x86: fix wrong section of pat_disable & make it static
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / pat.c
blobc009a241d562c9274224ebc02b811f453b5d2232
1 /*
2 * Handle caching attributes in page tables (PAT)
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/gfp.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgtable.h>
23 #include <asm/fcntl.h>
24 #include <asm/e820.h>
25 #include <asm/mtrr.h>
26 #include <asm/page.h>
27 #include <asm/msr.h>
28 #include <asm/pat.h>
29 #include <asm/io.h>
31 #ifdef CONFIG_X86_PAT
32 int __read_mostly pat_enabled = 1;
34 static inline void pat_disable(const char *reason)
36 pat_enabled = 0;
37 printk(KERN_INFO "%s\n", reason);
40 static int __init nopat(char *str)
42 pat_disable("PAT support disabled.");
43 return 0;
45 early_param("nopat", nopat);
46 #else
47 static inline void pat_disable(const char *reason)
49 (void)reason;
51 #endif
54 static int debug_enable;
56 static int __init pat_debug_setup(char *str)
58 debug_enable = 1;
59 return 0;
61 __setup("debugpat", pat_debug_setup);
63 #define dprintk(fmt, arg...) \
64 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
67 static u64 __read_mostly boot_pat_state;
69 enum {
70 PAT_UC = 0, /* uncached */
71 PAT_WC = 1, /* Write combining */
72 PAT_WT = 4, /* Write Through */
73 PAT_WP = 5, /* Write Protected */
74 PAT_WB = 6, /* Write Back (default) */
75 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
78 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
80 void pat_init(void)
82 u64 pat;
84 if (!pat_enabled)
85 return;
87 if (!cpu_has_pat) {
88 if (!boot_pat_state) {
89 pat_disable("PAT not supported by CPU.");
90 return;
91 } else {
93 * If this happens we are on a secondary CPU, but
94 * switched to PAT on the boot CPU. We have no way to
95 * undo PAT.
97 printk(KERN_ERR "PAT enabled, "
98 "but not supported by secondary CPU\n");
99 BUG();
103 /* Set PWT to Write-Combining. All other bits stay the same */
105 * PTE encoding used in Linux:
106 * PAT
107 * |PCD
108 * ||PWT
109 * |||
110 * 000 WB _PAGE_CACHE_WB
111 * 001 WC _PAGE_CACHE_WC
112 * 010 UC- _PAGE_CACHE_UC_MINUS
113 * 011 UC _PAGE_CACHE_UC
114 * PAT bit unused
116 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
117 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119 /* Boot CPU check */
120 if (!boot_pat_state)
121 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123 wrmsrl(MSR_IA32_CR_PAT, pat);
124 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
125 smp_processor_id(), boot_pat_state, pat);
128 #undef PAT
130 static char *cattr_name(unsigned long flags)
132 switch (flags & _PAGE_CACHE_MASK) {
133 case _PAGE_CACHE_UC: return "uncached";
134 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
135 case _PAGE_CACHE_WB: return "write-back";
136 case _PAGE_CACHE_WC: return "write-combining";
137 default: return "broken";
142 * The global memtype list keeps track of memory type for specific
143 * physical memory areas. Conflicting memory types in different
144 * mappings can cause CPU cache corruption. To avoid this we keep track.
146 * The list is sorted based on starting address and can contain multiple
147 * entries for each address (this allows reference counting for overlapping
148 * areas). All the aliases have the same cache attributes of course.
149 * Zero attributes are represented as holes.
151 * Currently the data structure is a list because the number of mappings
152 * are expected to be relatively small. If this should be a problem
153 * it could be changed to a rbtree or similar.
155 * memtype_lock protects the whole list.
158 struct memtype {
159 u64 start;
160 u64 end;
161 unsigned long type;
162 struct list_head nd;
165 static LIST_HEAD(memtype_list);
166 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
169 * Does intersection of PAT memory type and MTRR memory type and returns
170 * the resulting memory type as PAT understands it.
171 * (Type in pat and mtrr will not have same value)
172 * The intersection is based on "Effective Memory Type" tables in IA-32
173 * SDM vol 3a
175 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
178 * Look for MTRR hint to get the effective type in case where PAT
179 * request is for WB.
181 if (req_type == _PAGE_CACHE_WB) {
182 u8 mtrr_type;
184 mtrr_type = mtrr_type_lookup(start, end);
185 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
186 return _PAGE_CACHE_UC;
187 if (mtrr_type == MTRR_TYPE_WRCOMB)
188 return _PAGE_CACHE_WC;
191 return req_type;
194 static int
195 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
197 if (new->type != entry->type) {
198 if (type) {
199 new->type = entry->type;
200 *type = entry->type;
201 } else
202 goto conflict;
205 /* check overlaps with more than one entry in the list */
206 list_for_each_entry_continue(entry, &memtype_list, nd) {
207 if (new->end <= entry->start)
208 break;
209 else if (new->type != entry->type)
210 goto conflict;
212 return 0;
214 conflict:
215 printk(KERN_INFO "%s:%d conflicting memory types "
216 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
217 new->end, cattr_name(new->type), cattr_name(entry->type));
218 return -EBUSY;
221 static struct memtype *cached_entry;
222 static u64 cached_start;
224 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
226 int ram_page = 0, not_rampage = 0;
227 unsigned long page_nr;
229 for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
230 ++page_nr) {
232 * For legacy reasons, physical address range in the legacy ISA
233 * region is tracked as non-RAM. This will allow users of
234 * /dev/mem to map portions of legacy ISA region, even when
235 * some of those portions are listed(or not even listed) with
236 * different e820 types(RAM/reserved/..)
238 if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
239 page_is_ram(page_nr))
240 ram_page = 1;
241 else
242 not_rampage = 1;
244 if (ram_page == not_rampage)
245 return -1;
248 return ram_page;
252 * For RAM pages, mark the pages as non WB memory type using
253 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
254 * set_memory_wc() on a RAM page at a time before marking it as WB again.
255 * This is ok, because only one driver will be owning the page and
256 * doing set_memory_*() calls.
258 * For now, we use PageNonWB to track that the RAM page is being mapped
259 * as non WB. In future, we will have to use one more flag
260 * (or some other mechanism in page_struct) to distinguish between
261 * UC and WC mapping.
263 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
264 unsigned long *new_type)
266 struct page *page;
267 u64 pfn, end_pfn;
269 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
270 page = pfn_to_page(pfn);
271 if (page_mapped(page) || PageNonWB(page))
272 goto out;
274 SetPageNonWB(page);
276 return 0;
278 out:
279 end_pfn = pfn;
280 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
281 page = pfn_to_page(pfn);
282 ClearPageNonWB(page);
285 return -EINVAL;
288 static int free_ram_pages_type(u64 start, u64 end)
290 struct page *page;
291 u64 pfn, end_pfn;
293 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
294 page = pfn_to_page(pfn);
295 if (page_mapped(page) || !PageNonWB(page))
296 goto out;
298 ClearPageNonWB(page);
300 return 0;
302 out:
303 end_pfn = pfn;
304 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
305 page = pfn_to_page(pfn);
306 SetPageNonWB(page);
308 return -EINVAL;
312 * req_type typically has one of the:
313 * - _PAGE_CACHE_WB
314 * - _PAGE_CACHE_WC
315 * - _PAGE_CACHE_UC_MINUS
316 * - _PAGE_CACHE_UC
318 * req_type will have a special case value '-1', when requester want to inherit
319 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
321 * If new_type is NULL, function will return an error if it cannot reserve the
322 * region with req_type. If new_type is non-NULL, function will return
323 * available type in new_type in case of no error. In case of any error
324 * it will return a negative return value.
326 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
327 unsigned long *new_type)
329 struct memtype *new, *entry;
330 unsigned long actual_type;
331 struct list_head *where;
332 int is_range_ram;
333 int err = 0;
335 BUG_ON(start >= end); /* end is exclusive */
337 if (!pat_enabled) {
338 /* This is identical to page table setting without PAT */
339 if (new_type) {
340 if (req_type == -1)
341 *new_type = _PAGE_CACHE_WB;
342 else
343 *new_type = req_type & _PAGE_CACHE_MASK;
345 return 0;
348 /* Low ISA region is always mapped WB in page table. No need to track */
349 if (is_ISA_range(start, end - 1)) {
350 if (new_type)
351 *new_type = _PAGE_CACHE_WB;
352 return 0;
355 if (req_type == -1) {
357 * Call mtrr_lookup to get the type hint. This is an
358 * optimization for /dev/mem mmap'ers into WB memory (BIOS
359 * tools and ACPI tools). Use WB request for WB memory and use
360 * UC_MINUS otherwise.
362 u8 mtrr_type = mtrr_type_lookup(start, end);
364 if (mtrr_type == MTRR_TYPE_WRBACK)
365 actual_type = _PAGE_CACHE_WB;
366 else
367 actual_type = _PAGE_CACHE_UC_MINUS;
368 } else {
369 actual_type = pat_x_mtrr_type(start, end,
370 req_type & _PAGE_CACHE_MASK);
373 if (new_type)
374 *new_type = actual_type;
376 is_range_ram = pat_pagerange_is_ram(start, end);
377 if (is_range_ram == 1)
378 return reserve_ram_pages_type(start, end, req_type,
379 new_type);
380 else if (is_range_ram < 0)
381 return -EINVAL;
383 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
384 if (!new)
385 return -ENOMEM;
387 new->start = start;
388 new->end = end;
389 new->type = actual_type;
391 spin_lock(&memtype_lock);
393 if (cached_entry && start >= cached_start)
394 entry = cached_entry;
395 else
396 entry = list_entry(&memtype_list, struct memtype, nd);
398 /* Search for existing mapping that overlaps the current range */
399 where = NULL;
400 list_for_each_entry_continue(entry, &memtype_list, nd) {
401 if (end <= entry->start) {
402 where = entry->nd.prev;
403 cached_entry = list_entry(where, struct memtype, nd);
404 break;
405 } else if (start <= entry->start) { /* end > entry->start */
406 err = chk_conflict(new, entry, new_type);
407 if (!err) {
408 dprintk("Overlap at 0x%Lx-0x%Lx\n",
409 entry->start, entry->end);
410 where = entry->nd.prev;
411 cached_entry = list_entry(where,
412 struct memtype, nd);
414 break;
415 } else if (start < entry->end) { /* start > entry->start */
416 err = chk_conflict(new, entry, new_type);
417 if (!err) {
418 dprintk("Overlap at 0x%Lx-0x%Lx\n",
419 entry->start, entry->end);
420 cached_entry = list_entry(entry->nd.prev,
421 struct memtype, nd);
424 * Move to right position in the linked
425 * list to add this new entry
427 list_for_each_entry_continue(entry,
428 &memtype_list, nd) {
429 if (start <= entry->start) {
430 where = entry->nd.prev;
431 break;
435 break;
439 if (err) {
440 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
441 "track %s, req %s\n",
442 start, end, cattr_name(new->type), cattr_name(req_type));
443 kfree(new);
444 spin_unlock(&memtype_lock);
446 return err;
449 cached_start = start;
451 if (where)
452 list_add(&new->nd, where);
453 else
454 list_add_tail(&new->nd, &memtype_list);
456 spin_unlock(&memtype_lock);
458 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
459 start, end, cattr_name(new->type), cattr_name(req_type),
460 new_type ? cattr_name(*new_type) : "-");
462 return err;
465 int free_memtype(u64 start, u64 end)
467 struct memtype *entry;
468 int err = -EINVAL;
469 int is_range_ram;
471 if (!pat_enabled)
472 return 0;
474 /* Low ISA region is always mapped WB. No need to track */
475 if (is_ISA_range(start, end - 1))
476 return 0;
478 is_range_ram = pat_pagerange_is_ram(start, end);
479 if (is_range_ram == 1)
480 return free_ram_pages_type(start, end);
481 else if (is_range_ram < 0)
482 return -EINVAL;
484 spin_lock(&memtype_lock);
485 list_for_each_entry(entry, &memtype_list, nd) {
486 if (entry->start == start && entry->end == end) {
487 if (cached_entry == entry || cached_start == start)
488 cached_entry = NULL;
490 list_del(&entry->nd);
491 kfree(entry);
492 err = 0;
493 break;
496 spin_unlock(&memtype_lock);
498 if (err) {
499 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
500 current->comm, current->pid, start, end);
503 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
505 return err;
509 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
510 unsigned long size, pgprot_t vma_prot)
512 return vma_prot;
515 #ifdef CONFIG_STRICT_DEVMEM
516 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
517 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
519 return 1;
521 #else
522 /* This check is needed to avoid cache aliasing when PAT is enabled */
523 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
525 u64 from = ((u64)pfn) << PAGE_SHIFT;
526 u64 to = from + size;
527 u64 cursor = from;
529 if (!pat_enabled)
530 return 1;
532 while (cursor < to) {
533 if (!devmem_is_allowed(pfn)) {
534 printk(KERN_INFO
535 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
536 current->comm, from, to);
537 return 0;
539 cursor += PAGE_SIZE;
540 pfn++;
542 return 1;
544 #endif /* CONFIG_STRICT_DEVMEM */
546 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
547 unsigned long size, pgprot_t *vma_prot)
549 u64 offset = ((u64) pfn) << PAGE_SHIFT;
550 unsigned long flags = -1;
551 int retval;
553 if (!range_is_allowed(pfn, size))
554 return 0;
556 if (file->f_flags & O_SYNC) {
557 flags = _PAGE_CACHE_UC_MINUS;
560 #ifdef CONFIG_X86_32
562 * On the PPro and successors, the MTRRs are used to set
563 * memory types for physical addresses outside main memory,
564 * so blindly setting UC or PWT on those pages is wrong.
565 * For Pentiums and earlier, the surround logic should disable
566 * caching for the high addresses through the KEN pin, but
567 * we maintain the tradition of paranoia in this code.
569 if (!pat_enabled &&
570 !(boot_cpu_has(X86_FEATURE_MTRR) ||
571 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
572 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
573 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
574 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
575 flags = _PAGE_CACHE_UC;
577 #endif
580 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
582 * Without O_SYNC, we want to get
583 * - WB for WB-able memory and no other conflicting mappings
584 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
585 * - Inherit from confliting mappings otherwise
587 if (flags != -1) {
588 retval = reserve_memtype(offset, offset + size, flags, NULL);
589 } else {
590 retval = reserve_memtype(offset, offset + size, -1, &flags);
593 if (retval < 0)
594 return 0;
596 if (((pfn < max_low_pfn_mapped) ||
597 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
598 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
599 free_memtype(offset, offset + size);
600 printk(KERN_INFO
601 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
602 current->comm, current->pid,
603 cattr_name(flags),
604 offset, (unsigned long long)(offset + size));
605 return 0;
608 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
609 flags);
610 return 1;
613 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
615 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
616 u64 addr = (u64)pfn << PAGE_SHIFT;
617 unsigned long flags;
619 reserve_memtype(addr, addr + size, want_flags, &flags);
620 if (flags != want_flags) {
621 printk(KERN_INFO
622 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
623 current->comm, current->pid,
624 cattr_name(want_flags),
625 addr, (unsigned long long)(addr + size),
626 cattr_name(flags));
630 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
632 u64 addr = (u64)pfn << PAGE_SHIFT;
634 free_memtype(addr, addr + size);
638 * Change the memory type for the physial address range in kernel identity
639 * mapping space if that range is a part of identity map.
641 int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
643 unsigned long id_sz;
645 if (!pat_enabled || base >= __pa(high_memory))
646 return 0;
648 id_sz = (__pa(high_memory) < base + size) ?
649 __pa(high_memory) - base :
650 size;
652 if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
653 printk(KERN_INFO
654 "%s:%d ioremap_change_attr failed %s "
655 "for %Lx-%Lx\n",
656 current->comm, current->pid,
657 cattr_name(flags),
658 base, (unsigned long long)(base + size));
659 return -EINVAL;
661 return 0;
665 * Internal interface to reserve a range of physical memory with prot.
666 * Reserved non RAM regions only and after successful reserve_memtype,
667 * this func also keeps identity mapping (if any) in sync with this new prot.
669 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
670 int strict_prot)
672 int is_ram = 0;
673 int ret;
674 unsigned long flags;
675 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
677 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
680 * reserve_pfn_range() doesn't support RAM pages. Maintain the current
681 * behavior with RAM pages by returning success.
683 if (is_ram != 0)
684 return 0;
686 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
687 if (ret)
688 return ret;
690 if (flags != want_flags) {
691 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
692 free_memtype(paddr, paddr + size);
693 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
694 " for %Lx-%Lx, got %s\n",
695 current->comm, current->pid,
696 cattr_name(want_flags),
697 (unsigned long long)paddr,
698 (unsigned long long)(paddr + size),
699 cattr_name(flags));
700 return -EINVAL;
703 * We allow returning different type than the one requested in
704 * non strict case.
706 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
707 (~_PAGE_CACHE_MASK)) |
708 flags);
711 if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
712 free_memtype(paddr, paddr + size);
713 return -EINVAL;
715 return 0;
719 * Internal interface to free a range of physical memory.
720 * Frees non RAM regions only.
722 static void free_pfn_range(u64 paddr, unsigned long size)
724 int is_ram;
726 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
727 if (is_ram == 0)
728 free_memtype(paddr, paddr + size);
732 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
733 * copied through copy_page_range().
735 * If the vma has a linear pfn mapping for the entire range, we get the prot
736 * from pte and reserve the entire vma range with single reserve_pfn_range call.
737 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
738 * by page to get physical address and protection.
740 int track_pfn_vma_copy(struct vm_area_struct *vma)
742 int retval = 0;
743 unsigned long i, j;
744 resource_size_t paddr;
745 unsigned long prot;
746 unsigned long vma_start = vma->vm_start;
747 unsigned long vma_end = vma->vm_end;
748 unsigned long vma_size = vma_end - vma_start;
749 pgprot_t pgprot;
751 if (!pat_enabled)
752 return 0;
754 if (is_linear_pfn_mapping(vma)) {
756 * reserve the whole chunk covered by vma. We need the
757 * starting address and protection from pte.
759 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
760 WARN_ON_ONCE(1);
761 return -EINVAL;
763 pgprot = __pgprot(prot);
764 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
767 /* reserve entire vma page by page, using pfn and prot from pte */
768 for (i = 0; i < vma_size; i += PAGE_SIZE) {
769 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
770 continue;
772 pgprot = __pgprot(prot);
773 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
774 if (retval)
775 goto cleanup_ret;
777 return 0;
779 cleanup_ret:
780 /* Reserve error: Cleanup partial reservation and return error */
781 for (j = 0; j < i; j += PAGE_SIZE) {
782 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
783 continue;
785 free_pfn_range(paddr, PAGE_SIZE);
788 return retval;
792 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
793 * for physical range indicated by pfn and size.
795 * prot is passed in as a parameter for the new mapping. If the vma has a
796 * linear pfn mapping for the entire range reserve the entire vma range with
797 * single reserve_pfn_range call.
798 * Otherwise, we look t the pfn and size and reserve only the specified range
799 * page by page.
801 * Note that this function can be called with caller trying to map only a
802 * subrange/page inside the vma.
804 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
805 unsigned long pfn, unsigned long size)
807 int retval = 0;
808 unsigned long i, j;
809 resource_size_t base_paddr;
810 resource_size_t paddr;
811 unsigned long vma_start = vma->vm_start;
812 unsigned long vma_end = vma->vm_end;
813 unsigned long vma_size = vma_end - vma_start;
815 if (!pat_enabled)
816 return 0;
818 if (is_linear_pfn_mapping(vma)) {
819 /* reserve the whole chunk starting from vm_pgoff */
820 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
821 return reserve_pfn_range(paddr, vma_size, prot, 0);
824 /* reserve page by page using pfn and size */
825 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
826 for (i = 0; i < size; i += PAGE_SIZE) {
827 paddr = base_paddr + i;
828 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
829 if (retval)
830 goto cleanup_ret;
832 return 0;
834 cleanup_ret:
835 /* Reserve error: Cleanup partial reservation and return error */
836 for (j = 0; j < i; j += PAGE_SIZE) {
837 paddr = base_paddr + j;
838 free_pfn_range(paddr, PAGE_SIZE);
841 return retval;
845 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
846 * untrack can be called for a specific region indicated by pfn and size or
847 * can be for the entire vma (in which case size can be zero).
849 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
850 unsigned long size)
852 unsigned long i;
853 resource_size_t paddr;
854 unsigned long prot;
855 unsigned long vma_start = vma->vm_start;
856 unsigned long vma_end = vma->vm_end;
857 unsigned long vma_size = vma_end - vma_start;
859 if (!pat_enabled)
860 return;
862 if (is_linear_pfn_mapping(vma)) {
863 /* free the whole chunk starting from vm_pgoff */
864 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
865 free_pfn_range(paddr, vma_size);
866 return;
869 if (size != 0 && size != vma_size) {
870 /* free page by page, using pfn and size */
871 paddr = (resource_size_t)pfn << PAGE_SHIFT;
872 for (i = 0; i < size; i += PAGE_SIZE) {
873 paddr = paddr + i;
874 free_pfn_range(paddr, PAGE_SIZE);
876 } else {
877 /* free entire vma, page by page, using the pfn from pte */
878 for (i = 0; i < vma_size; i += PAGE_SIZE) {
879 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
880 continue;
882 free_pfn_range(paddr, PAGE_SIZE);
887 pgprot_t pgprot_writecombine(pgprot_t prot)
889 if (pat_enabled)
890 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
891 else
892 return pgprot_noncached(prot);
894 EXPORT_SYMBOL_GPL(pgprot_writecombine);
896 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
898 /* get Nth element of the linked list */
899 static struct memtype *memtype_get_idx(loff_t pos)
901 struct memtype *list_node, *print_entry;
902 int i = 1;
904 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
905 if (!print_entry)
906 return NULL;
908 spin_lock(&memtype_lock);
909 list_for_each_entry(list_node, &memtype_list, nd) {
910 if (pos == i) {
911 *print_entry = *list_node;
912 spin_unlock(&memtype_lock);
913 return print_entry;
915 ++i;
917 spin_unlock(&memtype_lock);
918 kfree(print_entry);
920 return NULL;
923 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
925 if (*pos == 0) {
926 ++*pos;
927 seq_printf(seq, "PAT memtype list:\n");
930 return memtype_get_idx(*pos);
933 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
935 ++*pos;
936 return memtype_get_idx(*pos);
939 static void memtype_seq_stop(struct seq_file *seq, void *v)
943 static int memtype_seq_show(struct seq_file *seq, void *v)
945 struct memtype *print_entry = (struct memtype *)v;
947 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
948 print_entry->start, print_entry->end);
949 kfree(print_entry);
951 return 0;
954 static struct seq_operations memtype_seq_ops = {
955 .start = memtype_seq_start,
956 .next = memtype_seq_next,
957 .stop = memtype_seq_stop,
958 .show = memtype_seq_show,
961 static int memtype_seq_open(struct inode *inode, struct file *file)
963 return seq_open(file, &memtype_seq_ops);
966 static const struct file_operations memtype_fops = {
967 .open = memtype_seq_open,
968 .read = seq_read,
969 .llseek = seq_lseek,
970 .release = seq_release,
973 static int __init pat_memtype_list_init(void)
975 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
976 NULL, &memtype_fops);
977 return 0;
980 late_initcall(pat_memtype_list_init);
982 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */