1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
39 enum {NETDEV_STATS
, E1000_STATS
};
42 char stat_string
[ETH_GSTRING_LEN
];
48 #define E1000_STAT(str, m) { \
50 .type = E1000_STATS, \
51 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52 .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
55 .type = NETDEV_STATS, \
56 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
57 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
59 static const struct e1000_stats e1000_gstrings_stats
[] = {
60 E1000_STAT("rx_packets", stats
.gprc
),
61 E1000_STAT("tx_packets", stats
.gptc
),
62 E1000_STAT("rx_bytes", stats
.gorc
),
63 E1000_STAT("tx_bytes", stats
.gotc
),
64 E1000_STAT("rx_broadcast", stats
.bprc
),
65 E1000_STAT("tx_broadcast", stats
.bptc
),
66 E1000_STAT("rx_multicast", stats
.mprc
),
67 E1000_STAT("tx_multicast", stats
.mptc
),
68 E1000_NETDEV_STAT("rx_errors", rx_errors
),
69 E1000_NETDEV_STAT("tx_errors", tx_errors
),
70 E1000_NETDEV_STAT("tx_dropped", tx_dropped
),
71 E1000_STAT("multicast", stats
.mprc
),
72 E1000_STAT("collisions", stats
.colc
),
73 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors
),
74 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors
),
75 E1000_STAT("rx_crc_errors", stats
.crcerrs
),
76 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors
),
77 E1000_STAT("rx_no_buffer_count", stats
.rnbc
),
78 E1000_STAT("rx_missed_errors", stats
.mpc
),
79 E1000_STAT("tx_aborted_errors", stats
.ecol
),
80 E1000_STAT("tx_carrier_errors", stats
.tncrs
),
81 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors
),
82 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors
),
83 E1000_STAT("tx_window_errors", stats
.latecol
),
84 E1000_STAT("tx_abort_late_coll", stats
.latecol
),
85 E1000_STAT("tx_deferred_ok", stats
.dc
),
86 E1000_STAT("tx_single_coll_ok", stats
.scc
),
87 E1000_STAT("tx_multi_coll_ok", stats
.mcc
),
88 E1000_STAT("tx_timeout_count", tx_timeout_count
),
89 E1000_STAT("tx_restart_queue", restart_queue
),
90 E1000_STAT("rx_long_length_errors", stats
.roc
),
91 E1000_STAT("rx_short_length_errors", stats
.ruc
),
92 E1000_STAT("rx_align_errors", stats
.algnerrc
),
93 E1000_STAT("tx_tcp_seg_good", stats
.tsctc
),
94 E1000_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
95 E1000_STAT("rx_flow_control_xon", stats
.xonrxc
),
96 E1000_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
97 E1000_STAT("tx_flow_control_xon", stats
.xontxc
),
98 E1000_STAT("tx_flow_control_xoff", stats
.xofftxc
),
99 E1000_STAT("rx_long_byte_count", stats
.gorc
),
100 E1000_STAT("rx_csum_offload_good", hw_csum_good
),
101 E1000_STAT("rx_csum_offload_errors", hw_csum_err
),
102 E1000_STAT("rx_header_split", rx_hdr_split
),
103 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed
),
104 E1000_STAT("tx_smbus", stats
.mgptc
),
105 E1000_STAT("rx_smbus", stats
.mgprc
),
106 E1000_STAT("dropped_smbus", stats
.mgpdc
),
107 E1000_STAT("rx_dma_failed", rx_dma_failed
),
108 E1000_STAT("tx_dma_failed", tx_dma_failed
),
111 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
114 "Register test (offline)", "Eeprom test (offline)",
115 "Interrupt test (offline)", "Loopback test (offline)",
116 "Link test (on/offline)"
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 static int e1000_get_settings(struct net_device
*netdev
,
121 struct ethtool_cmd
*ecmd
)
123 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
124 struct e1000_hw
*hw
= &adapter
->hw
;
126 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
128 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
129 SUPPORTED_10baseT_Full
|
130 SUPPORTED_100baseT_Half
|
131 SUPPORTED_100baseT_Full
|
132 SUPPORTED_1000baseT_Full
|
135 if (hw
->phy
.type
== e1000_phy_ife
)
136 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
137 ecmd
->advertising
= ADVERTISED_TP
;
139 if (hw
->mac
.autoneg
== 1) {
140 ecmd
->advertising
|= ADVERTISED_Autoneg
;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
145 ecmd
->port
= PORT_TP
;
146 ecmd
->phy_address
= hw
->phy
.addr
;
147 ecmd
->transceiver
= XCVR_INTERNAL
;
150 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
154 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
158 ecmd
->port
= PORT_FIBRE
;
159 ecmd
->transceiver
= XCVR_EXTERNAL
;
165 if (netif_running(netdev
)) {
166 if (netif_carrier_ok(netdev
)) {
167 ecmd
->speed
= adapter
->link_speed
;
168 ecmd
->duplex
= adapter
->link_duplex
- 1;
171 u32 status
= er32(STATUS
);
172 if (status
& E1000_STATUS_LU
) {
173 if (status
& E1000_STATUS_SPEED_1000
)
175 else if (status
& E1000_STATUS_SPEED_100
)
180 if (status
& E1000_STATUS_FD
)
181 ecmd
->duplex
= DUPLEX_FULL
;
183 ecmd
->duplex
= DUPLEX_HALF
;
187 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
188 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
190 /* MDI-X => 2; MDI =>1; Invalid =>0 */
191 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
192 netif_carrier_ok(netdev
))
193 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
196 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
201 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
203 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
207 /* Fiber NICs only allow 1000 gbps Full duplex */
208 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
209 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
210 e_err("Unsupported Speed/Duplex configuration\n");
215 case SPEED_10
+ DUPLEX_HALF
:
216 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
218 case SPEED_10
+ DUPLEX_FULL
:
219 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
221 case SPEED_100
+ DUPLEX_HALF
:
222 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
224 case SPEED_100
+ DUPLEX_FULL
:
225 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
227 case SPEED_1000
+ DUPLEX_FULL
:
229 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
231 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
233 e_err("Unsupported Speed/Duplex configuration\n");
239 static int e1000_set_settings(struct net_device
*netdev
,
240 struct ethtool_cmd
*ecmd
)
242 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
243 struct e1000_hw
*hw
= &adapter
->hw
;
246 * When SoL/IDER sessions are active, autoneg/speed/duplex
249 if (e1000_check_reset_block(hw
)) {
250 e_err("Cannot change link characteristics when SoL/IDER is "
255 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
258 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
260 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
261 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
265 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
268 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
269 if (adapter
->fc_autoneg
)
270 hw
->fc
.requested_mode
= e1000_fc_default
;
272 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
273 clear_bit(__E1000_RESETTING
, &adapter
->state
);
280 if (netif_running(adapter
->netdev
)) {
281 e1000e_down(adapter
);
284 e1000e_reset(adapter
);
287 clear_bit(__E1000_RESETTING
, &adapter
->state
);
291 static void e1000_get_pauseparam(struct net_device
*netdev
,
292 struct ethtool_pauseparam
*pause
)
294 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
295 struct e1000_hw
*hw
= &adapter
->hw
;
298 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
300 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
302 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
304 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
310 static int e1000_set_pauseparam(struct net_device
*netdev
,
311 struct ethtool_pauseparam
*pause
)
313 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
314 struct e1000_hw
*hw
= &adapter
->hw
;
317 adapter
->fc_autoneg
= pause
->autoneg
;
319 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
322 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
323 hw
->fc
.requested_mode
= e1000_fc_default
;
324 if (netif_running(adapter
->netdev
)) {
325 e1000e_down(adapter
);
328 e1000e_reset(adapter
);
331 if (pause
->rx_pause
&& pause
->tx_pause
)
332 hw
->fc
.requested_mode
= e1000_fc_full
;
333 else if (pause
->rx_pause
&& !pause
->tx_pause
)
334 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
335 else if (!pause
->rx_pause
&& pause
->tx_pause
)
336 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
337 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
338 hw
->fc
.requested_mode
= e1000_fc_none
;
340 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
342 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
343 retval
= hw
->mac
.ops
.setup_link(hw
);
344 /* implicit goto out */
346 retval
= e1000e_force_mac_fc(hw
);
349 e1000e_set_fc_watermarks(hw
);
354 clear_bit(__E1000_RESETTING
, &adapter
->state
);
358 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
360 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
361 return adapter
->flags
& FLAG_RX_CSUM_ENABLED
;
364 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
366 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
369 adapter
->flags
|= FLAG_RX_CSUM_ENABLED
;
371 adapter
->flags
&= ~FLAG_RX_CSUM_ENABLED
;
373 if (netif_running(netdev
))
374 e1000e_reinit_locked(adapter
);
376 e1000e_reset(adapter
);
380 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
382 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
385 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
388 netdev
->features
|= NETIF_F_HW_CSUM
;
390 netdev
->features
&= ~NETIF_F_HW_CSUM
;
395 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
397 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
400 netdev
->features
|= NETIF_F_TSO
;
401 netdev
->features
|= NETIF_F_TSO6
;
403 netdev
->features
&= ~NETIF_F_TSO
;
404 netdev
->features
&= ~NETIF_F_TSO6
;
407 adapter
->flags
|= FLAG_TSO_FORCE
;
411 static u32
e1000_get_msglevel(struct net_device
*netdev
)
413 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
414 return adapter
->msg_enable
;
417 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
419 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
420 adapter
->msg_enable
= data
;
423 static int e1000_get_regs_len(struct net_device
*netdev
)
425 #define E1000_REGS_LEN 32 /* overestimate */
426 return E1000_REGS_LEN
* sizeof(u32
);
429 static void e1000_get_regs(struct net_device
*netdev
,
430 struct ethtool_regs
*regs
, void *p
)
432 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
433 struct e1000_hw
*hw
= &adapter
->hw
;
437 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
439 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
440 adapter
->pdev
->device
;
442 regs_buff
[0] = er32(CTRL
);
443 regs_buff
[1] = er32(STATUS
);
445 regs_buff
[2] = er32(RCTL
);
446 regs_buff
[3] = er32(RDLEN
);
447 regs_buff
[4] = er32(RDH
);
448 regs_buff
[5] = er32(RDT
);
449 regs_buff
[6] = er32(RDTR
);
451 regs_buff
[7] = er32(TCTL
);
452 regs_buff
[8] = er32(TDLEN
);
453 regs_buff
[9] = er32(TDH
);
454 regs_buff
[10] = er32(TDT
);
455 regs_buff
[11] = er32(TIDV
);
457 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
459 /* ethtool doesn't use anything past this point, so all this
460 * code is likely legacy junk for apps that may or may not
462 if (hw
->phy
.type
== e1000_phy_m88
) {
463 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
464 regs_buff
[13] = (u32
)phy_data
; /* cable length */
465 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
466 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
467 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
469 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
470 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
471 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
472 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
473 /* phy receive errors */
474 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
475 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
477 regs_buff
[21] = 0; /* was idle_errors */
478 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
479 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
480 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
483 static int e1000_get_eeprom_len(struct net_device
*netdev
)
485 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
486 return adapter
->hw
.nvm
.word_size
* 2;
489 static int e1000_get_eeprom(struct net_device
*netdev
,
490 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
492 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
493 struct e1000_hw
*hw
= &adapter
->hw
;
500 if (eeprom
->len
== 0)
503 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
505 first_word
= eeprom
->offset
>> 1;
506 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
508 eeprom_buff
= kmalloc(sizeof(u16
) *
509 (last_word
- first_word
+ 1), GFP_KERNEL
);
513 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
514 ret_val
= e1000_read_nvm(hw
, first_word
,
515 last_word
- first_word
+ 1,
518 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
519 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
527 /* a read error occurred, throw away the result */
528 memset(eeprom_buff
, 0xff, sizeof(u16
) *
529 (last_word
- first_word
+ 1));
531 /* Device's eeprom is always little-endian, word addressable */
532 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
533 le16_to_cpus(&eeprom_buff
[i
]);
536 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
542 static int e1000_set_eeprom(struct net_device
*netdev
,
543 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
545 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
546 struct e1000_hw
*hw
= &adapter
->hw
;
555 if (eeprom
->len
== 0)
558 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
561 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
564 max_len
= hw
->nvm
.word_size
* 2;
566 first_word
= eeprom
->offset
>> 1;
567 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
568 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
572 ptr
= (void *)eeprom_buff
;
574 if (eeprom
->offset
& 1) {
575 /* need read/modify/write of first changed EEPROM word */
576 /* only the second byte of the word is being modified */
577 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
580 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0))
581 /* need read/modify/write of last changed EEPROM word */
582 /* only the first byte of the word is being modified */
583 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
584 &eeprom_buff
[last_word
- first_word
]);
589 /* Device's eeprom is always little-endian, word addressable */
590 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
591 le16_to_cpus(&eeprom_buff
[i
]);
593 memcpy(ptr
, bytes
, eeprom
->len
);
595 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
596 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
598 ret_val
= e1000_write_nvm(hw
, first_word
,
599 last_word
- first_word
+ 1, eeprom_buff
);
605 * Update the checksum over the first part of the EEPROM if needed
606 * and flush shadow RAM for applicable controllers
608 if ((first_word
<= NVM_CHECKSUM_REG
) ||
609 (hw
->mac
.type
== e1000_82583
) ||
610 (hw
->mac
.type
== e1000_82574
) ||
611 (hw
->mac
.type
== e1000_82573
))
612 ret_val
= e1000e_update_nvm_checksum(hw
);
619 static void e1000_get_drvinfo(struct net_device
*netdev
,
620 struct ethtool_drvinfo
*drvinfo
)
622 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
623 char firmware_version
[32];
625 strncpy(drvinfo
->driver
, e1000e_driver_name
,
626 sizeof(drvinfo
->driver
) - 1);
627 strncpy(drvinfo
->version
, e1000e_driver_version
,
628 sizeof(drvinfo
->version
) - 1);
631 * EEPROM image version # is reported as firmware version # for
634 snprintf(firmware_version
, sizeof(firmware_version
), "%d.%d-%d",
635 (adapter
->eeprom_vers
& 0xF000) >> 12,
636 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
637 (adapter
->eeprom_vers
& 0x000F));
639 strncpy(drvinfo
->fw_version
, firmware_version
,
640 sizeof(drvinfo
->fw_version
) - 1);
641 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
642 sizeof(drvinfo
->bus_info
) - 1);
643 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
644 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
647 static void e1000_get_ringparam(struct net_device
*netdev
,
648 struct ethtool_ringparam
*ring
)
650 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
651 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
652 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
654 ring
->rx_max_pending
= E1000_MAX_RXD
;
655 ring
->tx_max_pending
= E1000_MAX_TXD
;
656 ring
->rx_mini_max_pending
= 0;
657 ring
->rx_jumbo_max_pending
= 0;
658 ring
->rx_pending
= rx_ring
->count
;
659 ring
->tx_pending
= tx_ring
->count
;
660 ring
->rx_mini_pending
= 0;
661 ring
->rx_jumbo_pending
= 0;
664 static int e1000_set_ringparam(struct net_device
*netdev
,
665 struct ethtool_ringparam
*ring
)
667 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
668 struct e1000_ring
*tx_ring
, *tx_old
;
669 struct e1000_ring
*rx_ring
, *rx_old
;
672 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
675 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
678 if (netif_running(adapter
->netdev
))
679 e1000e_down(adapter
);
681 tx_old
= adapter
->tx_ring
;
682 rx_old
= adapter
->rx_ring
;
685 tx_ring
= kmemdup(tx_old
, sizeof(struct e1000_ring
), GFP_KERNEL
);
689 rx_ring
= kmemdup(rx_old
, sizeof(struct e1000_ring
), GFP_KERNEL
);
693 adapter
->tx_ring
= tx_ring
;
694 adapter
->rx_ring
= rx_ring
;
696 rx_ring
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
697 rx_ring
->count
= min(rx_ring
->count
, (u32
)(E1000_MAX_RXD
));
698 rx_ring
->count
= ALIGN(rx_ring
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
700 tx_ring
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
701 tx_ring
->count
= min(tx_ring
->count
, (u32
)(E1000_MAX_TXD
));
702 tx_ring
->count
= ALIGN(tx_ring
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
704 if (netif_running(adapter
->netdev
)) {
705 /* Try to get new resources before deleting old */
706 err
= e1000e_setup_rx_resources(adapter
);
709 err
= e1000e_setup_tx_resources(adapter
);
714 * restore the old in order to free it,
715 * then add in the new
717 adapter
->rx_ring
= rx_old
;
718 adapter
->tx_ring
= tx_old
;
719 e1000e_free_rx_resources(adapter
);
720 e1000e_free_tx_resources(adapter
);
723 adapter
->rx_ring
= rx_ring
;
724 adapter
->tx_ring
= tx_ring
;
725 err
= e1000e_up(adapter
);
730 clear_bit(__E1000_RESETTING
, &adapter
->state
);
733 e1000e_free_rx_resources(adapter
);
735 adapter
->rx_ring
= rx_old
;
736 adapter
->tx_ring
= tx_old
;
743 clear_bit(__E1000_RESETTING
, &adapter
->state
);
747 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
748 int reg
, int offset
, u32 mask
, u32 write
)
751 static const u32 test
[] = {
752 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
753 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
754 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
755 (test
[pat
] & write
));
756 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
757 if (val
!= (test
[pat
] & write
& mask
)) {
758 e_err("pattern test reg %04X failed: got 0x%08X "
759 "expected 0x%08X\n", reg
+ offset
, val
,
760 (test
[pat
] & write
& mask
));
768 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
769 int reg
, u32 mask
, u32 write
)
772 __ew32(&adapter
->hw
, reg
, write
& mask
);
773 val
= __er32(&adapter
->hw
, reg
);
774 if ((write
& mask
) != (val
& mask
)) {
775 e_err("set/check reg %04X test failed: got 0x%08X "
776 "expected 0x%08X\n", reg
, (val
& mask
), (write
& mask
));
782 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
784 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
787 #define REG_PATTERN_TEST(reg, mask, write) \
788 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
790 #define REG_SET_AND_CHECK(reg, mask, write) \
792 if (reg_set_and_check(adapter, data, reg, mask, write)) \
796 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
798 struct e1000_hw
*hw
= &adapter
->hw
;
799 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
808 * The status register is Read Only, so a write should fail.
809 * Some bits that get toggled are ignored.
812 /* there are several bits on newer hardware that are r/w */
815 case e1000_80003es2lan
:
823 before
= er32(STATUS
);
824 value
= (er32(STATUS
) & toggle
);
825 ew32(STATUS
, toggle
);
826 after
= er32(STATUS
) & toggle
;
827 if (value
!= after
) {
828 e_err("failed STATUS register test got: 0x%08X expected: "
829 "0x%08X\n", after
, value
);
833 /* restore previous status */
834 ew32(STATUS
, before
);
836 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
837 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
838 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
839 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
840 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
844 REG_PATTERN_TEST(E1000_RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
845 REG_PATTERN_TEST(E1000_RDLEN
, 0x000FFF80, 0x000FFFFF);
846 REG_PATTERN_TEST(E1000_RDH
, 0x0000FFFF, 0x0000FFFF);
847 REG_PATTERN_TEST(E1000_RDT
, 0x0000FFFF, 0x0000FFFF);
848 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
849 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
850 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
851 REG_PATTERN_TEST(E1000_TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_TDLEN
, 0x000FFF80, 0x000FFFFF);
854 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
856 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
857 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
858 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
860 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
862 if (!(adapter
->flags
& FLAG_IS_ICH
))
863 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
864 REG_PATTERN_TEST(E1000_TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
876 for (i
= 0; i
< mac
->rar_entry_count
; i
++)
877 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
880 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
881 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
887 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
894 /* Read and add up the contents of the EEPROM */
895 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
896 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
903 /* If Checksum is not Correct return error else test passed */
904 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
910 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
912 struct net_device
*netdev
= (struct net_device
*) data
;
913 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
914 struct e1000_hw
*hw
= &adapter
->hw
;
916 adapter
->test_icr
|= er32(ICR
);
921 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
923 struct net_device
*netdev
= adapter
->netdev
;
924 struct e1000_hw
*hw
= &adapter
->hw
;
927 u32 irq
= adapter
->pdev
->irq
;
930 int int_mode
= E1000E_INT_MODE_LEGACY
;
934 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
935 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
936 int_mode
= adapter
->int_mode
;
937 e1000e_reset_interrupt_capability(adapter
);
938 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
939 e1000e_set_interrupt_capability(adapter
);
941 /* Hook up test interrupt handler just for this test */
942 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
945 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
946 netdev
->name
, netdev
)) {
951 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
953 /* Disable all the interrupts */
954 ew32(IMC
, 0xFFFFFFFF);
957 /* Test each interrupt */
958 for (i
= 0; i
< 10; i
++) {
959 /* Interrupt to test */
962 if (adapter
->flags
& FLAG_IS_ICH
) {
964 case E1000_ICR_RXSEQ
:
967 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
968 adapter
->hw
.mac
.type
== e1000_ich9lan
)
978 * Disable the interrupt to be reported in
979 * the cause register and then force the same
980 * interrupt and see if one gets posted. If
981 * an interrupt was posted to the bus, the
984 adapter
->test_icr
= 0;
989 if (adapter
->test_icr
& mask
) {
996 * Enable the interrupt to be reported in
997 * the cause register and then force the same
998 * interrupt and see if one gets posted. If
999 * an interrupt was not posted to the bus, the
1002 adapter
->test_icr
= 0;
1007 if (!(adapter
->test_icr
& mask
)) {
1014 * Disable the other interrupts to be reported in
1015 * the cause register and then force the other
1016 * interrupts and see if any get posted. If
1017 * an interrupt was posted to the bus, the
1020 adapter
->test_icr
= 0;
1021 ew32(IMC
, ~mask
& 0x00007FFF);
1022 ew32(ICS
, ~mask
& 0x00007FFF);
1025 if (adapter
->test_icr
) {
1032 /* Disable all the interrupts */
1033 ew32(IMC
, 0xFFFFFFFF);
1036 /* Unhook test interrupt handler */
1037 free_irq(irq
, netdev
);
1040 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1041 e1000e_reset_interrupt_capability(adapter
);
1042 adapter
->int_mode
= int_mode
;
1043 e1000e_set_interrupt_capability(adapter
);
1049 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1051 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1052 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1053 struct pci_dev
*pdev
= adapter
->pdev
;
1056 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1057 for (i
= 0; i
< tx_ring
->count
; i
++) {
1058 if (tx_ring
->buffer_info
[i
].dma
)
1059 dma_unmap_single(&pdev
->dev
,
1060 tx_ring
->buffer_info
[i
].dma
,
1061 tx_ring
->buffer_info
[i
].length
,
1063 if (tx_ring
->buffer_info
[i
].skb
)
1064 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
1068 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1069 for (i
= 0; i
< rx_ring
->count
; i
++) {
1070 if (rx_ring
->buffer_info
[i
].dma
)
1071 dma_unmap_single(&pdev
->dev
,
1072 rx_ring
->buffer_info
[i
].dma
,
1073 2048, DMA_FROM_DEVICE
);
1074 if (rx_ring
->buffer_info
[i
].skb
)
1075 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
1079 if (tx_ring
->desc
) {
1080 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1082 tx_ring
->desc
= NULL
;
1084 if (rx_ring
->desc
) {
1085 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1087 rx_ring
->desc
= NULL
;
1090 kfree(tx_ring
->buffer_info
);
1091 tx_ring
->buffer_info
= NULL
;
1092 kfree(rx_ring
->buffer_info
);
1093 rx_ring
->buffer_info
= NULL
;
1096 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1098 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1099 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1100 struct pci_dev
*pdev
= adapter
->pdev
;
1101 struct e1000_hw
*hw
= &adapter
->hw
;
1106 /* Setup Tx descriptor ring and Tx buffers */
1108 if (!tx_ring
->count
)
1109 tx_ring
->count
= E1000_DEFAULT_TXD
;
1111 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1112 sizeof(struct e1000_buffer
),
1114 if (!(tx_ring
->buffer_info
)) {
1119 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1120 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1121 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1122 &tx_ring
->dma
, GFP_KERNEL
);
1123 if (!tx_ring
->desc
) {
1127 tx_ring
->next_to_use
= 0;
1128 tx_ring
->next_to_clean
= 0;
1130 ew32(TDBAL
, ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1131 ew32(TDBAH
, ((u64
) tx_ring
->dma
>> 32));
1132 ew32(TDLEN
, tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1135 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1136 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1137 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1139 for (i
= 0; i
< tx_ring
->count
; i
++) {
1140 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1141 struct sk_buff
*skb
;
1142 unsigned int skb_size
= 1024;
1144 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1149 skb_put(skb
, skb_size
);
1150 tx_ring
->buffer_info
[i
].skb
= skb
;
1151 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1152 tx_ring
->buffer_info
[i
].dma
=
1153 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1155 if (dma_mapping_error(&pdev
->dev
,
1156 tx_ring
->buffer_info
[i
].dma
)) {
1160 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1161 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1162 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1163 E1000_TXD_CMD_IFCS
|
1165 tx_desc
->upper
.data
= 0;
1168 /* Setup Rx descriptor ring and Rx buffers */
1170 if (!rx_ring
->count
)
1171 rx_ring
->count
= E1000_DEFAULT_RXD
;
1173 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1174 sizeof(struct e1000_buffer
),
1176 if (!(rx_ring
->buffer_info
)) {
1181 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1182 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1183 &rx_ring
->dma
, GFP_KERNEL
);
1184 if (!rx_ring
->desc
) {
1188 rx_ring
->next_to_use
= 0;
1189 rx_ring
->next_to_clean
= 0;
1192 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1193 ew32(RDBAL
, ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1194 ew32(RDBAH
, ((u64
) rx_ring
->dma
>> 32));
1195 ew32(RDLEN
, rx_ring
->size
);
1198 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1199 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1200 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1201 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1202 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1205 for (i
= 0; i
< rx_ring
->count
; i
++) {
1206 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1207 struct sk_buff
*skb
;
1209 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1214 skb_reserve(skb
, NET_IP_ALIGN
);
1215 rx_ring
->buffer_info
[i
].skb
= skb
;
1216 rx_ring
->buffer_info
[i
].dma
=
1217 dma_map_single(&pdev
->dev
, skb
->data
, 2048,
1219 if (dma_mapping_error(&pdev
->dev
,
1220 rx_ring
->buffer_info
[i
].dma
)) {
1224 rx_desc
->buffer_addr
=
1225 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1226 memset(skb
->data
, 0x00, skb
->len
);
1232 e1000_free_desc_rings(adapter
);
1236 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1238 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1239 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1240 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1241 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1242 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1245 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1247 struct e1000_hw
*hw
= &adapter
->hw
;
1252 hw
->mac
.autoneg
= 0;
1254 if (hw
->phy
.type
== e1000_phy_ife
) {
1255 /* force 100, set loopback */
1256 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1258 /* Now set up the MAC to the same speed/duplex as the PHY. */
1259 ctrl_reg
= er32(CTRL
);
1260 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1261 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1262 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1263 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1264 E1000_CTRL_FD
); /* Force Duplex to FULL */
1266 ew32(CTRL
, ctrl_reg
);
1272 /* Specific PHY configuration for loopback */
1273 switch (hw
->phy
.type
) {
1275 /* Auto-MDI/MDIX Off */
1276 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1277 /* reset to update Auto-MDI/MDIX */
1278 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1280 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1282 case e1000_phy_gg82563
:
1283 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1286 /* Set Default MAC Interface speed to 1GB */
1287 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1290 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1291 /* Assert SW reset for above settings to take effect */
1292 e1000e_commit_phy(hw
);
1294 /* Force Full Duplex */
1295 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1296 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1297 /* Set Link Up (in force link) */
1298 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1299 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1301 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1302 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1303 /* Set Early Link Enable */
1304 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1305 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1307 case e1000_phy_82577
:
1308 case e1000_phy_82578
:
1309 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1310 ret_val
= hw
->phy
.ops
.acquire(hw
);
1312 e_err("Cannot setup 1Gbps loopback.\n");
1315 e1000_configure_k1_ich8lan(hw
, false);
1316 hw
->phy
.ops
.release(hw
);
1318 case e1000_phy_82579
:
1319 /* Disable PHY energy detect power down */
1320 e1e_rphy(hw
, PHY_REG(0, 21), &phy_reg
);
1321 e1e_wphy(hw
, PHY_REG(0, 21), phy_reg
& ~(1 << 3));
1322 /* Disable full chip energy detect */
1323 e1e_rphy(hw
, PHY_REG(776, 18), &phy_reg
);
1324 e1e_wphy(hw
, PHY_REG(776, 18), phy_reg
| 1);
1325 /* Enable loopback on the PHY */
1326 #define I82577_PHY_LBK_CTRL 19
1327 e1e_wphy(hw
, I82577_PHY_LBK_CTRL
, 0x8001);
1333 /* force 1000, set loopback */
1334 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1337 /* Now set up the MAC to the same speed/duplex as the PHY. */
1338 ctrl_reg
= er32(CTRL
);
1339 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1340 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1341 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1342 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1343 E1000_CTRL_FD
); /* Force Duplex to FULL */
1345 if (adapter
->flags
& FLAG_IS_ICH
)
1346 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1348 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1349 hw
->phy
.type
== e1000_phy_m88
) {
1350 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1353 * Set the ILOS bit on the fiber Nic if half duplex link is
1356 if ((er32(STATUS
) & E1000_STATUS_FD
) == 0)
1357 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1360 ew32(CTRL
, ctrl_reg
);
1363 * Disable the receiver on the PHY so when a cable is plugged in, the
1364 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1366 if (hw
->phy
.type
== e1000_phy_m88
)
1367 e1000_phy_disable_receiver(adapter
);
1374 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1376 struct e1000_hw
*hw
= &adapter
->hw
;
1377 u32 ctrl
= er32(CTRL
);
1380 /* special requirements for 82571/82572 fiber adapters */
1383 * jump through hoops to make sure link is up because serdes
1384 * link is hardwired up
1386 ctrl
|= E1000_CTRL_SLU
;
1389 /* disable autoneg */
1394 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1397 /* set invert loss of signal */
1399 ctrl
|= E1000_CTRL_ILOS
;
1404 * special write to serdes control register to enable SerDes analog
1407 #define E1000_SERDES_LB_ON 0x410
1408 ew32(SCTL
, E1000_SERDES_LB_ON
);
1414 /* only call this for fiber/serdes connections to es2lan */
1415 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1417 struct e1000_hw
*hw
= &adapter
->hw
;
1418 u32 ctrlext
= er32(CTRL_EXT
);
1419 u32 ctrl
= er32(CTRL
);
1422 * save CTRL_EXT to restore later, reuse an empty variable (unused
1423 * on mac_type 80003es2lan)
1425 adapter
->tx_fifo_head
= ctrlext
;
1427 /* clear the serdes mode bits, putting the device into mac loopback */
1428 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1429 ew32(CTRL_EXT
, ctrlext
);
1431 /* force speed to 1000/FD, link up */
1432 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1433 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1434 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1437 /* set mac loopback */
1439 ctrl
|= E1000_RCTL_LBM_MAC
;
1442 /* set testing mode parameters (no need to reset later) */
1443 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1444 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1446 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1451 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1453 struct e1000_hw
*hw
= &adapter
->hw
;
1456 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1457 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1458 switch (hw
->mac
.type
) {
1459 case e1000_80003es2lan
:
1460 return e1000_set_es2lan_mac_loopback(adapter
);
1464 return e1000_set_82571_fiber_loopback(adapter
);
1468 rctl
|= E1000_RCTL_LBM_TCVR
;
1472 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1473 return e1000_integrated_phy_loopback(adapter
);
1479 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1481 struct e1000_hw
*hw
= &adapter
->hw
;
1486 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1489 switch (hw
->mac
.type
) {
1490 case e1000_80003es2lan
:
1491 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1492 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1493 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1494 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1495 adapter
->tx_fifo_head
= 0;
1500 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1501 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1502 #define E1000_SERDES_LB_OFF 0x400
1503 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1509 hw
->mac
.autoneg
= 1;
1510 if (hw
->phy
.type
== e1000_phy_gg82563
)
1511 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1512 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1513 if (phy_reg
& MII_CR_LOOPBACK
) {
1514 phy_reg
&= ~MII_CR_LOOPBACK
;
1515 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1516 e1000e_commit_phy(hw
);
1522 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1523 unsigned int frame_size
)
1525 memset(skb
->data
, 0xFF, frame_size
);
1527 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1528 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1529 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1532 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1533 unsigned int frame_size
)
1536 if (*(skb
->data
+ 3) == 0xFF)
1537 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1538 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1543 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1545 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1546 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1547 struct pci_dev
*pdev
= adapter
->pdev
;
1548 struct e1000_hw
*hw
= &adapter
->hw
;
1555 ew32(RDT
, rx_ring
->count
- 1);
1558 * Calculate the loop count based on the largest descriptor ring
1559 * The idea is to wrap the largest ring a number of times using 64
1560 * send/receive pairs during each loop
1563 if (rx_ring
->count
<= tx_ring
->count
)
1564 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1566 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1570 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1571 for (i
= 0; i
< 64; i
++) { /* send the packets */
1572 e1000_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1574 dma_sync_single_for_device(&pdev
->dev
,
1575 tx_ring
->buffer_info
[k
].dma
,
1576 tx_ring
->buffer_info
[k
].length
,
1579 if (k
== tx_ring
->count
)
1584 time
= jiffies
; /* set the start time for the receive */
1586 do { /* receive the sent packets */
1587 dma_sync_single_for_cpu(&pdev
->dev
,
1588 rx_ring
->buffer_info
[l
].dma
, 2048,
1591 ret_val
= e1000_check_lbtest_frame(
1592 rx_ring
->buffer_info
[l
].skb
, 1024);
1596 if (l
== rx_ring
->count
)
1599 * time + 20 msecs (200 msecs on 2.4) is more than
1600 * enough time to complete the receives, if it's
1601 * exceeded, break and error off
1603 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1604 if (good_cnt
!= 64) {
1605 ret_val
= 13; /* ret_val is the same as mis-compare */
1608 if (jiffies
>= (time
+ 20)) {
1609 ret_val
= 14; /* error code for time out error */
1612 } /* end loop count loop */
1616 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1619 * PHY loopback cannot be performed if SoL/IDER
1620 * sessions are active
1622 if (e1000_check_reset_block(&adapter
->hw
)) {
1623 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1628 *data
= e1000_setup_desc_rings(adapter
);
1632 *data
= e1000_setup_loopback_test(adapter
);
1636 *data
= e1000_run_loopback_test(adapter
);
1637 e1000_loopback_cleanup(adapter
);
1640 e1000_free_desc_rings(adapter
);
1645 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1647 struct e1000_hw
*hw
= &adapter
->hw
;
1650 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1652 hw
->mac
.serdes_has_link
= false;
1655 * On some blade server designs, link establishment
1656 * could take as long as 2-3 minutes
1659 hw
->mac
.ops
.check_for_link(hw
);
1660 if (hw
->mac
.serdes_has_link
)
1663 } while (i
++ < 3750);
1667 hw
->mac
.ops
.check_for_link(hw
);
1668 if (hw
->mac
.autoneg
)
1670 * On some Phy/switch combinations, link establishment
1671 * can take a few seconds more than expected.
1675 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1681 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1685 return E1000_TEST_LEN
;
1687 return E1000_STATS_LEN
;
1693 static void e1000_diag_test(struct net_device
*netdev
,
1694 struct ethtool_test
*eth_test
, u64
*data
)
1696 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1697 u16 autoneg_advertised
;
1698 u8 forced_speed_duplex
;
1700 bool if_running
= netif_running(netdev
);
1702 set_bit(__E1000_TESTING
, &adapter
->state
);
1705 /* Get control of and reset hardware */
1706 if (adapter
->flags
& FLAG_HAS_AMT
)
1707 e1000e_get_hw_control(adapter
);
1709 e1000e_power_up_phy(adapter
);
1711 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1712 e1000e_reset(adapter
);
1713 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1716 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1719 /* save speed, duplex, autoneg settings */
1720 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1721 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1722 autoneg
= adapter
->hw
.mac
.autoneg
;
1724 e_info("offline testing starting\n");
1727 /* indicate we're in test mode */
1730 if (e1000_reg_test(adapter
, &data
[0]))
1731 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1733 e1000e_reset(adapter
);
1734 if (e1000_eeprom_test(adapter
, &data
[1]))
1735 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1737 e1000e_reset(adapter
);
1738 if (e1000_intr_test(adapter
, &data
[2]))
1739 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1741 e1000e_reset(adapter
);
1742 if (e1000_loopback_test(adapter
, &data
[3]))
1743 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1745 /* force this routine to wait until autoneg complete/timeout */
1746 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1747 e1000e_reset(adapter
);
1748 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1750 if (e1000_link_test(adapter
, &data
[4]))
1751 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1753 /* restore speed, duplex, autoneg settings */
1754 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1755 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1756 adapter
->hw
.mac
.autoneg
= autoneg
;
1757 e1000e_reset(adapter
);
1759 clear_bit(__E1000_TESTING
, &adapter
->state
);
1765 e_info("online testing starting\n");
1767 /* register, eeprom, intr and loopback tests not run online */
1773 if (e1000_link_test(adapter
, &data
[4]))
1774 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1776 clear_bit(__E1000_TESTING
, &adapter
->state
);
1780 e1000e_reset(adapter
);
1782 if (adapter
->flags
& FLAG_HAS_AMT
)
1783 e1000e_release_hw_control(adapter
);
1786 msleep_interruptible(4 * 1000);
1789 static void e1000_get_wol(struct net_device
*netdev
,
1790 struct ethtool_wolinfo
*wol
)
1792 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1797 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1798 !device_can_wakeup(&adapter
->pdev
->dev
))
1801 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1802 WAKE_BCAST
| WAKE_MAGIC
| WAKE_PHY
;
1804 /* apply any specific unsupported masks here */
1805 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1806 wol
->supported
&= ~WAKE_UCAST
;
1808 if (adapter
->wol
& E1000_WUFC_EX
)
1809 e_err("Interface does not support directed (unicast) "
1810 "frame wake-up packets\n");
1813 if (adapter
->wol
& E1000_WUFC_EX
)
1814 wol
->wolopts
|= WAKE_UCAST
;
1815 if (adapter
->wol
& E1000_WUFC_MC
)
1816 wol
->wolopts
|= WAKE_MCAST
;
1817 if (adapter
->wol
& E1000_WUFC_BC
)
1818 wol
->wolopts
|= WAKE_BCAST
;
1819 if (adapter
->wol
& E1000_WUFC_MAG
)
1820 wol
->wolopts
|= WAKE_MAGIC
;
1821 if (adapter
->wol
& E1000_WUFC_LNKC
)
1822 wol
->wolopts
|= WAKE_PHY
;
1825 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1827 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1829 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1830 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1831 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1832 WAKE_MAGIC
| WAKE_PHY
)))
1835 /* these settings will always override what we currently have */
1838 if (wol
->wolopts
& WAKE_UCAST
)
1839 adapter
->wol
|= E1000_WUFC_EX
;
1840 if (wol
->wolopts
& WAKE_MCAST
)
1841 adapter
->wol
|= E1000_WUFC_MC
;
1842 if (wol
->wolopts
& WAKE_BCAST
)
1843 adapter
->wol
|= E1000_WUFC_BC
;
1844 if (wol
->wolopts
& WAKE_MAGIC
)
1845 adapter
->wol
|= E1000_WUFC_MAG
;
1846 if (wol
->wolopts
& WAKE_PHY
)
1847 adapter
->wol
|= E1000_WUFC_LNKC
;
1849 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1854 /* toggle LED 4 times per second = 2 "blinks" per second */
1855 #define E1000_ID_INTERVAL (HZ/4)
1857 /* bit defines for adapter->led_status */
1858 #define E1000_LED_ON 0
1860 void e1000e_led_blink_task(struct work_struct
*work
)
1862 struct e1000_adapter
*adapter
= container_of(work
,
1863 struct e1000_adapter
, led_blink_task
);
1865 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1866 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1868 adapter
->hw
.mac
.ops
.led_on(&adapter
->hw
);
1871 static void e1000_led_blink_callback(unsigned long data
)
1873 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1875 schedule_work(&adapter
->led_blink_task
);
1876 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1879 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1881 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1882 struct e1000_hw
*hw
= &adapter
->hw
;
1887 if ((hw
->phy
.type
== e1000_phy_ife
) ||
1888 (hw
->mac
.type
== e1000_pchlan
) ||
1889 (hw
->mac
.type
== e1000_pch2lan
) ||
1890 (hw
->mac
.type
== e1000_82583
) ||
1891 (hw
->mac
.type
== e1000_82574
)) {
1892 if (!adapter
->blink_timer
.function
) {
1893 init_timer(&adapter
->blink_timer
);
1894 adapter
->blink_timer
.function
=
1895 e1000_led_blink_callback
;
1896 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1898 mod_timer(&adapter
->blink_timer
, jiffies
);
1899 msleep_interruptible(data
* 1000);
1900 del_timer_sync(&adapter
->blink_timer
);
1901 if (hw
->phy
.type
== e1000_phy_ife
)
1902 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1904 e1000e_blink_led(hw
);
1905 msleep_interruptible(data
* 1000);
1908 hw
->mac
.ops
.led_off(hw
);
1909 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1910 hw
->mac
.ops
.cleanup_led(hw
);
1915 static int e1000_get_coalesce(struct net_device
*netdev
,
1916 struct ethtool_coalesce
*ec
)
1918 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1920 if (adapter
->itr_setting
<= 4)
1921 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1923 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1928 static int e1000_set_coalesce(struct net_device
*netdev
,
1929 struct ethtool_coalesce
*ec
)
1931 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1932 struct e1000_hw
*hw
= &adapter
->hw
;
1934 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1935 ((ec
->rx_coalesce_usecs
> 4) &&
1936 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1937 (ec
->rx_coalesce_usecs
== 2))
1940 if (ec
->rx_coalesce_usecs
== 4) {
1941 adapter
->itr
= adapter
->itr_setting
= 4;
1942 } else if (ec
->rx_coalesce_usecs
<= 3) {
1943 adapter
->itr
= 20000;
1944 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1946 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1947 adapter
->itr_setting
= adapter
->itr
& ~3;
1950 if (adapter
->itr_setting
!= 0)
1951 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1958 static int e1000_nway_reset(struct net_device
*netdev
)
1960 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1962 if (!netif_running(netdev
))
1965 if (!adapter
->hw
.mac
.autoneg
)
1968 e1000e_reinit_locked(adapter
);
1973 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1974 struct ethtool_stats
*stats
,
1977 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1978 struct rtnl_link_stats64 net_stats
;
1982 e1000e_get_stats64(netdev
, &net_stats
);
1983 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1984 switch (e1000_gstrings_stats
[i
].type
) {
1986 p
= (char *) &net_stats
+
1987 e1000_gstrings_stats
[i
].stat_offset
;
1990 p
= (char *) adapter
+
1991 e1000_gstrings_stats
[i
].stat_offset
;
1998 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1999 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2003 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
2009 switch (stringset
) {
2011 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
2014 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2015 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
2017 p
+= ETH_GSTRING_LEN
;
2023 static const struct ethtool_ops e1000_ethtool_ops
= {
2024 .get_settings
= e1000_get_settings
,
2025 .set_settings
= e1000_set_settings
,
2026 .get_drvinfo
= e1000_get_drvinfo
,
2027 .get_regs_len
= e1000_get_regs_len
,
2028 .get_regs
= e1000_get_regs
,
2029 .get_wol
= e1000_get_wol
,
2030 .set_wol
= e1000_set_wol
,
2031 .get_msglevel
= e1000_get_msglevel
,
2032 .set_msglevel
= e1000_set_msglevel
,
2033 .nway_reset
= e1000_nway_reset
,
2034 .get_link
= ethtool_op_get_link
,
2035 .get_eeprom_len
= e1000_get_eeprom_len
,
2036 .get_eeprom
= e1000_get_eeprom
,
2037 .set_eeprom
= e1000_set_eeprom
,
2038 .get_ringparam
= e1000_get_ringparam
,
2039 .set_ringparam
= e1000_set_ringparam
,
2040 .get_pauseparam
= e1000_get_pauseparam
,
2041 .set_pauseparam
= e1000_set_pauseparam
,
2042 .get_rx_csum
= e1000_get_rx_csum
,
2043 .set_rx_csum
= e1000_set_rx_csum
,
2044 .get_tx_csum
= e1000_get_tx_csum
,
2045 .set_tx_csum
= e1000_set_tx_csum
,
2046 .get_sg
= ethtool_op_get_sg
,
2047 .set_sg
= ethtool_op_set_sg
,
2048 .get_tso
= ethtool_op_get_tso
,
2049 .set_tso
= e1000_set_tso
,
2050 .self_test
= e1000_diag_test
,
2051 .get_strings
= e1000_get_strings
,
2052 .phys_id
= e1000_phys_id
,
2053 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2054 .get_sset_count
= e1000e_get_sset_count
,
2055 .get_coalesce
= e1000_get_coalesce
,
2056 .set_coalesce
= e1000_set_coalesce
,
2057 .get_flags
= ethtool_op_get_flags
,
2060 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2062 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);