent_tree et
;
1197 new = phys
== 0 ? 1 : 0;
1202 * This is safe to call with the page locks - it won't take
1203 * any additional semaphores or cluster locks.
1206 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1207 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1208 wc
->w_handle
, data_ac
,
1211 * This shouldn't happen because we must have already
1212 * calculated the correct meta data allocation required. The
1213 * internal tree allocation code should know how to increase
1214 * transaction credits itself.
1216 * If need be, we could handle -EAGAIN for a
1217 * RESTART_TRANS here.
1219 mlog_bug_on_msg(ret
== -EAGAIN
,
1220 "Inode %llu: EAGAIN return during allocation.\n",
1221 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1226 } else if (unwritten
) {
1227 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1229 ret
= ocfs2_mark_extent_written(inode
, &et
,
1230 wc
->w_handle
, cpos
, 1, phys
,
1231 meta_ac
, &wc
->w_dealloc
);
1239 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1241 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1244 * The only reason this should fail is due to an inability to
1245 * find the extent added.
1247 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1250 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1251 "at logical block %llu",
1252 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1253 (unsigned long long)v_blkno
);
1257 BUG_ON(p_blkno
== 0);
1259 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1262 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1263 wc
->w_pages
[i
], cpos
,
1274 * We only have cleanup to do in case of allocating write.
1277 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1284 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1285 struct ocfs2_alloc_context
*data_ac
,
1286 struct ocfs2_alloc_context
*meta_ac
,
1287 struct ocfs2_write_ctxt
*wc
,
1288 loff_t pos
, unsigned len
)
1292 unsigned int local_len
= len
;
1293 struct ocfs2_write_cluster_desc
*desc
;
1294 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1296 for (i
= 0; i
< wc
->w_clen
; i
++) {
1297 desc
= &wc
->w_desc
[i
];
1300 * We have to make sure that the total write passed in
1301 * doesn't extend past a single cluster.
1304 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1305 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1306 local_len
= osb
->s_clustersize
- cluster_off
;
1308 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1312 wc
, desc
->c_cpos
, pos
, local_len
);
1328 * ocfs2_write_end() wants to know which parts of the target page it
1329 * should complete the write on. It's easiest to compute them ahead of
1330 * time when a more complete view of the write is available.
1332 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1333 struct ocfs2_write_ctxt
*wc
,
1334 loff_t pos
, unsigned len
, int alloc
)
1336 struct ocfs2_write_cluster_desc
*desc
;
1338 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1339 wc
->w_target_to
= wc
->w_target_from
+ len
;
1345 * Allocating write - we may have different boundaries based
1346 * on page size and cluster size.
1348 * NOTE: We can no longer compute one value from the other as
1349 * the actual write length and user provided length may be
1353 if (wc
->w_large_pages
) {
1355 * We only care about the 1st and last cluster within
1356 * our range and whether they should be zero'd or not. Either
1357 * value may be extended out to the start/end of a
1358 * newly allocated cluster.
1360 desc
= &wc
->w_desc
[0];
1361 if (desc
->c_needs_zero
)
1362 ocfs2_figure_cluster_boundaries(osb
,
1367 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1368 if (desc
->c_needs_zero
)
1369 ocfs2_figure_cluster_boundaries(osb
,
1374 wc
->w_target_from
= 0;
1375 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1380 * Populate each single-cluster write descriptor in the write context
1381 * with information about the i/o to be done.
1383 * Returns the number of clusters that will have to be allocated, as
1384 * well as a worst case estimate of the number of extent records that
1385 * would have to be created during a write to an unwritten region.
1387 static int ocfs2_populate_write_desc(struct inode
*inode
,
1388 struct ocfs2_write_ctxt
*wc
,
1389 unsigned int *clusters_to_alloc
,
1390 unsigned int *extents_to_split
)
1393 struct ocfs2_write_cluster_desc
*desc
;
1394 unsigned int num_clusters
= 0;
1395 unsigned int ext_flags
= 0;
1399 *clusters_to_alloc
= 0;
1400 *extents_to_split
= 0;
1402 for (i
= 0; i
< wc
->w_clen
; i
++) {
1403 desc
= &wc
->w_desc
[i
];
1404 desc
->c_cpos
= wc
->w_cpos
+ i
;
1406 if (num_clusters
== 0) {
1408 * Need to look up the next extent record.
1410 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1411 &num_clusters
, &ext_flags
);
1417 /* We should already CoW the refcountd extent. */
1418 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1421 * Assume worst case - that we're writing in
1422 * the middle of the extent.
1424 * We can assume that the write proceeds from
1425 * left to right, in which case the extent
1426 * insert code is smart enough to coalesce the
1427 * next splits into the previous records created.
1429 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1430 *extents_to_split
= *extents_to_split
+ 2;
1433 * Only increment phys if it doesn't describe
1440 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1441 * file that got extended. w_first_new_cpos tells us
1442 * where the newly allocated clusters are so we can
1445 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1447 desc
->c_needs_zero
= 1;
1450 desc
->c_phys
= phys
;
1453 desc
->c_needs_zero
= 1;
1454 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1457 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1458 desc
->c_unwritten
= 1;
1459 desc
->c_needs_zero
= 1;
1470 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1471 struct inode
*inode
,
1472 struct ocfs2_write_ctxt
*wc
)
1475 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1478 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1480 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1487 * If we don't set w_num_pages then this page won't get unlocked
1488 * and freed on cleanup of the write context.
1490 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1491 wc
->w_num_pages
= 1;
1493 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1494 if (IS_ERR(handle
)) {
1495 ret
= PTR_ERR(handle
);
1500 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1501 OCFS2_JOURNAL_ACCESS_WRITE
);
1503 ocfs2_commit_trans(osb
, handle
);
1509 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1510 ocfs2_set_inode_data_inline(inode
, di
);
1512 if (!PageUptodate(page
)) {
1513 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1515 ocfs2_commit_trans(osb
, handle
);
1521 wc
->w_handle
= handle
;
1526 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1528 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1530 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1535 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1536 struct inode
*inode
, loff_t pos
,
1537 unsigned len
, struct page
*mmap_page
,
1538 struct ocfs2_write_ctxt
*wc
)
1540 int ret
, written
= 0;
1541 loff_t end
= pos
+ len
;
1542 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1543 struct ocfs2_dinode
*di
= NULL
;
1545 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1546 (unsigned long long)oi
->ip_blkno
, len
, (unsigned long long)pos
,
1547 oi
->ip_dyn_features
);
1550 * Handle inodes which already have inline data 1st.
1552 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1553 if (mmap_page
== NULL
&&
1554 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1555 goto do_inline_write
;
1558 * The write won't fit - we have to give this inode an
1559 * inline extent list now.
1561 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1568 * Check whether the inode can accept inline data.
1570 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1574 * Check whether the write can fit.
1576 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1578 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1582 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1589 * This signals to the caller that the data can be written
1594 return written
? written
: ret
;
1598 * This function only does anything for file systems which can't
1599 * handle sparse files.
1601 * What we want to do here is fill in any hole between the current end
1602 * of allocation and the end of our write. That way the rest of the
1603 * write path can treat it as an non-allocating write, which has no
1604 * special case code for sparse/nonsparse files.
1606 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1607 struct buffer_head
*di_bh
,
1608 loff_t pos
, unsigned len
,
1609 struct ocfs2_write_ctxt
*wc
)
1612 loff_t newsize
= pos
+ len
;
1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1616 if (newsize
<= i_size_read(inode
))
1619 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1623 wc
->w_first_new_cpos
=
1624 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1629 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1634 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1635 if (pos
> i_size_read(inode
))
1636 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1641 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1642 loff_t pos
, unsigned len
, unsigned flags
,
1643 struct page
**pagep
, void **fsdata
,
1644 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1646 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1647 unsigned int clusters_to_alloc
, extents_to_split
;
1648 struct ocfs2_write_ctxt
*wc
;
1649 struct inode
*inode
= mapping
->host
;
1650 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1651 struct ocfs2_dinode
*di
;
1652 struct ocfs2_alloc_context
*data_ac
= NULL
;
1653 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1655 struct ocfs2_extent_tree et
;
1657 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1663 if (ocfs2_supports_inline_data(osb
)) {
1664 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1676 if (ocfs2_sparse_alloc(osb
))
1677 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1679 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
, len
,
1686 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1690 } else if (ret
== 1) {
1691 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1692 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1699 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1706 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1709 * We set w_target_from, w_target_to here so that
1710 * ocfs2_write_end() knows which range in the target page to
1711 * write out. An allocation requires that we write the entire
1714 if (clusters_to_alloc
|| extents_to_split
) {
1716 * XXX: We are stretching the limits of
1717 * ocfs2_lock_allocators(). It greatly over-estimates
1718 * the work to be done.
1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 " clusters_to_add = %u, extents_to_split = %u\n",
1722 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1723 (long long)i_size_read(inode
), le32_to_cpu(di
->i_clusters
),
1724 clusters_to_alloc
, extents_to_split
);
1726 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1728 ret
= ocfs2_lock_allocators(inode
, &et
,
1729 clusters_to_alloc
, extents_to_split
,
1730 &data_ac
, &meta_ac
);
1737 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1739 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1746 * We have to zero sparse allocated clusters, unwritten extent clusters,
1747 * and non-sparse clusters we just extended. For non-sparse writes,
1748 * we know zeros will only be needed in the first and/or last cluster.
1750 if (clusters_to_alloc
|| extents_to_split
||
1751 (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1752 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
)))
1753 cluster_of_pages
= 1;
1755 cluster_of_pages
= 0;
1757 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1759 handle
= ocfs2_start_trans(osb
, credits
);
1760 if (IS_ERR(handle
)) {
1761 ret
= PTR_ERR(handle
);
1766 wc
->w_handle
= handle
;
1768 if (clusters_to_alloc
) {
1769 ret
= dquot_alloc_space_nodirty(inode
,
1770 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1775 * We don't want this to fail in ocfs2_write_end(), so do it
1778 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1779 OCFS2_JOURNAL_ACCESS_WRITE
);
1786 * Fill our page array first. That way we've grabbed enough so
1787 * that we can zero and flush if we error after adding the
1790 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1791 cluster_of_pages
, mmap_page
);
1797 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1805 ocfs2_free_alloc_context(data_ac
);
1807 ocfs2_free_alloc_context(meta_ac
);
1810 *pagep
= wc
->w_target_page
;
1814 if (clusters_to_alloc
)
1815 dquot_free_space(inode
,
1816 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1818 ocfs2_commit_trans(osb
, handle
);
1821 ocfs2_free_write_ctxt(wc
);
1824 ocfs2_free_alloc_context(data_ac
);
1826 ocfs2_free_alloc_context(meta_ac
);
1830 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1831 loff_t pos
, unsigned len
, unsigned flags
,
1832 struct page
**pagep
, void **fsdata
)
1835 struct buffer_head
*di_bh
= NULL
;
1836 struct inode
*inode
= mapping
->host
;
1838 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1845 * Take alloc sem here to prevent concurrent lookups. That way
1846 * the mapping, zeroing and tree manipulation within
1847 * ocfs2_write() will be safe against ->readpage(). This
1848 * should also serve to lock out allocation from a shared
1851 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1853 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1854 fsdata
, di_bh
, NULL
);
1865 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1868 ocfs2_inode_unlock(inode
, 1);
1873 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1874 unsigned len
, unsigned *copied
,
1875 struct ocfs2_dinode
*di
,
1876 struct ocfs2_write_ctxt
*wc
)
1880 if (unlikely(*copied
< len
)) {
1881 if (!PageUptodate(wc
->w_target_page
)) {
1887 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1888 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1889 kunmap_atomic(kaddr
, KM_USER0
);
1891 mlog(0, "Data written to inode at offset %llu. "
1892 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1893 (unsigned long long)pos
, *copied
,
1894 le16_to_cpu(di
->id2
.i_data
.id_count
),
1895 le16_to_cpu(di
->i_dyn_features
));
1898 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1899 loff_t pos
, unsigned len
, unsigned copied
,
1900 struct page
*page
, void *fsdata
)
1903 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1904 struct inode
*inode
= mapping
->host
;
1905 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1906 struct ocfs2_write_ctxt
*wc
= fsdata
;
1907 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1908 handle_t
*handle
= wc
->w_handle
;
1909 struct page
*tmppage
;
1911 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1912 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1913 goto out_write_size
;
1916 if (unlikely(copied
< len
)) {
1917 if (!PageUptodate(wc
->w_target_page
))
1920 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1923 flush_dcache_page(wc
->w_target_page
);
1925 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1926 tmppage
= wc
->w_pages
[i
];
1928 if (tmppage
== wc
->w_target_page
) {
1929 from
= wc
->w_target_from
;
1930 to
= wc
->w_target_to
;
1932 BUG_ON(from
> PAGE_CACHE_SIZE
||
1933 to
> PAGE_CACHE_SIZE
||
1937 * Pages adjacent to the target (if any) imply
1938 * a hole-filling write in which case we want
1939 * to flush their entire range.
1942 to
= PAGE_CACHE_SIZE
;
1945 if (page_has_buffers(tmppage
)) {
1946 if (ocfs2_should_order_data(inode
))
1947 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1948 block_commit_write(tmppage
, from
, to
);
1954 if (pos
> inode
->i_size
) {
1955 i_size_write(inode
, pos
);
1956 mark_inode_dirty(inode
);
1958 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1959 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1960 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1961 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1962 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1963 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1965 ocfs2_commit_trans(osb
, handle
);
1967 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1969 ocfs2_free_write_ctxt(wc
);
1974 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1975 loff_t pos
, unsigned len
, unsigned copied
,
1976 struct page
*page
, void *fsdata
)
1979 struct inode
*inode
= mapping
->host
;
1981 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1983 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1984 ocfs2_inode_unlock(inode
, 1);
1989 const struct address_space_operations ocfs2_aops
= {
1990 .readpage
= ocfs2_readpage
,
1991 .readpages
= ocfs2_readpages
,
1992 .writepage
= ocfs2_writepage
,
1993 .write_begin
= ocfs2_write_begin
,
1994 .write_end
= ocfs2_write_end
,
1996 .sync_page
= block_sync_page
,
1997 .direct_IO
= ocfs2_direct_IO
,
1998 .invalidatepage
= ocfs2_invalidatepage
,
1999 .releasepage
= ocfs2_releasepage
,
2000 .migratepage
= buffer_migrate_page
,
2001 .is_partially_uptodate
= block_is_partially_uptodate
,
2002 .error_remove_page
= generic_error_remove_page
,