ARM: SMDK6410: Register IISv4 device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / soc-core.c
blob0a6440c6f54a80a9af52aa10ffe9d898fe5c456d
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
39 static DEFINE_MUTEX(pcm_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
65 * This function forces any delayed work to be queued and run.
67 static int run_delayed_work(struct delayed_work *dwork)
69 int ret;
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
80 return ret;
83 /* codec register dump */
84 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
86 int i, step = 1, count = 0;
88 if (!codec->reg_cache_size)
89 return 0;
91 if (codec->reg_cache_step)
92 step = codec->reg_cache_step;
94 count += sprintf(buf, "%s registers\n", codec->name);
95 for (i = 0; i < codec->reg_cache_size; i += step) {
96 if (codec->readable_register && !codec->readable_register(i))
97 continue;
99 count += sprintf(buf + count, "%2x: ", i);
100 if (count >= PAGE_SIZE - 1)
101 break;
103 if (codec->display_register)
104 count += codec->display_register(codec, buf + count,
105 PAGE_SIZE - count, i);
106 else
107 count += snprintf(buf + count, PAGE_SIZE - count,
108 "%4x", codec->read(codec, i));
110 if (count >= PAGE_SIZE - 1)
111 break;
113 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
114 if (count >= PAGE_SIZE - 1)
115 break;
118 /* Truncate count; min() would cause a warning */
119 if (count >= PAGE_SIZE)
120 count = PAGE_SIZE - 1;
122 return count;
124 static ssize_t codec_reg_show(struct device *dev,
125 struct device_attribute *attr, char *buf)
127 struct snd_soc_device *devdata = dev_get_drvdata(dev);
128 return soc_codec_reg_show(devdata->card->codec, buf);
131 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
133 #ifdef CONFIG_DEBUG_FS
134 static int codec_reg_open_file(struct inode *inode, struct file *file)
136 file->private_data = inode->i_private;
137 return 0;
140 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
141 size_t count, loff_t *ppos)
143 ssize_t ret;
144 struct snd_soc_codec *codec = file->private_data;
145 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
146 if (!buf)
147 return -ENOMEM;
148 ret = soc_codec_reg_show(codec, buf);
149 if (ret >= 0)
150 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
151 kfree(buf);
152 return ret;
155 static ssize_t codec_reg_write_file(struct file *file,
156 const char __user *user_buf, size_t count, loff_t *ppos)
158 char buf[32];
159 int buf_size;
160 char *start = buf;
161 unsigned long reg, value;
162 int step = 1;
163 struct snd_soc_codec *codec = file->private_data;
165 buf_size = min(count, (sizeof(buf)-1));
166 if (copy_from_user(buf, user_buf, buf_size))
167 return -EFAULT;
168 buf[buf_size] = 0;
170 if (codec->reg_cache_step)
171 step = codec->reg_cache_step;
173 while (*start == ' ')
174 start++;
175 reg = simple_strtoul(start, &start, 16);
176 if ((reg >= codec->reg_cache_size) || (reg % step))
177 return -EINVAL;
178 while (*start == ' ')
179 start++;
180 if (strict_strtoul(start, 16, &value))
181 return -EINVAL;
182 codec->write(codec, reg, value);
183 return buf_size;
186 static const struct file_operations codec_reg_fops = {
187 .open = codec_reg_open_file,
188 .read = codec_reg_read_file,
189 .write = codec_reg_write_file,
192 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
194 char codec_root[128];
196 if (codec->dev)
197 snprintf(codec_root, sizeof(codec_root),
198 "%s.%s", codec->name, dev_name(codec->dev));
199 else
200 snprintf(codec_root, sizeof(codec_root),
201 "%s", codec->name);
203 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
204 debugfs_root);
205 if (!codec->debugfs_codec_root) {
206 printk(KERN_WARNING
207 "ASoC: Failed to create codec debugfs directory\n");
208 return;
211 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
212 codec->debugfs_codec_root,
213 codec, &codec_reg_fops);
214 if (!codec->debugfs_reg)
215 printk(KERN_WARNING
216 "ASoC: Failed to create codec register debugfs file\n");
218 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
219 codec->debugfs_codec_root,
220 &codec->pop_time);
221 if (!codec->debugfs_pop_time)
222 printk(KERN_WARNING
223 "Failed to create pop time debugfs file\n");
225 codec->debugfs_dapm = debugfs_create_dir("dapm",
226 codec->debugfs_codec_root);
227 if (!codec->debugfs_dapm)
228 printk(KERN_WARNING
229 "Failed to create DAPM debugfs directory\n");
231 snd_soc_dapm_debugfs_init(codec);
234 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
236 debugfs_remove_recursive(codec->debugfs_codec_root);
239 #else
241 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
245 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
248 #endif
250 #ifdef CONFIG_SND_SOC_AC97_BUS
251 /* unregister ac97 codec */
252 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
254 if (codec->ac97->dev.bus)
255 device_unregister(&codec->ac97->dev);
256 return 0;
259 /* stop no dev release warning */
260 static void soc_ac97_device_release(struct device *dev){}
262 /* register ac97 codec to bus */
263 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
265 int err;
267 codec->ac97->dev.bus = &ac97_bus_type;
268 codec->ac97->dev.parent = codec->card->dev;
269 codec->ac97->dev.release = soc_ac97_device_release;
271 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
272 codec->card->number, 0, codec->name);
273 err = device_register(&codec->ac97->dev);
274 if (err < 0) {
275 snd_printk(KERN_ERR "Can't register ac97 bus\n");
276 codec->ac97->dev.bus = NULL;
277 return err;
279 return 0;
281 #endif
283 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
285 struct snd_soc_pcm_runtime *rtd = substream->private_data;
286 struct snd_soc_device *socdev = rtd->socdev;
287 struct snd_soc_card *card = socdev->card;
288 struct snd_soc_dai_link *machine = rtd->dai;
289 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
290 struct snd_soc_dai *codec_dai = machine->codec_dai;
291 int ret;
293 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
294 machine->symmetric_rates) {
295 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
296 machine->rate);
298 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
299 SNDRV_PCM_HW_PARAM_RATE,
300 machine->rate,
301 machine->rate);
302 if (ret < 0) {
303 dev_err(card->dev,
304 "Unable to apply rate symmetry constraint: %d\n", ret);
305 return ret;
309 return 0;
313 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
314 * then initialized and any private data can be allocated. This also calls
315 * startup for the cpu DAI, platform, machine and codec DAI.
317 static int soc_pcm_open(struct snd_pcm_substream *substream)
319 struct snd_soc_pcm_runtime *rtd = substream->private_data;
320 struct snd_soc_device *socdev = rtd->socdev;
321 struct snd_soc_card *card = socdev->card;
322 struct snd_pcm_runtime *runtime = substream->runtime;
323 struct snd_soc_dai_link *machine = rtd->dai;
324 struct snd_soc_platform *platform = card->platform;
325 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
326 struct snd_soc_dai *codec_dai = machine->codec_dai;
327 int ret = 0;
329 mutex_lock(&pcm_mutex);
331 /* startup the audio subsystem */
332 if (cpu_dai->ops->startup) {
333 ret = cpu_dai->ops->startup(substream, cpu_dai);
334 if (ret < 0) {
335 printk(KERN_ERR "asoc: can't open interface %s\n",
336 cpu_dai->name);
337 goto out;
341 if (platform->pcm_ops->open) {
342 ret = platform->pcm_ops->open(substream);
343 if (ret < 0) {
344 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
345 goto platform_err;
349 if (codec_dai->ops->startup) {
350 ret = codec_dai->ops->startup(substream, codec_dai);
351 if (ret < 0) {
352 printk(KERN_ERR "asoc: can't open codec %s\n",
353 codec_dai->name);
354 goto codec_dai_err;
358 if (machine->ops && machine->ops->startup) {
359 ret = machine->ops->startup(substream);
360 if (ret < 0) {
361 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
362 goto machine_err;
366 /* Check that the codec and cpu DAI's are compatible */
367 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
368 runtime->hw.rate_min =
369 max(codec_dai->playback.rate_min,
370 cpu_dai->playback.rate_min);
371 runtime->hw.rate_max =
372 min(codec_dai->playback.rate_max,
373 cpu_dai->playback.rate_max);
374 runtime->hw.channels_min =
375 max(codec_dai->playback.channels_min,
376 cpu_dai->playback.channels_min);
377 runtime->hw.channels_max =
378 min(codec_dai->playback.channels_max,
379 cpu_dai->playback.channels_max);
380 runtime->hw.formats =
381 codec_dai->playback.formats & cpu_dai->playback.formats;
382 runtime->hw.rates =
383 codec_dai->playback.rates & cpu_dai->playback.rates;
384 } else {
385 runtime->hw.rate_min =
386 max(codec_dai->capture.rate_min,
387 cpu_dai->capture.rate_min);
388 runtime->hw.rate_max =
389 min(codec_dai->capture.rate_max,
390 cpu_dai->capture.rate_max);
391 runtime->hw.channels_min =
392 max(codec_dai->capture.channels_min,
393 cpu_dai->capture.channels_min);
394 runtime->hw.channels_max =
395 min(codec_dai->capture.channels_max,
396 cpu_dai->capture.channels_max);
397 runtime->hw.formats =
398 codec_dai->capture.formats & cpu_dai->capture.formats;
399 runtime->hw.rates =
400 codec_dai->capture.rates & cpu_dai->capture.rates;
403 snd_pcm_limit_hw_rates(runtime);
404 if (!runtime->hw.rates) {
405 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
406 codec_dai->name, cpu_dai->name);
407 goto machine_err;
409 if (!runtime->hw.formats) {
410 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
411 codec_dai->name, cpu_dai->name);
412 goto machine_err;
414 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
415 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
416 codec_dai->name, cpu_dai->name);
417 goto machine_err;
420 /* Symmetry only applies if we've already got an active stream. */
421 if (cpu_dai->active || codec_dai->active) {
422 ret = soc_pcm_apply_symmetry(substream);
423 if (ret != 0)
424 goto machine_err;
427 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
428 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
429 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
430 runtime->hw.channels_max);
431 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
432 runtime->hw.rate_max);
434 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
435 cpu_dai->playback.active = codec_dai->playback.active = 1;
436 else
437 cpu_dai->capture.active = codec_dai->capture.active = 1;
438 cpu_dai->active = codec_dai->active = 1;
439 cpu_dai->runtime = runtime;
440 card->codec->active++;
441 mutex_unlock(&pcm_mutex);
442 return 0;
444 machine_err:
445 if (machine->ops && machine->ops->shutdown)
446 machine->ops->shutdown(substream);
448 codec_dai_err:
449 if (platform->pcm_ops->close)
450 platform->pcm_ops->close(substream);
452 platform_err:
453 if (cpu_dai->ops->shutdown)
454 cpu_dai->ops->shutdown(substream, cpu_dai);
455 out:
456 mutex_unlock(&pcm_mutex);
457 return ret;
461 * Power down the audio subsystem pmdown_time msecs after close is called.
462 * This is to ensure there are no pops or clicks in between any music tracks
463 * due to DAPM power cycling.
465 static void close_delayed_work(struct work_struct *work)
467 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
468 delayed_work.work);
469 struct snd_soc_codec *codec = card->codec;
470 struct snd_soc_dai *codec_dai;
471 int i;
473 mutex_lock(&pcm_mutex);
474 for (i = 0; i < codec->num_dai; i++) {
475 codec_dai = &codec->dai[i];
477 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
478 codec_dai->playback.stream_name,
479 codec_dai->playback.active ? "active" : "inactive",
480 codec_dai->pop_wait ? "yes" : "no");
482 /* are we waiting on this codec DAI stream */
483 if (codec_dai->pop_wait == 1) {
484 codec_dai->pop_wait = 0;
485 snd_soc_dapm_stream_event(codec,
486 codec_dai->playback.stream_name,
487 SND_SOC_DAPM_STREAM_STOP);
490 mutex_unlock(&pcm_mutex);
494 * Called by ALSA when a PCM substream is closed. Private data can be
495 * freed here. The cpu DAI, codec DAI, machine and platform are also
496 * shutdown.
498 static int soc_codec_close(struct snd_pcm_substream *substream)
500 struct snd_soc_pcm_runtime *rtd = substream->private_data;
501 struct snd_soc_device *socdev = rtd->socdev;
502 struct snd_soc_card *card = socdev->card;
503 struct snd_soc_dai_link *machine = rtd->dai;
504 struct snd_soc_platform *platform = card->platform;
505 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
506 struct snd_soc_dai *codec_dai = machine->codec_dai;
507 struct snd_soc_codec *codec = card->codec;
509 mutex_lock(&pcm_mutex);
511 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
512 cpu_dai->playback.active = codec_dai->playback.active = 0;
513 else
514 cpu_dai->capture.active = codec_dai->capture.active = 0;
516 if (codec_dai->playback.active == 0 &&
517 codec_dai->capture.active == 0) {
518 cpu_dai->active = codec_dai->active = 0;
520 codec->active--;
522 /* Muting the DAC suppresses artifacts caused during digital
523 * shutdown, for example from stopping clocks.
525 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
526 snd_soc_dai_digital_mute(codec_dai, 1);
528 if (cpu_dai->ops->shutdown)
529 cpu_dai->ops->shutdown(substream, cpu_dai);
531 if (codec_dai->ops->shutdown)
532 codec_dai->ops->shutdown(substream, codec_dai);
534 if (machine->ops && machine->ops->shutdown)
535 machine->ops->shutdown(substream);
537 if (platform->pcm_ops->close)
538 platform->pcm_ops->close(substream);
539 cpu_dai->runtime = NULL;
541 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
542 /* start delayed pop wq here for playback streams */
543 codec_dai->pop_wait = 1;
544 schedule_delayed_work(&card->delayed_work,
545 msecs_to_jiffies(pmdown_time));
546 } else {
547 /* capture streams can be powered down now */
548 snd_soc_dapm_stream_event(codec,
549 codec_dai->capture.stream_name,
550 SND_SOC_DAPM_STREAM_STOP);
553 mutex_unlock(&pcm_mutex);
554 return 0;
558 * Called by ALSA when the PCM substream is prepared, can set format, sample
559 * rate, etc. This function is non atomic and can be called multiple times,
560 * it can refer to the runtime info.
562 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
564 struct snd_soc_pcm_runtime *rtd = substream->private_data;
565 struct snd_soc_device *socdev = rtd->socdev;
566 struct snd_soc_card *card = socdev->card;
567 struct snd_soc_dai_link *machine = rtd->dai;
568 struct snd_soc_platform *platform = card->platform;
569 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
570 struct snd_soc_dai *codec_dai = machine->codec_dai;
571 struct snd_soc_codec *codec = card->codec;
572 int ret = 0;
574 mutex_lock(&pcm_mutex);
576 if (machine->ops && machine->ops->prepare) {
577 ret = machine->ops->prepare(substream);
578 if (ret < 0) {
579 printk(KERN_ERR "asoc: machine prepare error\n");
580 goto out;
584 if (platform->pcm_ops->prepare) {
585 ret = platform->pcm_ops->prepare(substream);
586 if (ret < 0) {
587 printk(KERN_ERR "asoc: platform prepare error\n");
588 goto out;
592 if (codec_dai->ops->prepare) {
593 ret = codec_dai->ops->prepare(substream, codec_dai);
594 if (ret < 0) {
595 printk(KERN_ERR "asoc: codec DAI prepare error\n");
596 goto out;
600 if (cpu_dai->ops->prepare) {
601 ret = cpu_dai->ops->prepare(substream, cpu_dai);
602 if (ret < 0) {
603 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
604 goto out;
608 /* cancel any delayed stream shutdown that is pending */
609 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
610 codec_dai->pop_wait) {
611 codec_dai->pop_wait = 0;
612 cancel_delayed_work(&card->delayed_work);
615 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
616 snd_soc_dapm_stream_event(codec,
617 codec_dai->playback.stream_name,
618 SND_SOC_DAPM_STREAM_START);
619 else
620 snd_soc_dapm_stream_event(codec,
621 codec_dai->capture.stream_name,
622 SND_SOC_DAPM_STREAM_START);
624 snd_soc_dai_digital_mute(codec_dai, 0);
626 out:
627 mutex_unlock(&pcm_mutex);
628 return ret;
632 * Called by ALSA when the hardware params are set by application. This
633 * function can also be called multiple times and can allocate buffers
634 * (using snd_pcm_lib_* ). It's non-atomic.
636 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
637 struct snd_pcm_hw_params *params)
639 struct snd_soc_pcm_runtime *rtd = substream->private_data;
640 struct snd_soc_device *socdev = rtd->socdev;
641 struct snd_soc_dai_link *machine = rtd->dai;
642 struct snd_soc_card *card = socdev->card;
643 struct snd_soc_platform *platform = card->platform;
644 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
645 struct snd_soc_dai *codec_dai = machine->codec_dai;
646 int ret = 0;
648 mutex_lock(&pcm_mutex);
650 if (machine->ops && machine->ops->hw_params) {
651 ret = machine->ops->hw_params(substream, params);
652 if (ret < 0) {
653 printk(KERN_ERR "asoc: machine hw_params failed\n");
654 goto out;
658 if (codec_dai->ops->hw_params) {
659 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
660 if (ret < 0) {
661 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
662 codec_dai->name);
663 goto codec_err;
667 if (cpu_dai->ops->hw_params) {
668 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
669 if (ret < 0) {
670 printk(KERN_ERR "asoc: interface %s hw params failed\n",
671 cpu_dai->name);
672 goto interface_err;
676 if (platform->pcm_ops->hw_params) {
677 ret = platform->pcm_ops->hw_params(substream, params);
678 if (ret < 0) {
679 printk(KERN_ERR "asoc: platform %s hw params failed\n",
680 platform->name);
681 goto platform_err;
685 machine->rate = params_rate(params);
687 out:
688 mutex_unlock(&pcm_mutex);
689 return ret;
691 platform_err:
692 if (cpu_dai->ops->hw_free)
693 cpu_dai->ops->hw_free(substream, cpu_dai);
695 interface_err:
696 if (codec_dai->ops->hw_free)
697 codec_dai->ops->hw_free(substream, codec_dai);
699 codec_err:
700 if (machine->ops && machine->ops->hw_free)
701 machine->ops->hw_free(substream);
703 mutex_unlock(&pcm_mutex);
704 return ret;
708 * Free's resources allocated by hw_params, can be called multiple times
710 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
712 struct snd_soc_pcm_runtime *rtd = substream->private_data;
713 struct snd_soc_device *socdev = rtd->socdev;
714 struct snd_soc_dai_link *machine = rtd->dai;
715 struct snd_soc_card *card = socdev->card;
716 struct snd_soc_platform *platform = card->platform;
717 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
718 struct snd_soc_dai *codec_dai = machine->codec_dai;
719 struct snd_soc_codec *codec = card->codec;
721 mutex_lock(&pcm_mutex);
723 /* apply codec digital mute */
724 if (!codec->active)
725 snd_soc_dai_digital_mute(codec_dai, 1);
727 /* free any machine hw params */
728 if (machine->ops && machine->ops->hw_free)
729 machine->ops->hw_free(substream);
731 /* free any DMA resources */
732 if (platform->pcm_ops->hw_free)
733 platform->pcm_ops->hw_free(substream);
735 /* now free hw params for the DAI's */
736 if (codec_dai->ops->hw_free)
737 codec_dai->ops->hw_free(substream, codec_dai);
739 if (cpu_dai->ops->hw_free)
740 cpu_dai->ops->hw_free(substream, cpu_dai);
742 mutex_unlock(&pcm_mutex);
743 return 0;
746 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
748 struct snd_soc_pcm_runtime *rtd = substream->private_data;
749 struct snd_soc_device *socdev = rtd->socdev;
750 struct snd_soc_card *card= socdev->card;
751 struct snd_soc_dai_link *machine = rtd->dai;
752 struct snd_soc_platform *platform = card->platform;
753 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
754 struct snd_soc_dai *codec_dai = machine->codec_dai;
755 int ret;
757 if (codec_dai->ops->trigger) {
758 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
759 if (ret < 0)
760 return ret;
763 if (platform->pcm_ops->trigger) {
764 ret = platform->pcm_ops->trigger(substream, cmd);
765 if (ret < 0)
766 return ret;
769 if (cpu_dai->ops->trigger) {
770 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
771 if (ret < 0)
772 return ret;
774 return 0;
777 /* ASoC PCM operations */
778 static struct snd_pcm_ops soc_pcm_ops = {
779 .open = soc_pcm_open,
780 .close = soc_codec_close,
781 .hw_params = soc_pcm_hw_params,
782 .hw_free = soc_pcm_hw_free,
783 .prepare = soc_pcm_prepare,
784 .trigger = soc_pcm_trigger,
787 #ifdef CONFIG_PM
788 /* powers down audio subsystem for suspend */
789 static int soc_suspend(struct device *dev)
791 struct platform_device *pdev = to_platform_device(dev);
792 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
793 struct snd_soc_card *card = socdev->card;
794 struct snd_soc_platform *platform = card->platform;
795 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
796 struct snd_soc_codec *codec = card->codec;
797 int i;
799 /* If the initialization of this soc device failed, there is no codec
800 * associated with it. Just bail out in this case.
802 if (!codec)
803 return 0;
805 /* Due to the resume being scheduled into a workqueue we could
806 * suspend before that's finished - wait for it to complete.
808 snd_power_lock(codec->card);
809 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
810 snd_power_unlock(codec->card);
812 /* we're going to block userspace touching us until resume completes */
813 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
815 /* mute any active DAC's */
816 for (i = 0; i < card->num_links; i++) {
817 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
818 if (dai->ops->digital_mute && dai->playback.active)
819 dai->ops->digital_mute(dai, 1);
822 /* suspend all pcms */
823 for (i = 0; i < card->num_links; i++)
824 snd_pcm_suspend_all(card->dai_link[i].pcm);
826 if (card->suspend_pre)
827 card->suspend_pre(pdev, PMSG_SUSPEND);
829 for (i = 0; i < card->num_links; i++) {
830 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
831 if (cpu_dai->suspend && !cpu_dai->ac97_control)
832 cpu_dai->suspend(cpu_dai);
833 if (platform->suspend)
834 platform->suspend(cpu_dai);
837 /* close any waiting streams and save state */
838 run_delayed_work(&card->delayed_work);
839 codec->suspend_bias_level = codec->bias_level;
841 for (i = 0; i < codec->num_dai; i++) {
842 char *stream = codec->dai[i].playback.stream_name;
843 if (stream != NULL)
844 snd_soc_dapm_stream_event(codec, stream,
845 SND_SOC_DAPM_STREAM_SUSPEND);
846 stream = codec->dai[i].capture.stream_name;
847 if (stream != NULL)
848 snd_soc_dapm_stream_event(codec, stream,
849 SND_SOC_DAPM_STREAM_SUSPEND);
852 if (codec_dev->suspend)
853 codec_dev->suspend(pdev, PMSG_SUSPEND);
855 for (i = 0; i < card->num_links; i++) {
856 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
857 if (cpu_dai->suspend && cpu_dai->ac97_control)
858 cpu_dai->suspend(cpu_dai);
861 if (card->suspend_post)
862 card->suspend_post(pdev, PMSG_SUSPEND);
864 return 0;
867 /* deferred resume work, so resume can complete before we finished
868 * setting our codec back up, which can be very slow on I2C
870 static void soc_resume_deferred(struct work_struct *work)
872 struct snd_soc_card *card = container_of(work,
873 struct snd_soc_card,
874 deferred_resume_work);
875 struct snd_soc_device *socdev = card->socdev;
876 struct snd_soc_platform *platform = card->platform;
877 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
878 struct snd_soc_codec *codec = card->codec;
879 struct platform_device *pdev = to_platform_device(socdev->dev);
880 int i;
882 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
883 * so userspace apps are blocked from touching us
886 dev_dbg(socdev->dev, "starting resume work\n");
888 if (card->resume_pre)
889 card->resume_pre(pdev);
891 for (i = 0; i < card->num_links; i++) {
892 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
893 if (cpu_dai->resume && cpu_dai->ac97_control)
894 cpu_dai->resume(cpu_dai);
897 if (codec_dev->resume)
898 codec_dev->resume(pdev);
900 for (i = 0; i < codec->num_dai; i++) {
901 char *stream = codec->dai[i].playback.stream_name;
902 if (stream != NULL)
903 snd_soc_dapm_stream_event(codec, stream,
904 SND_SOC_DAPM_STREAM_RESUME);
905 stream = codec->dai[i].capture.stream_name;
906 if (stream != NULL)
907 snd_soc_dapm_stream_event(codec, stream,
908 SND_SOC_DAPM_STREAM_RESUME);
911 /* unmute any active DACs */
912 for (i = 0; i < card->num_links; i++) {
913 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
914 if (dai->ops->digital_mute && dai->playback.active)
915 dai->ops->digital_mute(dai, 0);
918 for (i = 0; i < card->num_links; i++) {
919 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
920 if (cpu_dai->resume && !cpu_dai->ac97_control)
921 cpu_dai->resume(cpu_dai);
922 if (platform->resume)
923 platform->resume(cpu_dai);
926 if (card->resume_post)
927 card->resume_post(pdev);
929 dev_dbg(socdev->dev, "resume work completed\n");
931 /* userspace can access us now we are back as we were before */
932 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
935 /* powers up audio subsystem after a suspend */
936 static int soc_resume(struct device *dev)
938 struct platform_device *pdev = to_platform_device(dev);
939 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
940 struct snd_soc_card *card = socdev->card;
941 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
943 /* AC97 devices might have other drivers hanging off them so
944 * need to resume immediately. Other drivers don't have that
945 * problem and may take a substantial amount of time to resume
946 * due to I/O costs and anti-pop so handle them out of line.
948 if (cpu_dai->ac97_control) {
949 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
950 soc_resume_deferred(&card->deferred_resume_work);
951 } else {
952 dev_dbg(socdev->dev, "Scheduling resume work\n");
953 if (!schedule_work(&card->deferred_resume_work))
954 dev_err(socdev->dev, "resume work item may be lost\n");
957 return 0;
959 #else
960 #define soc_suspend NULL
961 #define soc_resume NULL
962 #endif
964 static struct snd_soc_dai_ops null_dai_ops = {
967 static void snd_soc_instantiate_card(struct snd_soc_card *card)
969 struct platform_device *pdev = container_of(card->dev,
970 struct platform_device,
971 dev);
972 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
973 struct snd_soc_codec *codec;
974 struct snd_soc_platform *platform;
975 struct snd_soc_dai *dai;
976 int i, found, ret, ac97;
978 if (card->instantiated)
979 return;
981 found = 0;
982 list_for_each_entry(platform, &platform_list, list)
983 if (card->platform == platform) {
984 found = 1;
985 break;
987 if (!found) {
988 dev_dbg(card->dev, "Platform %s not registered\n",
989 card->platform->name);
990 return;
993 ac97 = 0;
994 for (i = 0; i < card->num_links; i++) {
995 found = 0;
996 list_for_each_entry(dai, &dai_list, list)
997 if (card->dai_link[i].cpu_dai == dai) {
998 found = 1;
999 break;
1001 if (!found) {
1002 dev_dbg(card->dev, "DAI %s not registered\n",
1003 card->dai_link[i].cpu_dai->name);
1004 return;
1007 if (card->dai_link[i].cpu_dai->ac97_control)
1008 ac97 = 1;
1011 for (i = 0; i < card->num_links; i++) {
1012 if (!card->dai_link[i].codec_dai->ops)
1013 card->dai_link[i].codec_dai->ops = &null_dai_ops;
1016 /* If we have AC97 in the system then don't wait for the
1017 * codec. This will need revisiting if we have to handle
1018 * systems with mixed AC97 and non-AC97 parts. Only check for
1019 * DAIs currently; we can't do this per link since some AC97
1020 * codecs have non-AC97 DAIs.
1022 if (!ac97)
1023 for (i = 0; i < card->num_links; i++) {
1024 found = 0;
1025 list_for_each_entry(dai, &dai_list, list)
1026 if (card->dai_link[i].codec_dai == dai) {
1027 found = 1;
1028 break;
1030 if (!found) {
1031 dev_dbg(card->dev, "DAI %s not registered\n",
1032 card->dai_link[i].codec_dai->name);
1033 return;
1037 /* Note that we do not current check for codec components */
1039 dev_dbg(card->dev, "All components present, instantiating\n");
1041 /* Found everything, bring it up */
1042 if (card->probe) {
1043 ret = card->probe(pdev);
1044 if (ret < 0)
1045 return;
1048 for (i = 0; i < card->num_links; i++) {
1049 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1050 if (cpu_dai->probe) {
1051 ret = cpu_dai->probe(pdev, cpu_dai);
1052 if (ret < 0)
1053 goto cpu_dai_err;
1057 if (codec_dev->probe) {
1058 ret = codec_dev->probe(pdev);
1059 if (ret < 0)
1060 goto cpu_dai_err;
1062 codec = card->codec;
1064 if (platform->probe) {
1065 ret = platform->probe(pdev);
1066 if (ret < 0)
1067 goto platform_err;
1070 /* DAPM stream work */
1071 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
1072 #ifdef CONFIG_PM
1073 /* deferred resume work */
1074 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1075 #endif
1077 for (i = 0; i < card->num_links; i++) {
1078 if (card->dai_link[i].init) {
1079 ret = card->dai_link[i].init(codec);
1080 if (ret < 0) {
1081 printk(KERN_ERR "asoc: failed to init %s\n",
1082 card->dai_link[i].stream_name);
1083 continue;
1086 if (card->dai_link[i].codec_dai->ac97_control)
1087 ac97 = 1;
1090 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1091 "%s", card->name);
1092 snprintf(codec->card->longname, sizeof(codec->card->longname),
1093 "%s (%s)", card->name, codec->name);
1095 /* Make sure all DAPM widgets are instantiated */
1096 snd_soc_dapm_new_widgets(codec);
1098 ret = snd_card_register(codec->card);
1099 if (ret < 0) {
1100 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1101 codec->name);
1102 goto card_err;
1105 mutex_lock(&codec->mutex);
1106 #ifdef CONFIG_SND_SOC_AC97_BUS
1107 /* Only instantiate AC97 if not already done by the adaptor
1108 * for the generic AC97 subsystem.
1110 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1111 ret = soc_ac97_dev_register(codec);
1112 if (ret < 0) {
1113 printk(KERN_ERR "asoc: AC97 device register failed\n");
1114 snd_card_free(codec->card);
1115 mutex_unlock(&codec->mutex);
1116 goto card_err;
1119 #endif
1121 ret = snd_soc_dapm_sys_add(card->socdev->dev);
1122 if (ret < 0)
1123 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1125 ret = device_create_file(card->socdev->dev, &dev_attr_codec_reg);
1126 if (ret < 0)
1127 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1129 soc_init_codec_debugfs(codec);
1130 mutex_unlock(&codec->mutex);
1132 card->instantiated = 1;
1134 return;
1136 card_err:
1137 if (platform->remove)
1138 platform->remove(pdev);
1140 platform_err:
1141 if (codec_dev->remove)
1142 codec_dev->remove(pdev);
1144 cpu_dai_err:
1145 for (i--; i >= 0; i--) {
1146 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1147 if (cpu_dai->remove)
1148 cpu_dai->remove(pdev, cpu_dai);
1151 if (card->remove)
1152 card->remove(pdev);
1156 * Attempt to initialise any uninitalised cards. Must be called with
1157 * client_mutex.
1159 static void snd_soc_instantiate_cards(void)
1161 struct snd_soc_card *card;
1162 list_for_each_entry(card, &card_list, list)
1163 snd_soc_instantiate_card(card);
1166 /* probes a new socdev */
1167 static int soc_probe(struct platform_device *pdev)
1169 int ret = 0;
1170 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1171 struct snd_soc_card *card = socdev->card;
1173 /* Bodge while we push things out of socdev */
1174 card->socdev = socdev;
1176 /* Bodge while we unpick instantiation */
1177 card->dev = &pdev->dev;
1178 ret = snd_soc_register_card(card);
1179 if (ret != 0) {
1180 dev_err(&pdev->dev, "Failed to register card\n");
1181 return ret;
1184 return 0;
1187 /* removes a socdev */
1188 static int soc_remove(struct platform_device *pdev)
1190 int i;
1191 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1192 struct snd_soc_card *card = socdev->card;
1193 struct snd_soc_platform *platform = card->platform;
1194 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1196 if (!card->instantiated)
1197 return 0;
1199 run_delayed_work(&card->delayed_work);
1201 if (platform->remove)
1202 platform->remove(pdev);
1204 if (codec_dev->remove)
1205 codec_dev->remove(pdev);
1207 for (i = 0; i < card->num_links; i++) {
1208 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1209 if (cpu_dai->remove)
1210 cpu_dai->remove(pdev, cpu_dai);
1213 if (card->remove)
1214 card->remove(pdev);
1216 snd_soc_unregister_card(card);
1218 return 0;
1221 static int soc_poweroff(struct device *dev)
1223 struct platform_device *pdev = to_platform_device(dev);
1224 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1225 struct snd_soc_card *card = socdev->card;
1227 if (!card->instantiated)
1228 return 0;
1230 /* Flush out pmdown_time work - we actually do want to run it
1231 * now, we're shutting down so no imminent restart. */
1232 run_delayed_work(&card->delayed_work);
1234 snd_soc_dapm_shutdown(socdev);
1236 return 0;
1239 static const struct dev_pm_ops soc_pm_ops = {
1240 .suspend = soc_suspend,
1241 .resume = soc_resume,
1242 .poweroff = soc_poweroff,
1245 /* ASoC platform driver */
1246 static struct platform_driver soc_driver = {
1247 .driver = {
1248 .name = "soc-audio",
1249 .owner = THIS_MODULE,
1250 .pm = &soc_pm_ops,
1252 .probe = soc_probe,
1253 .remove = soc_remove,
1256 /* create a new pcm */
1257 static int soc_new_pcm(struct snd_soc_device *socdev,
1258 struct snd_soc_dai_link *dai_link, int num)
1260 struct snd_soc_card *card = socdev->card;
1261 struct snd_soc_codec *codec = card->codec;
1262 struct snd_soc_platform *platform = card->platform;
1263 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1264 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1265 struct snd_soc_pcm_runtime *rtd;
1266 struct snd_pcm *pcm;
1267 char new_name[64];
1268 int ret = 0, playback = 0, capture = 0;
1270 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1271 if (rtd == NULL)
1272 return -ENOMEM;
1274 rtd->dai = dai_link;
1275 rtd->socdev = socdev;
1276 codec_dai->codec = card->codec;
1278 /* check client and interface hw capabilities */
1279 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1280 num);
1282 if (codec_dai->playback.channels_min)
1283 playback = 1;
1284 if (codec_dai->capture.channels_min)
1285 capture = 1;
1287 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1288 capture, &pcm);
1289 if (ret < 0) {
1290 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1291 codec->name);
1292 kfree(rtd);
1293 return ret;
1296 dai_link->pcm = pcm;
1297 pcm->private_data = rtd;
1298 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1299 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1300 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1301 soc_pcm_ops.copy = platform->pcm_ops->copy;
1302 soc_pcm_ops.silence = platform->pcm_ops->silence;
1303 soc_pcm_ops.ack = platform->pcm_ops->ack;
1304 soc_pcm_ops.page = platform->pcm_ops->page;
1306 if (playback)
1307 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1309 if (capture)
1310 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1312 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1313 if (ret < 0) {
1314 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1315 kfree(rtd);
1316 return ret;
1319 pcm->private_free = platform->pcm_free;
1320 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1321 cpu_dai->name);
1322 return ret;
1326 * snd_soc_codec_volatile_register: Report if a register is volatile.
1328 * @codec: CODEC to query.
1329 * @reg: Register to query.
1331 * Boolean function indiciating if a CODEC register is volatile.
1333 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1335 if (codec->volatile_register)
1336 return codec->volatile_register(reg);
1337 else
1338 return 0;
1340 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1343 * snd_soc_new_ac97_codec - initailise AC97 device
1344 * @codec: audio codec
1345 * @ops: AC97 bus operations
1346 * @num: AC97 codec number
1348 * Initialises AC97 codec resources for use by ad-hoc devices only.
1350 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1351 struct snd_ac97_bus_ops *ops, int num)
1353 mutex_lock(&codec->mutex);
1355 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1356 if (codec->ac97 == NULL) {
1357 mutex_unlock(&codec->mutex);
1358 return -ENOMEM;
1361 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1362 if (codec->ac97->bus == NULL) {
1363 kfree(codec->ac97);
1364 codec->ac97 = NULL;
1365 mutex_unlock(&codec->mutex);
1366 return -ENOMEM;
1369 codec->ac97->bus->ops = ops;
1370 codec->ac97->num = num;
1371 mutex_unlock(&codec->mutex);
1372 return 0;
1374 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1377 * snd_soc_free_ac97_codec - free AC97 codec device
1378 * @codec: audio codec
1380 * Frees AC97 codec device resources.
1382 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1384 mutex_lock(&codec->mutex);
1385 kfree(codec->ac97->bus);
1386 kfree(codec->ac97);
1387 codec->ac97 = NULL;
1388 mutex_unlock(&codec->mutex);
1390 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1393 * snd_soc_update_bits - update codec register bits
1394 * @codec: audio codec
1395 * @reg: codec register
1396 * @mask: register mask
1397 * @value: new value
1399 * Writes new register value.
1401 * Returns 1 for change else 0.
1403 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1404 unsigned int mask, unsigned int value)
1406 int change;
1407 unsigned int old, new;
1409 old = snd_soc_read(codec, reg);
1410 new = (old & ~mask) | value;
1411 change = old != new;
1412 if (change)
1413 snd_soc_write(codec, reg, new);
1415 return change;
1417 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1420 * snd_soc_update_bits_locked - update codec register bits
1421 * @codec: audio codec
1422 * @reg: codec register
1423 * @mask: register mask
1424 * @value: new value
1426 * Writes new register value, and takes the codec mutex.
1428 * Returns 1 for change else 0.
1430 static int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1431 unsigned short reg, unsigned int mask,
1432 unsigned int value)
1434 int change;
1436 mutex_lock(&codec->mutex);
1437 change = snd_soc_update_bits(codec, reg, mask, value);
1438 mutex_unlock(&codec->mutex);
1440 return change;
1444 * snd_soc_test_bits - test register for change
1445 * @codec: audio codec
1446 * @reg: codec register
1447 * @mask: register mask
1448 * @value: new value
1450 * Tests a register with a new value and checks if the new value is
1451 * different from the old value.
1453 * Returns 1 for change else 0.
1455 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1456 unsigned int mask, unsigned int value)
1458 int change;
1459 unsigned int old, new;
1461 old = snd_soc_read(codec, reg);
1462 new = (old & ~mask) | value;
1463 change = old != new;
1465 return change;
1467 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1470 * snd_soc_new_pcms - create new sound card and pcms
1471 * @socdev: the SoC audio device
1472 * @idx: ALSA card index
1473 * @xid: card identification
1475 * Create a new sound card based upon the codec and interface pcms.
1477 * Returns 0 for success, else error.
1479 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1481 struct snd_soc_card *card = socdev->card;
1482 struct snd_soc_codec *codec = card->codec;
1483 int ret, i;
1485 mutex_lock(&codec->mutex);
1487 /* register a sound card */
1488 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1489 if (ret < 0) {
1490 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1491 codec->name);
1492 mutex_unlock(&codec->mutex);
1493 return ret;
1496 codec->socdev = socdev;
1497 codec->card->dev = socdev->dev;
1498 codec->card->private_data = codec;
1499 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1501 /* create the pcms */
1502 for (i = 0; i < card->num_links; i++) {
1503 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1504 if (ret < 0) {
1505 printk(KERN_ERR "asoc: can't create pcm %s\n",
1506 card->dai_link[i].stream_name);
1507 mutex_unlock(&codec->mutex);
1508 return ret;
1510 if (card->dai_link[i].codec_dai->ac97_control) {
1511 snd_ac97_dev_add_pdata(codec->ac97,
1512 card->dai_link[i].cpu_dai->ac97_pdata);
1516 mutex_unlock(&codec->mutex);
1517 return ret;
1519 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1522 * snd_soc_free_pcms - free sound card and pcms
1523 * @socdev: the SoC audio device
1525 * Frees sound card and pcms associated with the socdev.
1526 * Also unregister the codec if it is an AC97 device.
1528 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1530 struct snd_soc_codec *codec = socdev->card->codec;
1531 #ifdef CONFIG_SND_SOC_AC97_BUS
1532 struct snd_soc_dai *codec_dai;
1533 int i;
1534 #endif
1536 mutex_lock(&codec->mutex);
1537 soc_cleanup_codec_debugfs(codec);
1538 #ifdef CONFIG_SND_SOC_AC97_BUS
1539 for (i = 0; i < codec->num_dai; i++) {
1540 codec_dai = &codec->dai[i];
1541 if (codec_dai->ac97_control && codec->ac97 &&
1542 strcmp(codec->name, "AC97") != 0) {
1543 soc_ac97_dev_unregister(codec);
1544 goto free_card;
1547 free_card:
1548 #endif
1550 if (codec->card)
1551 snd_card_free(codec->card);
1552 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1553 mutex_unlock(&codec->mutex);
1555 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1558 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1559 * @substream: the pcm substream
1560 * @hw: the hardware parameters
1562 * Sets the substream runtime hardware parameters.
1564 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1565 const struct snd_pcm_hardware *hw)
1567 struct snd_pcm_runtime *runtime = substream->runtime;
1568 runtime->hw.info = hw->info;
1569 runtime->hw.formats = hw->formats;
1570 runtime->hw.period_bytes_min = hw->period_bytes_min;
1571 runtime->hw.period_bytes_max = hw->period_bytes_max;
1572 runtime->hw.periods_min = hw->periods_min;
1573 runtime->hw.periods_max = hw->periods_max;
1574 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1575 runtime->hw.fifo_size = hw->fifo_size;
1576 return 0;
1578 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1581 * snd_soc_cnew - create new control
1582 * @_template: control template
1583 * @data: control private data
1584 * @long_name: control long name
1586 * Create a new mixer control from a template control.
1588 * Returns 0 for success, else error.
1590 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1591 void *data, char *long_name)
1593 struct snd_kcontrol_new template;
1595 memcpy(&template, _template, sizeof(template));
1596 if (long_name)
1597 template.name = long_name;
1598 template.index = 0;
1600 return snd_ctl_new1(&template, data);
1602 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1605 * snd_soc_add_controls - add an array of controls to a codec.
1606 * Convienience function to add a list of controls. Many codecs were
1607 * duplicating this code.
1609 * @codec: codec to add controls to
1610 * @controls: array of controls to add
1611 * @num_controls: number of elements in the array
1613 * Return 0 for success, else error.
1615 int snd_soc_add_controls(struct snd_soc_codec *codec,
1616 const struct snd_kcontrol_new *controls, int num_controls)
1618 struct snd_card *card = codec->card;
1619 int err, i;
1621 for (i = 0; i < num_controls; i++) {
1622 const struct snd_kcontrol_new *control = &controls[i];
1623 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1624 if (err < 0) {
1625 dev_err(codec->dev, "%s: Failed to add %s\n",
1626 codec->name, control->name);
1627 return err;
1631 return 0;
1633 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1636 * snd_soc_info_enum_double - enumerated double mixer info callback
1637 * @kcontrol: mixer control
1638 * @uinfo: control element information
1640 * Callback to provide information about a double enumerated
1641 * mixer control.
1643 * Returns 0 for success.
1645 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1646 struct snd_ctl_elem_info *uinfo)
1648 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1650 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1651 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1652 uinfo->value.enumerated.items = e->max;
1654 if (uinfo->value.enumerated.item > e->max - 1)
1655 uinfo->value.enumerated.item = e->max - 1;
1656 strcpy(uinfo->value.enumerated.name,
1657 e->texts[uinfo->value.enumerated.item]);
1658 return 0;
1660 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1663 * snd_soc_get_enum_double - enumerated double mixer get callback
1664 * @kcontrol: mixer control
1665 * @ucontrol: control element information
1667 * Callback to get the value of a double enumerated mixer.
1669 * Returns 0 for success.
1671 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1672 struct snd_ctl_elem_value *ucontrol)
1674 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1675 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1676 unsigned int val, bitmask;
1678 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1680 val = snd_soc_read(codec, e->reg);
1681 ucontrol->value.enumerated.item[0]
1682 = (val >> e->shift_l) & (bitmask - 1);
1683 if (e->shift_l != e->shift_r)
1684 ucontrol->value.enumerated.item[1] =
1685 (val >> e->shift_r) & (bitmask - 1);
1687 return 0;
1689 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1692 * snd_soc_put_enum_double - enumerated double mixer put callback
1693 * @kcontrol: mixer control
1694 * @ucontrol: control element information
1696 * Callback to set the value of a double enumerated mixer.
1698 * Returns 0 for success.
1700 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1701 struct snd_ctl_elem_value *ucontrol)
1703 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1704 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1705 unsigned int val;
1706 unsigned int mask, bitmask;
1708 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1710 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1711 return -EINVAL;
1712 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1713 mask = (bitmask - 1) << e->shift_l;
1714 if (e->shift_l != e->shift_r) {
1715 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1716 return -EINVAL;
1717 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1718 mask |= (bitmask - 1) << e->shift_r;
1721 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1723 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1726 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1727 * @kcontrol: mixer control
1728 * @ucontrol: control element information
1730 * Callback to get the value of a double semi enumerated mixer.
1732 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1733 * used for handling bitfield coded enumeration for example.
1735 * Returns 0 for success.
1737 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1738 struct snd_ctl_elem_value *ucontrol)
1740 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1741 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1742 unsigned int reg_val, val, mux;
1744 reg_val = snd_soc_read(codec, e->reg);
1745 val = (reg_val >> e->shift_l) & e->mask;
1746 for (mux = 0; mux < e->max; mux++) {
1747 if (val == e->values[mux])
1748 break;
1750 ucontrol->value.enumerated.item[0] = mux;
1751 if (e->shift_l != e->shift_r) {
1752 val = (reg_val >> e->shift_r) & e->mask;
1753 for (mux = 0; mux < e->max; mux++) {
1754 if (val == e->values[mux])
1755 break;
1757 ucontrol->value.enumerated.item[1] = mux;
1760 return 0;
1762 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1765 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1766 * @kcontrol: mixer control
1767 * @ucontrol: control element information
1769 * Callback to set the value of a double semi enumerated mixer.
1771 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1772 * used for handling bitfield coded enumeration for example.
1774 * Returns 0 for success.
1776 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1777 struct snd_ctl_elem_value *ucontrol)
1779 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1780 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1781 unsigned int val;
1782 unsigned int mask;
1784 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1785 return -EINVAL;
1786 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1787 mask = e->mask << e->shift_l;
1788 if (e->shift_l != e->shift_r) {
1789 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1790 return -EINVAL;
1791 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1792 mask |= e->mask << e->shift_r;
1795 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1797 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1800 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1801 * @kcontrol: mixer control
1802 * @uinfo: control element information
1804 * Callback to provide information about an external enumerated
1805 * single mixer.
1807 * Returns 0 for success.
1809 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1810 struct snd_ctl_elem_info *uinfo)
1812 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1814 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1815 uinfo->count = 1;
1816 uinfo->value.enumerated.items = e->max;
1818 if (uinfo->value.enumerated.item > e->max - 1)
1819 uinfo->value.enumerated.item = e->max - 1;
1820 strcpy(uinfo->value.enumerated.name,
1821 e->texts[uinfo->value.enumerated.item]);
1822 return 0;
1824 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1827 * snd_soc_info_volsw_ext - external single mixer info callback
1828 * @kcontrol: mixer control
1829 * @uinfo: control element information
1831 * Callback to provide information about a single external mixer control.
1833 * Returns 0 for success.
1835 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1836 struct snd_ctl_elem_info *uinfo)
1838 int max = kcontrol->private_value;
1840 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1841 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1842 else
1843 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1845 uinfo->count = 1;
1846 uinfo->value.integer.min = 0;
1847 uinfo->value.integer.max = max;
1848 return 0;
1850 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1853 * snd_soc_info_volsw - single mixer info callback
1854 * @kcontrol: mixer control
1855 * @uinfo: control element information
1857 * Callback to provide information about a single mixer control.
1859 * Returns 0 for success.
1861 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1862 struct snd_ctl_elem_info *uinfo)
1864 struct soc_mixer_control *mc =
1865 (struct soc_mixer_control *)kcontrol->private_value;
1866 int max = mc->max;
1867 unsigned int shift = mc->shift;
1868 unsigned int rshift = mc->rshift;
1870 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1871 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1872 else
1873 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1875 uinfo->count = shift == rshift ? 1 : 2;
1876 uinfo->value.integer.min = 0;
1877 uinfo->value.integer.max = max;
1878 return 0;
1880 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1883 * snd_soc_get_volsw - single mixer get callback
1884 * @kcontrol: mixer control
1885 * @ucontrol: control element information
1887 * Callback to get the value of a single mixer control.
1889 * Returns 0 for success.
1891 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1892 struct snd_ctl_elem_value *ucontrol)
1894 struct soc_mixer_control *mc =
1895 (struct soc_mixer_control *)kcontrol->private_value;
1896 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1897 unsigned int reg = mc->reg;
1898 unsigned int shift = mc->shift;
1899 unsigned int rshift = mc->rshift;
1900 int max = mc->max;
1901 unsigned int mask = (1 << fls(max)) - 1;
1902 unsigned int invert = mc->invert;
1904 ucontrol->value.integer.value[0] =
1905 (snd_soc_read(codec, reg) >> shift) & mask;
1906 if (shift != rshift)
1907 ucontrol->value.integer.value[1] =
1908 (snd_soc_read(codec, reg) >> rshift) & mask;
1909 if (invert) {
1910 ucontrol->value.integer.value[0] =
1911 max - ucontrol->value.integer.value[0];
1912 if (shift != rshift)
1913 ucontrol->value.integer.value[1] =
1914 max - ucontrol->value.integer.value[1];
1917 return 0;
1919 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1922 * snd_soc_put_volsw - single mixer put callback
1923 * @kcontrol: mixer control
1924 * @ucontrol: control element information
1926 * Callback to set the value of a single mixer control.
1928 * Returns 0 for success.
1930 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1931 struct snd_ctl_elem_value *ucontrol)
1933 struct soc_mixer_control *mc =
1934 (struct soc_mixer_control *)kcontrol->private_value;
1935 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1936 unsigned int reg = mc->reg;
1937 unsigned int shift = mc->shift;
1938 unsigned int rshift = mc->rshift;
1939 int max = mc->max;
1940 unsigned int mask = (1 << fls(max)) - 1;
1941 unsigned int invert = mc->invert;
1942 unsigned int val, val2, val_mask;
1944 val = (ucontrol->value.integer.value[0] & mask);
1945 if (invert)
1946 val = max - val;
1947 val_mask = mask << shift;
1948 val = val << shift;
1949 if (shift != rshift) {
1950 val2 = (ucontrol->value.integer.value[1] & mask);
1951 if (invert)
1952 val2 = max - val2;
1953 val_mask |= mask << rshift;
1954 val |= val2 << rshift;
1956 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
1958 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1961 * snd_soc_info_volsw_2r - double mixer info callback
1962 * @kcontrol: mixer control
1963 * @uinfo: control element information
1965 * Callback to provide information about a double mixer control that
1966 * spans 2 codec registers.
1968 * Returns 0 for success.
1970 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1971 struct snd_ctl_elem_info *uinfo)
1973 struct soc_mixer_control *mc =
1974 (struct soc_mixer_control *)kcontrol->private_value;
1975 int max = mc->max;
1977 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1978 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1979 else
1980 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1982 uinfo->count = 2;
1983 uinfo->value.integer.min = 0;
1984 uinfo->value.integer.max = max;
1985 return 0;
1987 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1990 * snd_soc_get_volsw_2r - double mixer get callback
1991 * @kcontrol: mixer control
1992 * @ucontrol: control element information
1994 * Callback to get the value of a double mixer control that spans 2 registers.
1996 * Returns 0 for success.
1998 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1999 struct snd_ctl_elem_value *ucontrol)
2001 struct soc_mixer_control *mc =
2002 (struct soc_mixer_control *)kcontrol->private_value;
2003 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2004 unsigned int reg = mc->reg;
2005 unsigned int reg2 = mc->rreg;
2006 unsigned int shift = mc->shift;
2007 int max = mc->max;
2008 unsigned int mask = (1 << fls(max)) - 1;
2009 unsigned int invert = mc->invert;
2011 ucontrol->value.integer.value[0] =
2012 (snd_soc_read(codec, reg) >> shift) & mask;
2013 ucontrol->value.integer.value[1] =
2014 (snd_soc_read(codec, reg2) >> shift) & mask;
2015 if (invert) {
2016 ucontrol->value.integer.value[0] =
2017 max - ucontrol->value.integer.value[0];
2018 ucontrol->value.integer.value[1] =
2019 max - ucontrol->value.integer.value[1];
2022 return 0;
2024 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2027 * snd_soc_put_volsw_2r - double mixer set callback
2028 * @kcontrol: mixer control
2029 * @ucontrol: control element information
2031 * Callback to set the value of a double mixer control that spans 2 registers.
2033 * Returns 0 for success.
2035 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2036 struct snd_ctl_elem_value *ucontrol)
2038 struct soc_mixer_control *mc =
2039 (struct soc_mixer_control *)kcontrol->private_value;
2040 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2041 unsigned int reg = mc->reg;
2042 unsigned int reg2 = mc->rreg;
2043 unsigned int shift = mc->shift;
2044 int max = mc->max;
2045 unsigned int mask = (1 << fls(max)) - 1;
2046 unsigned int invert = mc->invert;
2047 int err;
2048 unsigned int val, val2, val_mask;
2050 val_mask = mask << shift;
2051 val = (ucontrol->value.integer.value[0] & mask);
2052 val2 = (ucontrol->value.integer.value[1] & mask);
2054 if (invert) {
2055 val = max - val;
2056 val2 = max - val2;
2059 val = val << shift;
2060 val2 = val2 << shift;
2062 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2063 if (err < 0)
2064 return err;
2066 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2067 return err;
2069 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2072 * snd_soc_info_volsw_s8 - signed mixer info callback
2073 * @kcontrol: mixer control
2074 * @uinfo: control element information
2076 * Callback to provide information about a signed mixer control.
2078 * Returns 0 for success.
2080 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2081 struct snd_ctl_elem_info *uinfo)
2083 struct soc_mixer_control *mc =
2084 (struct soc_mixer_control *)kcontrol->private_value;
2085 int max = mc->max;
2086 int min = mc->min;
2088 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2089 uinfo->count = 2;
2090 uinfo->value.integer.min = 0;
2091 uinfo->value.integer.max = max-min;
2092 return 0;
2094 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2097 * snd_soc_get_volsw_s8 - signed mixer get callback
2098 * @kcontrol: mixer control
2099 * @ucontrol: control element information
2101 * Callback to get the value of a signed mixer control.
2103 * Returns 0 for success.
2105 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2106 struct snd_ctl_elem_value *ucontrol)
2108 struct soc_mixer_control *mc =
2109 (struct soc_mixer_control *)kcontrol->private_value;
2110 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2111 unsigned int reg = mc->reg;
2112 int min = mc->min;
2113 int val = snd_soc_read(codec, reg);
2115 ucontrol->value.integer.value[0] =
2116 ((signed char)(val & 0xff))-min;
2117 ucontrol->value.integer.value[1] =
2118 ((signed char)((val >> 8) & 0xff))-min;
2119 return 0;
2121 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2124 * snd_soc_put_volsw_sgn - signed mixer put callback
2125 * @kcontrol: mixer control
2126 * @ucontrol: control element information
2128 * Callback to set the value of a signed mixer control.
2130 * Returns 0 for success.
2132 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2133 struct snd_ctl_elem_value *ucontrol)
2135 struct soc_mixer_control *mc =
2136 (struct soc_mixer_control *)kcontrol->private_value;
2137 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2138 unsigned int reg = mc->reg;
2139 int min = mc->min;
2140 unsigned int val;
2142 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2143 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2145 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2147 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2150 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2151 * @dai: DAI
2152 * @clk_id: DAI specific clock ID
2153 * @freq: new clock frequency in Hz
2154 * @dir: new clock direction - input/output.
2156 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2158 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2159 unsigned int freq, int dir)
2161 if (dai->ops && dai->ops->set_sysclk)
2162 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2163 else
2164 return -EINVAL;
2166 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2169 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2170 * @dai: DAI
2171 * @div_id: DAI specific clock divider ID
2172 * @div: new clock divisor.
2174 * Configures the clock dividers. This is used to derive the best DAI bit and
2175 * frame clocks from the system or master clock. It's best to set the DAI bit
2176 * and frame clocks as low as possible to save system power.
2178 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2179 int div_id, int div)
2181 if (dai->ops && dai->ops->set_clkdiv)
2182 return dai->ops->set_clkdiv(dai, div_id, div);
2183 else
2184 return -EINVAL;
2186 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2189 * snd_soc_dai_set_pll - configure DAI PLL.
2190 * @dai: DAI
2191 * @pll_id: DAI specific PLL ID
2192 * @source: DAI specific source for the PLL
2193 * @freq_in: PLL input clock frequency in Hz
2194 * @freq_out: requested PLL output clock frequency in Hz
2196 * Configures and enables PLL to generate output clock based on input clock.
2198 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2199 unsigned int freq_in, unsigned int freq_out)
2201 if (dai->ops && dai->ops->set_pll)
2202 return dai->ops->set_pll(dai, pll_id, source,
2203 freq_in, freq_out);
2204 else
2205 return -EINVAL;
2207 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2210 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2211 * @dai: DAI
2212 * @fmt: SND_SOC_DAIFMT_ format value.
2214 * Configures the DAI hardware format and clocking.
2216 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2218 if (dai->ops && dai->ops->set_fmt)
2219 return dai->ops->set_fmt(dai, fmt);
2220 else
2221 return -EINVAL;
2223 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2226 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2227 * @dai: DAI
2228 * @tx_mask: bitmask representing active TX slots.
2229 * @rx_mask: bitmask representing active RX slots.
2230 * @slots: Number of slots in use.
2231 * @slot_width: Width in bits for each slot.
2233 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2234 * specific.
2236 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2237 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2239 if (dai->ops && dai->ops->set_tdm_slot)
2240 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2241 slots, slot_width);
2242 else
2243 return -EINVAL;
2245 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2248 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2249 * @dai: DAI
2250 * @tx_num: how many TX channels
2251 * @tx_slot: pointer to an array which imply the TX slot number channel
2252 * 0~num-1 uses
2253 * @rx_num: how many RX channels
2254 * @rx_slot: pointer to an array which imply the RX slot number channel
2255 * 0~num-1 uses
2257 * configure the relationship between channel number and TDM slot number.
2259 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2260 unsigned int tx_num, unsigned int *tx_slot,
2261 unsigned int rx_num, unsigned int *rx_slot)
2263 if (dai->ops && dai->ops->set_channel_map)
2264 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2265 rx_num, rx_slot);
2266 else
2267 return -EINVAL;
2269 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2272 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2273 * @dai: DAI
2274 * @tristate: tristate enable
2276 * Tristates the DAI so that others can use it.
2278 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2280 if (dai->ops && dai->ops->set_tristate)
2281 return dai->ops->set_tristate(dai, tristate);
2282 else
2283 return -EINVAL;
2285 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2288 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2289 * @dai: DAI
2290 * @mute: mute enable
2292 * Mutes the DAI DAC.
2294 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2296 if (dai->ops && dai->ops->digital_mute)
2297 return dai->ops->digital_mute(dai, mute);
2298 else
2299 return -EINVAL;
2301 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2304 * snd_soc_register_card - Register a card with the ASoC core
2306 * @card: Card to register
2308 * Note that currently this is an internal only function: it will be
2309 * exposed to machine drivers after further backporting of ASoC v2
2310 * registration APIs.
2312 static int snd_soc_register_card(struct snd_soc_card *card)
2314 if (!card->name || !card->dev)
2315 return -EINVAL;
2317 INIT_LIST_HEAD(&card->list);
2318 card->instantiated = 0;
2320 mutex_lock(&client_mutex);
2321 list_add(&card->list, &card_list);
2322 snd_soc_instantiate_cards();
2323 mutex_unlock(&client_mutex);
2325 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2327 return 0;
2331 * snd_soc_unregister_card - Unregister a card with the ASoC core
2333 * @card: Card to unregister
2335 * Note that currently this is an internal only function: it will be
2336 * exposed to machine drivers after further backporting of ASoC v2
2337 * registration APIs.
2339 static int snd_soc_unregister_card(struct snd_soc_card *card)
2341 mutex_lock(&client_mutex);
2342 list_del(&card->list);
2343 mutex_unlock(&client_mutex);
2345 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2347 return 0;
2351 * snd_soc_register_dai - Register a DAI with the ASoC core
2353 * @dai: DAI to register
2355 int snd_soc_register_dai(struct snd_soc_dai *dai)
2357 if (!dai->name)
2358 return -EINVAL;
2360 /* The device should become mandatory over time */
2361 if (!dai->dev)
2362 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2364 if (!dai->ops)
2365 dai->ops = &null_dai_ops;
2367 INIT_LIST_HEAD(&dai->list);
2369 mutex_lock(&client_mutex);
2370 list_add(&dai->list, &dai_list);
2371 snd_soc_instantiate_cards();
2372 mutex_unlock(&client_mutex);
2374 pr_debug("Registered DAI '%s'\n", dai->name);
2376 return 0;
2378 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2381 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2383 * @dai: DAI to unregister
2385 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2387 mutex_lock(&client_mutex);
2388 list_del(&dai->list);
2389 mutex_unlock(&client_mutex);
2391 pr_debug("Unregistered DAI '%s'\n", dai->name);
2393 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2396 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2398 * @dai: Array of DAIs to register
2399 * @count: Number of DAIs
2401 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2403 int i, ret;
2405 for (i = 0; i < count; i++) {
2406 ret = snd_soc_register_dai(&dai[i]);
2407 if (ret != 0)
2408 goto err;
2411 return 0;
2413 err:
2414 for (i--; i >= 0; i--)
2415 snd_soc_unregister_dai(&dai[i]);
2417 return ret;
2419 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2422 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2424 * @dai: Array of DAIs to unregister
2425 * @count: Number of DAIs
2427 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2429 int i;
2431 for (i = 0; i < count; i++)
2432 snd_soc_unregister_dai(&dai[i]);
2434 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2437 * snd_soc_register_platform - Register a platform with the ASoC core
2439 * @platform: platform to register
2441 int snd_soc_register_platform(struct snd_soc_platform *platform)
2443 if (!platform->name)
2444 return -EINVAL;
2446 INIT_LIST_HEAD(&platform->list);
2448 mutex_lock(&client_mutex);
2449 list_add(&platform->list, &platform_list);
2450 snd_soc_instantiate_cards();
2451 mutex_unlock(&client_mutex);
2453 pr_debug("Registered platform '%s'\n", platform->name);
2455 return 0;
2457 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2460 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2462 * @platform: platform to unregister
2464 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2466 mutex_lock(&client_mutex);
2467 list_del(&platform->list);
2468 mutex_unlock(&client_mutex);
2470 pr_debug("Unregistered platform '%s'\n", platform->name);
2472 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2474 static u64 codec_format_map[] = {
2475 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2476 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2477 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2478 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2479 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2480 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2481 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2482 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2483 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2484 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2485 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2486 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2487 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2488 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2489 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2490 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2493 /* Fix up the DAI formats for endianness: codecs don't actually see
2494 * the endianness of the data but we're using the CPU format
2495 * definitions which do need to include endianness so we ensure that
2496 * codec DAIs always have both big and little endian variants set.
2498 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2500 int i;
2502 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2503 if (stream->formats & codec_format_map[i])
2504 stream->formats |= codec_format_map[i];
2508 * snd_soc_register_codec - Register a codec with the ASoC core
2510 * @codec: codec to register
2512 int snd_soc_register_codec(struct snd_soc_codec *codec)
2514 int i;
2516 if (!codec->name)
2517 return -EINVAL;
2519 /* The device should become mandatory over time */
2520 if (!codec->dev)
2521 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2523 INIT_LIST_HEAD(&codec->list);
2525 for (i = 0; i < codec->num_dai; i++) {
2526 fixup_codec_formats(&codec->dai[i].playback);
2527 fixup_codec_formats(&codec->dai[i].capture);
2530 mutex_lock(&client_mutex);
2531 list_add(&codec->list, &codec_list);
2532 snd_soc_instantiate_cards();
2533 mutex_unlock(&client_mutex);
2535 pr_debug("Registered codec '%s'\n", codec->name);
2537 return 0;
2539 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2542 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2544 * @codec: codec to unregister
2546 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2548 mutex_lock(&client_mutex);
2549 list_del(&codec->list);
2550 mutex_unlock(&client_mutex);
2552 pr_debug("Unregistered codec '%s'\n", codec->name);
2554 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2556 static int __init snd_soc_init(void)
2558 #ifdef CONFIG_DEBUG_FS
2559 debugfs_root = debugfs_create_dir("asoc", NULL);
2560 if (IS_ERR(debugfs_root) || !debugfs_root) {
2561 printk(KERN_WARNING
2562 "ASoC: Failed to create debugfs directory\n");
2563 debugfs_root = NULL;
2565 #endif
2567 return platform_driver_register(&soc_driver);
2570 static void __exit snd_soc_exit(void)
2572 #ifdef CONFIG_DEBUG_FS
2573 debugfs_remove_recursive(debugfs_root);
2574 #endif
2575 platform_driver_unregister(&soc_driver);
2578 module_init(snd_soc_init);
2579 module_exit(snd_soc_exit);
2581 /* Module information */
2582 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2583 MODULE_DESCRIPTION("ALSA SoC Core");
2584 MODULE_LICENSE("GPL");
2585 MODULE_ALIAS("platform:soc-audio");