[netdrvr] Remove long-unused bits from Becker template drivers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / yellowfin.c
blob569305f57561fd5304a3ae73b490f78edebfe380
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
24 Linux kernel changelog:
25 -----------------------
27 LK1.1.1 (jgarzik): Port to 2.4 kernel
29 LK1.1.2 (jgarzik):
30 * Merge in becker version 1.05
32 LK1.1.3 (jgarzik):
33 * Various cleanups
34 * Update yellowfin_timer to correctly calculate duplex.
35 (suggested by Manfred Spraul)
37 LK1.1.4 (val@nmt.edu):
38 * Fix three endian-ness bugs
39 * Support dual function SYM53C885E ethernet chip
41 LK1.1.5 (val@nmt.edu):
42 * Fix forced full-duplex bug I introduced
44 LK1.1.6 (val@nmt.edu):
45 * Only print warning on truly "oversized" packets
46 * Fix theoretical bug on gigabit cards - return to 1.1.3 behavior
50 #define DRV_NAME "yellowfin"
51 #define DRV_VERSION "1.05+LK1.1.6"
52 #define DRV_RELDATE "Feb 11, 2002"
54 #define PFX DRV_NAME ": "
56 /* The user-configurable values.
57 These may be modified when a driver module is loaded.*/
59 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
60 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
61 static int max_interrupt_work = 20;
62 static int mtu;
63 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
64 /* System-wide count of bogus-rx frames. */
65 static int bogus_rx;
66 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
67 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
68 #elif defined(YF_NEW) /* A future perfect board :->. */
69 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
70 static int fifo_cfg = 0x0028;
71 #else
72 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
73 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
74 #endif
76 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
77 Setting to > 1514 effectively disables this feature. */
78 static int rx_copybreak;
80 /* Used to pass the media type, etc.
81 No media types are currently defined. These exist for driver
82 interoperability.
84 #define MAX_UNITS 8 /* More are supported, limit only on options */
85 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
86 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
88 /* Do ugly workaround for GX server chipset errata. */
89 static int gx_fix;
91 /* Operational parameters that are set at compile time. */
93 /* Keep the ring sizes a power of two for efficiency.
94 Making the Tx ring too long decreases the effectiveness of channel
95 bonding and packet priority.
96 There are no ill effects from too-large receive rings. */
97 #define TX_RING_SIZE 16
98 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
99 #define RX_RING_SIZE 64
100 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
101 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
102 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
104 /* Operational parameters that usually are not changed. */
105 /* Time in jiffies before concluding the transmitter is hung. */
106 #define TX_TIMEOUT (2*HZ)
107 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
109 #define yellowfin_debug debug
111 #include <linux/module.h>
112 #include <linux/kernel.h>
113 #include <linux/string.h>
114 #include <linux/timer.h>
115 #include <linux/errno.h>
116 #include <linux/ioport.h>
117 #include <linux/slab.h>
118 #include <linux/interrupt.h>
119 #include <linux/pci.h>
120 #include <linux/init.h>
121 #include <linux/mii.h>
122 #include <linux/netdevice.h>
123 #include <linux/etherdevice.h>
124 #include <linux/skbuff.h>
125 #include <linux/ethtool.h>
126 #include <linux/crc32.h>
127 #include <linux/bitops.h>
128 #include <asm/uaccess.h>
129 #include <asm/processor.h> /* Processor type for cache alignment. */
130 #include <asm/unaligned.h>
131 #include <asm/io.h>
133 /* These identify the driver base version and may not be removed. */
134 static char version[] __devinitdata =
135 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
136 KERN_INFO " http://www.scyld.com/network/yellowfin.html\n"
137 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
139 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
140 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
141 MODULE_LICENSE("GPL");
143 module_param(max_interrupt_work, int, 0);
144 module_param(mtu, int, 0);
145 module_param(debug, int, 0);
146 module_param(rx_copybreak, int, 0);
147 module_param_array(options, int, NULL, 0);
148 module_param_array(full_duplex, int, NULL, 0);
149 module_param(gx_fix, int, 0);
150 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
151 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
152 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
153 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
154 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
155 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
156 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
159 Theory of Operation
161 I. Board Compatibility
163 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
164 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
165 Symbios 53C885E dual function chip.
167 II. Board-specific settings
169 PCI bus devices are configured by the system at boot time, so no jumpers
170 need to be set on the board. The system BIOS preferably should assign the
171 PCI INTA signal to an otherwise unused system IRQ line.
172 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
173 interrupt lines.
175 III. Driver operation
177 IIIa. Ring buffers
179 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
180 This is a descriptor list scheme similar to that used by the EEPro100 and
181 Tulip. This driver uses two statically allocated fixed-size descriptor lists
182 formed into rings by a branch from the final descriptor to the beginning of
183 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
185 The driver allocates full frame size skbuffs for the Rx ring buffers at
186 open() time and passes the skb->data field to the Yellowfin as receive data
187 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
188 a fresh skbuff is allocated and the frame is copied to the new skbuff.
189 When the incoming frame is larger, the skbuff is passed directly up the
190 protocol stack and replaced by a newly allocated skbuff.
192 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
193 using a full-sized skbuff for small frames vs. the copying costs of larger
194 frames. For small frames the copying cost is negligible (esp. considering
195 that we are pre-loading the cache with immediately useful header
196 information). For large frames the copying cost is non-trivial, and the
197 larger copy might flush the cache of useful data.
199 IIIC. Synchronization
201 The driver runs as two independent, single-threaded flows of control. One
202 is the send-packet routine, which enforces single-threaded use by the
203 dev->tbusy flag. The other thread is the interrupt handler, which is single
204 threaded by the hardware and other software.
206 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
207 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
208 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
209 the 'yp->tx_full' flag.
211 The interrupt handler has exclusive control over the Rx ring and records stats
212 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
213 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
214 clears both the tx_full and tbusy flags.
216 IV. Notes
218 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
219 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
220 and an AlphaStation to verifty the Alpha port!
222 IVb. References
224 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
225 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
226 Data Manual v3.0
227 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
228 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
230 IVc. Errata
232 See Packet Engines confidential appendix (prototype chips only).
237 enum capability_flags {
238 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
239 HasMACAddrBug=32, /* Only on early revs. */
240 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
242 /* The PCI I/O space extent. */
243 #define YELLOWFIN_SIZE 0x100
245 struct pci_id_info {
246 const char *name;
247 struct match_info {
248 int pci, pci_mask, subsystem, subsystem_mask;
249 int revision, revision_mask; /* Only 8 bits. */
250 } id;
251 int io_size; /* Needed for I/O region check or ioremap(). */
252 int drv_flags; /* Driver use, intended as capability flags. */
255 static const struct pci_id_info pci_id_tbl[] = {
256 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
257 YELLOWFIN_SIZE,
258 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
259 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
260 YELLOWFIN_SIZE, HasMII | DontUseEeprom },
264 static const struct pci_device_id yellowfin_pci_tbl[] = {
265 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
266 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
269 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
272 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
273 enum yellowfin_offsets {
274 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
275 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
276 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
277 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
278 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
279 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
280 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
281 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
282 MII_Status=0xAE,
283 RxDepth=0xB8, FlowCtrl=0xBC,
284 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
285 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
286 EEFeature=0xF5,
289 /* The Yellowfin Rx and Tx buffer descriptors.
290 Elements are written as 32 bit for endian portability. */
291 struct yellowfin_desc {
292 u32 dbdma_cmd;
293 u32 addr;
294 u32 branch_addr;
295 u32 result_status;
298 struct tx_status_words {
299 #ifdef __BIG_ENDIAN
300 u16 tx_errs;
301 u16 tx_cnt;
302 u16 paused;
303 u16 total_tx_cnt;
304 #else /* Little endian chips. */
305 u16 tx_cnt;
306 u16 tx_errs;
307 u16 total_tx_cnt;
308 u16 paused;
309 #endif /* __BIG_ENDIAN */
312 /* Bits in yellowfin_desc.cmd */
313 enum desc_cmd_bits {
314 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
315 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
316 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
317 BRANCH_IFTRUE=0x040000,
320 /* Bits in yellowfin_desc.status */
321 enum desc_status_bits { RX_EOP=0x0040, };
323 /* Bits in the interrupt status/mask registers. */
324 enum intr_status_bits {
325 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
326 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
327 IntrEarlyRx=0x100, IntrWakeup=0x200, };
329 #define PRIV_ALIGN 31 /* Required alignment mask */
330 #define MII_CNT 4
331 struct yellowfin_private {
332 /* Descriptor rings first for alignment.
333 Tx requires a second descriptor for status. */
334 struct yellowfin_desc *rx_ring;
335 struct yellowfin_desc *tx_ring;
336 struct sk_buff* rx_skbuff[RX_RING_SIZE];
337 struct sk_buff* tx_skbuff[TX_RING_SIZE];
338 dma_addr_t rx_ring_dma;
339 dma_addr_t tx_ring_dma;
341 struct tx_status_words *tx_status;
342 dma_addr_t tx_status_dma;
344 struct timer_list timer; /* Media selection timer. */
345 struct net_device_stats stats;
346 /* Frequently used and paired value: keep adjacent for cache effect. */
347 int chip_id, drv_flags;
348 struct pci_dev *pci_dev;
349 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
350 unsigned int rx_buf_sz; /* Based on MTU+slack. */
351 struct tx_status_words *tx_tail_desc;
352 unsigned int cur_tx, dirty_tx;
353 int tx_threshold;
354 unsigned int tx_full:1; /* The Tx queue is full. */
355 unsigned int full_duplex:1; /* Full-duplex operation requested. */
356 unsigned int duplex_lock:1;
357 unsigned int medialock:1; /* Do not sense media. */
358 unsigned int default_port:4; /* Last dev->if_port value. */
359 /* MII transceiver section. */
360 int mii_cnt; /* MII device addresses. */
361 u16 advertising; /* NWay media advertisement */
362 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
363 spinlock_t lock;
364 void __iomem *base;
367 static int read_eeprom(void __iomem *ioaddr, int location);
368 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
369 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
370 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
371 static int yellowfin_open(struct net_device *dev);
372 static void yellowfin_timer(unsigned long data);
373 static void yellowfin_tx_timeout(struct net_device *dev);
374 static void yellowfin_init_ring(struct net_device *dev);
375 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
376 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
377 static int yellowfin_rx(struct net_device *dev);
378 static void yellowfin_error(struct net_device *dev, int intr_status);
379 static int yellowfin_close(struct net_device *dev);
380 static struct net_device_stats *yellowfin_get_stats(struct net_device *dev);
381 static void set_rx_mode(struct net_device *dev);
382 static struct ethtool_ops ethtool_ops;
385 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
386 const struct pci_device_id *ent)
388 struct net_device *dev;
389 struct yellowfin_private *np;
390 int irq;
391 int chip_idx = ent->driver_data;
392 static int find_cnt;
393 void __iomem *ioaddr;
394 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
395 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
396 void *ring_space;
397 dma_addr_t ring_dma;
398 #ifdef USE_IO_OPS
399 int bar = 0;
400 #else
401 int bar = 1;
402 #endif
404 /* when built into the kernel, we only print version if device is found */
405 #ifndef MODULE
406 static int printed_version;
407 if (!printed_version++)
408 printk(version);
409 #endif
411 i = pci_enable_device(pdev);
412 if (i) return i;
414 dev = alloc_etherdev(sizeof(*np));
415 if (!dev) {
416 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
417 return -ENOMEM;
419 SET_MODULE_OWNER(dev);
420 SET_NETDEV_DEV(dev, &pdev->dev);
422 np = netdev_priv(dev);
424 if (pci_request_regions(pdev, DRV_NAME))
425 goto err_out_free_netdev;
427 pci_set_master (pdev);
429 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
430 if (!ioaddr)
431 goto err_out_free_res;
433 irq = pdev->irq;
435 if (drv_flags & DontUseEeprom)
436 for (i = 0; i < 6; i++)
437 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
438 else {
439 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
440 for (i = 0; i < 6; i++)
441 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
444 /* Reset the chip. */
445 iowrite32(0x80000000, ioaddr + DMACtrl);
447 dev->base_addr = (unsigned long)ioaddr;
448 dev->irq = irq;
450 pci_set_drvdata(pdev, dev);
451 spin_lock_init(&np->lock);
453 np->pci_dev = pdev;
454 np->chip_id = chip_idx;
455 np->drv_flags = drv_flags;
456 np->base = ioaddr;
458 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
459 if (!ring_space)
460 goto err_out_cleardev;
461 np->tx_ring = (struct yellowfin_desc *)ring_space;
462 np->tx_ring_dma = ring_dma;
464 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
465 if (!ring_space)
466 goto err_out_unmap_tx;
467 np->rx_ring = (struct yellowfin_desc *)ring_space;
468 np->rx_ring_dma = ring_dma;
470 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
471 if (!ring_space)
472 goto err_out_unmap_rx;
473 np->tx_status = (struct tx_status_words *)ring_space;
474 np->tx_status_dma = ring_dma;
476 if (dev->mem_start)
477 option = dev->mem_start;
479 /* The lower four bits are the media type. */
480 if (option > 0) {
481 if (option & 0x200)
482 np->full_duplex = 1;
483 np->default_port = option & 15;
484 if (np->default_port)
485 np->medialock = 1;
487 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
488 np->full_duplex = 1;
490 if (np->full_duplex)
491 np->duplex_lock = 1;
493 /* The Yellowfin-specific entries in the device structure. */
494 dev->open = &yellowfin_open;
495 dev->hard_start_xmit = &yellowfin_start_xmit;
496 dev->stop = &yellowfin_close;
497 dev->get_stats = &yellowfin_get_stats;
498 dev->set_multicast_list = &set_rx_mode;
499 dev->do_ioctl = &netdev_ioctl;
500 SET_ETHTOOL_OPS(dev, &ethtool_ops);
501 dev->tx_timeout = yellowfin_tx_timeout;
502 dev->watchdog_timeo = TX_TIMEOUT;
504 if (mtu)
505 dev->mtu = mtu;
507 i = register_netdev(dev);
508 if (i)
509 goto err_out_unmap_status;
511 printk(KERN_INFO "%s: %s type %8x at %p, ",
512 dev->name, pci_id_tbl[chip_idx].name,
513 ioread32(ioaddr + ChipRev), ioaddr);
514 for (i = 0; i < 5; i++)
515 printk("%2.2x:", dev->dev_addr[i]);
516 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
518 if (np->drv_flags & HasMII) {
519 int phy, phy_idx = 0;
520 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
521 int mii_status = mdio_read(ioaddr, phy, 1);
522 if (mii_status != 0xffff && mii_status != 0x0000) {
523 np->phys[phy_idx++] = phy;
524 np->advertising = mdio_read(ioaddr, phy, 4);
525 printk(KERN_INFO "%s: MII PHY found at address %d, status "
526 "0x%4.4x advertising %4.4x.\n",
527 dev->name, phy, mii_status, np->advertising);
530 np->mii_cnt = phy_idx;
533 find_cnt++;
535 return 0;
537 err_out_unmap_status:
538 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
539 np->tx_status_dma);
540 err_out_unmap_rx:
541 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
542 err_out_unmap_tx:
543 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
544 err_out_cleardev:
545 pci_set_drvdata(pdev, NULL);
546 pci_iounmap(pdev, ioaddr);
547 err_out_free_res:
548 pci_release_regions(pdev);
549 err_out_free_netdev:
550 free_netdev (dev);
551 return -ENODEV;
554 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
556 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
558 iowrite8(location, ioaddr + EEAddr);
559 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
560 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
562 return ioread8(ioaddr + EERead);
565 /* MII Managemen Data I/O accesses.
566 These routines assume the MDIO controller is idle, and do not exit until
567 the command is finished. */
569 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
571 int i;
573 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
574 iowrite16(1, ioaddr + MII_Cmd);
575 for (i = 10000; i >= 0; i--)
576 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
577 break;
578 return ioread16(ioaddr + MII_Rd_Data);
581 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
583 int i;
585 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
586 iowrite16(value, ioaddr + MII_Wr_Data);
588 /* Wait for the command to finish. */
589 for (i = 10000; i >= 0; i--)
590 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
591 break;
592 return;
596 static int yellowfin_open(struct net_device *dev)
598 struct yellowfin_private *yp = netdev_priv(dev);
599 void __iomem *ioaddr = yp->base;
600 int i;
602 /* Reset the chip. */
603 iowrite32(0x80000000, ioaddr + DMACtrl);
605 i = request_irq(dev->irq, &yellowfin_interrupt, SA_SHIRQ, dev->name, dev);
606 if (i) return i;
608 if (yellowfin_debug > 1)
609 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
610 dev->name, dev->irq);
612 yellowfin_init_ring(dev);
614 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
615 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
617 for (i = 0; i < 6; i++)
618 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
620 /* Set up various condition 'select' registers.
621 There are no options here. */
622 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
623 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
624 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
625 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
626 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
627 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
629 /* Initialize other registers: with so many this eventually this will
630 converted to an offset/value list. */
631 iowrite32(dma_ctrl, ioaddr + DMACtrl);
632 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
633 /* Enable automatic generation of flow control frames, period 0xffff. */
634 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
636 yp->tx_threshold = 32;
637 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
639 if (dev->if_port == 0)
640 dev->if_port = yp->default_port;
642 netif_start_queue(dev);
644 /* Setting the Rx mode will start the Rx process. */
645 if (yp->drv_flags & IsGigabit) {
646 /* We are always in full-duplex mode with gigabit! */
647 yp->full_duplex = 1;
648 iowrite16(0x01CF, ioaddr + Cnfg);
649 } else {
650 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
651 iowrite16(0x1018, ioaddr + FrameGap1);
652 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
654 set_rx_mode(dev);
656 /* Enable interrupts by setting the interrupt mask. */
657 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
658 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
659 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
660 iowrite32(0x80008000, ioaddr + TxCtrl);
662 if (yellowfin_debug > 2) {
663 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
664 dev->name);
667 /* Set the timer to check for link beat. */
668 init_timer(&yp->timer);
669 yp->timer.expires = jiffies + 3*HZ;
670 yp->timer.data = (unsigned long)dev;
671 yp->timer.function = &yellowfin_timer; /* timer handler */
672 add_timer(&yp->timer);
674 return 0;
677 static void yellowfin_timer(unsigned long data)
679 struct net_device *dev = (struct net_device *)data;
680 struct yellowfin_private *yp = netdev_priv(dev);
681 void __iomem *ioaddr = yp->base;
682 int next_tick = 60*HZ;
684 if (yellowfin_debug > 3) {
685 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
686 dev->name, ioread16(ioaddr + IntrStatus));
689 if (yp->mii_cnt) {
690 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
691 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
692 int negotiated = lpa & yp->advertising;
693 if (yellowfin_debug > 1)
694 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
695 "link partner capability %4.4x.\n",
696 dev->name, yp->phys[0], bmsr, lpa);
698 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
700 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
702 if (bmsr & BMSR_LSTATUS)
703 next_tick = 60*HZ;
704 else
705 next_tick = 3*HZ;
708 yp->timer.expires = jiffies + next_tick;
709 add_timer(&yp->timer);
712 static void yellowfin_tx_timeout(struct net_device *dev)
714 struct yellowfin_private *yp = netdev_priv(dev);
715 void __iomem *ioaddr = yp->base;
717 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
718 "status %4.4x, Rx status %4.4x, resetting...\n",
719 dev->name, yp->cur_tx, yp->dirty_tx,
720 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
722 /* Note: these should be KERN_DEBUG. */
723 if (yellowfin_debug) {
724 int i;
725 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
726 for (i = 0; i < RX_RING_SIZE; i++)
727 printk(" %8.8x", yp->rx_ring[i].result_status);
728 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
729 for (i = 0; i < TX_RING_SIZE; i++)
730 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
731 yp->tx_ring[i].result_status);
732 printk("\n");
735 /* If the hardware is found to hang regularly, we will update the code
736 to reinitialize the chip here. */
737 dev->if_port = 0;
739 /* Wake the potentially-idle transmit channel. */
740 iowrite32(0x10001000, yp->base + TxCtrl);
741 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
742 netif_wake_queue (dev); /* Typical path */
744 dev->trans_start = jiffies;
745 yp->stats.tx_errors++;
748 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
749 static void yellowfin_init_ring(struct net_device *dev)
751 struct yellowfin_private *yp = netdev_priv(dev);
752 int i;
754 yp->tx_full = 0;
755 yp->cur_rx = yp->cur_tx = 0;
756 yp->dirty_tx = 0;
758 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
760 for (i = 0; i < RX_RING_SIZE; i++) {
761 yp->rx_ring[i].dbdma_cmd =
762 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
763 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
764 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
767 for (i = 0; i < RX_RING_SIZE; i++) {
768 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
769 yp->rx_skbuff[i] = skb;
770 if (skb == NULL)
771 break;
772 skb->dev = dev; /* Mark as being used by this device. */
773 skb_reserve(skb, 2); /* 16 byte align the IP header. */
774 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
775 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
777 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
778 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
780 #define NO_TXSTATS
781 #ifdef NO_TXSTATS
782 /* In this mode the Tx ring needs only a single descriptor. */
783 for (i = 0; i < TX_RING_SIZE; i++) {
784 yp->tx_skbuff[i] = NULL;
785 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
786 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
787 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
789 /* Wrap ring */
790 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
791 #else
793 int j;
795 /* Tx ring needs a pair of descriptors, the second for the status. */
796 for (i = 0; i < TX_RING_SIZE; i++) {
797 j = 2*i;
798 yp->tx_skbuff[i] = 0;
799 /* Branch on Tx error. */
800 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
801 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
802 (j+1)*sizeof(struct yellowfin_desc);
803 j++;
804 if (yp->flags & FullTxStatus) {
805 yp->tx_ring[j].dbdma_cmd =
806 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
807 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
808 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
809 i*sizeof(struct tx_status_words);
810 } else {
811 /* Symbios chips write only tx_errs word. */
812 yp->tx_ring[j].dbdma_cmd =
813 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
814 yp->tx_ring[j].request_cnt = 2;
815 /* Om pade ummmmm... */
816 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
817 i*sizeof(struct tx_status_words) +
818 &(yp->tx_status[0].tx_errs) -
819 &(yp->tx_status[0]));
821 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
822 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
824 /* Wrap ring */
825 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
827 #endif
828 yp->tx_tail_desc = &yp->tx_status[0];
829 return;
832 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
834 struct yellowfin_private *yp = netdev_priv(dev);
835 unsigned entry;
836 int len = skb->len;
838 netif_stop_queue (dev);
840 /* Note: Ordering is important here, set the field with the
841 "ownership" bit last, and only then increment cur_tx. */
843 /* Calculate the next Tx descriptor entry. */
844 entry = yp->cur_tx % TX_RING_SIZE;
846 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
847 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
848 /* Fix GX chipset errata. */
849 if (cacheline_end > 24 || cacheline_end == 0) {
850 len = skb->len + 32 - cacheline_end + 1;
851 if (skb_padto(skb, len)) {
852 yp->tx_skbuff[entry] = NULL;
853 netif_wake_queue(dev);
854 return 0;
858 yp->tx_skbuff[entry] = skb;
860 #ifdef NO_TXSTATS
861 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
862 skb->data, len, PCI_DMA_TODEVICE));
863 yp->tx_ring[entry].result_status = 0;
864 if (entry >= TX_RING_SIZE-1) {
865 /* New stop command. */
866 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
867 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
868 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
869 } else {
870 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
871 yp->tx_ring[entry].dbdma_cmd =
872 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
874 yp->cur_tx++;
875 #else
876 yp->tx_ring[entry<<1].request_cnt = len;
877 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
878 skb->data, len, PCI_DMA_TODEVICE));
879 /* The input_last (status-write) command is constant, but we must
880 rewrite the subsequent 'stop' command. */
882 yp->cur_tx++;
884 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
885 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
887 /* Final step -- overwrite the old 'stop' command. */
889 yp->tx_ring[entry<<1].dbdma_cmd =
890 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
891 CMD_TX_PKT | BRANCH_IFTRUE) | len);
892 #endif
894 /* Non-x86 Todo: explicitly flush cache lines here. */
896 /* Wake the potentially-idle transmit channel. */
897 iowrite32(0x10001000, yp->base + TxCtrl);
899 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
900 netif_start_queue (dev); /* Typical path */
901 else
902 yp->tx_full = 1;
903 dev->trans_start = jiffies;
905 if (yellowfin_debug > 4) {
906 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
907 dev->name, yp->cur_tx, entry);
909 return 0;
912 /* The interrupt handler does all of the Rx thread work and cleans up
913 after the Tx thread. */
914 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
916 struct net_device *dev = dev_instance;
917 struct yellowfin_private *yp;
918 void __iomem *ioaddr;
919 int boguscnt = max_interrupt_work;
920 unsigned int handled = 0;
922 #ifndef final_version /* Can never occur. */
923 if (dev == NULL) {
924 printk (KERN_ERR "yellowfin_interrupt(): irq %d for unknown device.\n", irq);
925 return IRQ_NONE;
927 #endif
929 yp = netdev_priv(dev);
930 ioaddr = yp->base;
932 spin_lock (&yp->lock);
934 do {
935 u16 intr_status = ioread16(ioaddr + IntrClear);
937 if (yellowfin_debug > 4)
938 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
939 dev->name, intr_status);
941 if (intr_status == 0)
942 break;
943 handled = 1;
945 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
946 yellowfin_rx(dev);
947 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
950 #ifdef NO_TXSTATS
951 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
952 int entry = yp->dirty_tx % TX_RING_SIZE;
953 struct sk_buff *skb;
955 if (yp->tx_ring[entry].result_status == 0)
956 break;
957 skb = yp->tx_skbuff[entry];
958 yp->stats.tx_packets++;
959 yp->stats.tx_bytes += skb->len;
960 /* Free the original skb. */
961 pci_unmap_single(yp->pci_dev, yp->tx_ring[entry].addr,
962 skb->len, PCI_DMA_TODEVICE);
963 dev_kfree_skb_irq(skb);
964 yp->tx_skbuff[entry] = NULL;
966 if (yp->tx_full
967 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
968 /* The ring is no longer full, clear tbusy. */
969 yp->tx_full = 0;
970 netif_wake_queue(dev);
972 #else
973 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
974 unsigned dirty_tx = yp->dirty_tx;
976 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
977 dirty_tx++) {
978 /* Todo: optimize this. */
979 int entry = dirty_tx % TX_RING_SIZE;
980 u16 tx_errs = yp->tx_status[entry].tx_errs;
981 struct sk_buff *skb;
983 #ifndef final_version
984 if (yellowfin_debug > 5)
985 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
986 "%4.4x %4.4x %4.4x %4.4x.\n",
987 dev->name, entry,
988 yp->tx_status[entry].tx_cnt,
989 yp->tx_status[entry].tx_errs,
990 yp->tx_status[entry].total_tx_cnt,
991 yp->tx_status[entry].paused);
992 #endif
993 if (tx_errs == 0)
994 break; /* It still hasn't been Txed */
995 skb = yp->tx_skbuff[entry];
996 if (tx_errs & 0xF810) {
997 /* There was an major error, log it. */
998 #ifndef final_version
999 if (yellowfin_debug > 1)
1000 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
1001 dev->name, tx_errs);
1002 #endif
1003 yp->stats.tx_errors++;
1004 if (tx_errs & 0xF800) yp->stats.tx_aborted_errors++;
1005 if (tx_errs & 0x0800) yp->stats.tx_carrier_errors++;
1006 if (tx_errs & 0x2000) yp->stats.tx_window_errors++;
1007 if (tx_errs & 0x8000) yp->stats.tx_fifo_errors++;
1008 } else {
1009 #ifndef final_version
1010 if (yellowfin_debug > 4)
1011 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
1012 dev->name, tx_errs);
1013 #endif
1014 yp->stats.tx_bytes += skb->len;
1015 yp->stats.collisions += tx_errs & 15;
1016 yp->stats.tx_packets++;
1018 /* Free the original skb. */
1019 pci_unmap_single(yp->pci_dev,
1020 yp->tx_ring[entry<<1].addr, skb->len,
1021 PCI_DMA_TODEVICE);
1022 dev_kfree_skb_irq(skb);
1023 yp->tx_skbuff[entry] = 0;
1024 /* Mark status as empty. */
1025 yp->tx_status[entry].tx_errs = 0;
1028 #ifndef final_version
1029 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1030 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1031 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1032 dirty_tx += TX_RING_SIZE;
1034 #endif
1036 if (yp->tx_full
1037 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1038 /* The ring is no longer full, clear tbusy. */
1039 yp->tx_full = 0;
1040 netif_wake_queue(dev);
1043 yp->dirty_tx = dirty_tx;
1044 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1046 #endif
1048 /* Log errors and other uncommon events. */
1049 if (intr_status & 0x2ee) /* Abnormal error summary. */
1050 yellowfin_error(dev, intr_status);
1052 if (--boguscnt < 0) {
1053 printk(KERN_WARNING "%s: Too much work at interrupt, "
1054 "status=0x%4.4x.\n",
1055 dev->name, intr_status);
1056 break;
1058 } while (1);
1060 if (yellowfin_debug > 3)
1061 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1062 dev->name, ioread16(ioaddr + IntrStatus));
1064 spin_unlock (&yp->lock);
1065 return IRQ_RETVAL(handled);
1068 /* This routine is logically part of the interrupt handler, but separated
1069 for clarity and better register allocation. */
1070 static int yellowfin_rx(struct net_device *dev)
1072 struct yellowfin_private *yp = netdev_priv(dev);
1073 int entry = yp->cur_rx % RX_RING_SIZE;
1074 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1076 if (yellowfin_debug > 4) {
1077 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1078 entry, yp->rx_ring[entry].result_status);
1079 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1080 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1081 yp->rx_ring[entry].result_status);
1084 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1085 while (1) {
1086 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1087 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1088 s16 frame_status;
1089 u16 desc_status;
1090 int data_size;
1091 u8 *buf_addr;
1093 if(!desc->result_status)
1094 break;
1095 pci_dma_sync_single_for_cpu(yp->pci_dev, desc->addr,
1096 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1097 desc_status = le32_to_cpu(desc->result_status) >> 16;
1098 buf_addr = rx_skb->data;
1099 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1100 le32_to_cpu(desc->result_status)) & 0xffff;
1101 frame_status = le16_to_cpu(get_unaligned((s16*)&(buf_addr[data_size - 2])));
1102 if (yellowfin_debug > 4)
1103 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1104 frame_status);
1105 if (--boguscnt < 0)
1106 break;
1107 if ( ! (desc_status & RX_EOP)) {
1108 if (data_size != 0)
1109 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1110 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1111 yp->stats.rx_length_errors++;
1112 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1113 /* There was a error. */
1114 if (yellowfin_debug > 3)
1115 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1116 frame_status);
1117 yp->stats.rx_errors++;
1118 if (frame_status & 0x0060) yp->stats.rx_length_errors++;
1119 if (frame_status & 0x0008) yp->stats.rx_frame_errors++;
1120 if (frame_status & 0x0010) yp->stats.rx_crc_errors++;
1121 if (frame_status < 0) yp->stats.rx_dropped++;
1122 } else if ( !(yp->drv_flags & IsGigabit) &&
1123 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1124 u8 status1 = buf_addr[data_size-2];
1125 u8 status2 = buf_addr[data_size-1];
1126 yp->stats.rx_errors++;
1127 if (status1 & 0xC0) yp->stats.rx_length_errors++;
1128 if (status2 & 0x03) yp->stats.rx_frame_errors++;
1129 if (status2 & 0x04) yp->stats.rx_crc_errors++;
1130 if (status2 & 0x80) yp->stats.rx_dropped++;
1131 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1132 } else if ((yp->flags & HasMACAddrBug) &&
1133 memcmp(le32_to_cpu(yp->rx_ring_dma +
1134 entry*sizeof(struct yellowfin_desc)),
1135 dev->dev_addr, 6) != 0 &&
1136 memcmp(le32_to_cpu(yp->rx_ring_dma +
1137 entry*sizeof(struct yellowfin_desc)),
1138 "\377\377\377\377\377\377", 6) != 0) {
1139 if (bogus_rx++ == 0)
1140 printk(KERN_WARNING "%s: Bad frame to %2.2x:%2.2x:%2.2x:%2.2x:"
1141 "%2.2x:%2.2x.\n",
1142 dev->name, buf_addr[0], buf_addr[1], buf_addr[2],
1143 buf_addr[3], buf_addr[4], buf_addr[5]);
1144 #endif
1145 } else {
1146 struct sk_buff *skb;
1147 int pkt_len = data_size -
1148 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1149 /* To verify: Yellowfin Length should omit the CRC! */
1151 #ifndef final_version
1152 if (yellowfin_debug > 4)
1153 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1154 " of %d, bogus_cnt %d.\n",
1155 pkt_len, data_size, boguscnt);
1156 #endif
1157 /* Check if the packet is long enough to just pass up the skbuff
1158 without copying to a properly sized skbuff. */
1159 if (pkt_len > rx_copybreak) {
1160 skb_put(skb = rx_skb, pkt_len);
1161 pci_unmap_single(yp->pci_dev,
1162 yp->rx_ring[entry].addr,
1163 yp->rx_buf_sz,
1164 PCI_DMA_FROMDEVICE);
1165 yp->rx_skbuff[entry] = NULL;
1166 } else {
1167 skb = dev_alloc_skb(pkt_len + 2);
1168 if (skb == NULL)
1169 break;
1170 skb->dev = dev;
1171 skb_reserve(skb, 2); /* 16 byte align the IP header */
1172 eth_copy_and_sum(skb, rx_skb->data, pkt_len, 0);
1173 skb_put(skb, pkt_len);
1174 pci_dma_sync_single_for_device(yp->pci_dev, desc->addr,
1175 yp->rx_buf_sz,
1176 PCI_DMA_FROMDEVICE);
1178 skb->protocol = eth_type_trans(skb, dev);
1179 netif_rx(skb);
1180 dev->last_rx = jiffies;
1181 yp->stats.rx_packets++;
1182 yp->stats.rx_bytes += pkt_len;
1184 entry = (++yp->cur_rx) % RX_RING_SIZE;
1187 /* Refill the Rx ring buffers. */
1188 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1189 entry = yp->dirty_rx % RX_RING_SIZE;
1190 if (yp->rx_skbuff[entry] == NULL) {
1191 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1192 if (skb == NULL)
1193 break; /* Better luck next round. */
1194 yp->rx_skbuff[entry] = skb;
1195 skb->dev = dev; /* Mark as being used by this device. */
1196 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1197 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1198 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1200 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1201 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1202 if (entry != 0)
1203 yp->rx_ring[entry - 1].dbdma_cmd =
1204 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1205 else
1206 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1207 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1208 | yp->rx_buf_sz);
1211 return 0;
1214 static void yellowfin_error(struct net_device *dev, int intr_status)
1216 struct yellowfin_private *yp = netdev_priv(dev);
1218 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1219 dev->name, intr_status);
1220 /* Hmmmmm, it's not clear what to do here. */
1221 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1222 yp->stats.tx_errors++;
1223 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1224 yp->stats.rx_errors++;
1227 static int yellowfin_close(struct net_device *dev)
1229 struct yellowfin_private *yp = netdev_priv(dev);
1230 void __iomem *ioaddr = yp->base;
1231 int i;
1233 netif_stop_queue (dev);
1235 if (yellowfin_debug > 1) {
1236 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1237 "Rx %4.4x Int %2.2x.\n",
1238 dev->name, ioread16(ioaddr + TxStatus),
1239 ioread16(ioaddr + RxStatus),
1240 ioread16(ioaddr + IntrStatus));
1241 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1242 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1245 /* Disable interrupts by clearing the interrupt mask. */
1246 iowrite16(0x0000, ioaddr + IntrEnb);
1248 /* Stop the chip's Tx and Rx processes. */
1249 iowrite32(0x80000000, ioaddr + RxCtrl);
1250 iowrite32(0x80000000, ioaddr + TxCtrl);
1252 del_timer(&yp->timer);
1254 #if defined(__i386__)
1255 if (yellowfin_debug > 2) {
1256 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1257 (unsigned long long)yp->tx_ring_dma);
1258 for (i = 0; i < TX_RING_SIZE*2; i++)
1259 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1260 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1261 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1262 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1263 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1264 for (i = 0; i < TX_RING_SIZE; i++)
1265 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1266 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1267 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1269 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1270 (unsigned long long)yp->rx_ring_dma);
1271 for (i = 0; i < RX_RING_SIZE; i++) {
1272 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1273 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1274 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1275 yp->rx_ring[i].result_status);
1276 if (yellowfin_debug > 6) {
1277 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1278 int j;
1279 for (j = 0; j < 0x50; j++)
1280 printk(" %4.4x",
1281 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1282 printk("\n");
1287 #endif /* __i386__ debugging only */
1289 free_irq(dev->irq, dev);
1291 /* Free all the skbuffs in the Rx queue. */
1292 for (i = 0; i < RX_RING_SIZE; i++) {
1293 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1294 yp->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1295 if (yp->rx_skbuff[i]) {
1296 dev_kfree_skb(yp->rx_skbuff[i]);
1298 yp->rx_skbuff[i] = NULL;
1300 for (i = 0; i < TX_RING_SIZE; i++) {
1301 if (yp->tx_skbuff[i])
1302 dev_kfree_skb(yp->tx_skbuff[i]);
1303 yp->tx_skbuff[i] = NULL;
1306 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1307 if (yellowfin_debug > 0) {
1308 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1309 dev->name, bogus_rx);
1311 #endif
1313 return 0;
1316 static struct net_device_stats *yellowfin_get_stats(struct net_device *dev)
1318 struct yellowfin_private *yp = netdev_priv(dev);
1319 return &yp->stats;
1322 /* Set or clear the multicast filter for this adaptor. */
1324 static void set_rx_mode(struct net_device *dev)
1326 struct yellowfin_private *yp = netdev_priv(dev);
1327 void __iomem *ioaddr = yp->base;
1328 u16 cfg_value = ioread16(ioaddr + Cnfg);
1330 /* Stop the Rx process to change any value. */
1331 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1332 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1333 /* Unconditionally log net taps. */
1334 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1335 iowrite16(0x000F, ioaddr + AddrMode);
1336 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1337 /* Too many to filter well, or accept all multicasts. */
1338 iowrite16(0x000B, ioaddr + AddrMode);
1339 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1340 struct dev_mc_list *mclist;
1341 u16 hash_table[4];
1342 int i;
1343 memset(hash_table, 0, sizeof(hash_table));
1344 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1345 i++, mclist = mclist->next) {
1346 unsigned int bit;
1348 /* Due to a bug in the early chip versions, multiple filter
1349 slots must be set for each address. */
1350 if (yp->drv_flags & HasMulticastBug) {
1351 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1352 hash_table[bit >> 4] |= (1 << bit);
1353 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1354 hash_table[bit >> 4] |= (1 << bit);
1355 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1356 hash_table[bit >> 4] |= (1 << bit);
1358 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1359 hash_table[bit >> 4] |= (1 << bit);
1361 /* Copy the hash table to the chip. */
1362 for (i = 0; i < 4; i++)
1363 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1364 iowrite16(0x0003, ioaddr + AddrMode);
1365 } else { /* Normal, unicast/broadcast-only mode. */
1366 iowrite16(0x0001, ioaddr + AddrMode);
1368 /* Restart the Rx process. */
1369 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1372 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1374 struct yellowfin_private *np = netdev_priv(dev);
1375 strcpy(info->driver, DRV_NAME);
1376 strcpy(info->version, DRV_VERSION);
1377 strcpy(info->bus_info, pci_name(np->pci_dev));
1380 static struct ethtool_ops ethtool_ops = {
1381 .get_drvinfo = yellowfin_get_drvinfo
1384 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1386 struct yellowfin_private *np = netdev_priv(dev);
1387 void __iomem *ioaddr = np->base;
1388 struct mii_ioctl_data *data = if_mii(rq);
1390 switch(cmd) {
1391 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1392 data->phy_id = np->phys[0] & 0x1f;
1393 /* Fall Through */
1395 case SIOCGMIIREG: /* Read MII PHY register. */
1396 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1397 return 0;
1399 case SIOCSMIIREG: /* Write MII PHY register. */
1400 if (!capable(CAP_NET_ADMIN))
1401 return -EPERM;
1402 if (data->phy_id == np->phys[0]) {
1403 u16 value = data->val_in;
1404 switch (data->reg_num) {
1405 case 0:
1406 /* Check for autonegotiation on or reset. */
1407 np->medialock = (value & 0x9000) ? 0 : 1;
1408 if (np->medialock)
1409 np->full_duplex = (value & 0x0100) ? 1 : 0;
1410 break;
1411 case 4: np->advertising = value; break;
1413 /* Perhaps check_duplex(dev), depending on chip semantics. */
1415 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1416 return 0;
1417 default:
1418 return -EOPNOTSUPP;
1423 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1425 struct net_device *dev = pci_get_drvdata(pdev);
1426 struct yellowfin_private *np;
1428 BUG_ON(!dev);
1429 np = netdev_priv(dev);
1431 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1432 np->tx_status_dma);
1433 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1434 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1435 unregister_netdev (dev);
1437 pci_iounmap(pdev, np->base);
1439 pci_release_regions (pdev);
1441 free_netdev (dev);
1442 pci_set_drvdata(pdev, NULL);
1446 static struct pci_driver yellowfin_driver = {
1447 .name = DRV_NAME,
1448 .id_table = yellowfin_pci_tbl,
1449 .probe = yellowfin_init_one,
1450 .remove = __devexit_p(yellowfin_remove_one),
1454 static int __init yellowfin_init (void)
1456 /* when a module, this is printed whether or not devices are found in probe */
1457 #ifdef MODULE
1458 printk(version);
1459 #endif
1460 return pci_module_init (&yellowfin_driver);
1464 static void __exit yellowfin_cleanup (void)
1466 pci_unregister_driver (&yellowfin_driver);
1470 module_init(yellowfin_init);
1471 module_exit(yellowfin_cleanup);
1474 * Local variables:
1475 * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c"
1476 * compile-command-alphaLX: "gcc -DMODULE -Wall -Wstrict-prototypes -O2 -c yellowfin.c -fomit-frame-pointer -fno-strength-reduce -mno-fp-regs -Wa,-m21164a -DBWX_USABLE -DBWIO_ENABLED"
1477 * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c"
1478 * c-indent-level: 4
1479 * c-basic-offset: 4
1480 * tab-width: 4
1481 * End: