omap: mailbox: add IRQ names
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / aops.c
blob356e976772bf1adb112aaf3c8b28ddb71b639afb
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
73 status = ocfs2_read_inode_block(inode, &bh);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
78 fe = (struct ocfs2_dinode *) bh->b_data;
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
115 brelse(buffer_cache_bh);
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 err = 0;
123 bail:
124 brelse(bh);
126 mlog_exit(err);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
207 bail:
208 if (err < 0)
209 err = -EIO;
211 mlog_exit(err);
212 return err;
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
228 size = i_size_read(inode);
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
247 SetPageUptodate(page);
249 return 0;
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 int ret;
255 struct buffer_head *di_bh = NULL;
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
270 brelse(di_bh);
271 return ret;
274 static int ocfs2_readpage(struct file *file, struct page *page)
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 ret = AOP_TRUNCATED_PAGE;
293 goto out_inode_unlock;
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 * and notice that the page they just read isn't needed.
304 * XXX sys_readahead() seems to get that wrong?
306 if (start >= i_size_read(inode)) {
307 zero_user(page, 0, PAGE_SIZE);
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
317 unlock = 0;
319 out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
323 out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
383 return err;
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 int ret;
401 mlog_entry("(0x%p)\n", page);
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
405 mlog_exit(ret);
407 return ret;
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 unsigned from, unsigned to)
418 int ret;
420 ret = block_prepare_write(page, from, to, ocfs2_get_block);
422 return ret;
425 /* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
429 int walk_page_buffers( handle_t *handle,
430 struct buffer_head *head,
431 unsigned from,
432 unsigned to,
433 int *partial,
434 int (*fn)( handle_t *handle,
435 struct buffer_head *bh))
437 struct buffer_head *bh;
438 unsigned block_start, block_end;
439 unsigned blocksize = head->b_size;
440 int err, ret = 0;
441 struct buffer_head *next;
443 for ( bh = head, block_start = 0;
444 ret == 0 && (bh != head || !block_start);
445 block_start = block_end, bh = next)
447 next = bh->b_this_page;
448 block_end = block_start + blocksize;
449 if (block_end <= from || block_start >= to) {
450 if (partial && !buffer_uptodate(bh))
451 *partial = 1;
452 continue;
454 err = (*fn)(handle, bh);
455 if (!ret)
456 ret = err;
458 return ret;
461 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
463 sector_t status;
464 u64 p_blkno = 0;
465 int err = 0;
466 struct inode *inode = mapping->host;
468 mlog_entry("(block = %llu)\n", (unsigned long long)block);
470 /* We don't need to lock journal system files, since they aren't
471 * accessed concurrently from multiple nodes.
473 if (!INODE_JOURNAL(inode)) {
474 err = ocfs2_inode_lock(inode, NULL, 0);
475 if (err) {
476 if (err != -ENOENT)
477 mlog_errno(err);
478 goto bail;
480 down_read(&OCFS2_I(inode)->ip_alloc_sem);
483 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
484 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
485 NULL);
487 if (!INODE_JOURNAL(inode)) {
488 up_read(&OCFS2_I(inode)->ip_alloc_sem);
489 ocfs2_inode_unlock(inode, 0);
492 if (err) {
493 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
494 (unsigned long long)block);
495 mlog_errno(err);
496 goto bail;
499 bail:
500 status = err ? 0 : p_blkno;
502 mlog_exit((int)status);
504 return status;
508 * TODO: Make this into a generic get_blocks function.
510 * From do_direct_io in direct-io.c:
511 * "So what we do is to permit the ->get_blocks function to populate
512 * bh.b_size with the size of IO which is permitted at this offset and
513 * this i_blkbits."
515 * This function is called directly from get_more_blocks in direct-io.c.
517 * called like this: dio->get_blocks(dio->inode, fs_startblk,
518 * fs_count, map_bh, dio->rw == WRITE);
520 * Note that we never bother to allocate blocks here, and thus ignore the
521 * create argument.
523 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
524 struct buffer_head *bh_result, int create)
526 int ret;
527 u64 p_blkno, inode_blocks, contig_blocks;
528 unsigned int ext_flags;
529 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
530 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
532 /* This function won't even be called if the request isn't all
533 * nicely aligned and of the right size, so there's no need
534 * for us to check any of that. */
536 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 &contig_blocks, &ext_flags);
542 if (ret) {
543 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
544 (unsigned long long)iblock);
545 ret = -EIO;
546 goto bail;
549 /* We should already CoW the refcounted extent in case of create. */
550 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553 * get_more_blocks() expects us to describe a hole by clearing
554 * the mapped bit on bh_result().
556 * Consider an unwritten extent as a hole.
558 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
559 map_bh(bh_result, inode->i_sb, p_blkno);
560 else
561 clear_buffer_mapped(bh_result);
563 /* make sure we don't map more than max_blocks blocks here as
564 that's all the kernel will handle at this point. */
565 if (max_blocks < contig_blocks)
566 contig_blocks = max_blocks;
567 bh_result->b_size = contig_blocks << blocksize_bits;
568 bail:
569 return ret;
573 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
574 * particularly interested in the aio/dio case. Like the core uses
575 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576 * truncation on another.
578 static void ocfs2_dio_end_io(struct kiocb *iocb,
579 loff_t offset,
580 ssize_t bytes,
581 void *private)
583 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
584 int level;
586 /* this io's submitter should not have unlocked this before we could */
587 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
589 ocfs2_iocb_clear_rw_locked(iocb);
591 level = ocfs2_iocb_rw_locked_level(iocb);
592 if (!level)
593 up_read(&inode->i_alloc_sem);
594 ocfs2_rw_unlock(inode, level);
598 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
599 * from ext3. PageChecked() bits have been removed as OCFS2 does not
600 * do journalled data.
602 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
604 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
606 jbd2_journal_invalidatepage(journal, page, offset);
609 static int ocfs2_releasepage(struct page *page, gfp_t wait)
611 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
613 if (!page_has_buffers(page))
614 return 0;
615 return jbd2_journal_try_to_free_buffers(journal, page, wait);
618 static ssize_t ocfs2_direct_IO(int rw,
619 struct kiocb *iocb,
620 const struct iovec *iov,
621 loff_t offset,
622 unsigned long nr_segs)
624 struct file *file = iocb->ki_filp;
625 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
626 int ret;
628 mlog_entry_void();
631 * Fallback to buffered I/O if we see an inode without
632 * extents.
634 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
635 return 0;
637 /* Fallback to buffered I/O if we are appending. */
638 if (i_size_read(inode) <= offset)
639 return 0;
641 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
642 inode->i_sb->s_bdev, iov, offset,
643 nr_segs,
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io);
647 mlog_exit(ret);
648 return ret;
651 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
652 u32 cpos,
653 unsigned int *start,
654 unsigned int *end)
656 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
658 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
659 unsigned int cpp;
661 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
663 cluster_start = cpos % cpp;
664 cluster_start = cluster_start << osb->s_clustersize_bits;
666 cluster_end = cluster_start + osb->s_clustersize;
669 BUG_ON(cluster_start > PAGE_SIZE);
670 BUG_ON(cluster_end > PAGE_SIZE);
672 if (start)
673 *start = cluster_start;
674 if (end)
675 *end = cluster_end;
679 * 'from' and 'to' are the region in the page to avoid zeroing.
681 * If pagesize > clustersize, this function will avoid zeroing outside
682 * of the cluster boundary.
684 * from == to == 0 is code for "zero the entire cluster region"
686 static void ocfs2_clear_page_regions(struct page *page,
687 struct ocfs2_super *osb, u32 cpos,
688 unsigned from, unsigned to)
690 void *kaddr;
691 unsigned int cluster_start, cluster_end;
693 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
695 kaddr = kmap_atomic(page, KM_USER0);
697 if (from || to) {
698 if (from > cluster_start)
699 memset(kaddr + cluster_start, 0, from - cluster_start);
700 if (to < cluster_end)
701 memset(kaddr + to, 0, cluster_end - to);
702 } else {
703 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
706 kunmap_atomic(kaddr, KM_USER0);
710 * Nonsparse file systems fully allocate before we get to the write
711 * code. This prevents ocfs2_write() from tagging the write as an
712 * allocating one, which means ocfs2_map_page_blocks() might try to
713 * read-in the blocks at the tail of our file. Avoid reading them by
714 * testing i_size against each block offset.
716 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
717 unsigned int block_start)
719 u64 offset = page_offset(page) + block_start;
721 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
722 return 1;
724 if (i_size_read(inode) > offset)
725 return 1;
727 return 0;
731 * Some of this taken from block_prepare_write(). We already have our
732 * mapping by now though, and the entire write will be allocating or
733 * it won't, so not much need to use BH_New.
735 * This will also skip zeroing, which is handled externally.
737 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
738 struct inode *inode, unsigned int from,
739 unsigned int to, int new)
741 int ret = 0;
742 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
743 unsigned int block_end, block_start;
744 unsigned int bsize = 1 << inode->i_blkbits;
746 if (!page_has_buffers(page))
747 create_empty_buffers(page, bsize, 0);
749 head = page_buffers(page);
750 for (bh = head, block_start = 0; bh != head || !block_start;
751 bh = bh->b_this_page, block_start += bsize) {
752 block_end = block_start + bsize;
754 clear_buffer_new(bh);
757 * Ignore blocks outside of our i/o range -
758 * they may belong to unallocated clusters.
760 if (block_start >= to || block_end <= from) {
761 if (PageUptodate(page))
762 set_buffer_uptodate(bh);
763 continue;
767 * For an allocating write with cluster size >= page
768 * size, we always write the entire page.
770 if (new)
771 set_buffer_new(bh);
773 if (!buffer_mapped(bh)) {
774 map_bh(bh, inode->i_sb, *p_blkno);
775 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
778 if (PageUptodate(page)) {
779 if (!buffer_uptodate(bh))
780 set_buffer_uptodate(bh);
781 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
782 !buffer_new(bh) &&
783 ocfs2_should_read_blk(inode, page, block_start) &&
784 (block_start < from || block_end > to)) {
785 ll_rw_block(READ, 1, &bh);
786 *wait_bh++=bh;
789 *p_blkno = *p_blkno + 1;
793 * If we issued read requests - let them complete.
795 while(wait_bh > wait) {
796 wait_on_buffer(*--wait_bh);
797 if (!buffer_uptodate(*wait_bh))
798 ret = -EIO;
801 if (ret == 0 || !new)
802 return ret;
805 * If we get -EIO above, zero out any newly allocated blocks
806 * to avoid exposing stale data.
808 bh = head;
809 block_start = 0;
810 do {
811 block_end = block_start + bsize;
812 if (block_end <= from)
813 goto next_bh;
814 if (block_start >= to)
815 break;
817 zero_user(page, block_start, bh->b_size);
818 set_buffer_uptodate(bh);
819 mark_buffer_dirty(bh);
821 next_bh:
822 block_start = block_end;
823 bh = bh->b_this_page;
824 } while (bh != head);
826 return ret;
829 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
830 #define OCFS2_MAX_CTXT_PAGES 1
831 #else
832 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
833 #endif
835 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
838 * Describe the state of a single cluster to be written to.
840 struct ocfs2_write_cluster_desc {
841 u32 c_cpos;
842 u32 c_phys;
844 * Give this a unique field because c_phys eventually gets
845 * filled.
847 unsigned c_new;
848 unsigned c_unwritten;
849 unsigned c_needs_zero;
852 struct ocfs2_write_ctxt {
853 /* Logical cluster position / len of write */
854 u32 w_cpos;
855 u32 w_clen;
857 /* First cluster allocated in a nonsparse extend */
858 u32 w_first_new_cpos;
860 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
863 * This is true if page_size > cluster_size.
865 * It triggers a set of special cases during write which might
866 * have to deal with allocating writes to partial pages.
868 unsigned int w_large_pages;
871 * Pages involved in this write.
873 * w_target_page is the page being written to by the user.
875 * w_pages is an array of pages which always contains
876 * w_target_page, and in the case of an allocating write with
877 * page_size < cluster size, it will contain zero'd and mapped
878 * pages adjacent to w_target_page which need to be written
879 * out in so that future reads from that region will get
880 * zero's.
882 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
883 unsigned int w_num_pages;
884 struct page *w_target_page;
887 * ocfs2_write_end() uses this to know what the real range to
888 * write in the target should be.
890 unsigned int w_target_from;
891 unsigned int w_target_to;
894 * We could use journal_current_handle() but this is cleaner,
895 * IMHO -Mark
897 handle_t *w_handle;
899 struct buffer_head *w_di_bh;
901 struct ocfs2_cached_dealloc_ctxt w_dealloc;
904 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
906 int i;
908 for(i = 0; i < num_pages; i++) {
909 if (pages[i]) {
910 unlock_page(pages[i]);
911 mark_page_accessed(pages[i]);
912 page_cache_release(pages[i]);
917 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
919 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
921 brelse(wc->w_di_bh);
922 kfree(wc);
925 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
926 struct ocfs2_super *osb, loff_t pos,
927 unsigned len, struct buffer_head *di_bh)
929 u32 cend;
930 struct ocfs2_write_ctxt *wc;
932 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
933 if (!wc)
934 return -ENOMEM;
936 wc->w_cpos = pos >> osb->s_clustersize_bits;
937 wc->w_first_new_cpos = UINT_MAX;
938 cend = (pos + len - 1) >> osb->s_clustersize_bits;
939 wc->w_clen = cend - wc->w_cpos + 1;
940 get_bh(di_bh);
941 wc->w_di_bh = di_bh;
943 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
944 wc->w_large_pages = 1;
945 else
946 wc->w_large_pages = 0;
948 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
950 *wcp = wc;
952 return 0;
956 * If a page has any new buffers, zero them out here, and mark them uptodate
957 * and dirty so they'll be written out (in order to prevent uninitialised
958 * block data from leaking). And clear the new bit.
960 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
962 unsigned int block_start, block_end;
963 struct buffer_head *head, *bh;
965 BUG_ON(!PageLocked(page));
966 if (!page_has_buffers(page))
967 return;
969 bh = head = page_buffers(page);
970 block_start = 0;
971 do {
972 block_end = block_start + bh->b_size;
974 if (buffer_new(bh)) {
975 if (block_end > from && block_start < to) {
976 if (!PageUptodate(page)) {
977 unsigned start, end;
979 start = max(from, block_start);
980 end = min(to, block_end);
982 zero_user_segment(page, start, end);
983 set_buffer_uptodate(bh);
986 clear_buffer_new(bh);
987 mark_buffer_dirty(bh);
991 block_start = block_end;
992 bh = bh->b_this_page;
993 } while (bh != head);
997 * Only called when we have a failure during allocating write to write
998 * zero's to the newly allocated region.
1000 static void ocfs2_write_failure(struct inode *inode,
1001 struct ocfs2_write_ctxt *wc,
1002 loff_t user_pos, unsigned user_len)
1004 int i;
1005 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1006 to = user_pos + user_len;
1007 struct page *tmppage;
1009 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1011 for(i = 0; i < wc->w_num_pages; i++) {
1012 tmppage = wc->w_pages[i];
1014 if (page_has_buffers(tmppage)) {
1015 if (ocfs2_should_order_data(inode))
1016 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1018 block_commit_write(tmppage, from, to);
1023 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1024 struct ocfs2_write_ctxt *wc,
1025 struct page *page, u32 cpos,
1026 loff_t user_pos, unsigned user_len,
1027 int new)
1029 int ret;
1030 unsigned int map_from = 0, map_to = 0;
1031 unsigned int cluster_start, cluster_end;
1032 unsigned int user_data_from = 0, user_data_to = 0;
1034 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1035 &cluster_start, &cluster_end);
1037 if (page == wc->w_target_page) {
1038 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1039 map_to = map_from + user_len;
1041 if (new)
1042 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1043 cluster_start, cluster_end,
1044 new);
1045 else
1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 map_from, map_to, new);
1048 if (ret) {
1049 mlog_errno(ret);
1050 goto out;
1053 user_data_from = map_from;
1054 user_data_to = map_to;
1055 if (new) {
1056 map_from = cluster_start;
1057 map_to = cluster_end;
1059 } else {
1061 * If we haven't allocated the new page yet, we
1062 * shouldn't be writing it out without copying user
1063 * data. This is likely a math error from the caller.
1065 BUG_ON(!new);
1067 map_from = cluster_start;
1068 map_to = cluster_end;
1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071 cluster_start, cluster_end, new);
1072 if (ret) {
1073 mlog_errno(ret);
1074 goto out;
1079 * Parts of newly allocated pages need to be zero'd.
1081 * Above, we have also rewritten 'to' and 'from' - as far as
1082 * the rest of the function is concerned, the entire cluster
1083 * range inside of a page needs to be written.
1085 * We can skip this if the page is up to date - it's already
1086 * been zero'd from being read in as a hole.
1088 if (new && !PageUptodate(page))
1089 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1090 cpos, user_data_from, user_data_to);
1092 flush_dcache_page(page);
1094 out:
1095 return ret;
1099 * This function will only grab one clusters worth of pages.
1101 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1102 struct ocfs2_write_ctxt *wc,
1103 u32 cpos, loff_t user_pos,
1104 unsigned user_len, int new,
1105 struct page *mmap_page)
1107 int ret = 0, i;
1108 unsigned long start, target_index, end_index, index;
1109 struct inode *inode = mapping->host;
1110 loff_t last_byte;
1112 target_index = user_pos >> PAGE_CACHE_SHIFT;
1115 * Figure out how many pages we'll be manipulating here. For
1116 * non allocating write, we just change the one
1117 * page. Otherwise, we'll need a whole clusters worth. If we're
1118 * writing past i_size, we only need enough pages to cover the
1119 * last page of the write.
1121 if (new) {
1122 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1123 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1125 * We need the index *past* the last page we could possibly
1126 * touch. This is the page past the end of the write or
1127 * i_size, whichever is greater.
1129 last_byte = max(user_pos + user_len, i_size_read(inode));
1130 BUG_ON(last_byte < 1);
1131 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1132 if ((start + wc->w_num_pages) > end_index)
1133 wc->w_num_pages = end_index - start;
1134 } else {
1135 wc->w_num_pages = 1;
1136 start = target_index;
1139 for(i = 0; i < wc->w_num_pages; i++) {
1140 index = start + i;
1142 if (index == target_index && mmap_page) {
1144 * ocfs2_pagemkwrite() is a little different
1145 * and wants us to directly use the page
1146 * passed in.
1148 lock_page(mmap_page);
1150 if (mmap_page->mapping != mapping) {
1151 unlock_page(mmap_page);
1153 * Sanity check - the locking in
1154 * ocfs2_pagemkwrite() should ensure
1155 * that this code doesn't trigger.
1157 ret = -EINVAL;
1158 mlog_errno(ret);
1159 goto out;
1162 page_cache_get(mmap_page);
1163 wc->w_pages[i] = mmap_page;
1164 } else {
1165 wc->w_pages[i] = find_or_create_page(mapping, index,
1166 GFP_NOFS);
1167 if (!wc->w_pages[i]) {
1168 ret = -ENOMEM;
1169 mlog_errno(ret);
1170 goto out;
1174 if (index == target_index)
1175 wc->w_target_page = wc->w_pages[i];
1177 out:
1178 return ret;
1182 * Prepare a single cluster for write one cluster into the file.
1184 static int ocfs2_write_cluster(struct address_space *mapping,
1185 u32 phys, unsigned int unwritten,
1186 unsigned int should_zero,
1187 struct ocfs2_alloc_context *data_ac,
1188 struct ocfs2_alloc_context *meta_ac,
1189 struct ocfs2_write_ctxt *wc, u32 cpos,
1190 loff_t user_pos, unsigned user_len)
1192 int ret, i, new;
1193 u64 v_blkno, p_blkno;
1194 struct inode *inode = mapping->host;
1195 struct ocfs2_extent_tree et;
1197 new = phys == 0 ? 1 : 0;
1198 if (new) {
1199 u32 tmp_pos;
1202 * This is safe to call with the page locks - it won't take
1203 * any additional semaphores or cluster locks.
1205 tmp_pos = cpos;
1206 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1207 &tmp_pos, 1, 0, wc->w_di_bh,
1208 wc->w_handle, data_ac,
1209 meta_ac, NULL);
1211 * This shouldn't happen because we must have already
1212 * calculated the correct meta data allocation required. The
1213 * internal tree allocation code should know how to increase
1214 * transaction credits itself.
1216 * If need be, we could handle -EAGAIN for a
1217 * RESTART_TRANS here.
1219 mlog_bug_on_msg(ret == -EAGAIN,
1220 "Inode %llu: EAGAIN return during allocation.\n",
1221 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1222 if (ret < 0) {
1223 mlog_errno(ret);
1224 goto out;
1226 } else if (unwritten) {
1227 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1228 wc->w_di_bh);
1229 ret = ocfs2_mark_extent_written(inode, &et,
1230 wc->w_handle, cpos, 1, phys,
1231 meta_ac, &wc->w_dealloc);
1232 if (ret < 0) {
1233 mlog_errno(ret);
1234 goto out;
1238 if (should_zero)
1239 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1240 else
1241 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1244 * The only reason this should fail is due to an inability to
1245 * find the extent added.
1247 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1248 NULL);
1249 if (ret < 0) {
1250 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1251 "at logical block %llu",
1252 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1253 (unsigned long long)v_blkno);
1254 goto out;
1257 BUG_ON(p_blkno == 0);
1259 for(i = 0; i < wc->w_num_pages; i++) {
1260 int tmpret;
1262 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1263 wc->w_pages[i], cpos,
1264 user_pos, user_len,
1265 should_zero);
1266 if (tmpret) {
1267 mlog_errno(tmpret);
1268 if (ret == 0)
1269 ret = tmpret;
1274 * We only have cleanup to do in case of allocating write.
1276 if (ret && new)
1277 ocfs2_write_failure(inode, wc, user_pos, user_len);
1279 out:
1281 return ret;
1284 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1285 struct ocfs2_alloc_context *data_ac,
1286 struct ocfs2_alloc_context *meta_ac,
1287 struct ocfs2_write_ctxt *wc,
1288 loff_t pos, unsigned len)
1290 int ret, i;
1291 loff_t cluster_off;
1292 unsigned int local_len = len;
1293 struct ocfs2_write_cluster_desc *desc;
1294 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1296 for (i = 0; i < wc->w_clen; i++) {
1297 desc = &wc->w_desc[i];
1300 * We have to make sure that the total write passed in
1301 * doesn't extend past a single cluster.
1303 local_len = len;
1304 cluster_off = pos & (osb->s_clustersize - 1);
1305 if ((cluster_off + local_len) > osb->s_clustersize)
1306 local_len = osb->s_clustersize - cluster_off;
1308 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1309 desc->c_unwritten,
1310 desc->c_needs_zero,
1311 data_ac, meta_ac,
1312 wc, desc->c_cpos, pos, local_len);
1313 if (ret) {
1314 mlog_errno(ret);
1315 goto out;
1318 len -= local_len;
1319 pos += local_len;
1322 ret = 0;
1323 out:
1324 return ret;
1328 * ocfs2_write_end() wants to know which parts of the target page it
1329 * should complete the write on. It's easiest to compute them ahead of
1330 * time when a more complete view of the write is available.
1332 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1333 struct ocfs2_write_ctxt *wc,
1334 loff_t pos, unsigned len, int alloc)
1336 struct ocfs2_write_cluster_desc *desc;
1338 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1339 wc->w_target_to = wc->w_target_from + len;
1341 if (alloc == 0)
1342 return;
1345 * Allocating write - we may have different boundaries based
1346 * on page size and cluster size.
1348 * NOTE: We can no longer compute one value from the other as
1349 * the actual write length and user provided length may be
1350 * different.
1353 if (wc->w_large_pages) {
1355 * We only care about the 1st and last cluster within
1356 * our range and whether they should be zero'd or not. Either
1357 * value may be extended out to the start/end of a
1358 * newly allocated cluster.
1360 desc = &wc->w_desc[0];
1361 if (desc->c_needs_zero)
1362 ocfs2_figure_cluster_boundaries(osb,
1363 desc->c_cpos,
1364 &wc->w_target_from,
1365 NULL);
1367 desc = &wc->w_desc[wc->w_clen - 1];
1368 if (desc->c_needs_zero)
1369 ocfs2_figure_cluster_boundaries(osb,
1370 desc->c_cpos,
1371 NULL,
1372 &wc->w_target_to);
1373 } else {
1374 wc->w_target_from = 0;
1375 wc->w_target_to = PAGE_CACHE_SIZE;
1380 * Populate each single-cluster write descriptor in the write context
1381 * with information about the i/o to be done.
1383 * Returns the number of clusters that will have to be allocated, as
1384 * well as a worst case estimate of the number of extent records that
1385 * would have to be created during a write to an unwritten region.
1387 static int ocfs2_populate_write_desc(struct inode *inode,
1388 struct ocfs2_write_ctxt *wc,
1389 unsigned int *clusters_to_alloc,
1390 unsigned int *extents_to_split)
1392 int ret;
1393 struct ocfs2_write_cluster_desc *desc;
1394 unsigned int num_clusters = 0;
1395 unsigned int ext_flags = 0;
1396 u32 phys = 0;
1397 int i;
1399 *clusters_to_alloc = 0;
1400 *extents_to_split = 0;
1402 for (i = 0; i < wc->w_clen; i++) {
1403 desc = &wc->w_desc[i];
1404 desc->c_cpos = wc->w_cpos + i;
1406 if (num_clusters == 0) {
1408 * Need to look up the next extent record.
1410 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1411 &num_clusters, &ext_flags);
1412 if (ret) {
1413 mlog_errno(ret);
1414 goto out;
1417 /* We should already CoW the refcountd extent. */
1418 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1421 * Assume worst case - that we're writing in
1422 * the middle of the extent.
1424 * We can assume that the write proceeds from
1425 * left to right, in which case the extent
1426 * insert code is smart enough to coalesce the
1427 * next splits into the previous records created.
1429 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1430 *extents_to_split = *extents_to_split + 2;
1431 } else if (phys) {
1433 * Only increment phys if it doesn't describe
1434 * a hole.
1436 phys++;
1440 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1441 * file that got extended. w_first_new_cpos tells us
1442 * where the newly allocated clusters are so we can
1443 * zero them.
1445 if (desc->c_cpos >= wc->w_first_new_cpos) {
1446 BUG_ON(phys == 0);
1447 desc->c_needs_zero = 1;
1450 desc->c_phys = phys;
1451 if (phys == 0) {
1452 desc->c_new = 1;
1453 desc->c_needs_zero = 1;
1454 *clusters_to_alloc = *clusters_to_alloc + 1;
1457 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1458 desc->c_unwritten = 1;
1459 desc->c_needs_zero = 1;
1462 num_clusters--;
1465 ret = 0;
1466 out:
1467 return ret;
1470 static int ocfs2_write_begin_inline(struct address_space *mapping,
1471 struct inode *inode,
1472 struct ocfs2_write_ctxt *wc)
1474 int ret;
1475 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476 struct page *page;
1477 handle_t *handle;
1478 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1480 page = find_or_create_page(mapping, 0, GFP_NOFS);
1481 if (!page) {
1482 ret = -ENOMEM;
1483 mlog_errno(ret);
1484 goto out;
1487 * If we don't set w_num_pages then this page won't get unlocked
1488 * and freed on cleanup of the write context.
1490 wc->w_pages[0] = wc->w_target_page = page;
1491 wc->w_num_pages = 1;
1493 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1494 if (IS_ERR(handle)) {
1495 ret = PTR_ERR(handle);
1496 mlog_errno(ret);
1497 goto out;
1500 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1501 OCFS2_JOURNAL_ACCESS_WRITE);
1502 if (ret) {
1503 ocfs2_commit_trans(osb, handle);
1505 mlog_errno(ret);
1506 goto out;
1509 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1510 ocfs2_set_inode_data_inline(inode, di);
1512 if (!PageUptodate(page)) {
1513 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1514 if (ret) {
1515 ocfs2_commit_trans(osb, handle);
1517 goto out;
1521 wc->w_handle = handle;
1522 out:
1523 return ret;
1526 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1528 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1530 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1531 return 1;
1532 return 0;
1535 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1536 struct inode *inode, loff_t pos,
1537 unsigned len, struct page *mmap_page,
1538 struct ocfs2_write_ctxt *wc)
1540 int ret, written = 0;
1541 loff_t end = pos + len;
1542 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1543 struct ocfs2_dinode *di = NULL;
1545 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1546 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1547 oi->ip_dyn_features);
1550 * Handle inodes which already have inline data 1st.
1552 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1553 if (mmap_page == NULL &&
1554 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1555 goto do_inline_write;
1558 * The write won't fit - we have to give this inode an
1559 * inline extent list now.
1561 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1562 if (ret)
1563 mlog_errno(ret);
1564 goto out;
1568 * Check whether the inode can accept inline data.
1570 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1571 return 0;
1574 * Check whether the write can fit.
1576 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1577 if (mmap_page ||
1578 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1579 return 0;
1581 do_inline_write:
1582 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1583 if (ret) {
1584 mlog_errno(ret);
1585 goto out;
1589 * This signals to the caller that the data can be written
1590 * inline.
1592 written = 1;
1593 out:
1594 return written ? written : ret;
1598 * This function only does anything for file systems which can't
1599 * handle sparse files.
1601 * What we want to do here is fill in any hole between the current end
1602 * of allocation and the end of our write. That way the rest of the
1603 * write path can treat it as an non-allocating write, which has no
1604 * special case code for sparse/nonsparse files.
1606 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1607 struct buffer_head *di_bh,
1608 loff_t pos, unsigned len,
1609 struct ocfs2_write_ctxt *wc)
1611 int ret;
1612 loff_t newsize = pos + len;
1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1616 if (newsize <= i_size_read(inode))
1617 return 0;
1619 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1620 if (ret)
1621 mlog_errno(ret);
1623 wc->w_first_new_cpos =
1624 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1626 return ret;
1629 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1630 loff_t pos)
1632 int ret = 0;
1634 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1635 if (pos > i_size_read(inode))
1636 ret = ocfs2_zero_extend(inode, di_bh, pos);
1638 return ret;
1641 int ocfs2_write_begin_nolock(struct address_space *mapping,
1642 loff_t pos, unsigned len, unsigned flags,
1643 struct page **pagep, void **fsdata,
1644 struct buffer_head *di_bh, struct page *mmap_page)
1646 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1647 unsigned int clusters_to_alloc, extents_to_split;
1648 struct ocfs2_write_ctxt *wc;
1649 struct inode *inode = mapping->host;
1650 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1651 struct ocfs2_dinode *di;
1652 struct ocfs2_alloc_context *data_ac = NULL;
1653 struct ocfs2_alloc_context *meta_ac = NULL;
1654 handle_t *handle;
1655 struct ocfs2_extent_tree et;
1657 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1658 if (ret) {
1659 mlog_errno(ret);
1660 return ret;
1663 if (ocfs2_supports_inline_data(osb)) {
1664 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1665 mmap_page, wc);
1666 if (ret == 1) {
1667 ret = 0;
1668 goto success;
1670 if (ret < 0) {
1671 mlog_errno(ret);
1672 goto out;
1676 if (ocfs2_sparse_alloc(osb))
1677 ret = ocfs2_zero_tail(inode, di_bh, pos);
1678 else
1679 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1680 wc);
1681 if (ret) {
1682 mlog_errno(ret);
1683 goto out;
1686 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1687 if (ret < 0) {
1688 mlog_errno(ret);
1689 goto out;
1690 } else if (ret == 1) {
1691 ret = ocfs2_refcount_cow(inode, di_bh,
1692 wc->w_cpos, wc->w_clen, UINT_MAX);
1693 if (ret) {
1694 mlog_errno(ret);
1695 goto out;
1699 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1700 &extents_to_split);
1701 if (ret) {
1702 mlog_errno(ret);
1703 goto out;
1706 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1709 * We set w_target_from, w_target_to here so that
1710 * ocfs2_write_end() knows which range in the target page to
1711 * write out. An allocation requires that we write the entire
1712 * cluster range.
1714 if (clusters_to_alloc || extents_to_split) {
1716 * XXX: We are stretching the limits of
1717 * ocfs2_lock_allocators(). It greatly over-estimates
1718 * the work to be done.
1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 " clusters_to_add = %u, extents_to_split = %u\n",
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1724 clusters_to_alloc, extents_to_split);
1726 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1727 wc->w_di_bh);
1728 ret = ocfs2_lock_allocators(inode, &et,
1729 clusters_to_alloc, extents_to_split,
1730 &data_ac, &meta_ac);
1731 if (ret) {
1732 mlog_errno(ret);
1733 goto out;
1736 if (data_ac)
1737 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1739 credits = ocfs2_calc_extend_credits(inode->i_sb,
1740 &di->id2.i_list,
1741 clusters_to_alloc);
1746 * We have to zero sparse allocated clusters, unwritten extent clusters,
1747 * and non-sparse clusters we just extended. For non-sparse writes,
1748 * we know zeros will only be needed in the first and/or last cluster.
1750 if (clusters_to_alloc || extents_to_split ||
1751 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1752 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1753 cluster_of_pages = 1;
1754 else
1755 cluster_of_pages = 0;
1757 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1759 handle = ocfs2_start_trans(osb, credits);
1760 if (IS_ERR(handle)) {
1761 ret = PTR_ERR(handle);
1762 mlog_errno(ret);
1763 goto out;
1766 wc->w_handle = handle;
1768 if (clusters_to_alloc) {
1769 ret = dquot_alloc_space_nodirty(inode,
1770 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1771 if (ret)
1772 goto out_commit;
1775 * We don't want this to fail in ocfs2_write_end(), so do it
1776 * here.
1778 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1779 OCFS2_JOURNAL_ACCESS_WRITE);
1780 if (ret) {
1781 mlog_errno(ret);
1782 goto out_quota;
1786 * Fill our page array first. That way we've grabbed enough so
1787 * that we can zero and flush if we error after adding the
1788 * extent.
1790 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1791 cluster_of_pages, mmap_page);
1792 if (ret) {
1793 mlog_errno(ret);
1794 goto out_quota;
1797 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1798 len);
1799 if (ret) {
1800 mlog_errno(ret);
1801 goto out_quota;
1804 if (data_ac)
1805 ocfs2_free_alloc_context(data_ac);
1806 if (meta_ac)
1807 ocfs2_free_alloc_context(meta_ac);
1809 success:
1810 *pagep = wc->w_target_page;
1811 *fsdata = wc;
1812 return 0;
1813 out_quota:
1814 if (clusters_to_alloc)
1815 dquot_free_space(inode,
1816 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1817 out_commit:
1818 ocfs2_commit_trans(osb, handle);
1820 out:
1821 ocfs2_free_write_ctxt(wc);
1823 if (data_ac)
1824 ocfs2_free_alloc_context(data_ac);
1825 if (meta_ac)
1826 ocfs2_free_alloc_context(meta_ac);
1827 return ret;
1830 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1831 loff_t pos, unsigned len, unsigned flags,
1832 struct page **pagep, void **fsdata)
1834 int ret;
1835 struct buffer_head *di_bh = NULL;
1836 struct inode *inode = mapping->host;
1838 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1839 if (ret) {
1840 mlog_errno(ret);
1841 return ret;
1845 * Take alloc sem here to prevent concurrent lookups. That way
1846 * the mapping, zeroing and tree manipulation within
1847 * ocfs2_write() will be safe against ->readpage(). This
1848 * should also serve to lock out allocation from a shared
1849 * writeable region.
1851 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1853 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1854 fsdata, di_bh, NULL);
1855 if (ret) {
1856 mlog_errno(ret);
1857 goto out_fail;
1860 brelse(di_bh);
1862 return 0;
1864 out_fail:
1865 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1867 brelse(di_bh);
1868 ocfs2_inode_unlock(inode, 1);
1870 return ret;
1873 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1874 unsigned len, unsigned *copied,
1875 struct ocfs2_dinode *di,
1876 struct ocfs2_write_ctxt *wc)
1878 void *kaddr;
1880 if (unlikely(*copied < len)) {
1881 if (!PageUptodate(wc->w_target_page)) {
1882 *copied = 0;
1883 return;
1887 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1888 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1889 kunmap_atomic(kaddr, KM_USER0);
1891 mlog(0, "Data written to inode at offset %llu. "
1892 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1893 (unsigned long long)pos, *copied,
1894 le16_to_cpu(di->id2.i_data.id_count),
1895 le16_to_cpu(di->i_dyn_features));
1898 int ocfs2_write_end_nolock(struct address_space *mapping,
1899 loff_t pos, unsigned len, unsigned copied,
1900 struct page *page, void *fsdata)
1902 int i;
1903 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1904 struct inode *inode = mapping->host;
1905 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1906 struct ocfs2_write_ctxt *wc = fsdata;
1907 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1908 handle_t *handle = wc->w_handle;
1909 struct page *tmppage;
1911 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1912 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1913 goto out_write_size;
1916 if (unlikely(copied < len)) {
1917 if (!PageUptodate(wc->w_target_page))
1918 copied = 0;
1920 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1921 start+len);
1923 flush_dcache_page(wc->w_target_page);
1925 for(i = 0; i < wc->w_num_pages; i++) {
1926 tmppage = wc->w_pages[i];
1928 if (tmppage == wc->w_target_page) {
1929 from = wc->w_target_from;
1930 to = wc->w_target_to;
1932 BUG_ON(from > PAGE_CACHE_SIZE ||
1933 to > PAGE_CACHE_SIZE ||
1934 to < from);
1935 } else {
1937 * Pages adjacent to the target (if any) imply
1938 * a hole-filling write in which case we want
1939 * to flush their entire range.
1941 from = 0;
1942 to = PAGE_CACHE_SIZE;
1945 if (page_has_buffers(tmppage)) {
1946 if (ocfs2_should_order_data(inode))
1947 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1948 block_commit_write(tmppage, from, to);
1952 out_write_size:
1953 pos += copied;
1954 if (pos > inode->i_size) {
1955 i_size_write(inode, pos);
1956 mark_inode_dirty(inode);
1958 inode->i_blocks = ocfs2_inode_sector_count(inode);
1959 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1960 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1961 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1962 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1963 ocfs2_journal_dirty(handle, wc->w_di_bh);
1965 ocfs2_commit_trans(osb, handle);
1967 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1969 ocfs2_free_write_ctxt(wc);
1971 return copied;
1974 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1975 loff_t pos, unsigned len, unsigned copied,
1976 struct page *page, void *fsdata)
1978 int ret;
1979 struct inode *inode = mapping->host;
1981 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1983 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1984 ocfs2_inode_unlock(inode, 1);
1986 return ret;
1989 const struct address_space_operations ocfs2_aops = {
1990 .readpage = ocfs2_readpage,
1991 .readpages = ocfs2_readpages,
1992 .writepage = ocfs2_writepage,
1993 .write_begin = ocfs2_write_begin,
1994 .write_end = ocfs2_write_end,
1995 .bmap = ocfs2_bmap,
1996 .sync_page = block_sync_page,
1997 .direct_IO = ocfs2_direct_IO,
1998 .invalidatepage = ocfs2_invalidatepage,
1999 .releasepage = ocfs2_releasepage,
2000 .migratepage = buffer_migrate_page,
2001 .is_partially_uptodate = block_is_partially_uptodate,
2002 .error_remove_page = generic_error_remove_page,