PM / Hibernate: Introduce CONFIG_HIBERNATE_CALLBACKS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000e / ethtool.c
blob07f09e96e4532453b5f1e4547f810dd93b504546
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
37 #include "e1000.h"
39 enum {NETDEV_STATS, E1000_STATS};
41 struct e1000_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int type;
44 int sizeof_stat;
45 int stat_offset;
48 #define E1000_STAT(str, m) { \
49 .stat_string = str, \
50 .type = E1000_STATS, \
51 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52 .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
54 .stat_string = str, \
55 .type = NETDEV_STATS, \
56 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
57 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
59 static const struct e1000_stats e1000_gstrings_stats[] = {
60 E1000_STAT("rx_packets", stats.gprc),
61 E1000_STAT("tx_packets", stats.gptc),
62 E1000_STAT("rx_bytes", stats.gorc),
63 E1000_STAT("tx_bytes", stats.gotc),
64 E1000_STAT("rx_broadcast", stats.bprc),
65 E1000_STAT("tx_broadcast", stats.bptc),
66 E1000_STAT("rx_multicast", stats.mprc),
67 E1000_STAT("tx_multicast", stats.mptc),
68 E1000_NETDEV_STAT("rx_errors", rx_errors),
69 E1000_NETDEV_STAT("tx_errors", tx_errors),
70 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
71 E1000_STAT("multicast", stats.mprc),
72 E1000_STAT("collisions", stats.colc),
73 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
74 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
75 E1000_STAT("rx_crc_errors", stats.crcerrs),
76 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
77 E1000_STAT("rx_no_buffer_count", stats.rnbc),
78 E1000_STAT("rx_missed_errors", stats.mpc),
79 E1000_STAT("tx_aborted_errors", stats.ecol),
80 E1000_STAT("tx_carrier_errors", stats.tncrs),
81 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
82 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
83 E1000_STAT("tx_window_errors", stats.latecol),
84 E1000_STAT("tx_abort_late_coll", stats.latecol),
85 E1000_STAT("tx_deferred_ok", stats.dc),
86 E1000_STAT("tx_single_coll_ok", stats.scc),
87 E1000_STAT("tx_multi_coll_ok", stats.mcc),
88 E1000_STAT("tx_timeout_count", tx_timeout_count),
89 E1000_STAT("tx_restart_queue", restart_queue),
90 E1000_STAT("rx_long_length_errors", stats.roc),
91 E1000_STAT("rx_short_length_errors", stats.ruc),
92 E1000_STAT("rx_align_errors", stats.algnerrc),
93 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
94 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
95 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
96 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
97 E1000_STAT("tx_flow_control_xon", stats.xontxc),
98 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
99 E1000_STAT("rx_long_byte_count", stats.gorc),
100 E1000_STAT("rx_csum_offload_good", hw_csum_good),
101 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
102 E1000_STAT("rx_header_split", rx_hdr_split),
103 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
104 E1000_STAT("tx_smbus", stats.mgptc),
105 E1000_STAT("rx_smbus", stats.mgprc),
106 E1000_STAT("dropped_smbus", stats.mgpdc),
107 E1000_STAT("rx_dma_failed", rx_dma_failed),
108 E1000_STAT("tx_dma_failed", tx_dma_failed),
111 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114 "Register test (offline)", "Eeprom test (offline)",
115 "Interrupt test (offline)", "Loopback test (offline)",
116 "Link test (on/offline)"
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
126 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
162 ecmd->speed = -1;
163 ecmd->duplex = -1;
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 ecmd->speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
170 } else {
171 u32 status = er32(STATUS);
172 if (status & E1000_STATUS_LU) {
173 if (status & E1000_STATUS_SPEED_1000)
174 ecmd->speed = 1000;
175 else if (status & E1000_STATUS_SPEED_100)
176 ecmd->speed = 100;
177 else
178 ecmd->speed = 10;
180 if (status & E1000_STATUS_FD)
181 ecmd->duplex = DUPLEX_FULL;
182 else
183 ecmd->duplex = DUPLEX_HALF;
187 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
188 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
190 /* MDI-X => 2; MDI =>1; Invalid =>0 */
191 if ((hw->phy.media_type == e1000_media_type_copper) &&
192 netif_carrier_ok(netdev))
193 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
194 ETH_TP_MDI;
195 else
196 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198 return 0;
201 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
203 struct e1000_mac_info *mac = &adapter->hw.mac;
205 mac->autoneg = 0;
207 /* Fiber NICs only allow 1000 gbps Full duplex */
208 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
209 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
210 e_err("Unsupported Speed/Duplex configuration\n");
211 return -EINVAL;
214 switch (spddplx) {
215 case SPEED_10 + DUPLEX_HALF:
216 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 break;
218 case SPEED_10 + DUPLEX_FULL:
219 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 break;
221 case SPEED_100 + DUPLEX_HALF:
222 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 break;
224 case SPEED_100 + DUPLEX_FULL:
225 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 break;
227 case SPEED_1000 + DUPLEX_FULL:
228 mac->autoneg = 1;
229 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
230 break;
231 case SPEED_1000 + DUPLEX_HALF: /* not supported */
232 default:
233 e_err("Unsupported Speed/Duplex configuration\n");
234 return -EINVAL;
236 return 0;
239 static int e1000_set_settings(struct net_device *netdev,
240 struct ethtool_cmd *ecmd)
242 struct e1000_adapter *adapter = netdev_priv(netdev);
243 struct e1000_hw *hw = &adapter->hw;
246 * When SoL/IDER sessions are active, autoneg/speed/duplex
247 * cannot be changed
249 if (e1000_check_reset_block(hw)) {
250 e_err("Cannot change link characteristics when SoL/IDER is "
251 "active.\n");
252 return -EINVAL;
255 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
256 msleep(1);
258 if (ecmd->autoneg == AUTONEG_ENABLE) {
259 hw->mac.autoneg = 1;
260 if (hw->phy.media_type == e1000_media_type_fiber)
261 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
262 ADVERTISED_FIBRE |
263 ADVERTISED_Autoneg;
264 else
265 hw->phy.autoneg_advertised = ecmd->advertising |
266 ADVERTISED_TP |
267 ADVERTISED_Autoneg;
268 ecmd->advertising = hw->phy.autoneg_advertised;
269 if (adapter->fc_autoneg)
270 hw->fc.requested_mode = e1000_fc_default;
271 } else {
272 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
273 clear_bit(__E1000_RESETTING, &adapter->state);
274 return -EINVAL;
278 /* reset the link */
280 if (netif_running(adapter->netdev)) {
281 e1000e_down(adapter);
282 e1000e_up(adapter);
283 } else {
284 e1000e_reset(adapter);
287 clear_bit(__E1000_RESETTING, &adapter->state);
288 return 0;
291 static void e1000_get_pauseparam(struct net_device *netdev,
292 struct ethtool_pauseparam *pause)
294 struct e1000_adapter *adapter = netdev_priv(netdev);
295 struct e1000_hw *hw = &adapter->hw;
297 pause->autoneg =
298 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
300 if (hw->fc.current_mode == e1000_fc_rx_pause) {
301 pause->rx_pause = 1;
302 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
303 pause->tx_pause = 1;
304 } else if (hw->fc.current_mode == e1000_fc_full) {
305 pause->rx_pause = 1;
306 pause->tx_pause = 1;
310 static int e1000_set_pauseparam(struct net_device *netdev,
311 struct ethtool_pauseparam *pause)
313 struct e1000_adapter *adapter = netdev_priv(netdev);
314 struct e1000_hw *hw = &adapter->hw;
315 int retval = 0;
317 adapter->fc_autoneg = pause->autoneg;
319 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
320 msleep(1);
322 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
323 hw->fc.requested_mode = e1000_fc_default;
324 if (netif_running(adapter->netdev)) {
325 e1000e_down(adapter);
326 e1000e_up(adapter);
327 } else {
328 e1000e_reset(adapter);
330 } else {
331 if (pause->rx_pause && pause->tx_pause)
332 hw->fc.requested_mode = e1000_fc_full;
333 else if (pause->rx_pause && !pause->tx_pause)
334 hw->fc.requested_mode = e1000_fc_rx_pause;
335 else if (!pause->rx_pause && pause->tx_pause)
336 hw->fc.requested_mode = e1000_fc_tx_pause;
337 else if (!pause->rx_pause && !pause->tx_pause)
338 hw->fc.requested_mode = e1000_fc_none;
340 hw->fc.current_mode = hw->fc.requested_mode;
342 if (hw->phy.media_type == e1000_media_type_fiber) {
343 retval = hw->mac.ops.setup_link(hw);
344 /* implicit goto out */
345 } else {
346 retval = e1000e_force_mac_fc(hw);
347 if (retval)
348 goto out;
349 e1000e_set_fc_watermarks(hw);
353 out:
354 clear_bit(__E1000_RESETTING, &adapter->state);
355 return retval;
358 static u32 e1000_get_rx_csum(struct net_device *netdev)
360 struct e1000_adapter *adapter = netdev_priv(netdev);
361 return adapter->flags & FLAG_RX_CSUM_ENABLED;
364 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
366 struct e1000_adapter *adapter = netdev_priv(netdev);
368 if (data)
369 adapter->flags |= FLAG_RX_CSUM_ENABLED;
370 else
371 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
373 if (netif_running(netdev))
374 e1000e_reinit_locked(adapter);
375 else
376 e1000e_reset(adapter);
377 return 0;
380 static u32 e1000_get_tx_csum(struct net_device *netdev)
382 return (netdev->features & NETIF_F_HW_CSUM) != 0;
385 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
387 if (data)
388 netdev->features |= NETIF_F_HW_CSUM;
389 else
390 netdev->features &= ~NETIF_F_HW_CSUM;
392 return 0;
395 static int e1000_set_tso(struct net_device *netdev, u32 data)
397 struct e1000_adapter *adapter = netdev_priv(netdev);
399 if (data) {
400 netdev->features |= NETIF_F_TSO;
401 netdev->features |= NETIF_F_TSO6;
402 } else {
403 netdev->features &= ~NETIF_F_TSO;
404 netdev->features &= ~NETIF_F_TSO6;
407 adapter->flags |= FLAG_TSO_FORCE;
408 return 0;
411 static u32 e1000_get_msglevel(struct net_device *netdev)
413 struct e1000_adapter *adapter = netdev_priv(netdev);
414 return adapter->msg_enable;
417 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
419 struct e1000_adapter *adapter = netdev_priv(netdev);
420 adapter->msg_enable = data;
423 static int e1000_get_regs_len(struct net_device *netdev)
425 #define E1000_REGS_LEN 32 /* overestimate */
426 return E1000_REGS_LEN * sizeof(u32);
429 static void e1000_get_regs(struct net_device *netdev,
430 struct ethtool_regs *regs, void *p)
432 struct e1000_adapter *adapter = netdev_priv(netdev);
433 struct e1000_hw *hw = &adapter->hw;
434 u32 *regs_buff = p;
435 u16 phy_data;
437 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
440 adapter->pdev->device;
442 regs_buff[0] = er32(CTRL);
443 regs_buff[1] = er32(STATUS);
445 regs_buff[2] = er32(RCTL);
446 regs_buff[3] = er32(RDLEN);
447 regs_buff[4] = er32(RDH);
448 regs_buff[5] = er32(RDT);
449 regs_buff[6] = er32(RDTR);
451 regs_buff[7] = er32(TCTL);
452 regs_buff[8] = er32(TDLEN);
453 regs_buff[9] = er32(TDH);
454 regs_buff[10] = er32(TDT);
455 regs_buff[11] = er32(TIDV);
457 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
459 /* ethtool doesn't use anything past this point, so all this
460 * code is likely legacy junk for apps that may or may not
461 * exist */
462 if (hw->phy.type == e1000_phy_m88) {
463 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
464 regs_buff[13] = (u32)phy_data; /* cable length */
465 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
466 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
467 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
469 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
470 regs_buff[18] = regs_buff[13]; /* cable polarity */
471 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
472 regs_buff[20] = regs_buff[17]; /* polarity correction */
473 /* phy receive errors */
474 regs_buff[22] = adapter->phy_stats.receive_errors;
475 regs_buff[23] = regs_buff[13]; /* mdix mode */
477 regs_buff[21] = 0; /* was idle_errors */
478 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
479 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
480 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
483 static int e1000_get_eeprom_len(struct net_device *netdev)
485 struct e1000_adapter *adapter = netdev_priv(netdev);
486 return adapter->hw.nvm.word_size * 2;
489 static int e1000_get_eeprom(struct net_device *netdev,
490 struct ethtool_eeprom *eeprom, u8 *bytes)
492 struct e1000_adapter *adapter = netdev_priv(netdev);
493 struct e1000_hw *hw = &adapter->hw;
494 u16 *eeprom_buff;
495 int first_word;
496 int last_word;
497 int ret_val = 0;
498 u16 i;
500 if (eeprom->len == 0)
501 return -EINVAL;
503 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
505 first_word = eeprom->offset >> 1;
506 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508 eeprom_buff = kmalloc(sizeof(u16) *
509 (last_word - first_word + 1), GFP_KERNEL);
510 if (!eeprom_buff)
511 return -ENOMEM;
513 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
514 ret_val = e1000_read_nvm(hw, first_word,
515 last_word - first_word + 1,
516 eeprom_buff);
517 } else {
518 for (i = 0; i < last_word - first_word + 1; i++) {
519 ret_val = e1000_read_nvm(hw, first_word + i, 1,
520 &eeprom_buff[i]);
521 if (ret_val)
522 break;
526 if (ret_val) {
527 /* a read error occurred, throw away the result */
528 memset(eeprom_buff, 0xff, sizeof(u16) *
529 (last_word - first_word + 1));
530 } else {
531 /* Device's eeprom is always little-endian, word addressable */
532 for (i = 0; i < last_word - first_word + 1; i++)
533 le16_to_cpus(&eeprom_buff[i]);
536 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
537 kfree(eeprom_buff);
539 return ret_val;
542 static int e1000_set_eeprom(struct net_device *netdev,
543 struct ethtool_eeprom *eeprom, u8 *bytes)
545 struct e1000_adapter *adapter = netdev_priv(netdev);
546 struct e1000_hw *hw = &adapter->hw;
547 u16 *eeprom_buff;
548 void *ptr;
549 int max_len;
550 int first_word;
551 int last_word;
552 int ret_val = 0;
553 u16 i;
555 if (eeprom->len == 0)
556 return -EOPNOTSUPP;
558 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
559 return -EFAULT;
561 if (adapter->flags & FLAG_READ_ONLY_NVM)
562 return -EINVAL;
564 max_len = hw->nvm.word_size * 2;
566 first_word = eeprom->offset >> 1;
567 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
568 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
569 if (!eeprom_buff)
570 return -ENOMEM;
572 ptr = (void *)eeprom_buff;
574 if (eeprom->offset & 1) {
575 /* need read/modify/write of first changed EEPROM word */
576 /* only the second byte of the word is being modified */
577 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
578 ptr++;
580 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
581 /* need read/modify/write of last changed EEPROM word */
582 /* only the first byte of the word is being modified */
583 ret_val = e1000_read_nvm(hw, last_word, 1,
584 &eeprom_buff[last_word - first_word]);
586 if (ret_val)
587 goto out;
589 /* Device's eeprom is always little-endian, word addressable */
590 for (i = 0; i < last_word - first_word + 1; i++)
591 le16_to_cpus(&eeprom_buff[i]);
593 memcpy(ptr, bytes, eeprom->len);
595 for (i = 0; i < last_word - first_word + 1; i++)
596 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
598 ret_val = e1000_write_nvm(hw, first_word,
599 last_word - first_word + 1, eeprom_buff);
601 if (ret_val)
602 goto out;
605 * Update the checksum over the first part of the EEPROM if needed
606 * and flush shadow RAM for applicable controllers
608 if ((first_word <= NVM_CHECKSUM_REG) ||
609 (hw->mac.type == e1000_82583) ||
610 (hw->mac.type == e1000_82574) ||
611 (hw->mac.type == e1000_82573))
612 ret_val = e1000e_update_nvm_checksum(hw);
614 out:
615 kfree(eeprom_buff);
616 return ret_val;
619 static void e1000_get_drvinfo(struct net_device *netdev,
620 struct ethtool_drvinfo *drvinfo)
622 struct e1000_adapter *adapter = netdev_priv(netdev);
623 char firmware_version[32];
625 strncpy(drvinfo->driver, e1000e_driver_name,
626 sizeof(drvinfo->driver) - 1);
627 strncpy(drvinfo->version, e1000e_driver_version,
628 sizeof(drvinfo->version) - 1);
631 * EEPROM image version # is reported as firmware version # for
632 * PCI-E controllers
634 snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
635 (adapter->eeprom_vers & 0xF000) >> 12,
636 (adapter->eeprom_vers & 0x0FF0) >> 4,
637 (adapter->eeprom_vers & 0x000F));
639 strncpy(drvinfo->fw_version, firmware_version,
640 sizeof(drvinfo->fw_version) - 1);
641 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
642 sizeof(drvinfo->bus_info) - 1);
643 drvinfo->regdump_len = e1000_get_regs_len(netdev);
644 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
647 static void e1000_get_ringparam(struct net_device *netdev,
648 struct ethtool_ringparam *ring)
650 struct e1000_adapter *adapter = netdev_priv(netdev);
651 struct e1000_ring *tx_ring = adapter->tx_ring;
652 struct e1000_ring *rx_ring = adapter->rx_ring;
654 ring->rx_max_pending = E1000_MAX_RXD;
655 ring->tx_max_pending = E1000_MAX_TXD;
656 ring->rx_mini_max_pending = 0;
657 ring->rx_jumbo_max_pending = 0;
658 ring->rx_pending = rx_ring->count;
659 ring->tx_pending = tx_ring->count;
660 ring->rx_mini_pending = 0;
661 ring->rx_jumbo_pending = 0;
664 static int e1000_set_ringparam(struct net_device *netdev,
665 struct ethtool_ringparam *ring)
667 struct e1000_adapter *adapter = netdev_priv(netdev);
668 struct e1000_ring *tx_ring, *tx_old;
669 struct e1000_ring *rx_ring, *rx_old;
670 int err;
672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673 return -EINVAL;
675 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
676 msleep(1);
678 if (netif_running(adapter->netdev))
679 e1000e_down(adapter);
681 tx_old = adapter->tx_ring;
682 rx_old = adapter->rx_ring;
684 err = -ENOMEM;
685 tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
686 if (!tx_ring)
687 goto err_alloc_tx;
689 rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
690 if (!rx_ring)
691 goto err_alloc_rx;
693 adapter->tx_ring = tx_ring;
694 adapter->rx_ring = rx_ring;
696 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
697 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
698 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
700 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
701 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
702 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
704 if (netif_running(adapter->netdev)) {
705 /* Try to get new resources before deleting old */
706 err = e1000e_setup_rx_resources(adapter);
707 if (err)
708 goto err_setup_rx;
709 err = e1000e_setup_tx_resources(adapter);
710 if (err)
711 goto err_setup_tx;
714 * restore the old in order to free it,
715 * then add in the new
717 adapter->rx_ring = rx_old;
718 adapter->tx_ring = tx_old;
719 e1000e_free_rx_resources(adapter);
720 e1000e_free_tx_resources(adapter);
721 kfree(tx_old);
722 kfree(rx_old);
723 adapter->rx_ring = rx_ring;
724 adapter->tx_ring = tx_ring;
725 err = e1000e_up(adapter);
726 if (err)
727 goto err_setup;
730 clear_bit(__E1000_RESETTING, &adapter->state);
731 return 0;
732 err_setup_tx:
733 e1000e_free_rx_resources(adapter);
734 err_setup_rx:
735 adapter->rx_ring = rx_old;
736 adapter->tx_ring = tx_old;
737 kfree(rx_ring);
738 err_alloc_rx:
739 kfree(tx_ring);
740 err_alloc_tx:
741 e1000e_up(adapter);
742 err_setup:
743 clear_bit(__E1000_RESETTING, &adapter->state);
744 return err;
747 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
748 int reg, int offset, u32 mask, u32 write)
750 u32 pat, val;
751 static const u32 test[] = {
752 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
753 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
754 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
755 (test[pat] & write));
756 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
757 if (val != (test[pat] & write & mask)) {
758 e_err("pattern test reg %04X failed: got 0x%08X "
759 "expected 0x%08X\n", reg + offset, val,
760 (test[pat] & write & mask));
761 *data = reg;
762 return 1;
765 return 0;
768 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
769 int reg, u32 mask, u32 write)
771 u32 val;
772 __ew32(&adapter->hw, reg, write & mask);
773 val = __er32(&adapter->hw, reg);
774 if ((write & mask) != (val & mask)) {
775 e_err("set/check reg %04X test failed: got 0x%08X "
776 "expected 0x%08X\n", reg, (val & mask), (write & mask));
777 *data = reg;
778 return 1;
780 return 0;
782 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
783 do { \
784 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
785 return 1; \
786 } while (0)
787 #define REG_PATTERN_TEST(reg, mask, write) \
788 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
790 #define REG_SET_AND_CHECK(reg, mask, write) \
791 do { \
792 if (reg_set_and_check(adapter, data, reg, mask, write)) \
793 return 1; \
794 } while (0)
796 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
798 struct e1000_hw *hw = &adapter->hw;
799 struct e1000_mac_info *mac = &adapter->hw.mac;
800 u32 value;
801 u32 before;
802 u32 after;
803 u32 i;
804 u32 toggle;
805 u32 mask;
808 * The status register is Read Only, so a write should fail.
809 * Some bits that get toggled are ignored.
811 switch (mac->type) {
812 /* there are several bits on newer hardware that are r/w */
813 case e1000_82571:
814 case e1000_82572:
815 case e1000_80003es2lan:
816 toggle = 0x7FFFF3FF;
817 break;
818 default:
819 toggle = 0x7FFFF033;
820 break;
823 before = er32(STATUS);
824 value = (er32(STATUS) & toggle);
825 ew32(STATUS, toggle);
826 after = er32(STATUS) & toggle;
827 if (value != after) {
828 e_err("failed STATUS register test got: 0x%08X expected: "
829 "0x%08X\n", after, value);
830 *data = 1;
831 return 1;
833 /* restore previous status */
834 ew32(STATUS, before);
836 if (!(adapter->flags & FLAG_IS_ICH)) {
837 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
838 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
839 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
840 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
844 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
845 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
846 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
847 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
848 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
849 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
850 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
851 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
852 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
854 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
856 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
857 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
858 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
860 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
862 if (!(adapter->flags & FLAG_IS_ICH))
863 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
864 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
866 mask = 0x8003FFFF;
867 switch (mac->type) {
868 case e1000_ich10lan:
869 case e1000_pchlan:
870 case e1000_pch2lan:
871 mask |= (1 << 18);
872 break;
873 default:
874 break;
876 for (i = 0; i < mac->rar_entry_count; i++)
877 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
878 mask, 0xFFFFFFFF);
880 for (i = 0; i < mac->mta_reg_count; i++)
881 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
883 *data = 0;
884 return 0;
887 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
889 u16 temp;
890 u16 checksum = 0;
891 u16 i;
893 *data = 0;
894 /* Read and add up the contents of the EEPROM */
895 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
896 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
897 *data = 1;
898 return *data;
900 checksum += temp;
903 /* If Checksum is not Correct return error else test passed */
904 if ((checksum != (u16) NVM_SUM) && !(*data))
905 *data = 2;
907 return *data;
910 static irqreturn_t e1000_test_intr(int irq, void *data)
912 struct net_device *netdev = (struct net_device *) data;
913 struct e1000_adapter *adapter = netdev_priv(netdev);
914 struct e1000_hw *hw = &adapter->hw;
916 adapter->test_icr |= er32(ICR);
918 return IRQ_HANDLED;
921 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
923 struct net_device *netdev = adapter->netdev;
924 struct e1000_hw *hw = &adapter->hw;
925 u32 mask;
926 u32 shared_int = 1;
927 u32 irq = adapter->pdev->irq;
928 int i;
929 int ret_val = 0;
930 int int_mode = E1000E_INT_MODE_LEGACY;
932 *data = 0;
934 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
935 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
936 int_mode = adapter->int_mode;
937 e1000e_reset_interrupt_capability(adapter);
938 adapter->int_mode = E1000E_INT_MODE_LEGACY;
939 e1000e_set_interrupt_capability(adapter);
941 /* Hook up test interrupt handler just for this test */
942 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
943 netdev)) {
944 shared_int = 0;
945 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
946 netdev->name, netdev)) {
947 *data = 1;
948 ret_val = -1;
949 goto out;
951 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
953 /* Disable all the interrupts */
954 ew32(IMC, 0xFFFFFFFF);
955 msleep(10);
957 /* Test each interrupt */
958 for (i = 0; i < 10; i++) {
959 /* Interrupt to test */
960 mask = 1 << i;
962 if (adapter->flags & FLAG_IS_ICH) {
963 switch (mask) {
964 case E1000_ICR_RXSEQ:
965 continue;
966 case 0x00000100:
967 if (adapter->hw.mac.type == e1000_ich8lan ||
968 adapter->hw.mac.type == e1000_ich9lan)
969 continue;
970 break;
971 default:
972 break;
976 if (!shared_int) {
978 * Disable the interrupt to be reported in
979 * the cause register and then force the same
980 * interrupt and see if one gets posted. If
981 * an interrupt was posted to the bus, the
982 * test failed.
984 adapter->test_icr = 0;
985 ew32(IMC, mask);
986 ew32(ICS, mask);
987 msleep(10);
989 if (adapter->test_icr & mask) {
990 *data = 3;
991 break;
996 * Enable the interrupt to be reported in
997 * the cause register and then force the same
998 * interrupt and see if one gets posted. If
999 * an interrupt was not posted to the bus, the
1000 * test failed.
1002 adapter->test_icr = 0;
1003 ew32(IMS, mask);
1004 ew32(ICS, mask);
1005 msleep(10);
1007 if (!(adapter->test_icr & mask)) {
1008 *data = 4;
1009 break;
1012 if (!shared_int) {
1014 * Disable the other interrupts to be reported in
1015 * the cause register and then force the other
1016 * interrupts and see if any get posted. If
1017 * an interrupt was posted to the bus, the
1018 * test failed.
1020 adapter->test_icr = 0;
1021 ew32(IMC, ~mask & 0x00007FFF);
1022 ew32(ICS, ~mask & 0x00007FFF);
1023 msleep(10);
1025 if (adapter->test_icr) {
1026 *data = 5;
1027 break;
1032 /* Disable all the interrupts */
1033 ew32(IMC, 0xFFFFFFFF);
1034 msleep(10);
1036 /* Unhook test interrupt handler */
1037 free_irq(irq, netdev);
1039 out:
1040 if (int_mode == E1000E_INT_MODE_MSIX) {
1041 e1000e_reset_interrupt_capability(adapter);
1042 adapter->int_mode = int_mode;
1043 e1000e_set_interrupt_capability(adapter);
1046 return ret_val;
1049 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1051 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1052 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1053 struct pci_dev *pdev = adapter->pdev;
1054 int i;
1056 if (tx_ring->desc && tx_ring->buffer_info) {
1057 for (i = 0; i < tx_ring->count; i++) {
1058 if (tx_ring->buffer_info[i].dma)
1059 dma_unmap_single(&pdev->dev,
1060 tx_ring->buffer_info[i].dma,
1061 tx_ring->buffer_info[i].length,
1062 DMA_TO_DEVICE);
1063 if (tx_ring->buffer_info[i].skb)
1064 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1068 if (rx_ring->desc && rx_ring->buffer_info) {
1069 for (i = 0; i < rx_ring->count; i++) {
1070 if (rx_ring->buffer_info[i].dma)
1071 dma_unmap_single(&pdev->dev,
1072 rx_ring->buffer_info[i].dma,
1073 2048, DMA_FROM_DEVICE);
1074 if (rx_ring->buffer_info[i].skb)
1075 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1079 if (tx_ring->desc) {
1080 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1081 tx_ring->dma);
1082 tx_ring->desc = NULL;
1084 if (rx_ring->desc) {
1085 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1086 rx_ring->dma);
1087 rx_ring->desc = NULL;
1090 kfree(tx_ring->buffer_info);
1091 tx_ring->buffer_info = NULL;
1092 kfree(rx_ring->buffer_info);
1093 rx_ring->buffer_info = NULL;
1096 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1098 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1099 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1100 struct pci_dev *pdev = adapter->pdev;
1101 struct e1000_hw *hw = &adapter->hw;
1102 u32 rctl;
1103 int i;
1104 int ret_val;
1106 /* Setup Tx descriptor ring and Tx buffers */
1108 if (!tx_ring->count)
1109 tx_ring->count = E1000_DEFAULT_TXD;
1111 tx_ring->buffer_info = kcalloc(tx_ring->count,
1112 sizeof(struct e1000_buffer),
1113 GFP_KERNEL);
1114 if (!(tx_ring->buffer_info)) {
1115 ret_val = 1;
1116 goto err_nomem;
1119 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1120 tx_ring->size = ALIGN(tx_ring->size, 4096);
1121 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1122 &tx_ring->dma, GFP_KERNEL);
1123 if (!tx_ring->desc) {
1124 ret_val = 2;
1125 goto err_nomem;
1127 tx_ring->next_to_use = 0;
1128 tx_ring->next_to_clean = 0;
1130 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1131 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1132 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1133 ew32(TDH, 0);
1134 ew32(TDT, 0);
1135 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1136 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1137 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1139 for (i = 0; i < tx_ring->count; i++) {
1140 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1141 struct sk_buff *skb;
1142 unsigned int skb_size = 1024;
1144 skb = alloc_skb(skb_size, GFP_KERNEL);
1145 if (!skb) {
1146 ret_val = 3;
1147 goto err_nomem;
1149 skb_put(skb, skb_size);
1150 tx_ring->buffer_info[i].skb = skb;
1151 tx_ring->buffer_info[i].length = skb->len;
1152 tx_ring->buffer_info[i].dma =
1153 dma_map_single(&pdev->dev, skb->data, skb->len,
1154 DMA_TO_DEVICE);
1155 if (dma_mapping_error(&pdev->dev,
1156 tx_ring->buffer_info[i].dma)) {
1157 ret_val = 4;
1158 goto err_nomem;
1160 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1161 tx_desc->lower.data = cpu_to_le32(skb->len);
1162 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1163 E1000_TXD_CMD_IFCS |
1164 E1000_TXD_CMD_RS);
1165 tx_desc->upper.data = 0;
1168 /* Setup Rx descriptor ring and Rx buffers */
1170 if (!rx_ring->count)
1171 rx_ring->count = E1000_DEFAULT_RXD;
1173 rx_ring->buffer_info = kcalloc(rx_ring->count,
1174 sizeof(struct e1000_buffer),
1175 GFP_KERNEL);
1176 if (!(rx_ring->buffer_info)) {
1177 ret_val = 5;
1178 goto err_nomem;
1181 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1182 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1183 &rx_ring->dma, GFP_KERNEL);
1184 if (!rx_ring->desc) {
1185 ret_val = 6;
1186 goto err_nomem;
1188 rx_ring->next_to_use = 0;
1189 rx_ring->next_to_clean = 0;
1191 rctl = er32(RCTL);
1192 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1193 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1194 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1195 ew32(RDLEN, rx_ring->size);
1196 ew32(RDH, 0);
1197 ew32(RDT, 0);
1198 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1199 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1200 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1201 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1202 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1203 ew32(RCTL, rctl);
1205 for (i = 0; i < rx_ring->count; i++) {
1206 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1207 struct sk_buff *skb;
1209 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1210 if (!skb) {
1211 ret_val = 7;
1212 goto err_nomem;
1214 skb_reserve(skb, NET_IP_ALIGN);
1215 rx_ring->buffer_info[i].skb = skb;
1216 rx_ring->buffer_info[i].dma =
1217 dma_map_single(&pdev->dev, skb->data, 2048,
1218 DMA_FROM_DEVICE);
1219 if (dma_mapping_error(&pdev->dev,
1220 rx_ring->buffer_info[i].dma)) {
1221 ret_val = 8;
1222 goto err_nomem;
1224 rx_desc->buffer_addr =
1225 cpu_to_le64(rx_ring->buffer_info[i].dma);
1226 memset(skb->data, 0x00, skb->len);
1229 return 0;
1231 err_nomem:
1232 e1000_free_desc_rings(adapter);
1233 return ret_val;
1236 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1238 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1239 e1e_wphy(&adapter->hw, 29, 0x001F);
1240 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1241 e1e_wphy(&adapter->hw, 29, 0x001A);
1242 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1245 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1247 struct e1000_hw *hw = &adapter->hw;
1248 u32 ctrl_reg = 0;
1249 u16 phy_reg = 0;
1250 s32 ret_val = 0;
1252 hw->mac.autoneg = 0;
1254 if (hw->phy.type == e1000_phy_ife) {
1255 /* force 100, set loopback */
1256 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1258 /* Now set up the MAC to the same speed/duplex as the PHY. */
1259 ctrl_reg = er32(CTRL);
1260 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1261 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1262 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1263 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1264 E1000_CTRL_FD); /* Force Duplex to FULL */
1266 ew32(CTRL, ctrl_reg);
1267 udelay(500);
1269 return 0;
1272 /* Specific PHY configuration for loopback */
1273 switch (hw->phy.type) {
1274 case e1000_phy_m88:
1275 /* Auto-MDI/MDIX Off */
1276 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1277 /* reset to update Auto-MDI/MDIX */
1278 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1279 /* autoneg off */
1280 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1281 break;
1282 case e1000_phy_gg82563:
1283 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1284 break;
1285 case e1000_phy_bm:
1286 /* Set Default MAC Interface speed to 1GB */
1287 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1288 phy_reg &= ~0x0007;
1289 phy_reg |= 0x006;
1290 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1291 /* Assert SW reset for above settings to take effect */
1292 e1000e_commit_phy(hw);
1293 mdelay(1);
1294 /* Force Full Duplex */
1295 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1296 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1297 /* Set Link Up (in force link) */
1298 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1299 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1300 /* Force Link */
1301 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1302 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1303 /* Set Early Link Enable */
1304 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1305 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1306 break;
1307 case e1000_phy_82577:
1308 case e1000_phy_82578:
1309 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1310 ret_val = hw->phy.ops.acquire(hw);
1311 if (ret_val) {
1312 e_err("Cannot setup 1Gbps loopback.\n");
1313 return ret_val;
1315 e1000_configure_k1_ich8lan(hw, false);
1316 hw->phy.ops.release(hw);
1317 break;
1318 case e1000_phy_82579:
1319 /* Disable PHY energy detect power down */
1320 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1321 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1322 /* Disable full chip energy detect */
1323 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1324 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1325 /* Enable loopback on the PHY */
1326 #define I82577_PHY_LBK_CTRL 19
1327 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1328 break;
1329 default:
1330 break;
1333 /* force 1000, set loopback */
1334 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1335 mdelay(250);
1337 /* Now set up the MAC to the same speed/duplex as the PHY. */
1338 ctrl_reg = er32(CTRL);
1339 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1340 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1341 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1342 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1343 E1000_CTRL_FD); /* Force Duplex to FULL */
1345 if (adapter->flags & FLAG_IS_ICH)
1346 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1348 if (hw->phy.media_type == e1000_media_type_copper &&
1349 hw->phy.type == e1000_phy_m88) {
1350 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1351 } else {
1353 * Set the ILOS bit on the fiber Nic if half duplex link is
1354 * detected.
1356 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1357 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1360 ew32(CTRL, ctrl_reg);
1363 * Disable the receiver on the PHY so when a cable is plugged in, the
1364 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1366 if (hw->phy.type == e1000_phy_m88)
1367 e1000_phy_disable_receiver(adapter);
1369 udelay(500);
1371 return 0;
1374 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1376 struct e1000_hw *hw = &adapter->hw;
1377 u32 ctrl = er32(CTRL);
1378 int link = 0;
1380 /* special requirements for 82571/82572 fiber adapters */
1383 * jump through hoops to make sure link is up because serdes
1384 * link is hardwired up
1386 ctrl |= E1000_CTRL_SLU;
1387 ew32(CTRL, ctrl);
1389 /* disable autoneg */
1390 ctrl = er32(TXCW);
1391 ctrl &= ~(1 << 31);
1392 ew32(TXCW, ctrl);
1394 link = (er32(STATUS) & E1000_STATUS_LU);
1396 if (!link) {
1397 /* set invert loss of signal */
1398 ctrl = er32(CTRL);
1399 ctrl |= E1000_CTRL_ILOS;
1400 ew32(CTRL, ctrl);
1404 * special write to serdes control register to enable SerDes analog
1405 * loopback
1407 #define E1000_SERDES_LB_ON 0x410
1408 ew32(SCTL, E1000_SERDES_LB_ON);
1409 msleep(10);
1411 return 0;
1414 /* only call this for fiber/serdes connections to es2lan */
1415 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1417 struct e1000_hw *hw = &adapter->hw;
1418 u32 ctrlext = er32(CTRL_EXT);
1419 u32 ctrl = er32(CTRL);
1422 * save CTRL_EXT to restore later, reuse an empty variable (unused
1423 * on mac_type 80003es2lan)
1425 adapter->tx_fifo_head = ctrlext;
1427 /* clear the serdes mode bits, putting the device into mac loopback */
1428 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1429 ew32(CTRL_EXT, ctrlext);
1431 /* force speed to 1000/FD, link up */
1432 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1433 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1434 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1435 ew32(CTRL, ctrl);
1437 /* set mac loopback */
1438 ctrl = er32(RCTL);
1439 ctrl |= E1000_RCTL_LBM_MAC;
1440 ew32(RCTL, ctrl);
1442 /* set testing mode parameters (no need to reset later) */
1443 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1444 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1445 ew32(KMRNCTRLSTA,
1446 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1448 return 0;
1451 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1453 struct e1000_hw *hw = &adapter->hw;
1454 u32 rctl;
1456 if (hw->phy.media_type == e1000_media_type_fiber ||
1457 hw->phy.media_type == e1000_media_type_internal_serdes) {
1458 switch (hw->mac.type) {
1459 case e1000_80003es2lan:
1460 return e1000_set_es2lan_mac_loopback(adapter);
1461 break;
1462 case e1000_82571:
1463 case e1000_82572:
1464 return e1000_set_82571_fiber_loopback(adapter);
1465 break;
1466 default:
1467 rctl = er32(RCTL);
1468 rctl |= E1000_RCTL_LBM_TCVR;
1469 ew32(RCTL, rctl);
1470 return 0;
1472 } else if (hw->phy.media_type == e1000_media_type_copper) {
1473 return e1000_integrated_phy_loopback(adapter);
1476 return 7;
1479 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 rctl;
1483 u16 phy_reg;
1485 rctl = er32(RCTL);
1486 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1487 ew32(RCTL, rctl);
1489 switch (hw->mac.type) {
1490 case e1000_80003es2lan:
1491 if (hw->phy.media_type == e1000_media_type_fiber ||
1492 hw->phy.media_type == e1000_media_type_internal_serdes) {
1493 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1494 ew32(CTRL_EXT, adapter->tx_fifo_head);
1495 adapter->tx_fifo_head = 0;
1497 /* fall through */
1498 case e1000_82571:
1499 case e1000_82572:
1500 if (hw->phy.media_type == e1000_media_type_fiber ||
1501 hw->phy.media_type == e1000_media_type_internal_serdes) {
1502 #define E1000_SERDES_LB_OFF 0x400
1503 ew32(SCTL, E1000_SERDES_LB_OFF);
1504 msleep(10);
1505 break;
1507 /* Fall Through */
1508 default:
1509 hw->mac.autoneg = 1;
1510 if (hw->phy.type == e1000_phy_gg82563)
1511 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1512 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1513 if (phy_reg & MII_CR_LOOPBACK) {
1514 phy_reg &= ~MII_CR_LOOPBACK;
1515 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1516 e1000e_commit_phy(hw);
1518 break;
1522 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1523 unsigned int frame_size)
1525 memset(skb->data, 0xFF, frame_size);
1526 frame_size &= ~1;
1527 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1528 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1529 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1532 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1533 unsigned int frame_size)
1535 frame_size &= ~1;
1536 if (*(skb->data + 3) == 0xFF)
1537 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1538 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1539 return 0;
1540 return 13;
1543 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1545 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1546 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1547 struct pci_dev *pdev = adapter->pdev;
1548 struct e1000_hw *hw = &adapter->hw;
1549 int i, j, k, l;
1550 int lc;
1551 int good_cnt;
1552 int ret_val = 0;
1553 unsigned long time;
1555 ew32(RDT, rx_ring->count - 1);
1558 * Calculate the loop count based on the largest descriptor ring
1559 * The idea is to wrap the largest ring a number of times using 64
1560 * send/receive pairs during each loop
1563 if (rx_ring->count <= tx_ring->count)
1564 lc = ((tx_ring->count / 64) * 2) + 1;
1565 else
1566 lc = ((rx_ring->count / 64) * 2) + 1;
1568 k = 0;
1569 l = 0;
1570 for (j = 0; j <= lc; j++) { /* loop count loop */
1571 for (i = 0; i < 64; i++) { /* send the packets */
1572 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1573 1024);
1574 dma_sync_single_for_device(&pdev->dev,
1575 tx_ring->buffer_info[k].dma,
1576 tx_ring->buffer_info[k].length,
1577 DMA_TO_DEVICE);
1578 k++;
1579 if (k == tx_ring->count)
1580 k = 0;
1582 ew32(TDT, k);
1583 msleep(200);
1584 time = jiffies; /* set the start time for the receive */
1585 good_cnt = 0;
1586 do { /* receive the sent packets */
1587 dma_sync_single_for_cpu(&pdev->dev,
1588 rx_ring->buffer_info[l].dma, 2048,
1589 DMA_FROM_DEVICE);
1591 ret_val = e1000_check_lbtest_frame(
1592 rx_ring->buffer_info[l].skb, 1024);
1593 if (!ret_val)
1594 good_cnt++;
1595 l++;
1596 if (l == rx_ring->count)
1597 l = 0;
1599 * time + 20 msecs (200 msecs on 2.4) is more than
1600 * enough time to complete the receives, if it's
1601 * exceeded, break and error off
1603 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1604 if (good_cnt != 64) {
1605 ret_val = 13; /* ret_val is the same as mis-compare */
1606 break;
1608 if (jiffies >= (time + 20)) {
1609 ret_val = 14; /* error code for time out error */
1610 break;
1612 } /* end loop count loop */
1613 return ret_val;
1616 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1619 * PHY loopback cannot be performed if SoL/IDER
1620 * sessions are active
1622 if (e1000_check_reset_block(&adapter->hw)) {
1623 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1624 *data = 0;
1625 goto out;
1628 *data = e1000_setup_desc_rings(adapter);
1629 if (*data)
1630 goto out;
1632 *data = e1000_setup_loopback_test(adapter);
1633 if (*data)
1634 goto err_loopback;
1636 *data = e1000_run_loopback_test(adapter);
1637 e1000_loopback_cleanup(adapter);
1639 err_loopback:
1640 e1000_free_desc_rings(adapter);
1641 out:
1642 return *data;
1645 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1647 struct e1000_hw *hw = &adapter->hw;
1649 *data = 0;
1650 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1651 int i = 0;
1652 hw->mac.serdes_has_link = false;
1655 * On some blade server designs, link establishment
1656 * could take as long as 2-3 minutes
1658 do {
1659 hw->mac.ops.check_for_link(hw);
1660 if (hw->mac.serdes_has_link)
1661 return *data;
1662 msleep(20);
1663 } while (i++ < 3750);
1665 *data = 1;
1666 } else {
1667 hw->mac.ops.check_for_link(hw);
1668 if (hw->mac.autoneg)
1670 * On some Phy/switch combinations, link establishment
1671 * can take a few seconds more than expected.
1673 msleep(5000);
1675 if (!(er32(STATUS) & E1000_STATUS_LU))
1676 *data = 1;
1678 return *data;
1681 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1683 switch (sset) {
1684 case ETH_SS_TEST:
1685 return E1000_TEST_LEN;
1686 case ETH_SS_STATS:
1687 return E1000_STATS_LEN;
1688 default:
1689 return -EOPNOTSUPP;
1693 static void e1000_diag_test(struct net_device *netdev,
1694 struct ethtool_test *eth_test, u64 *data)
1696 struct e1000_adapter *adapter = netdev_priv(netdev);
1697 u16 autoneg_advertised;
1698 u8 forced_speed_duplex;
1699 u8 autoneg;
1700 bool if_running = netif_running(netdev);
1702 set_bit(__E1000_TESTING, &adapter->state);
1704 if (!if_running) {
1705 /* Get control of and reset hardware */
1706 if (adapter->flags & FLAG_HAS_AMT)
1707 e1000e_get_hw_control(adapter);
1709 e1000e_power_up_phy(adapter);
1711 adapter->hw.phy.autoneg_wait_to_complete = 1;
1712 e1000e_reset(adapter);
1713 adapter->hw.phy.autoneg_wait_to_complete = 0;
1716 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1717 /* Offline tests */
1719 /* save speed, duplex, autoneg settings */
1720 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1721 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1722 autoneg = adapter->hw.mac.autoneg;
1724 e_info("offline testing starting\n");
1726 if (if_running)
1727 /* indicate we're in test mode */
1728 dev_close(netdev);
1730 if (e1000_reg_test(adapter, &data[0]))
1731 eth_test->flags |= ETH_TEST_FL_FAILED;
1733 e1000e_reset(adapter);
1734 if (e1000_eeprom_test(adapter, &data[1]))
1735 eth_test->flags |= ETH_TEST_FL_FAILED;
1737 e1000e_reset(adapter);
1738 if (e1000_intr_test(adapter, &data[2]))
1739 eth_test->flags |= ETH_TEST_FL_FAILED;
1741 e1000e_reset(adapter);
1742 if (e1000_loopback_test(adapter, &data[3]))
1743 eth_test->flags |= ETH_TEST_FL_FAILED;
1745 /* force this routine to wait until autoneg complete/timeout */
1746 adapter->hw.phy.autoneg_wait_to_complete = 1;
1747 e1000e_reset(adapter);
1748 adapter->hw.phy.autoneg_wait_to_complete = 0;
1750 if (e1000_link_test(adapter, &data[4]))
1751 eth_test->flags |= ETH_TEST_FL_FAILED;
1753 /* restore speed, duplex, autoneg settings */
1754 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1755 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1756 adapter->hw.mac.autoneg = autoneg;
1757 e1000e_reset(adapter);
1759 clear_bit(__E1000_TESTING, &adapter->state);
1760 if (if_running)
1761 dev_open(netdev);
1762 } else {
1763 /* Online tests */
1765 e_info("online testing starting\n");
1767 /* register, eeprom, intr and loopback tests not run online */
1768 data[0] = 0;
1769 data[1] = 0;
1770 data[2] = 0;
1771 data[3] = 0;
1773 if (e1000_link_test(adapter, &data[4]))
1774 eth_test->flags |= ETH_TEST_FL_FAILED;
1776 clear_bit(__E1000_TESTING, &adapter->state);
1779 if (!if_running) {
1780 e1000e_reset(adapter);
1782 if (adapter->flags & FLAG_HAS_AMT)
1783 e1000e_release_hw_control(adapter);
1786 msleep_interruptible(4 * 1000);
1789 static void e1000_get_wol(struct net_device *netdev,
1790 struct ethtool_wolinfo *wol)
1792 struct e1000_adapter *adapter = netdev_priv(netdev);
1794 wol->supported = 0;
1795 wol->wolopts = 0;
1797 if (!(adapter->flags & FLAG_HAS_WOL) ||
1798 !device_can_wakeup(&adapter->pdev->dev))
1799 return;
1801 wol->supported = WAKE_UCAST | WAKE_MCAST |
1802 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1804 /* apply any specific unsupported masks here */
1805 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1806 wol->supported &= ~WAKE_UCAST;
1808 if (adapter->wol & E1000_WUFC_EX)
1809 e_err("Interface does not support directed (unicast) "
1810 "frame wake-up packets\n");
1813 if (adapter->wol & E1000_WUFC_EX)
1814 wol->wolopts |= WAKE_UCAST;
1815 if (adapter->wol & E1000_WUFC_MC)
1816 wol->wolopts |= WAKE_MCAST;
1817 if (adapter->wol & E1000_WUFC_BC)
1818 wol->wolopts |= WAKE_BCAST;
1819 if (adapter->wol & E1000_WUFC_MAG)
1820 wol->wolopts |= WAKE_MAGIC;
1821 if (adapter->wol & E1000_WUFC_LNKC)
1822 wol->wolopts |= WAKE_PHY;
1825 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1827 struct e1000_adapter *adapter = netdev_priv(netdev);
1829 if (!(adapter->flags & FLAG_HAS_WOL) ||
1830 !device_can_wakeup(&adapter->pdev->dev) ||
1831 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1832 WAKE_MAGIC | WAKE_PHY)))
1833 return -EOPNOTSUPP;
1835 /* these settings will always override what we currently have */
1836 adapter->wol = 0;
1838 if (wol->wolopts & WAKE_UCAST)
1839 adapter->wol |= E1000_WUFC_EX;
1840 if (wol->wolopts & WAKE_MCAST)
1841 adapter->wol |= E1000_WUFC_MC;
1842 if (wol->wolopts & WAKE_BCAST)
1843 adapter->wol |= E1000_WUFC_BC;
1844 if (wol->wolopts & WAKE_MAGIC)
1845 adapter->wol |= E1000_WUFC_MAG;
1846 if (wol->wolopts & WAKE_PHY)
1847 adapter->wol |= E1000_WUFC_LNKC;
1849 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1851 return 0;
1854 /* toggle LED 4 times per second = 2 "blinks" per second */
1855 #define E1000_ID_INTERVAL (HZ/4)
1857 /* bit defines for adapter->led_status */
1858 #define E1000_LED_ON 0
1860 void e1000e_led_blink_task(struct work_struct *work)
1862 struct e1000_adapter *adapter = container_of(work,
1863 struct e1000_adapter, led_blink_task);
1865 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1866 adapter->hw.mac.ops.led_off(&adapter->hw);
1867 else
1868 adapter->hw.mac.ops.led_on(&adapter->hw);
1871 static void e1000_led_blink_callback(unsigned long data)
1873 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1875 schedule_work(&adapter->led_blink_task);
1876 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1879 static int e1000_phys_id(struct net_device *netdev, u32 data)
1881 struct e1000_adapter *adapter = netdev_priv(netdev);
1882 struct e1000_hw *hw = &adapter->hw;
1884 if (!data)
1885 data = INT_MAX;
1887 if ((hw->phy.type == e1000_phy_ife) ||
1888 (hw->mac.type == e1000_pchlan) ||
1889 (hw->mac.type == e1000_pch2lan) ||
1890 (hw->mac.type == e1000_82583) ||
1891 (hw->mac.type == e1000_82574)) {
1892 if (!adapter->blink_timer.function) {
1893 init_timer(&adapter->blink_timer);
1894 adapter->blink_timer.function =
1895 e1000_led_blink_callback;
1896 adapter->blink_timer.data = (unsigned long) adapter;
1898 mod_timer(&adapter->blink_timer, jiffies);
1899 msleep_interruptible(data * 1000);
1900 del_timer_sync(&adapter->blink_timer);
1901 if (hw->phy.type == e1000_phy_ife)
1902 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1903 } else {
1904 e1000e_blink_led(hw);
1905 msleep_interruptible(data * 1000);
1908 hw->mac.ops.led_off(hw);
1909 clear_bit(E1000_LED_ON, &adapter->led_status);
1910 hw->mac.ops.cleanup_led(hw);
1912 return 0;
1915 static int e1000_get_coalesce(struct net_device *netdev,
1916 struct ethtool_coalesce *ec)
1918 struct e1000_adapter *adapter = netdev_priv(netdev);
1920 if (adapter->itr_setting <= 4)
1921 ec->rx_coalesce_usecs = adapter->itr_setting;
1922 else
1923 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1925 return 0;
1928 static int e1000_set_coalesce(struct net_device *netdev,
1929 struct ethtool_coalesce *ec)
1931 struct e1000_adapter *adapter = netdev_priv(netdev);
1932 struct e1000_hw *hw = &adapter->hw;
1934 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1935 ((ec->rx_coalesce_usecs > 4) &&
1936 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1937 (ec->rx_coalesce_usecs == 2))
1938 return -EINVAL;
1940 if (ec->rx_coalesce_usecs == 4) {
1941 adapter->itr = adapter->itr_setting = 4;
1942 } else if (ec->rx_coalesce_usecs <= 3) {
1943 adapter->itr = 20000;
1944 adapter->itr_setting = ec->rx_coalesce_usecs;
1945 } else {
1946 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1947 adapter->itr_setting = adapter->itr & ~3;
1950 if (adapter->itr_setting != 0)
1951 ew32(ITR, 1000000000 / (adapter->itr * 256));
1952 else
1953 ew32(ITR, 0);
1955 return 0;
1958 static int e1000_nway_reset(struct net_device *netdev)
1960 struct e1000_adapter *adapter = netdev_priv(netdev);
1962 if (!netif_running(netdev))
1963 return -EAGAIN;
1965 if (!adapter->hw.mac.autoneg)
1966 return -EINVAL;
1968 e1000e_reinit_locked(adapter);
1970 return 0;
1973 static void e1000_get_ethtool_stats(struct net_device *netdev,
1974 struct ethtool_stats *stats,
1975 u64 *data)
1977 struct e1000_adapter *adapter = netdev_priv(netdev);
1978 struct rtnl_link_stats64 net_stats;
1979 int i;
1980 char *p = NULL;
1982 e1000e_get_stats64(netdev, &net_stats);
1983 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1984 switch (e1000_gstrings_stats[i].type) {
1985 case NETDEV_STATS:
1986 p = (char *) &net_stats +
1987 e1000_gstrings_stats[i].stat_offset;
1988 break;
1989 case E1000_STATS:
1990 p = (char *) adapter +
1991 e1000_gstrings_stats[i].stat_offset;
1992 break;
1993 default:
1994 data[i] = 0;
1995 continue;
1998 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1999 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2003 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
2004 u8 *data)
2006 u8 *p = data;
2007 int i;
2009 switch (stringset) {
2010 case ETH_SS_TEST:
2011 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2012 break;
2013 case ETH_SS_STATS:
2014 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2015 memcpy(p, e1000_gstrings_stats[i].stat_string,
2016 ETH_GSTRING_LEN);
2017 p += ETH_GSTRING_LEN;
2019 break;
2023 static const struct ethtool_ops e1000_ethtool_ops = {
2024 .get_settings = e1000_get_settings,
2025 .set_settings = e1000_set_settings,
2026 .get_drvinfo = e1000_get_drvinfo,
2027 .get_regs_len = e1000_get_regs_len,
2028 .get_regs = e1000_get_regs,
2029 .get_wol = e1000_get_wol,
2030 .set_wol = e1000_set_wol,
2031 .get_msglevel = e1000_get_msglevel,
2032 .set_msglevel = e1000_set_msglevel,
2033 .nway_reset = e1000_nway_reset,
2034 .get_link = ethtool_op_get_link,
2035 .get_eeprom_len = e1000_get_eeprom_len,
2036 .get_eeprom = e1000_get_eeprom,
2037 .set_eeprom = e1000_set_eeprom,
2038 .get_ringparam = e1000_get_ringparam,
2039 .set_ringparam = e1000_set_ringparam,
2040 .get_pauseparam = e1000_get_pauseparam,
2041 .set_pauseparam = e1000_set_pauseparam,
2042 .get_rx_csum = e1000_get_rx_csum,
2043 .set_rx_csum = e1000_set_rx_csum,
2044 .get_tx_csum = e1000_get_tx_csum,
2045 .set_tx_csum = e1000_set_tx_csum,
2046 .get_sg = ethtool_op_get_sg,
2047 .set_sg = ethtool_op_set_sg,
2048 .get_tso = ethtool_op_get_tso,
2049 .set_tso = e1000_set_tso,
2050 .self_test = e1000_diag_test,
2051 .get_strings = e1000_get_strings,
2052 .phys_id = e1000_phys_id,
2053 .get_ethtool_stats = e1000_get_ethtool_stats,
2054 .get_sset_count = e1000e_get_sset_count,
2055 .get_coalesce = e1000_get_coalesce,
2056 .set_coalesce = e1000_set_coalesce,
2057 .get_flags = ethtool_op_get_flags,
2060 void e1000e_set_ethtool_ops(struct net_device *netdev)
2062 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);