2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/platform_device.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/scatterlist.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/timer.h>
45 #include "picoxcell_crypto_regs.h"
48 * The threshold for the number of entries in the CMD FIFO available before
49 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
50 * number of interrupts raised to the CPU.
52 #define CMD0_IRQ_THRESHOLD 1
55 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
56 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
57 * When there are packets in flight but lower than the threshold, we enable
58 * the timer and at expiry, attempt to remove any processed packets from the
59 * queue and if there are still packets left, schedule the timer again.
61 #define PACKET_TIMEOUT 1
63 /* The priority to register each algorithm with. */
64 #define SPACC_CRYPTO_ALG_PRIORITY 10000
66 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
67 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
68 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
70 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
71 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
72 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
73 #define SPACC_CRYPTO_L2_MAX_CTXS 128
74 #define SPACC_CRYPTO_L2_FIFO_SZ 128
76 #define MAX_DDT_LEN 16
78 /* DDT format. This must match the hardware DDT format exactly. */
85 * Asynchronous crypto request structure.
87 * This structure defines a request that is either queued for processing or
91 struct list_head list
;
92 struct spacc_engine
*engine
;
93 struct crypto_async_request
*req
;
97 dma_addr_t src_addr
, dst_addr
;
98 struct spacc_ddt
*src_ddt
, *dst_ddt
;
99 void (*complete
)(struct spacc_req
*req
);
101 /* AEAD specific bits. */
107 struct spacc_engine
{
109 struct list_head pending
;
113 struct list_head completed
;
114 struct list_head in_progress
;
115 struct tasklet_struct complete
;
116 unsigned long fifo_sz
;
117 void __iomem
*cipher_ctx_base
;
118 void __iomem
*hash_key_base
;
119 struct spacc_alg
*algs
;
121 struct list_head registered_algs
;
128 struct timer_list packet_timeout
;
129 unsigned stat_irq_thresh
;
130 struct dma_pool
*req_pool
;
133 /* Algorithm type mask. */
134 #define SPACC_CRYPTO_ALG_MASK 0x7
136 /* SPACC definition of a crypto algorithm. */
138 unsigned long ctrl_default
;
140 struct crypto_alg alg
;
141 struct spacc_engine
*engine
;
142 struct list_head entry
;
147 /* Generic context structure for any algorithm type. */
148 struct spacc_generic_ctx
{
149 struct spacc_engine
*engine
;
155 /* Block cipher context. */
156 struct spacc_ablk_ctx
{
157 struct spacc_generic_ctx generic
;
158 u8 key
[AES_MAX_KEY_SIZE
];
161 * The fallback cipher. If the operation can't be done in hardware,
162 * fallback to a software version.
164 struct crypto_ablkcipher
*sw_cipher
;
167 /* AEAD cipher context. */
168 struct spacc_aead_ctx
{
169 struct spacc_generic_ctx generic
;
170 u8 cipher_key
[AES_MAX_KEY_SIZE
];
171 u8 hash_ctx
[SPACC_CRYPTO_IPSEC_HASH_PG_SZ
];
174 struct crypto_aead
*sw_cipher
;
176 u8 salt
[AES_BLOCK_SIZE
];
179 static inline struct spacc_alg
*to_spacc_alg(struct crypto_alg
*alg
)
181 return alg
? container_of(alg
, struct spacc_alg
, alg
) : NULL
;
184 static inline int spacc_fifo_cmd_full(struct spacc_engine
*engine
)
186 u32 fifo_stat
= readl(engine
->regs
+ SPA_FIFO_STAT_REG_OFFSET
);
188 return fifo_stat
& SPA_FIFO_CMD_FULL
;
192 * Given a cipher context, and a context number, get the base address of the
195 * Returns the address of the context page where the key/context may
198 static inline void __iomem
*spacc_ctx_page_addr(struct spacc_generic_ctx
*ctx
,
202 return is_cipher_ctx
? ctx
->engine
->cipher_ctx_base
+
203 (indx
* ctx
->engine
->cipher_pg_sz
) :
204 ctx
->engine
->hash_key_base
+ (indx
* ctx
->engine
->hash_pg_sz
);
207 /* The context pages can only be written with 32-bit accesses. */
208 static inline void memcpy_toio32(u32 __iomem
*dst
, const void *src
,
211 const u32
*src32
= (const u32
*) src
;
214 writel(*src32
++, dst
++);
217 static void spacc_cipher_write_ctx(struct spacc_generic_ctx
*ctx
,
218 void __iomem
*page_addr
, const u8
*key
,
219 size_t key_len
, const u8
*iv
, size_t iv_len
)
221 void __iomem
*key_ptr
= page_addr
+ ctx
->key_offs
;
222 void __iomem
*iv_ptr
= page_addr
+ ctx
->iv_offs
;
224 memcpy_toio32(key_ptr
, key
, key_len
/ 4);
225 memcpy_toio32(iv_ptr
, iv
, iv_len
/ 4);
229 * Load a context into the engines context memory.
231 * Returns the index of the context page where the context was loaded.
233 static unsigned spacc_load_ctx(struct spacc_generic_ctx
*ctx
,
234 const u8
*ciph_key
, size_t ciph_len
,
235 const u8
*iv
, size_t ivlen
, const u8
*hash_key
,
238 unsigned indx
= ctx
->engine
->next_ctx
++;
239 void __iomem
*ciph_page_addr
, *hash_page_addr
;
241 ciph_page_addr
= spacc_ctx_page_addr(ctx
, indx
, 1);
242 hash_page_addr
= spacc_ctx_page_addr(ctx
, indx
, 0);
244 ctx
->engine
->next_ctx
&= ctx
->engine
->fifo_sz
- 1;
245 spacc_cipher_write_ctx(ctx
, ciph_page_addr
, ciph_key
, ciph_len
, iv
,
247 writel(ciph_len
| (indx
<< SPA_KEY_SZ_CTX_INDEX_OFFSET
) |
248 (1 << SPA_KEY_SZ_CIPHER_OFFSET
),
249 ctx
->engine
->regs
+ SPA_KEY_SZ_REG_OFFSET
);
252 memcpy_toio32(hash_page_addr
, hash_key
, hash_len
/ 4);
253 writel(hash_len
| (indx
<< SPA_KEY_SZ_CTX_INDEX_OFFSET
),
254 ctx
->engine
->regs
+ SPA_KEY_SZ_REG_OFFSET
);
260 /* Count the number of scatterlist entries in a scatterlist. */
261 static int sg_count(struct scatterlist
*sg_list
, int nbytes
)
263 struct scatterlist
*sg
= sg_list
;
268 nbytes
-= sg
->length
;
275 static inline void ddt_set(struct spacc_ddt
*ddt
, dma_addr_t phys
, size_t len
)
282 * Take a crypto request and scatterlists for the data and turn them into DDTs
283 * for passing to the crypto engines. This also DMA maps the data so that the
284 * crypto engines can DMA to/from them.
286 static struct spacc_ddt
*spacc_sg_to_ddt(struct spacc_engine
*engine
,
287 struct scatterlist
*payload
,
289 enum dma_data_direction dir
,
290 dma_addr_t
*ddt_phys
)
292 unsigned nents
, mapped_ents
;
293 struct scatterlist
*cur
;
294 struct spacc_ddt
*ddt
;
297 nents
= sg_count(payload
, nbytes
);
298 mapped_ents
= dma_map_sg(engine
->dev
, payload
, nents
, dir
);
300 if (mapped_ents
+ 1 > MAX_DDT_LEN
)
303 ddt
= dma_pool_alloc(engine
->req_pool
, GFP_ATOMIC
, ddt_phys
);
307 for_each_sg(payload
, cur
, mapped_ents
, i
)
308 ddt_set(&ddt
[i
], sg_dma_address(cur
), sg_dma_len(cur
));
309 ddt_set(&ddt
[mapped_ents
], 0, 0);
314 dma_unmap_sg(engine
->dev
, payload
, nents
, dir
);
318 static int spacc_aead_make_ddts(struct spacc_req
*req
, u8
*giv
)
320 struct aead_request
*areq
= container_of(req
->req
, struct aead_request
,
322 struct spacc_engine
*engine
= req
->engine
;
323 struct spacc_ddt
*src_ddt
, *dst_ddt
;
324 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(areq
));
325 unsigned nents
= sg_count(areq
->src
, areq
->cryptlen
);
327 struct scatterlist
*cur
;
328 int i
, dst_ents
, src_ents
, assoc_ents
;
329 u8
*iv
= giv
? giv
: areq
->iv
;
331 src_ddt
= dma_pool_alloc(engine
->req_pool
, GFP_ATOMIC
, &req
->src_addr
);
335 dst_ddt
= dma_pool_alloc(engine
->req_pool
, GFP_ATOMIC
, &req
->dst_addr
);
337 dma_pool_free(engine
->req_pool
, src_ddt
, req
->src_addr
);
341 req
->src_ddt
= src_ddt
;
342 req
->dst_ddt
= dst_ddt
;
344 assoc_ents
= dma_map_sg(engine
->dev
, areq
->assoc
,
345 sg_count(areq
->assoc
, areq
->assoclen
), DMA_TO_DEVICE
);
346 if (areq
->src
!= areq
->dst
) {
347 src_ents
= dma_map_sg(engine
->dev
, areq
->src
, nents
,
349 dst_ents
= dma_map_sg(engine
->dev
, areq
->dst
, nents
,
352 src_ents
= dma_map_sg(engine
->dev
, areq
->src
, nents
,
358 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
359 * formed by the crypto block and sent as the ESP IV for IPSEC.
361 iv_addr
= dma_map_single(engine
->dev
, iv
, ivsize
,
362 giv
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
363 req
->giv_pa
= iv_addr
;
366 * Map the associated data. For decryption we don't copy the
369 for_each_sg(areq
->assoc
, cur
, assoc_ents
, i
) {
370 ddt_set(src_ddt
++, sg_dma_address(cur
), sg_dma_len(cur
));
372 ddt_set(dst_ddt
++, sg_dma_address(cur
),
375 ddt_set(src_ddt
++, iv_addr
, ivsize
);
377 if (giv
|| req
->is_encrypt
)
378 ddt_set(dst_ddt
++, iv_addr
, ivsize
);
381 * Now map in the payload for the source and destination and terminate
382 * with the NULL pointers.
384 for_each_sg(areq
->src
, cur
, src_ents
, i
) {
385 ddt_set(src_ddt
++, sg_dma_address(cur
), sg_dma_len(cur
));
386 if (areq
->src
== areq
->dst
)
387 ddt_set(dst_ddt
++, sg_dma_address(cur
),
391 for_each_sg(areq
->dst
, cur
, dst_ents
, i
)
392 ddt_set(dst_ddt
++, sg_dma_address(cur
),
395 ddt_set(src_ddt
, 0, 0);
396 ddt_set(dst_ddt
, 0, 0);
401 static void spacc_aead_free_ddts(struct spacc_req
*req
)
403 struct aead_request
*areq
= container_of(req
->req
, struct aead_request
,
405 struct spacc_alg
*alg
= to_spacc_alg(req
->req
->tfm
->__crt_alg
);
406 struct spacc_ablk_ctx
*aead_ctx
= crypto_tfm_ctx(req
->req
->tfm
);
407 struct spacc_engine
*engine
= aead_ctx
->generic
.engine
;
408 unsigned ivsize
= alg
->alg
.cra_aead
.ivsize
;
409 unsigned nents
= sg_count(areq
->src
, areq
->cryptlen
);
411 if (areq
->src
!= areq
->dst
) {
412 dma_unmap_sg(engine
->dev
, areq
->src
, nents
, DMA_TO_DEVICE
);
413 dma_unmap_sg(engine
->dev
, areq
->dst
,
414 sg_count(areq
->dst
, areq
->cryptlen
),
417 dma_unmap_sg(engine
->dev
, areq
->src
, nents
, DMA_BIDIRECTIONAL
);
419 dma_unmap_sg(engine
->dev
, areq
->assoc
,
420 sg_count(areq
->assoc
, areq
->assoclen
), DMA_TO_DEVICE
);
422 dma_unmap_single(engine
->dev
, req
->giv_pa
, ivsize
, DMA_BIDIRECTIONAL
);
424 dma_pool_free(engine
->req_pool
, req
->src_ddt
, req
->src_addr
);
425 dma_pool_free(engine
->req_pool
, req
->dst_ddt
, req
->dst_addr
);
428 static void spacc_free_ddt(struct spacc_req
*req
, struct spacc_ddt
*ddt
,
429 dma_addr_t ddt_addr
, struct scatterlist
*payload
,
430 unsigned nbytes
, enum dma_data_direction dir
)
432 unsigned nents
= sg_count(payload
, nbytes
);
434 dma_unmap_sg(req
->engine
->dev
, payload
, nents
, dir
);
435 dma_pool_free(req
->engine
->req_pool
, ddt
, ddt_addr
);
439 * Set key for a DES operation in an AEAD cipher. This also performs weak key
440 * checking if required.
442 static int spacc_aead_des_setkey(struct crypto_aead
*aead
, const u8
*key
,
445 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
446 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
447 u32 tmp
[DES_EXPKEY_WORDS
];
449 if (unlikely(!des_ekey(tmp
, key
)) &&
450 (crypto_aead_get_flags(aead
)) & CRYPTO_TFM_REQ_WEAK_KEY
) {
451 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
455 memcpy(ctx
->cipher_key
, key
, len
);
456 ctx
->cipher_key_len
= len
;
461 /* Set the key for the AES block cipher component of the AEAD transform. */
462 static int spacc_aead_aes_setkey(struct crypto_aead
*aead
, const u8
*key
,
465 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
466 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
469 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
470 * request for any other size (192 bits) then we need to do a software
473 if (len
!= AES_KEYSIZE_128
&& len
!= AES_KEYSIZE_256
) {
475 * Set the fallback transform to use the same request flags as
476 * the hardware transform.
478 ctx
->sw_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
479 ctx
->sw_cipher
->base
.crt_flags
|=
480 tfm
->crt_flags
& CRYPTO_TFM_REQ_MASK
;
481 return crypto_aead_setkey(ctx
->sw_cipher
, key
, len
);
484 memcpy(ctx
->cipher_key
, key
, len
);
485 ctx
->cipher_key_len
= len
;
490 static int spacc_aead_setkey(struct crypto_aead
*tfm
, const u8
*key
,
493 struct spacc_aead_ctx
*ctx
= crypto_aead_ctx(tfm
);
494 struct spacc_alg
*alg
= to_spacc_alg(tfm
->base
.__crt_alg
);
495 struct rtattr
*rta
= (void *)key
;
496 struct crypto_authenc_key_param
*param
;
497 unsigned int authkeylen
, enckeylen
;
500 if (!RTA_OK(rta
, keylen
))
503 if (rta
->rta_type
!= CRYPTO_AUTHENC_KEYA_PARAM
)
506 if (RTA_PAYLOAD(rta
) < sizeof(*param
))
509 param
= RTA_DATA(rta
);
510 enckeylen
= be32_to_cpu(param
->enckeylen
);
512 key
+= RTA_ALIGN(rta
->rta_len
);
513 keylen
-= RTA_ALIGN(rta
->rta_len
);
515 if (keylen
< enckeylen
)
518 authkeylen
= keylen
- enckeylen
;
520 if (enckeylen
> AES_MAX_KEY_SIZE
)
523 if ((alg
->ctrl_default
& SPACC_CRYPTO_ALG_MASK
) ==
524 SPA_CTRL_CIPH_ALG_AES
)
525 err
= spacc_aead_aes_setkey(tfm
, key
+ authkeylen
, enckeylen
);
527 err
= spacc_aead_des_setkey(tfm
, key
+ authkeylen
, enckeylen
);
532 memcpy(ctx
->hash_ctx
, key
, authkeylen
);
533 ctx
->hash_key_len
= authkeylen
;
538 crypto_aead_set_flags(tfm
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
542 static int spacc_aead_setauthsize(struct crypto_aead
*tfm
,
543 unsigned int authsize
)
545 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(crypto_aead_tfm(tfm
));
547 ctx
->auth_size
= authsize
;
553 * Check if an AEAD request requires a fallback operation. Some requests can't
554 * be completed in hardware because the hardware may not support certain key
555 * sizes. In these cases we need to complete the request in software.
557 static int spacc_aead_need_fallback(struct spacc_req
*req
)
559 struct aead_request
*aead_req
;
560 struct crypto_tfm
*tfm
= req
->req
->tfm
;
561 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
562 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
563 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
565 aead_req
= container_of(req
->req
, struct aead_request
, base
);
567 * If we have a non-supported key-length, then we need to do a
570 if ((spacc_alg
->ctrl_default
& SPACC_CRYPTO_ALG_MASK
) ==
571 SPA_CTRL_CIPH_ALG_AES
&&
572 ctx
->cipher_key_len
!= AES_KEYSIZE_128
&&
573 ctx
->cipher_key_len
!= AES_KEYSIZE_256
)
579 static int spacc_aead_do_fallback(struct aead_request
*req
, unsigned alg_type
,
582 struct crypto_tfm
*old_tfm
= crypto_aead_tfm(crypto_aead_reqtfm(req
));
583 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(old_tfm
);
586 if (ctx
->sw_cipher
) {
588 * Change the request to use the software fallback transform,
589 * and once the ciphering has completed, put the old transform
590 * back into the request.
592 aead_request_set_tfm(req
, ctx
->sw_cipher
);
593 err
= is_encrypt
? crypto_aead_encrypt(req
) :
594 crypto_aead_decrypt(req
);
595 aead_request_set_tfm(req
, __crypto_aead_cast(old_tfm
));
602 static void spacc_aead_complete(struct spacc_req
*req
)
604 spacc_aead_free_ddts(req
);
605 req
->req
->complete(req
->req
, req
->result
);
608 static int spacc_aead_submit(struct spacc_req
*req
)
610 struct crypto_tfm
*tfm
= req
->req
->tfm
;
611 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
612 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
613 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
614 struct spacc_engine
*engine
= ctx
->generic
.engine
;
615 u32 ctrl
, proc_len
, assoc_len
;
616 struct aead_request
*aead_req
=
617 container_of(req
->req
, struct aead_request
, base
);
619 req
->result
= -EINPROGRESS
;
620 req
->ctx_id
= spacc_load_ctx(&ctx
->generic
, ctx
->cipher_key
,
621 ctx
->cipher_key_len
, aead_req
->iv
, alg
->cra_aead
.ivsize
,
622 ctx
->hash_ctx
, ctx
->hash_key_len
);
624 /* Set the source and destination DDT pointers. */
625 writel(req
->src_addr
, engine
->regs
+ SPA_SRC_PTR_REG_OFFSET
);
626 writel(req
->dst_addr
, engine
->regs
+ SPA_DST_PTR_REG_OFFSET
);
627 writel(0, engine
->regs
+ SPA_OFFSET_REG_OFFSET
);
629 assoc_len
= aead_req
->assoclen
;
630 proc_len
= aead_req
->cryptlen
+ assoc_len
;
633 * If we aren't generating an IV, then we need to include the IV in the
634 * associated data so that it is included in the hash.
637 assoc_len
+= crypto_aead_ivsize(crypto_aead_reqtfm(aead_req
));
638 proc_len
+= crypto_aead_ivsize(crypto_aead_reqtfm(aead_req
));
640 proc_len
+= req
->giv_len
;
643 * If we are decrypting, we need to take the length of the ICV out of
644 * the processing length.
646 if (!req
->is_encrypt
)
647 proc_len
-= ctx
->auth_size
;
649 writel(proc_len
, engine
->regs
+ SPA_PROC_LEN_REG_OFFSET
);
650 writel(assoc_len
, engine
->regs
+ SPA_AAD_LEN_REG_OFFSET
);
651 writel(ctx
->auth_size
, engine
->regs
+ SPA_ICV_LEN_REG_OFFSET
);
652 writel(0, engine
->regs
+ SPA_ICV_OFFSET_REG_OFFSET
);
653 writel(0, engine
->regs
+ SPA_AUX_INFO_REG_OFFSET
);
655 ctrl
= spacc_alg
->ctrl_default
| (req
->ctx_id
<< SPA_CTRL_CTX_IDX
) |
656 (1 << SPA_CTRL_ICV_APPEND
);
658 ctrl
|= (1 << SPA_CTRL_ENCRYPT_IDX
) | (1 << SPA_CTRL_AAD_COPY
);
660 ctrl
|= (1 << SPA_CTRL_KEY_EXP
);
662 mod_timer(&engine
->packet_timeout
, jiffies
+ PACKET_TIMEOUT
);
664 writel(ctrl
, engine
->regs
+ SPA_CTRL_REG_OFFSET
);
670 * Setup an AEAD request for processing. This will configure the engine, load
671 * the context and then start the packet processing.
673 * @giv Pointer to destination address for a generated IV. If the
674 * request does not need to generate an IV then this should be set to NULL.
676 static int spacc_aead_setup(struct aead_request
*req
, u8
*giv
,
677 unsigned alg_type
, bool is_encrypt
)
679 struct crypto_alg
*alg
= req
->base
.tfm
->__crt_alg
;
680 struct spacc_engine
*engine
= to_spacc_alg(alg
)->engine
;
681 struct spacc_req
*dev_req
= aead_request_ctx(req
);
682 int err
= -EINPROGRESS
;
684 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(req
));
687 dev_req
->giv_len
= ivsize
;
688 dev_req
->req
= &req
->base
;
689 dev_req
->is_encrypt
= is_encrypt
;
690 dev_req
->result
= -EBUSY
;
691 dev_req
->engine
= engine
;
692 dev_req
->complete
= spacc_aead_complete
;
694 if (unlikely(spacc_aead_need_fallback(dev_req
)))
695 return spacc_aead_do_fallback(req
, alg_type
, is_encrypt
);
697 spacc_aead_make_ddts(dev_req
, dev_req
->giv
);
700 spin_lock_irqsave(&engine
->hw_lock
, flags
);
701 if (unlikely(spacc_fifo_cmd_full(engine
))) {
702 if (!(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)) {
704 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
707 list_add_tail(&dev_req
->list
, &engine
->pending
);
710 list_add_tail(&dev_req
->list
, &engine
->in_progress
);
711 spacc_aead_submit(dev_req
);
713 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
718 spacc_aead_free_ddts(dev_req
);
723 static int spacc_aead_encrypt(struct aead_request
*req
)
725 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
726 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
727 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
729 return spacc_aead_setup(req
, NULL
, alg
->type
, 1);
732 static int spacc_aead_givencrypt(struct aead_givcrypt_request
*req
)
734 struct crypto_aead
*tfm
= aead_givcrypt_reqtfm(req
);
735 struct spacc_aead_ctx
*ctx
= crypto_aead_ctx(tfm
);
736 size_t ivsize
= crypto_aead_ivsize(tfm
);
737 struct spacc_alg
*alg
= to_spacc_alg(tfm
->base
.__crt_alg
);
741 memcpy(req
->areq
.iv
, ctx
->salt
, ivsize
);
743 if (ivsize
> sizeof(u64
)) {
744 memset(req
->giv
, 0, ivsize
- sizeof(u64
));
747 seq
= cpu_to_be64(req
->seq
);
748 memcpy(req
->giv
+ ivsize
- len
, &seq
, len
);
750 return spacc_aead_setup(&req
->areq
, req
->giv
, alg
->type
, 1);
753 static int spacc_aead_decrypt(struct aead_request
*req
)
755 struct crypto_aead
*aead
= crypto_aead_reqtfm(req
);
756 struct crypto_tfm
*tfm
= crypto_aead_tfm(aead
);
757 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
759 return spacc_aead_setup(req
, NULL
, alg
->type
, 0);
763 * Initialise a new AEAD context. This is responsible for allocating the
764 * fallback cipher and initialising the context.
766 static int spacc_aead_cra_init(struct crypto_tfm
*tfm
)
768 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
769 struct crypto_alg
*alg
= tfm
->__crt_alg
;
770 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
771 struct spacc_engine
*engine
= spacc_alg
->engine
;
773 ctx
->generic
.flags
= spacc_alg
->type
;
774 ctx
->generic
.engine
= engine
;
775 ctx
->sw_cipher
= crypto_alloc_aead(alg
->cra_name
, 0,
777 CRYPTO_ALG_NEED_FALLBACK
);
778 if (IS_ERR(ctx
->sw_cipher
)) {
779 dev_warn(engine
->dev
, "failed to allocate fallback for %s\n",
781 ctx
->sw_cipher
= NULL
;
783 ctx
->generic
.key_offs
= spacc_alg
->key_offs
;
784 ctx
->generic
.iv_offs
= spacc_alg
->iv_offs
;
786 get_random_bytes(ctx
->salt
, sizeof(ctx
->salt
));
788 tfm
->crt_aead
.reqsize
= sizeof(struct spacc_req
);
794 * Destructor for an AEAD context. This is called when the transform is freed
795 * and must free the fallback cipher.
797 static void spacc_aead_cra_exit(struct crypto_tfm
*tfm
)
799 struct spacc_aead_ctx
*ctx
= crypto_tfm_ctx(tfm
);
802 crypto_free_aead(ctx
->sw_cipher
);
803 ctx
->sw_cipher
= NULL
;
807 * Set the DES key for a block cipher transform. This also performs weak key
808 * checking if the transform has requested it.
810 static int spacc_des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
813 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
814 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
815 u32 tmp
[DES_EXPKEY_WORDS
];
817 if (len
> DES3_EDE_KEY_SIZE
) {
818 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
822 if (unlikely(!des_ekey(tmp
, key
)) &&
823 (crypto_ablkcipher_get_flags(cipher
) & CRYPTO_TFM_REQ_WEAK_KEY
)) {
824 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
828 memcpy(ctx
->key
, key
, len
);
835 * Set the key for an AES block cipher. Some key lengths are not supported in
836 * hardware so this must also check whether a fallback is needed.
838 static int spacc_aes_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
841 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
842 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
845 if (len
> AES_MAX_KEY_SIZE
) {
846 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
851 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
852 * request for any other size (192 bits) then we need to do a software
855 if ((len
!= AES_KEYSIZE_128
|| len
!= AES_KEYSIZE_256
) &&
858 * Set the fallback transform to use the same request flags as
859 * the hardware transform.
861 ctx
->sw_cipher
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
862 ctx
->sw_cipher
->base
.crt_flags
|=
863 cipher
->base
.crt_flags
& CRYPTO_TFM_REQ_MASK
;
865 err
= crypto_ablkcipher_setkey(ctx
->sw_cipher
, key
, len
);
867 goto sw_setkey_failed
;
868 } else if ((len
!= AES_KEYSIZE_128
|| len
!= AES_KEYSIZE_256
) &&
872 memcpy(ctx
->key
, key
, len
);
876 if (err
&& ctx
->sw_cipher
) {
877 tfm
->crt_flags
&= ~CRYPTO_TFM_RES_MASK
;
879 ctx
->sw_cipher
->base
.crt_flags
& CRYPTO_TFM_RES_MASK
;
885 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher
*cipher
,
886 const u8
*key
, unsigned int len
)
888 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
889 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
892 if (len
> AES_MAX_KEY_SIZE
) {
893 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
898 memcpy(ctx
->key
, key
, len
);
905 static int spacc_ablk_need_fallback(struct spacc_req
*req
)
907 struct spacc_ablk_ctx
*ctx
;
908 struct crypto_tfm
*tfm
= req
->req
->tfm
;
909 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
910 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
912 ctx
= crypto_tfm_ctx(tfm
);
914 return (spacc_alg
->ctrl_default
& SPACC_CRYPTO_ALG_MASK
) ==
915 SPA_CTRL_CIPH_ALG_AES
&&
916 ctx
->key_len
!= AES_KEYSIZE_128
&&
917 ctx
->key_len
!= AES_KEYSIZE_256
;
920 static void spacc_ablk_complete(struct spacc_req
*req
)
922 struct ablkcipher_request
*ablk_req
=
923 container_of(req
->req
, struct ablkcipher_request
, base
);
925 if (ablk_req
->src
!= ablk_req
->dst
) {
926 spacc_free_ddt(req
, req
->src_ddt
, req
->src_addr
, ablk_req
->src
,
927 ablk_req
->nbytes
, DMA_TO_DEVICE
);
928 spacc_free_ddt(req
, req
->dst_ddt
, req
->dst_addr
, ablk_req
->dst
,
929 ablk_req
->nbytes
, DMA_FROM_DEVICE
);
931 spacc_free_ddt(req
, req
->dst_ddt
, req
->dst_addr
, ablk_req
->dst
,
932 ablk_req
->nbytes
, DMA_BIDIRECTIONAL
);
934 req
->req
->complete(req
->req
, req
->result
);
937 static int spacc_ablk_submit(struct spacc_req
*req
)
939 struct crypto_tfm
*tfm
= req
->req
->tfm
;
940 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
941 struct ablkcipher_request
*ablk_req
= ablkcipher_request_cast(req
->req
);
942 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
943 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
944 struct spacc_engine
*engine
= ctx
->generic
.engine
;
947 req
->ctx_id
= spacc_load_ctx(&ctx
->generic
, ctx
->key
,
948 ctx
->key_len
, ablk_req
->info
, alg
->cra_ablkcipher
.ivsize
,
951 writel(req
->src_addr
, engine
->regs
+ SPA_SRC_PTR_REG_OFFSET
);
952 writel(req
->dst_addr
, engine
->regs
+ SPA_DST_PTR_REG_OFFSET
);
953 writel(0, engine
->regs
+ SPA_OFFSET_REG_OFFSET
);
955 writel(ablk_req
->nbytes
, engine
->regs
+ SPA_PROC_LEN_REG_OFFSET
);
956 writel(0, engine
->regs
+ SPA_ICV_OFFSET_REG_OFFSET
);
957 writel(0, engine
->regs
+ SPA_AUX_INFO_REG_OFFSET
);
958 writel(0, engine
->regs
+ SPA_AAD_LEN_REG_OFFSET
);
960 ctrl
= spacc_alg
->ctrl_default
| (req
->ctx_id
<< SPA_CTRL_CTX_IDX
) |
961 (req
->is_encrypt
? (1 << SPA_CTRL_ENCRYPT_IDX
) :
962 (1 << SPA_CTRL_KEY_EXP
));
964 mod_timer(&engine
->packet_timeout
, jiffies
+ PACKET_TIMEOUT
);
966 writel(ctrl
, engine
->regs
+ SPA_CTRL_REG_OFFSET
);
971 static int spacc_ablk_do_fallback(struct ablkcipher_request
*req
,
972 unsigned alg_type
, bool is_encrypt
)
974 struct crypto_tfm
*old_tfm
=
975 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req
));
976 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(old_tfm
);
983 * Change the request to use the software fallback transform, and once
984 * the ciphering has completed, put the old transform back into the
987 ablkcipher_request_set_tfm(req
, ctx
->sw_cipher
);
988 err
= is_encrypt
? crypto_ablkcipher_encrypt(req
) :
989 crypto_ablkcipher_decrypt(req
);
990 ablkcipher_request_set_tfm(req
, __crypto_ablkcipher_cast(old_tfm
));
995 static int spacc_ablk_setup(struct ablkcipher_request
*req
, unsigned alg_type
,
998 struct crypto_alg
*alg
= req
->base
.tfm
->__crt_alg
;
999 struct spacc_engine
*engine
= to_spacc_alg(alg
)->engine
;
1000 struct spacc_req
*dev_req
= ablkcipher_request_ctx(req
);
1001 unsigned long flags
;
1004 dev_req
->req
= &req
->base
;
1005 dev_req
->is_encrypt
= is_encrypt
;
1006 dev_req
->engine
= engine
;
1007 dev_req
->complete
= spacc_ablk_complete
;
1008 dev_req
->result
= -EINPROGRESS
;
1010 if (unlikely(spacc_ablk_need_fallback(dev_req
)))
1011 return spacc_ablk_do_fallback(req
, alg_type
, is_encrypt
);
1014 * Create the DDT's for the engine. If we share the same source and
1015 * destination then we can optimize by reusing the DDT's.
1017 if (req
->src
!= req
->dst
) {
1018 dev_req
->src_ddt
= spacc_sg_to_ddt(engine
, req
->src
,
1019 req
->nbytes
, DMA_TO_DEVICE
, &dev_req
->src_addr
);
1020 if (!dev_req
->src_ddt
)
1023 dev_req
->dst_ddt
= spacc_sg_to_ddt(engine
, req
->dst
,
1024 req
->nbytes
, DMA_FROM_DEVICE
, &dev_req
->dst_addr
);
1025 if (!dev_req
->dst_ddt
)
1028 dev_req
->dst_ddt
= spacc_sg_to_ddt(engine
, req
->dst
,
1029 req
->nbytes
, DMA_BIDIRECTIONAL
, &dev_req
->dst_addr
);
1030 if (!dev_req
->dst_ddt
)
1033 dev_req
->src_ddt
= NULL
;
1034 dev_req
->src_addr
= dev_req
->dst_addr
;
1038 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1040 * Check if the engine will accept the operation now. If it won't then
1041 * we either stick it on the end of a pending list if we can backlog,
1042 * or bailout with an error if not.
1044 if (unlikely(spacc_fifo_cmd_full(engine
))) {
1045 if (!(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)) {
1047 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1050 list_add_tail(&dev_req
->list
, &engine
->pending
);
1052 ++engine
->in_flight
;
1053 list_add_tail(&dev_req
->list
, &engine
->in_progress
);
1054 spacc_ablk_submit(dev_req
);
1056 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1061 spacc_free_ddt(dev_req
, dev_req
->dst_ddt
, dev_req
->dst_addr
, req
->dst
,
1062 req
->nbytes
, req
->src
== req
->dst
?
1063 DMA_BIDIRECTIONAL
: DMA_FROM_DEVICE
);
1065 if (req
->src
!= req
->dst
)
1066 spacc_free_ddt(dev_req
, dev_req
->src_ddt
, dev_req
->src_addr
,
1067 req
->src
, req
->nbytes
, DMA_TO_DEVICE
);
1072 static int spacc_ablk_cra_init(struct crypto_tfm
*tfm
)
1074 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1075 struct crypto_alg
*alg
= tfm
->__crt_alg
;
1076 struct spacc_alg
*spacc_alg
= to_spacc_alg(alg
);
1077 struct spacc_engine
*engine
= spacc_alg
->engine
;
1079 ctx
->generic
.flags
= spacc_alg
->type
;
1080 ctx
->generic
.engine
= engine
;
1081 if (alg
->cra_flags
& CRYPTO_ALG_NEED_FALLBACK
) {
1082 ctx
->sw_cipher
= crypto_alloc_ablkcipher(alg
->cra_name
, 0,
1083 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
);
1084 if (IS_ERR(ctx
->sw_cipher
)) {
1085 dev_warn(engine
->dev
, "failed to allocate fallback for %s\n",
1087 ctx
->sw_cipher
= NULL
;
1090 ctx
->generic
.key_offs
= spacc_alg
->key_offs
;
1091 ctx
->generic
.iv_offs
= spacc_alg
->iv_offs
;
1093 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct spacc_req
);
1098 static void spacc_ablk_cra_exit(struct crypto_tfm
*tfm
)
1100 struct spacc_ablk_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1103 crypto_free_ablkcipher(ctx
->sw_cipher
);
1104 ctx
->sw_cipher
= NULL
;
1107 static int spacc_ablk_encrypt(struct ablkcipher_request
*req
)
1109 struct crypto_ablkcipher
*cipher
= crypto_ablkcipher_reqtfm(req
);
1110 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
1111 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
1113 return spacc_ablk_setup(req
, alg
->type
, 1);
1116 static int spacc_ablk_decrypt(struct ablkcipher_request
*req
)
1118 struct crypto_ablkcipher
*cipher
= crypto_ablkcipher_reqtfm(req
);
1119 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
1120 struct spacc_alg
*alg
= to_spacc_alg(tfm
->__crt_alg
);
1122 return spacc_ablk_setup(req
, alg
->type
, 0);
1125 static inline int spacc_fifo_stat_empty(struct spacc_engine
*engine
)
1127 return readl(engine
->regs
+ SPA_FIFO_STAT_REG_OFFSET
) &
1128 SPA_FIFO_STAT_EMPTY
;
1131 static void spacc_process_done(struct spacc_engine
*engine
)
1133 struct spacc_req
*req
;
1134 unsigned long flags
;
1136 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1138 while (!spacc_fifo_stat_empty(engine
)) {
1139 req
= list_first_entry(&engine
->in_progress
, struct spacc_req
,
1141 list_move_tail(&req
->list
, &engine
->completed
);
1143 /* POP the status register. */
1144 writel(~0, engine
->regs
+ SPA_STAT_POP_REG_OFFSET
);
1145 req
->result
= (readl(engine
->regs
+ SPA_STATUS_REG_OFFSET
) &
1146 SPA_STATUS_RES_CODE_MASK
) >> SPA_STATUS_RES_CODE_OFFSET
;
1149 * Convert the SPAcc error status into the standard POSIX error
1152 if (unlikely(req
->result
)) {
1153 switch (req
->result
) {
1154 case SPA_STATUS_ICV_FAIL
:
1155 req
->result
= -EBADMSG
;
1158 case SPA_STATUS_MEMORY_ERROR
:
1159 dev_warn(engine
->dev
,
1160 "memory error triggered\n");
1161 req
->result
= -EFAULT
;
1164 case SPA_STATUS_BLOCK_ERROR
:
1165 dev_warn(engine
->dev
,
1166 "block error triggered\n");
1173 tasklet_schedule(&engine
->complete
);
1175 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1178 static irqreturn_t
spacc_spacc_irq(int irq
, void *dev
)
1180 struct spacc_engine
*engine
= (struct spacc_engine
*)dev
;
1181 u32 spacc_irq_stat
= readl(engine
->regs
+ SPA_IRQ_STAT_REG_OFFSET
);
1183 writel(spacc_irq_stat
, engine
->regs
+ SPA_IRQ_STAT_REG_OFFSET
);
1184 spacc_process_done(engine
);
1189 static void spacc_packet_timeout(unsigned long data
)
1191 struct spacc_engine
*engine
= (struct spacc_engine
*)data
;
1193 spacc_process_done(engine
);
1196 static int spacc_req_submit(struct spacc_req
*req
)
1198 struct crypto_alg
*alg
= req
->req
->tfm
->__crt_alg
;
1200 if (CRYPTO_ALG_TYPE_AEAD
== (CRYPTO_ALG_TYPE_MASK
& alg
->cra_flags
))
1201 return spacc_aead_submit(req
);
1203 return spacc_ablk_submit(req
);
1206 static void spacc_spacc_complete(unsigned long data
)
1208 struct spacc_engine
*engine
= (struct spacc_engine
*)data
;
1209 struct spacc_req
*req
, *tmp
;
1210 unsigned long flags
;
1211 int num_removed
= 0;
1212 LIST_HEAD(completed
);
1214 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1215 list_splice_init(&engine
->completed
, &completed
);
1216 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1218 list_for_each_entry_safe(req
, tmp
, &completed
, list
) {
1223 /* Try and fill the engine back up again. */
1224 spin_lock_irqsave(&engine
->hw_lock
, flags
);
1226 engine
->in_flight
-= num_removed
;
1228 list_for_each_entry_safe(req
, tmp
, &engine
->pending
, list
) {
1229 if (spacc_fifo_cmd_full(engine
))
1232 list_move_tail(&req
->list
, &engine
->in_progress
);
1233 ++engine
->in_flight
;
1234 req
->result
= spacc_req_submit(req
);
1237 if (engine
->in_flight
)
1238 mod_timer(&engine
->packet_timeout
, jiffies
+ PACKET_TIMEOUT
);
1240 spin_unlock_irqrestore(&engine
->hw_lock
, flags
);
1244 static int spacc_suspend(struct device
*dev
)
1246 struct platform_device
*pdev
= to_platform_device(dev
);
1247 struct spacc_engine
*engine
= platform_get_drvdata(pdev
);
1250 * We only support standby mode. All we have to do is gate the clock to
1251 * the spacc. The hardware will preserve state until we turn it back
1254 clk_disable(engine
->clk
);
1259 static int spacc_resume(struct device
*dev
)
1261 struct platform_device
*pdev
= to_platform_device(dev
);
1262 struct spacc_engine
*engine
= platform_get_drvdata(pdev
);
1264 return clk_enable(engine
->clk
);
1267 static const struct dev_pm_ops spacc_pm_ops
= {
1268 .suspend
= spacc_suspend
,
1269 .resume
= spacc_resume
,
1271 #endif /* CONFIG_PM */
1273 static inline struct spacc_engine
*spacc_dev_to_engine(struct device
*dev
)
1275 return dev
? platform_get_drvdata(to_platform_device(dev
)) : NULL
;
1278 static ssize_t
spacc_stat_irq_thresh_show(struct device
*dev
,
1279 struct device_attribute
*attr
,
1282 struct spacc_engine
*engine
= spacc_dev_to_engine(dev
);
1284 return snprintf(buf
, PAGE_SIZE
, "%u\n", engine
->stat_irq_thresh
);
1287 static ssize_t
spacc_stat_irq_thresh_store(struct device
*dev
,
1288 struct device_attribute
*attr
,
1289 const char *buf
, size_t len
)
1291 struct spacc_engine
*engine
= spacc_dev_to_engine(dev
);
1292 unsigned long thresh
;
1294 if (strict_strtoul(buf
, 0, &thresh
))
1297 thresh
= clamp(thresh
, 1UL, engine
->fifo_sz
- 1);
1299 engine
->stat_irq_thresh
= thresh
;
1300 writel(engine
->stat_irq_thresh
<< SPA_IRQ_CTRL_STAT_CNT_OFFSET
,
1301 engine
->regs
+ SPA_IRQ_CTRL_REG_OFFSET
);
1305 static DEVICE_ATTR(stat_irq_thresh
, 0644, spacc_stat_irq_thresh_show
,
1306 spacc_stat_irq_thresh_store
);
1308 static struct spacc_alg ipsec_engine_algs
[] = {
1310 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
,
1312 .iv_offs
= AES_MAX_KEY_SIZE
,
1314 .cra_name
= "cbc(aes)",
1315 .cra_driver_name
= "cbc-aes-picoxcell",
1316 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1317 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1319 CRYPTO_ALG_NEED_FALLBACK
,
1320 .cra_blocksize
= AES_BLOCK_SIZE
,
1321 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1322 .cra_type
= &crypto_ablkcipher_type
,
1323 .cra_module
= THIS_MODULE
,
1325 .setkey
= spacc_aes_setkey
,
1326 .encrypt
= spacc_ablk_encrypt
,
1327 .decrypt
= spacc_ablk_decrypt
,
1328 .min_keysize
= AES_MIN_KEY_SIZE
,
1329 .max_keysize
= AES_MAX_KEY_SIZE
,
1330 .ivsize
= AES_BLOCK_SIZE
,
1332 .cra_init
= spacc_ablk_cra_init
,
1333 .cra_exit
= spacc_ablk_cra_exit
,
1338 .iv_offs
= AES_MAX_KEY_SIZE
,
1339 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_ECB
,
1341 .cra_name
= "ecb(aes)",
1342 .cra_driver_name
= "ecb-aes-picoxcell",
1343 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1344 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1345 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
,
1346 .cra_blocksize
= AES_BLOCK_SIZE
,
1347 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1348 .cra_type
= &crypto_ablkcipher_type
,
1349 .cra_module
= THIS_MODULE
,
1351 .setkey
= spacc_aes_setkey
,
1352 .encrypt
= spacc_ablk_encrypt
,
1353 .decrypt
= spacc_ablk_decrypt
,
1354 .min_keysize
= AES_MIN_KEY_SIZE
,
1355 .max_keysize
= AES_MAX_KEY_SIZE
,
1357 .cra_init
= spacc_ablk_cra_init
,
1358 .cra_exit
= spacc_ablk_cra_exit
,
1362 .key_offs
= DES_BLOCK_SIZE
,
1364 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
,
1366 .cra_name
= "cbc(des)",
1367 .cra_driver_name
= "cbc-des-picoxcell",
1368 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1369 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1370 .cra_blocksize
= DES_BLOCK_SIZE
,
1371 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1372 .cra_type
= &crypto_ablkcipher_type
,
1373 .cra_module
= THIS_MODULE
,
1375 .setkey
= spacc_des_setkey
,
1376 .encrypt
= spacc_ablk_encrypt
,
1377 .decrypt
= spacc_ablk_decrypt
,
1378 .min_keysize
= DES_KEY_SIZE
,
1379 .max_keysize
= DES_KEY_SIZE
,
1380 .ivsize
= DES_BLOCK_SIZE
,
1382 .cra_init
= spacc_ablk_cra_init
,
1383 .cra_exit
= spacc_ablk_cra_exit
,
1387 .key_offs
= DES_BLOCK_SIZE
,
1389 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_ECB
,
1391 .cra_name
= "ecb(des)",
1392 .cra_driver_name
= "ecb-des-picoxcell",
1393 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1394 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1395 .cra_blocksize
= DES_BLOCK_SIZE
,
1396 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1397 .cra_type
= &crypto_ablkcipher_type
,
1398 .cra_module
= THIS_MODULE
,
1400 .setkey
= spacc_des_setkey
,
1401 .encrypt
= spacc_ablk_encrypt
,
1402 .decrypt
= spacc_ablk_decrypt
,
1403 .min_keysize
= DES_KEY_SIZE
,
1404 .max_keysize
= DES_KEY_SIZE
,
1406 .cra_init
= spacc_ablk_cra_init
,
1407 .cra_exit
= spacc_ablk_cra_exit
,
1411 .key_offs
= DES_BLOCK_SIZE
,
1413 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
,
1415 .cra_name
= "cbc(des3_ede)",
1416 .cra_driver_name
= "cbc-des3-ede-picoxcell",
1417 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1418 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1419 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1420 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1421 .cra_type
= &crypto_ablkcipher_type
,
1422 .cra_module
= THIS_MODULE
,
1424 .setkey
= spacc_des_setkey
,
1425 .encrypt
= spacc_ablk_encrypt
,
1426 .decrypt
= spacc_ablk_decrypt
,
1427 .min_keysize
= DES3_EDE_KEY_SIZE
,
1428 .max_keysize
= DES3_EDE_KEY_SIZE
,
1429 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1431 .cra_init
= spacc_ablk_cra_init
,
1432 .cra_exit
= spacc_ablk_cra_exit
,
1436 .key_offs
= DES_BLOCK_SIZE
,
1438 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_ECB
,
1440 .cra_name
= "ecb(des3_ede)",
1441 .cra_driver_name
= "ecb-des3-ede-picoxcell",
1442 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1443 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
| CRYPTO_ALG_ASYNC
,
1444 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1445 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1446 .cra_type
= &crypto_ablkcipher_type
,
1447 .cra_module
= THIS_MODULE
,
1449 .setkey
= spacc_des_setkey
,
1450 .encrypt
= spacc_ablk_encrypt
,
1451 .decrypt
= spacc_ablk_decrypt
,
1452 .min_keysize
= DES3_EDE_KEY_SIZE
,
1453 .max_keysize
= DES3_EDE_KEY_SIZE
,
1455 .cra_init
= spacc_ablk_cra_init
,
1456 .cra_exit
= spacc_ablk_cra_exit
,
1460 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1461 SPA_CTRL_HASH_ALG_SHA
| SPA_CTRL_HASH_MODE_HMAC
,
1463 .iv_offs
= AES_MAX_KEY_SIZE
,
1465 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
1466 .cra_driver_name
= "authenc-hmac-sha1-cbc-aes-picoxcell",
1467 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1468 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1469 .cra_blocksize
= AES_BLOCK_SIZE
,
1470 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1471 .cra_type
= &crypto_aead_type
,
1472 .cra_module
= THIS_MODULE
,
1474 .setkey
= spacc_aead_setkey
,
1475 .setauthsize
= spacc_aead_setauthsize
,
1476 .encrypt
= spacc_aead_encrypt
,
1477 .decrypt
= spacc_aead_decrypt
,
1478 .givencrypt
= spacc_aead_givencrypt
,
1479 .ivsize
= AES_BLOCK_SIZE
,
1480 .maxauthsize
= SHA1_DIGEST_SIZE
,
1482 .cra_init
= spacc_aead_cra_init
,
1483 .cra_exit
= spacc_aead_cra_exit
,
1487 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1488 SPA_CTRL_HASH_ALG_SHA256
|
1489 SPA_CTRL_HASH_MODE_HMAC
,
1491 .iv_offs
= AES_MAX_KEY_SIZE
,
1493 .cra_name
= "authenc(hmac(sha256),cbc(aes))",
1494 .cra_driver_name
= "authenc-hmac-sha256-cbc-aes-picoxcell",
1495 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1496 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1497 .cra_blocksize
= AES_BLOCK_SIZE
,
1498 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1499 .cra_type
= &crypto_aead_type
,
1500 .cra_module
= THIS_MODULE
,
1502 .setkey
= spacc_aead_setkey
,
1503 .setauthsize
= spacc_aead_setauthsize
,
1504 .encrypt
= spacc_aead_encrypt
,
1505 .decrypt
= spacc_aead_decrypt
,
1506 .givencrypt
= spacc_aead_givencrypt
,
1507 .ivsize
= AES_BLOCK_SIZE
,
1508 .maxauthsize
= SHA256_DIGEST_SIZE
,
1510 .cra_init
= spacc_aead_cra_init
,
1511 .cra_exit
= spacc_aead_cra_exit
,
1516 .iv_offs
= AES_MAX_KEY_SIZE
,
1517 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1518 SPA_CTRL_HASH_ALG_MD5
| SPA_CTRL_HASH_MODE_HMAC
,
1520 .cra_name
= "authenc(hmac(md5),cbc(aes))",
1521 .cra_driver_name
= "authenc-hmac-md5-cbc-aes-picoxcell",
1522 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1523 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1524 .cra_blocksize
= AES_BLOCK_SIZE
,
1525 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1526 .cra_type
= &crypto_aead_type
,
1527 .cra_module
= THIS_MODULE
,
1529 .setkey
= spacc_aead_setkey
,
1530 .setauthsize
= spacc_aead_setauthsize
,
1531 .encrypt
= spacc_aead_encrypt
,
1532 .decrypt
= spacc_aead_decrypt
,
1533 .givencrypt
= spacc_aead_givencrypt
,
1534 .ivsize
= AES_BLOCK_SIZE
,
1535 .maxauthsize
= MD5_DIGEST_SIZE
,
1537 .cra_init
= spacc_aead_cra_init
,
1538 .cra_exit
= spacc_aead_cra_exit
,
1542 .key_offs
= DES_BLOCK_SIZE
,
1544 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
|
1545 SPA_CTRL_HASH_ALG_SHA
| SPA_CTRL_HASH_MODE_HMAC
,
1547 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
1548 .cra_driver_name
= "authenc-hmac-sha1-cbc-3des-picoxcell",
1549 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1550 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1551 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1552 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1553 .cra_type
= &crypto_aead_type
,
1554 .cra_module
= THIS_MODULE
,
1556 .setkey
= spacc_aead_setkey
,
1557 .setauthsize
= spacc_aead_setauthsize
,
1558 .encrypt
= spacc_aead_encrypt
,
1559 .decrypt
= spacc_aead_decrypt
,
1560 .givencrypt
= spacc_aead_givencrypt
,
1561 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1562 .maxauthsize
= SHA1_DIGEST_SIZE
,
1564 .cra_init
= spacc_aead_cra_init
,
1565 .cra_exit
= spacc_aead_cra_exit
,
1569 .key_offs
= DES_BLOCK_SIZE
,
1571 .ctrl_default
= SPA_CTRL_CIPH_ALG_AES
| SPA_CTRL_CIPH_MODE_CBC
|
1572 SPA_CTRL_HASH_ALG_SHA256
|
1573 SPA_CTRL_HASH_MODE_HMAC
,
1575 .cra_name
= "authenc(hmac(sha256),cbc(des3_ede))",
1576 .cra_driver_name
= "authenc-hmac-sha256-cbc-3des-picoxcell",
1577 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1578 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1579 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1580 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1581 .cra_type
= &crypto_aead_type
,
1582 .cra_module
= THIS_MODULE
,
1584 .setkey
= spacc_aead_setkey
,
1585 .setauthsize
= spacc_aead_setauthsize
,
1586 .encrypt
= spacc_aead_encrypt
,
1587 .decrypt
= spacc_aead_decrypt
,
1588 .givencrypt
= spacc_aead_givencrypt
,
1589 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1590 .maxauthsize
= SHA256_DIGEST_SIZE
,
1592 .cra_init
= spacc_aead_cra_init
,
1593 .cra_exit
= spacc_aead_cra_exit
,
1597 .key_offs
= DES_BLOCK_SIZE
,
1599 .ctrl_default
= SPA_CTRL_CIPH_ALG_DES
| SPA_CTRL_CIPH_MODE_CBC
|
1600 SPA_CTRL_HASH_ALG_MD5
| SPA_CTRL_HASH_MODE_HMAC
,
1602 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
1603 .cra_driver_name
= "authenc-hmac-md5-cbc-3des-picoxcell",
1604 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1605 .cra_flags
= CRYPTO_ALG_TYPE_AEAD
| CRYPTO_ALG_ASYNC
,
1606 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1607 .cra_ctxsize
= sizeof(struct spacc_aead_ctx
),
1608 .cra_type
= &crypto_aead_type
,
1609 .cra_module
= THIS_MODULE
,
1611 .setkey
= spacc_aead_setkey
,
1612 .setauthsize
= spacc_aead_setauthsize
,
1613 .encrypt
= spacc_aead_encrypt
,
1614 .decrypt
= spacc_aead_decrypt
,
1615 .givencrypt
= spacc_aead_givencrypt
,
1616 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1617 .maxauthsize
= MD5_DIGEST_SIZE
,
1619 .cra_init
= spacc_aead_cra_init
,
1620 .cra_exit
= spacc_aead_cra_exit
,
1625 static struct spacc_alg l2_engine_algs
[] = {
1628 .iv_offs
= SPACC_CRYPTO_KASUMI_F8_KEY_LEN
,
1629 .ctrl_default
= SPA_CTRL_CIPH_ALG_KASUMI
|
1630 SPA_CTRL_CIPH_MODE_F8
,
1632 .cra_name
= "f8(kasumi)",
1633 .cra_driver_name
= "f8-kasumi-picoxcell",
1634 .cra_priority
= SPACC_CRYPTO_ALG_PRIORITY
,
1635 .cra_flags
= CRYPTO_ALG_TYPE_GIVCIPHER
| CRYPTO_ALG_ASYNC
,
1637 .cra_ctxsize
= sizeof(struct spacc_ablk_ctx
),
1638 .cra_type
= &crypto_ablkcipher_type
,
1639 .cra_module
= THIS_MODULE
,
1641 .setkey
= spacc_kasumi_f8_setkey
,
1642 .encrypt
= spacc_ablk_encrypt
,
1643 .decrypt
= spacc_ablk_decrypt
,
1648 .cra_init
= spacc_ablk_cra_init
,
1649 .cra_exit
= spacc_ablk_cra_exit
,
1654 static int __devinit
spacc_probe(struct platform_device
*pdev
,
1655 unsigned max_ctxs
, size_t cipher_pg_sz
,
1656 size_t hash_pg_sz
, size_t fifo_sz
,
1657 struct spacc_alg
*algs
, size_t num_algs
)
1659 int i
, err
, ret
= -EINVAL
;
1660 struct resource
*mem
, *irq
;
1661 struct spacc_engine
*engine
= devm_kzalloc(&pdev
->dev
, sizeof(*engine
),
1666 engine
->max_ctxs
= max_ctxs
;
1667 engine
->cipher_pg_sz
= cipher_pg_sz
;
1668 engine
->hash_pg_sz
= hash_pg_sz
;
1669 engine
->fifo_sz
= fifo_sz
;
1670 engine
->algs
= algs
;
1671 engine
->num_algs
= num_algs
;
1672 engine
->name
= dev_name(&pdev
->dev
);
1674 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1675 irq
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
1677 dev_err(&pdev
->dev
, "no memory/irq resource for engine\n");
1681 if (!devm_request_mem_region(&pdev
->dev
, mem
->start
, resource_size(mem
),
1685 engine
->regs
= devm_ioremap(&pdev
->dev
, mem
->start
, resource_size(mem
));
1686 if (!engine
->regs
) {
1687 dev_err(&pdev
->dev
, "memory map failed\n");
1691 if (devm_request_irq(&pdev
->dev
, irq
->start
, spacc_spacc_irq
, 0,
1692 engine
->name
, engine
)) {
1693 dev_err(engine
->dev
, "failed to request IRQ\n");
1697 engine
->dev
= &pdev
->dev
;
1698 engine
->cipher_ctx_base
= engine
->regs
+ SPA_CIPH_KEY_BASE_REG_OFFSET
;
1699 engine
->hash_key_base
= engine
->regs
+ SPA_HASH_KEY_BASE_REG_OFFSET
;
1701 engine
->req_pool
= dmam_pool_create(engine
->name
, engine
->dev
,
1702 MAX_DDT_LEN
* sizeof(struct spacc_ddt
), 8, SZ_64K
);
1703 if (!engine
->req_pool
)
1706 spin_lock_init(&engine
->hw_lock
);
1708 engine
->clk
= clk_get(&pdev
->dev
, NULL
);
1709 if (IS_ERR(engine
->clk
)) {
1710 dev_info(&pdev
->dev
, "clk unavailable\n");
1711 device_remove_file(&pdev
->dev
, &dev_attr_stat_irq_thresh
);
1712 return PTR_ERR(engine
->clk
);
1715 if (clk_enable(engine
->clk
)) {
1716 dev_info(&pdev
->dev
, "unable to enable clk\n");
1717 clk_put(engine
->clk
);
1721 err
= device_create_file(&pdev
->dev
, &dev_attr_stat_irq_thresh
);
1723 clk_disable(engine
->clk
);
1724 clk_put(engine
->clk
);
1730 * Use an IRQ threshold of 50% as a default. This seems to be a
1731 * reasonable trade off of latency against throughput but can be
1732 * changed at runtime.
1734 engine
->stat_irq_thresh
= (engine
->fifo_sz
/ 2);
1737 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1738 * only submit a new packet for processing when we complete another in
1739 * the queue. This minimizes time spent in the interrupt handler.
1741 writel(engine
->stat_irq_thresh
<< SPA_IRQ_CTRL_STAT_CNT_OFFSET
,
1742 engine
->regs
+ SPA_IRQ_CTRL_REG_OFFSET
);
1743 writel(SPA_IRQ_EN_STAT_EN
| SPA_IRQ_EN_GLBL_EN
,
1744 engine
->regs
+ SPA_IRQ_EN_REG_OFFSET
);
1746 setup_timer(&engine
->packet_timeout
, spacc_packet_timeout
,
1747 (unsigned long)engine
);
1749 INIT_LIST_HEAD(&engine
->pending
);
1750 INIT_LIST_HEAD(&engine
->completed
);
1751 INIT_LIST_HEAD(&engine
->in_progress
);
1752 engine
->in_flight
= 0;
1753 tasklet_init(&engine
->complete
, spacc_spacc_complete
,
1754 (unsigned long)engine
);
1756 platform_set_drvdata(pdev
, engine
);
1758 INIT_LIST_HEAD(&engine
->registered_algs
);
1759 for (i
= 0; i
< engine
->num_algs
; ++i
) {
1760 engine
->algs
[i
].engine
= engine
;
1761 err
= crypto_register_alg(&engine
->algs
[i
].alg
);
1763 list_add_tail(&engine
->algs
[i
].entry
,
1764 &engine
->registered_algs
);
1768 dev_err(engine
->dev
, "failed to register alg \"%s\"\n",
1769 engine
->algs
[i
].alg
.cra_name
);
1771 dev_dbg(engine
->dev
, "registered alg \"%s\"\n",
1772 engine
->algs
[i
].alg
.cra_name
);
1778 static int __devexit
spacc_remove(struct platform_device
*pdev
)
1780 struct spacc_alg
*alg
, *next
;
1781 struct spacc_engine
*engine
= platform_get_drvdata(pdev
);
1783 del_timer_sync(&engine
->packet_timeout
);
1784 device_remove_file(&pdev
->dev
, &dev_attr_stat_irq_thresh
);
1786 list_for_each_entry_safe(alg
, next
, &engine
->registered_algs
, entry
) {
1787 list_del(&alg
->entry
);
1788 crypto_unregister_alg(&alg
->alg
);
1791 clk_disable(engine
->clk
);
1792 clk_put(engine
->clk
);
1797 static int __devinit
ipsec_probe(struct platform_device
*pdev
)
1799 return spacc_probe(pdev
, SPACC_CRYPTO_IPSEC_MAX_CTXS
,
1800 SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ
,
1801 SPACC_CRYPTO_IPSEC_HASH_PG_SZ
,
1802 SPACC_CRYPTO_IPSEC_FIFO_SZ
, ipsec_engine_algs
,
1803 ARRAY_SIZE(ipsec_engine_algs
));
1806 static struct platform_driver ipsec_driver
= {
1807 .probe
= ipsec_probe
,
1808 .remove
= __devexit_p(spacc_remove
),
1810 .name
= "picoxcell-ipsec",
1812 .pm
= &spacc_pm_ops
,
1813 #endif /* CONFIG_PM */
1817 static int __devinit
l2_probe(struct platform_device
*pdev
)
1819 return spacc_probe(pdev
, SPACC_CRYPTO_L2_MAX_CTXS
,
1820 SPACC_CRYPTO_L2_CIPHER_PG_SZ
,
1821 SPACC_CRYPTO_L2_HASH_PG_SZ
, SPACC_CRYPTO_L2_FIFO_SZ
,
1822 l2_engine_algs
, ARRAY_SIZE(l2_engine_algs
));
1825 static struct platform_driver l2_driver
= {
1827 .remove
= __devexit_p(spacc_remove
),
1829 .name
= "picoxcell-l2",
1831 .pm
= &spacc_pm_ops
,
1832 #endif /* CONFIG_PM */
1836 static int __init
spacc_init(void)
1838 int ret
= platform_driver_register(&ipsec_driver
);
1840 pr_err("failed to register ipsec spacc driver");
1844 ret
= platform_driver_register(&l2_driver
);
1846 pr_err("failed to register l2 spacc driver");
1853 platform_driver_unregister(&ipsec_driver
);
1857 module_init(spacc_init
);
1859 static void __exit
spacc_exit(void)
1861 platform_driver_unregister(&ipsec_driver
);
1862 platform_driver_unregister(&l2_driver
);
1864 module_exit(spacc_exit
);
1866 MODULE_LICENSE("GPL");
1867 MODULE_AUTHOR("Jamie Iles");