net: rfs: enable RFS before first data packet is received
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_ipv4.c
blob708dc203b0348c3365b6ac3cd2e36559a069d0cc
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99 return NULL;
101 #endif
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
142 return 0;
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct inet_sock *inet = inet_sk(sk);
151 struct tcp_sock *tp = tcp_sk(sk);
152 __be16 orig_sport, orig_dport;
153 __be32 daddr, nexthop;
154 struct flowi4 *fl4;
155 struct rtable *rt;
156 int err;
157 struct ip_options_rcu *inet_opt;
159 if (addr_len < sizeof(struct sockaddr_in))
160 return -EINVAL;
162 if (usin->sin_family != AF_INET)
163 return -EAFNOSUPPORT;
165 nexthop = daddr = usin->sin_addr.s_addr;
166 inet_opt = rcu_dereference_protected(inet->inet_opt,
167 sock_owned_by_user(sk));
168 if (inet_opt && inet_opt->opt.srr) {
169 if (!daddr)
170 return -EINVAL;
171 nexthop = inet_opt->opt.faddr;
174 orig_sport = inet->inet_sport;
175 orig_dport = usin->sin_port;
176 fl4 = &inet->cork.fl.u.ip4;
177 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
178 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
179 IPPROTO_TCP,
180 orig_sport, orig_dport, sk, true);
181 if (IS_ERR(rt)) {
182 err = PTR_ERR(rt);
183 if (err == -ENETUNREACH)
184 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
185 return err;
188 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
189 ip_rt_put(rt);
190 return -ENETUNREACH;
193 if (!inet_opt || !inet_opt->opt.srr)
194 daddr = fl4->daddr;
196 if (!inet->inet_saddr)
197 inet->inet_saddr = fl4->saddr;
198 inet->inet_rcv_saddr = inet->inet_saddr;
200 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
201 /* Reset inherited state */
202 tp->rx_opt.ts_recent = 0;
203 tp->rx_opt.ts_recent_stamp = 0;
204 tp->write_seq = 0;
207 if (tcp_death_row.sysctl_tw_recycle &&
208 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
209 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211 * VJ's idea. We save last timestamp seen from
212 * the destination in peer table, when entering state
213 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
214 * when trying new connection.
216 if (peer) {
217 inet_peer_refcheck(peer);
218 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
219 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
220 tp->rx_opt.ts_recent = peer->tcp_ts;
225 inet->inet_dport = usin->sin_port;
226 inet->inet_daddr = daddr;
228 inet_csk(sk)->icsk_ext_hdr_len = 0;
229 if (inet_opt)
230 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234 /* Socket identity is still unknown (sport may be zero).
235 * However we set state to SYN-SENT and not releasing socket
236 * lock select source port, enter ourselves into the hash tables and
237 * complete initialization after this.
239 tcp_set_state(sk, TCP_SYN_SENT);
240 err = inet_hash_connect(&tcp_death_row, sk);
241 if (err)
242 goto failure;
244 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
245 inet->inet_sport, inet->inet_dport, sk);
246 if (IS_ERR(rt)) {
247 err = PTR_ERR(rt);
248 rt = NULL;
249 goto failure;
251 /* OK, now commit destination to socket. */
252 sk->sk_gso_type = SKB_GSO_TCPV4;
253 sk_setup_caps(sk, &rt->dst);
255 if (!tp->write_seq)
256 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
257 inet->inet_daddr,
258 inet->inet_sport,
259 usin->sin_port);
261 inet->inet_id = tp->write_seq ^ jiffies;
263 err = tcp_connect(sk);
264 rt = NULL;
265 if (err)
266 goto failure;
268 return 0;
270 failure:
272 * This unhashes the socket and releases the local port,
273 * if necessary.
275 tcp_set_state(sk, TCP_CLOSE);
276 ip_rt_put(rt);
277 sk->sk_route_caps = 0;
278 inet->inet_dport = 0;
279 return err;
281 EXPORT_SYMBOL(tcp_v4_connect);
284 * This routine does path mtu discovery as defined in RFC1191.
286 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288 struct dst_entry *dst;
289 struct inet_sock *inet = inet_sk(sk);
291 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
292 * send out by Linux are always <576bytes so they should go through
293 * unfragmented).
295 if (sk->sk_state == TCP_LISTEN)
296 return;
298 /* We don't check in the destentry if pmtu discovery is forbidden
299 * on this route. We just assume that no packet_to_big packets
300 * are send back when pmtu discovery is not active.
301 * There is a small race when the user changes this flag in the
302 * route, but I think that's acceptable.
304 if ((dst = __sk_dst_check(sk, 0)) == NULL)
305 return;
307 dst->ops->update_pmtu(dst, mtu);
309 /* Something is about to be wrong... Remember soft error
310 * for the case, if this connection will not able to recover.
312 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
313 sk->sk_err_soft = EMSGSIZE;
315 mtu = dst_mtu(dst);
317 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
318 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
319 tcp_sync_mss(sk, mtu);
321 /* Resend the TCP packet because it's
322 * clear that the old packet has been
323 * dropped. This is the new "fast" path mtu
324 * discovery.
326 tcp_simple_retransmit(sk);
327 } /* else let the usual retransmit timer handle it */
331 * This routine is called by the ICMP module when it gets some
332 * sort of error condition. If err < 0 then the socket should
333 * be closed and the error returned to the user. If err > 0
334 * it's just the icmp type << 8 | icmp code. After adjustment
335 * header points to the first 8 bytes of the tcp header. We need
336 * to find the appropriate port.
338 * The locking strategy used here is very "optimistic". When
339 * someone else accesses the socket the ICMP is just dropped
340 * and for some paths there is no check at all.
341 * A more general error queue to queue errors for later handling
342 * is probably better.
346 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
349 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
350 struct inet_connection_sock *icsk;
351 struct tcp_sock *tp;
352 struct inet_sock *inet;
353 const int type = icmp_hdr(icmp_skb)->type;
354 const int code = icmp_hdr(icmp_skb)->code;
355 struct sock *sk;
356 struct sk_buff *skb;
357 __u32 seq;
358 __u32 remaining;
359 int err;
360 struct net *net = dev_net(icmp_skb->dev);
362 if (icmp_skb->len < (iph->ihl << 2) + 8) {
363 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
364 return;
367 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
368 iph->saddr, th->source, inet_iif(icmp_skb));
369 if (!sk) {
370 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
371 return;
373 if (sk->sk_state == TCP_TIME_WAIT) {
374 inet_twsk_put(inet_twsk(sk));
375 return;
378 bh_lock_sock(sk);
379 /* If too many ICMPs get dropped on busy
380 * servers this needs to be solved differently.
382 if (sock_owned_by_user(sk))
383 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385 if (sk->sk_state == TCP_CLOSE)
386 goto out;
388 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
389 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
390 goto out;
393 icsk = inet_csk(sk);
394 tp = tcp_sk(sk);
395 seq = ntohl(th->seq);
396 if (sk->sk_state != TCP_LISTEN &&
397 !between(seq, tp->snd_una, tp->snd_nxt)) {
398 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
399 goto out;
402 switch (type) {
403 case ICMP_SOURCE_QUENCH:
404 /* Just silently ignore these. */
405 goto out;
406 case ICMP_PARAMETERPROB:
407 err = EPROTO;
408 break;
409 case ICMP_DEST_UNREACH:
410 if (code > NR_ICMP_UNREACH)
411 goto out;
413 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
414 if (!sock_owned_by_user(sk))
415 do_pmtu_discovery(sk, iph, info);
416 goto out;
419 err = icmp_err_convert[code].errno;
420 /* check if icmp_skb allows revert of backoff
421 * (see draft-zimmermann-tcp-lcd) */
422 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423 break;
424 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
425 !icsk->icsk_backoff)
426 break;
428 if (sock_owned_by_user(sk))
429 break;
431 icsk->icsk_backoff--;
432 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
433 icsk->icsk_backoff;
434 tcp_bound_rto(sk);
436 skb = tcp_write_queue_head(sk);
437 BUG_ON(!skb);
439 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
440 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442 if (remaining) {
443 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
444 remaining, TCP_RTO_MAX);
445 } else {
446 /* RTO revert clocked out retransmission.
447 * Will retransmit now */
448 tcp_retransmit_timer(sk);
451 break;
452 case ICMP_TIME_EXCEEDED:
453 err = EHOSTUNREACH;
454 break;
455 default:
456 goto out;
459 switch (sk->sk_state) {
460 struct request_sock *req, **prev;
461 case TCP_LISTEN:
462 if (sock_owned_by_user(sk))
463 goto out;
465 req = inet_csk_search_req(sk, &prev, th->dest,
466 iph->daddr, iph->saddr);
467 if (!req)
468 goto out;
470 /* ICMPs are not backlogged, hence we cannot get
471 an established socket here.
473 WARN_ON(req->sk);
475 if (seq != tcp_rsk(req)->snt_isn) {
476 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
477 goto out;
481 * Still in SYN_RECV, just remove it silently.
482 * There is no good way to pass the error to the newly
483 * created socket, and POSIX does not want network
484 * errors returned from accept().
486 inet_csk_reqsk_queue_drop(sk, req, prev);
487 goto out;
489 case TCP_SYN_SENT:
490 case TCP_SYN_RECV: /* Cannot happen.
491 It can f.e. if SYNs crossed.
493 if (!sock_owned_by_user(sk)) {
494 sk->sk_err = err;
496 sk->sk_error_report(sk);
498 tcp_done(sk);
499 } else {
500 sk->sk_err_soft = err;
502 goto out;
505 /* If we've already connected we will keep trying
506 * until we time out, or the user gives up.
508 * rfc1122 4.2.3.9 allows to consider as hard errors
509 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
510 * but it is obsoleted by pmtu discovery).
512 * Note, that in modern internet, where routing is unreliable
513 * and in each dark corner broken firewalls sit, sending random
514 * errors ordered by their masters even this two messages finally lose
515 * their original sense (even Linux sends invalid PORT_UNREACHs)
517 * Now we are in compliance with RFCs.
518 * --ANK (980905)
521 inet = inet_sk(sk);
522 if (!sock_owned_by_user(sk) && inet->recverr) {
523 sk->sk_err = err;
524 sk->sk_error_report(sk);
525 } else { /* Only an error on timeout */
526 sk->sk_err_soft = err;
529 out:
530 bh_unlock_sock(sk);
531 sock_put(sk);
534 static void __tcp_v4_send_check(struct sk_buff *skb,
535 __be32 saddr, __be32 daddr)
537 struct tcphdr *th = tcp_hdr(skb);
539 if (skb->ip_summed == CHECKSUM_PARTIAL) {
540 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
541 skb->csum_start = skb_transport_header(skb) - skb->head;
542 skb->csum_offset = offsetof(struct tcphdr, check);
543 } else {
544 th->check = tcp_v4_check(skb->len, saddr, daddr,
545 csum_partial(th,
546 th->doff << 2,
547 skb->csum));
551 /* This routine computes an IPv4 TCP checksum. */
552 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554 struct inet_sock *inet = inet_sk(sk);
556 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558 EXPORT_SYMBOL(tcp_v4_send_check);
560 int tcp_v4_gso_send_check(struct sk_buff *skb)
562 const struct iphdr *iph;
563 struct tcphdr *th;
565 if (!pskb_may_pull(skb, sizeof(*th)))
566 return -EINVAL;
568 iph = ip_hdr(skb);
569 th = tcp_hdr(skb);
571 th->check = 0;
572 skb->ip_summed = CHECKSUM_PARTIAL;
573 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
574 return 0;
578 * This routine will send an RST to the other tcp.
580 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
581 * for reset.
582 * Answer: if a packet caused RST, it is not for a socket
583 * existing in our system, if it is matched to a socket,
584 * it is just duplicate segment or bug in other side's TCP.
585 * So that we build reply only basing on parameters
586 * arrived with segment.
587 * Exception: precedence violation. We do not implement it in any case.
590 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592 struct tcphdr *th = tcp_hdr(skb);
593 struct {
594 struct tcphdr th;
595 #ifdef CONFIG_TCP_MD5SIG
596 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
597 #endif
598 } rep;
599 struct ip_reply_arg arg;
600 #ifdef CONFIG_TCP_MD5SIG
601 struct tcp_md5sig_key *key;
602 #endif
603 struct net *net;
605 /* Never send a reset in response to a reset. */
606 if (th->rst)
607 return;
609 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
610 return;
612 /* Swap the send and the receive. */
613 memset(&rep, 0, sizeof(rep));
614 rep.th.dest = th->source;
615 rep.th.source = th->dest;
616 rep.th.doff = sizeof(struct tcphdr) / 4;
617 rep.th.rst = 1;
619 if (th->ack) {
620 rep.th.seq = th->ack_seq;
621 } else {
622 rep.th.ack = 1;
623 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624 skb->len - (th->doff << 2));
627 memset(&arg, 0, sizeof(arg));
628 arg.iov[0].iov_base = (unsigned char *)&rep;
629 arg.iov[0].iov_len = sizeof(rep.th);
631 #ifdef CONFIG_TCP_MD5SIG
632 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
633 if (key) {
634 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
635 (TCPOPT_NOP << 16) |
636 (TCPOPT_MD5SIG << 8) |
637 TCPOLEN_MD5SIG);
638 /* Update length and the length the header thinks exists */
639 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
640 rep.th.doff = arg.iov[0].iov_len / 4;
642 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
643 key, ip_hdr(skb)->saddr,
644 ip_hdr(skb)->daddr, &rep.th);
646 #endif
647 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
648 ip_hdr(skb)->saddr, /* XXX */
649 arg.iov[0].iov_len, IPPROTO_TCP, 0);
650 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
651 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653 net = dev_net(skb_dst(skb)->dev);
654 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
655 &arg, arg.iov[0].iov_len);
657 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
658 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
661 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
662 outside socket context is ugly, certainly. What can I do?
665 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
666 u32 win, u32 ts, int oif,
667 struct tcp_md5sig_key *key,
668 int reply_flags)
670 struct tcphdr *th = tcp_hdr(skb);
671 struct {
672 struct tcphdr th;
673 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
674 #ifdef CONFIG_TCP_MD5SIG
675 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
676 #endif
678 } rep;
679 struct ip_reply_arg arg;
680 struct net *net = dev_net(skb_dst(skb)->dev);
682 memset(&rep.th, 0, sizeof(struct tcphdr));
683 memset(&arg, 0, sizeof(arg));
685 arg.iov[0].iov_base = (unsigned char *)&rep;
686 arg.iov[0].iov_len = sizeof(rep.th);
687 if (ts) {
688 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
689 (TCPOPT_TIMESTAMP << 8) |
690 TCPOLEN_TIMESTAMP);
691 rep.opt[1] = htonl(tcp_time_stamp);
692 rep.opt[2] = htonl(ts);
693 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
696 /* Swap the send and the receive. */
697 rep.th.dest = th->source;
698 rep.th.source = th->dest;
699 rep.th.doff = arg.iov[0].iov_len / 4;
700 rep.th.seq = htonl(seq);
701 rep.th.ack_seq = htonl(ack);
702 rep.th.ack = 1;
703 rep.th.window = htons(win);
705 #ifdef CONFIG_TCP_MD5SIG
706 if (key) {
707 int offset = (ts) ? 3 : 0;
709 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
710 (TCPOPT_NOP << 16) |
711 (TCPOPT_MD5SIG << 8) |
712 TCPOLEN_MD5SIG);
713 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
714 rep.th.doff = arg.iov[0].iov_len/4;
716 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
717 key, ip_hdr(skb)->saddr,
718 ip_hdr(skb)->daddr, &rep.th);
720 #endif
721 arg.flags = reply_flags;
722 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
723 ip_hdr(skb)->saddr, /* XXX */
724 arg.iov[0].iov_len, IPPROTO_TCP, 0);
725 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
726 if (oif)
727 arg.bound_dev_if = oif;
729 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
730 &arg, arg.iov[0].iov_len);
732 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
735 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
737 struct inet_timewait_sock *tw = inet_twsk(sk);
738 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
740 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
741 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
742 tcptw->tw_ts_recent,
743 tw->tw_bound_dev_if,
744 tcp_twsk_md5_key(tcptw),
745 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
748 inet_twsk_put(tw);
751 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
752 struct request_sock *req)
754 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
755 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
756 req->ts_recent,
758 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
759 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
763 * Send a SYN-ACK after having received a SYN.
764 * This still operates on a request_sock only, not on a big
765 * socket.
767 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
768 struct request_sock *req,
769 struct request_values *rvp)
771 const struct inet_request_sock *ireq = inet_rsk(req);
772 struct flowi4 fl4;
773 int err = -1;
774 struct sk_buff * skb;
776 /* First, grab a route. */
777 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
778 return -1;
780 skb = tcp_make_synack(sk, dst, req, rvp);
782 if (skb) {
783 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
785 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
786 ireq->rmt_addr,
787 ireq->opt);
788 err = net_xmit_eval(err);
791 dst_release(dst);
792 return err;
795 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
796 struct request_values *rvp)
798 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
799 return tcp_v4_send_synack(sk, NULL, req, rvp);
803 * IPv4 request_sock destructor.
805 static void tcp_v4_reqsk_destructor(struct request_sock *req)
807 kfree(inet_rsk(req)->opt);
810 static void syn_flood_warning(const struct sk_buff *skb)
812 const char *msg;
814 #ifdef CONFIG_SYN_COOKIES
815 if (sysctl_tcp_syncookies)
816 msg = "Sending cookies";
817 else
818 #endif
819 msg = "Dropping request";
821 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
822 ntohs(tcp_hdr(skb)->dest), msg);
826 * Save and compile IPv4 options into the request_sock if needed.
828 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
829 struct sk_buff *skb)
831 const struct ip_options *opt = &(IPCB(skb)->opt);
832 struct ip_options_rcu *dopt = NULL;
834 if (opt && opt->optlen) {
835 int opt_size = sizeof(*dopt) + opt->optlen;
837 dopt = kmalloc(opt_size, GFP_ATOMIC);
838 if (dopt) {
839 if (ip_options_echo(&dopt->opt, skb)) {
840 kfree(dopt);
841 dopt = NULL;
845 return dopt;
848 #ifdef CONFIG_TCP_MD5SIG
850 * RFC2385 MD5 checksumming requires a mapping of
851 * IP address->MD5 Key.
852 * We need to maintain these in the sk structure.
855 /* Find the Key structure for an address. */
856 static struct tcp_md5sig_key *
857 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
859 struct tcp_sock *tp = tcp_sk(sk);
860 int i;
862 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
863 return NULL;
864 for (i = 0; i < tp->md5sig_info->entries4; i++) {
865 if (tp->md5sig_info->keys4[i].addr == addr)
866 return &tp->md5sig_info->keys4[i].base;
868 return NULL;
871 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
872 struct sock *addr_sk)
874 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
876 EXPORT_SYMBOL(tcp_v4_md5_lookup);
878 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
879 struct request_sock *req)
881 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
884 /* This can be called on a newly created socket, from other files */
885 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
886 u8 *newkey, u8 newkeylen)
888 /* Add Key to the list */
889 struct tcp_md5sig_key *key;
890 struct tcp_sock *tp = tcp_sk(sk);
891 struct tcp4_md5sig_key *keys;
893 key = tcp_v4_md5_do_lookup(sk, addr);
894 if (key) {
895 /* Pre-existing entry - just update that one. */
896 kfree(key->key);
897 key->key = newkey;
898 key->keylen = newkeylen;
899 } else {
900 struct tcp_md5sig_info *md5sig;
902 if (!tp->md5sig_info) {
903 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
904 GFP_ATOMIC);
905 if (!tp->md5sig_info) {
906 kfree(newkey);
907 return -ENOMEM;
909 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
911 if (tcp_alloc_md5sig_pool(sk) == NULL) {
912 kfree(newkey);
913 return -ENOMEM;
915 md5sig = tp->md5sig_info;
917 if (md5sig->alloced4 == md5sig->entries4) {
918 keys = kmalloc((sizeof(*keys) *
919 (md5sig->entries4 + 1)), GFP_ATOMIC);
920 if (!keys) {
921 kfree(newkey);
922 tcp_free_md5sig_pool();
923 return -ENOMEM;
926 if (md5sig->entries4)
927 memcpy(keys, md5sig->keys4,
928 sizeof(*keys) * md5sig->entries4);
930 /* Free old key list, and reference new one */
931 kfree(md5sig->keys4);
932 md5sig->keys4 = keys;
933 md5sig->alloced4++;
935 md5sig->entries4++;
936 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
937 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
938 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
940 return 0;
942 EXPORT_SYMBOL(tcp_v4_md5_do_add);
944 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
945 u8 *newkey, u8 newkeylen)
947 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
948 newkey, newkeylen);
951 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
953 struct tcp_sock *tp = tcp_sk(sk);
954 int i;
956 for (i = 0; i < tp->md5sig_info->entries4; i++) {
957 if (tp->md5sig_info->keys4[i].addr == addr) {
958 /* Free the key */
959 kfree(tp->md5sig_info->keys4[i].base.key);
960 tp->md5sig_info->entries4--;
962 if (tp->md5sig_info->entries4 == 0) {
963 kfree(tp->md5sig_info->keys4);
964 tp->md5sig_info->keys4 = NULL;
965 tp->md5sig_info->alloced4 = 0;
966 } else if (tp->md5sig_info->entries4 != i) {
967 /* Need to do some manipulation */
968 memmove(&tp->md5sig_info->keys4[i],
969 &tp->md5sig_info->keys4[i+1],
970 (tp->md5sig_info->entries4 - i) *
971 sizeof(struct tcp4_md5sig_key));
973 tcp_free_md5sig_pool();
974 return 0;
977 return -ENOENT;
979 EXPORT_SYMBOL(tcp_v4_md5_do_del);
981 static void tcp_v4_clear_md5_list(struct sock *sk)
983 struct tcp_sock *tp = tcp_sk(sk);
985 /* Free each key, then the set of key keys,
986 * the crypto element, and then decrement our
987 * hold on the last resort crypto.
989 if (tp->md5sig_info->entries4) {
990 int i;
991 for (i = 0; i < tp->md5sig_info->entries4; i++)
992 kfree(tp->md5sig_info->keys4[i].base.key);
993 tp->md5sig_info->entries4 = 0;
994 tcp_free_md5sig_pool();
996 if (tp->md5sig_info->keys4) {
997 kfree(tp->md5sig_info->keys4);
998 tp->md5sig_info->keys4 = NULL;
999 tp->md5sig_info->alloced4 = 0;
1003 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1004 int optlen)
1006 struct tcp_md5sig cmd;
1007 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1008 u8 *newkey;
1010 if (optlen < sizeof(cmd))
1011 return -EINVAL;
1013 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1014 return -EFAULT;
1016 if (sin->sin_family != AF_INET)
1017 return -EINVAL;
1019 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1020 if (!tcp_sk(sk)->md5sig_info)
1021 return -ENOENT;
1022 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1025 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1026 return -EINVAL;
1028 if (!tcp_sk(sk)->md5sig_info) {
1029 struct tcp_sock *tp = tcp_sk(sk);
1030 struct tcp_md5sig_info *p;
1032 p = kzalloc(sizeof(*p), sk->sk_allocation);
1033 if (!p)
1034 return -EINVAL;
1036 tp->md5sig_info = p;
1037 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1040 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1041 if (!newkey)
1042 return -ENOMEM;
1043 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1044 newkey, cmd.tcpm_keylen);
1047 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1048 __be32 daddr, __be32 saddr, int nbytes)
1050 struct tcp4_pseudohdr *bp;
1051 struct scatterlist sg;
1053 bp = &hp->md5_blk.ip4;
1056 * 1. the TCP pseudo-header (in the order: source IP address,
1057 * destination IP address, zero-padded protocol number, and
1058 * segment length)
1060 bp->saddr = saddr;
1061 bp->daddr = daddr;
1062 bp->pad = 0;
1063 bp->protocol = IPPROTO_TCP;
1064 bp->len = cpu_to_be16(nbytes);
1066 sg_init_one(&sg, bp, sizeof(*bp));
1067 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1070 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1071 __be32 daddr, __be32 saddr, struct tcphdr *th)
1073 struct tcp_md5sig_pool *hp;
1074 struct hash_desc *desc;
1076 hp = tcp_get_md5sig_pool();
1077 if (!hp)
1078 goto clear_hash_noput;
1079 desc = &hp->md5_desc;
1081 if (crypto_hash_init(desc))
1082 goto clear_hash;
1083 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1084 goto clear_hash;
1085 if (tcp_md5_hash_header(hp, th))
1086 goto clear_hash;
1087 if (tcp_md5_hash_key(hp, key))
1088 goto clear_hash;
1089 if (crypto_hash_final(desc, md5_hash))
1090 goto clear_hash;
1092 tcp_put_md5sig_pool();
1093 return 0;
1095 clear_hash:
1096 tcp_put_md5sig_pool();
1097 clear_hash_noput:
1098 memset(md5_hash, 0, 16);
1099 return 1;
1102 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1103 struct sock *sk, struct request_sock *req,
1104 struct sk_buff *skb)
1106 struct tcp_md5sig_pool *hp;
1107 struct hash_desc *desc;
1108 struct tcphdr *th = tcp_hdr(skb);
1109 __be32 saddr, daddr;
1111 if (sk) {
1112 saddr = inet_sk(sk)->inet_saddr;
1113 daddr = inet_sk(sk)->inet_daddr;
1114 } else if (req) {
1115 saddr = inet_rsk(req)->loc_addr;
1116 daddr = inet_rsk(req)->rmt_addr;
1117 } else {
1118 const struct iphdr *iph = ip_hdr(skb);
1119 saddr = iph->saddr;
1120 daddr = iph->daddr;
1123 hp = tcp_get_md5sig_pool();
1124 if (!hp)
1125 goto clear_hash_noput;
1126 desc = &hp->md5_desc;
1128 if (crypto_hash_init(desc))
1129 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1136 goto clear_hash;
1137 if (tcp_md5_hash_key(hp, key))
1138 goto clear_hash;
1139 if (crypto_hash_final(desc, md5_hash))
1140 goto clear_hash;
1142 tcp_put_md5sig_pool();
1143 return 0;
1145 clear_hash:
1146 tcp_put_md5sig_pool();
1147 clear_hash_noput:
1148 memset(md5_hash, 0, 16);
1149 return 1;
1151 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1153 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1156 * This gets called for each TCP segment that arrives
1157 * so we want to be efficient.
1158 * We have 3 drop cases:
1159 * o No MD5 hash and one expected.
1160 * o MD5 hash and we're not expecting one.
1161 * o MD5 hash and its wrong.
1163 __u8 *hash_location = NULL;
1164 struct tcp_md5sig_key *hash_expected;
1165 const struct iphdr *iph = ip_hdr(skb);
1166 struct tcphdr *th = tcp_hdr(skb);
1167 int genhash;
1168 unsigned char newhash[16];
1170 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1171 hash_location = tcp_parse_md5sig_option(th);
1173 /* We've parsed the options - do we have a hash? */
1174 if (!hash_expected && !hash_location)
1175 return 0;
1177 if (hash_expected && !hash_location) {
1178 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1179 return 1;
1182 if (!hash_expected && hash_location) {
1183 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1184 return 1;
1187 /* Okay, so this is hash_expected and hash_location -
1188 * so we need to calculate the checksum.
1190 genhash = tcp_v4_md5_hash_skb(newhash,
1191 hash_expected,
1192 NULL, NULL, skb);
1194 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1195 if (net_ratelimit()) {
1196 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1197 &iph->saddr, ntohs(th->source),
1198 &iph->daddr, ntohs(th->dest),
1199 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1201 return 1;
1203 return 0;
1206 #endif
1208 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1209 .family = PF_INET,
1210 .obj_size = sizeof(struct tcp_request_sock),
1211 .rtx_syn_ack = tcp_v4_rtx_synack,
1212 .send_ack = tcp_v4_reqsk_send_ack,
1213 .destructor = tcp_v4_reqsk_destructor,
1214 .send_reset = tcp_v4_send_reset,
1215 .syn_ack_timeout = tcp_syn_ack_timeout,
1218 #ifdef CONFIG_TCP_MD5SIG
1219 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1220 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1221 .calc_md5_hash = tcp_v4_md5_hash_skb,
1223 #endif
1225 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1227 struct tcp_extend_values tmp_ext;
1228 struct tcp_options_received tmp_opt;
1229 u8 *hash_location;
1230 struct request_sock *req;
1231 struct inet_request_sock *ireq;
1232 struct tcp_sock *tp = tcp_sk(sk);
1233 struct dst_entry *dst = NULL;
1234 __be32 saddr = ip_hdr(skb)->saddr;
1235 __be32 daddr = ip_hdr(skb)->daddr;
1236 __u32 isn = TCP_SKB_CB(skb)->when;
1237 #ifdef CONFIG_SYN_COOKIES
1238 int want_cookie = 0;
1239 #else
1240 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1241 #endif
1243 /* Never answer to SYNs send to broadcast or multicast */
1244 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1245 goto drop;
1247 /* TW buckets are converted to open requests without
1248 * limitations, they conserve resources and peer is
1249 * evidently real one.
1251 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1252 if (net_ratelimit())
1253 syn_flood_warning(skb);
1254 #ifdef CONFIG_SYN_COOKIES
1255 if (sysctl_tcp_syncookies) {
1256 want_cookie = 1;
1257 } else
1258 #endif
1259 goto drop;
1262 /* Accept backlog is full. If we have already queued enough
1263 * of warm entries in syn queue, drop request. It is better than
1264 * clogging syn queue with openreqs with exponentially increasing
1265 * timeout.
1267 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1268 goto drop;
1270 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1271 if (!req)
1272 goto drop;
1274 #ifdef CONFIG_TCP_MD5SIG
1275 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1276 #endif
1278 tcp_clear_options(&tmp_opt);
1279 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1280 tmp_opt.user_mss = tp->rx_opt.user_mss;
1281 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1283 if (tmp_opt.cookie_plus > 0 &&
1284 tmp_opt.saw_tstamp &&
1285 !tp->rx_opt.cookie_out_never &&
1286 (sysctl_tcp_cookie_size > 0 ||
1287 (tp->cookie_values != NULL &&
1288 tp->cookie_values->cookie_desired > 0))) {
1289 u8 *c;
1290 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1291 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1293 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1294 goto drop_and_release;
1296 /* Secret recipe starts with IP addresses */
1297 *mess++ ^= (__force u32)daddr;
1298 *mess++ ^= (__force u32)saddr;
1300 /* plus variable length Initiator Cookie */
1301 c = (u8 *)mess;
1302 while (l-- > 0)
1303 *c++ ^= *hash_location++;
1305 #ifdef CONFIG_SYN_COOKIES
1306 want_cookie = 0; /* not our kind of cookie */
1307 #endif
1308 tmp_ext.cookie_out_never = 0; /* false */
1309 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1310 } else if (!tp->rx_opt.cookie_in_always) {
1311 /* redundant indications, but ensure initialization. */
1312 tmp_ext.cookie_out_never = 1; /* true */
1313 tmp_ext.cookie_plus = 0;
1314 } else {
1315 goto drop_and_release;
1317 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1319 if (want_cookie && !tmp_opt.saw_tstamp)
1320 tcp_clear_options(&tmp_opt);
1322 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1323 tcp_openreq_init(req, &tmp_opt, skb);
1325 ireq = inet_rsk(req);
1326 ireq->loc_addr = daddr;
1327 ireq->rmt_addr = saddr;
1328 ireq->no_srccheck = inet_sk(sk)->transparent;
1329 ireq->opt = tcp_v4_save_options(sk, skb);
1331 if (security_inet_conn_request(sk, skb, req))
1332 goto drop_and_free;
1334 if (!want_cookie || tmp_opt.tstamp_ok)
1335 TCP_ECN_create_request(req, tcp_hdr(skb));
1337 if (want_cookie) {
1338 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1339 req->cookie_ts = tmp_opt.tstamp_ok;
1340 } else if (!isn) {
1341 struct inet_peer *peer = NULL;
1342 struct flowi4 fl4;
1344 /* VJ's idea. We save last timestamp seen
1345 * from the destination in peer table, when entering
1346 * state TIME-WAIT, and check against it before
1347 * accepting new connection request.
1349 * If "isn" is not zero, this request hit alive
1350 * timewait bucket, so that all the necessary checks
1351 * are made in the function processing timewait state.
1353 if (tmp_opt.saw_tstamp &&
1354 tcp_death_row.sysctl_tw_recycle &&
1355 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1356 fl4.daddr == saddr &&
1357 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1358 inet_peer_refcheck(peer);
1359 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1360 (s32)(peer->tcp_ts - req->ts_recent) >
1361 TCP_PAWS_WINDOW) {
1362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1363 goto drop_and_release;
1366 /* Kill the following clause, if you dislike this way. */
1367 else if (!sysctl_tcp_syncookies &&
1368 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1369 (sysctl_max_syn_backlog >> 2)) &&
1370 (!peer || !peer->tcp_ts_stamp) &&
1371 (!dst || !dst_metric(dst, RTAX_RTT))) {
1372 /* Without syncookies last quarter of
1373 * backlog is filled with destinations,
1374 * proven to be alive.
1375 * It means that we continue to communicate
1376 * to destinations, already remembered
1377 * to the moment of synflood.
1379 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1380 &saddr, ntohs(tcp_hdr(skb)->source));
1381 goto drop_and_release;
1384 isn = tcp_v4_init_sequence(skb);
1386 tcp_rsk(req)->snt_isn = isn;
1388 if (tcp_v4_send_synack(sk, dst, req,
1389 (struct request_values *)&tmp_ext) ||
1390 want_cookie)
1391 goto drop_and_free;
1393 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1394 return 0;
1396 drop_and_release:
1397 dst_release(dst);
1398 drop_and_free:
1399 reqsk_free(req);
1400 drop:
1401 return 0;
1403 EXPORT_SYMBOL(tcp_v4_conn_request);
1407 * The three way handshake has completed - we got a valid synack -
1408 * now create the new socket.
1410 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1411 struct request_sock *req,
1412 struct dst_entry *dst)
1414 struct inet_request_sock *ireq;
1415 struct inet_sock *newinet;
1416 struct tcp_sock *newtp;
1417 struct sock *newsk;
1418 #ifdef CONFIG_TCP_MD5SIG
1419 struct tcp_md5sig_key *key;
1420 #endif
1421 struct ip_options_rcu *inet_opt;
1423 if (sk_acceptq_is_full(sk))
1424 goto exit_overflow;
1426 newsk = tcp_create_openreq_child(sk, req, skb);
1427 if (!newsk)
1428 goto exit_nonewsk;
1430 newsk->sk_gso_type = SKB_GSO_TCPV4;
1432 newtp = tcp_sk(newsk);
1433 newinet = inet_sk(newsk);
1434 ireq = inet_rsk(req);
1435 newinet->inet_daddr = ireq->rmt_addr;
1436 newinet->inet_rcv_saddr = ireq->loc_addr;
1437 newinet->inet_saddr = ireq->loc_addr;
1438 inet_opt = ireq->opt;
1439 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1440 ireq->opt = NULL;
1441 newinet->mc_index = inet_iif(skb);
1442 newinet->mc_ttl = ip_hdr(skb)->ttl;
1443 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1444 if (inet_opt)
1445 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1446 newinet->inet_id = newtp->write_seq ^ jiffies;
1448 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1449 goto put_and_exit;
1451 sk_setup_caps(newsk, dst);
1453 tcp_mtup_init(newsk);
1454 tcp_sync_mss(newsk, dst_mtu(dst));
1455 newtp->advmss = dst_metric_advmss(dst);
1456 if (tcp_sk(sk)->rx_opt.user_mss &&
1457 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1458 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1460 tcp_initialize_rcv_mss(newsk);
1462 #ifdef CONFIG_TCP_MD5SIG
1463 /* Copy over the MD5 key from the original socket */
1464 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1465 if (key != NULL) {
1467 * We're using one, so create a matching key
1468 * on the newsk structure. If we fail to get
1469 * memory, then we end up not copying the key
1470 * across. Shucks.
1472 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1473 if (newkey != NULL)
1474 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1475 newkey, key->keylen);
1476 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1478 #endif
1480 if (__inet_inherit_port(sk, newsk) < 0)
1481 goto put_and_exit;
1482 __inet_hash_nolisten(newsk, NULL);
1484 return newsk;
1486 exit_overflow:
1487 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1488 exit_nonewsk:
1489 dst_release(dst);
1490 exit:
1491 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1492 return NULL;
1493 put_and_exit:
1494 sock_put(newsk);
1495 goto exit;
1497 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1499 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1501 struct tcphdr *th = tcp_hdr(skb);
1502 const struct iphdr *iph = ip_hdr(skb);
1503 struct sock *nsk;
1504 struct request_sock **prev;
1505 /* Find possible connection requests. */
1506 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1507 iph->saddr, iph->daddr);
1508 if (req)
1509 return tcp_check_req(sk, skb, req, prev);
1511 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1512 th->source, iph->daddr, th->dest, inet_iif(skb));
1514 if (nsk) {
1515 if (nsk->sk_state != TCP_TIME_WAIT) {
1516 bh_lock_sock(nsk);
1517 return nsk;
1519 inet_twsk_put(inet_twsk(nsk));
1520 return NULL;
1523 #ifdef CONFIG_SYN_COOKIES
1524 if (!th->syn)
1525 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1526 #endif
1527 return sk;
1530 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1532 const struct iphdr *iph = ip_hdr(skb);
1534 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1535 if (!tcp_v4_check(skb->len, iph->saddr,
1536 iph->daddr, skb->csum)) {
1537 skb->ip_summed = CHECKSUM_UNNECESSARY;
1538 return 0;
1542 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1543 skb->len, IPPROTO_TCP, 0);
1545 if (skb->len <= 76) {
1546 return __skb_checksum_complete(skb);
1548 return 0;
1552 /* The socket must have it's spinlock held when we get
1553 * here.
1555 * We have a potential double-lock case here, so even when
1556 * doing backlog processing we use the BH locking scheme.
1557 * This is because we cannot sleep with the original spinlock
1558 * held.
1560 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1562 struct sock *rsk;
1563 #ifdef CONFIG_TCP_MD5SIG
1565 * We really want to reject the packet as early as possible
1566 * if:
1567 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1568 * o There is an MD5 option and we're not expecting one
1570 if (tcp_v4_inbound_md5_hash(sk, skb))
1571 goto discard;
1572 #endif
1574 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1575 sock_rps_save_rxhash(sk, skb->rxhash);
1576 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1577 rsk = sk;
1578 goto reset;
1580 return 0;
1583 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1584 goto csum_err;
1586 if (sk->sk_state == TCP_LISTEN) {
1587 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1588 if (!nsk)
1589 goto discard;
1591 if (nsk != sk) {
1592 sock_rps_save_rxhash(nsk, skb->rxhash);
1593 if (tcp_child_process(sk, nsk, skb)) {
1594 rsk = nsk;
1595 goto reset;
1597 return 0;
1599 } else
1600 sock_rps_save_rxhash(sk, skb->rxhash);
1602 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1603 rsk = sk;
1604 goto reset;
1606 return 0;
1608 reset:
1609 tcp_v4_send_reset(rsk, skb);
1610 discard:
1611 kfree_skb(skb);
1612 /* Be careful here. If this function gets more complicated and
1613 * gcc suffers from register pressure on the x86, sk (in %ebx)
1614 * might be destroyed here. This current version compiles correctly,
1615 * but you have been warned.
1617 return 0;
1619 csum_err:
1620 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1621 goto discard;
1623 EXPORT_SYMBOL(tcp_v4_do_rcv);
1626 * From tcp_input.c
1629 int tcp_v4_rcv(struct sk_buff *skb)
1631 const struct iphdr *iph;
1632 struct tcphdr *th;
1633 struct sock *sk;
1634 int ret;
1635 struct net *net = dev_net(skb->dev);
1637 if (skb->pkt_type != PACKET_HOST)
1638 goto discard_it;
1640 /* Count it even if it's bad */
1641 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1643 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1644 goto discard_it;
1646 th = tcp_hdr(skb);
1648 if (th->doff < sizeof(struct tcphdr) / 4)
1649 goto bad_packet;
1650 if (!pskb_may_pull(skb, th->doff * 4))
1651 goto discard_it;
1653 /* An explanation is required here, I think.
1654 * Packet length and doff are validated by header prediction,
1655 * provided case of th->doff==0 is eliminated.
1656 * So, we defer the checks. */
1657 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1658 goto bad_packet;
1660 th = tcp_hdr(skb);
1661 iph = ip_hdr(skb);
1662 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1663 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1664 skb->len - th->doff * 4);
1665 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1666 TCP_SKB_CB(skb)->when = 0;
1667 TCP_SKB_CB(skb)->flags = iph->tos;
1668 TCP_SKB_CB(skb)->sacked = 0;
1670 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1671 if (!sk)
1672 goto no_tcp_socket;
1674 process:
1675 if (sk->sk_state == TCP_TIME_WAIT)
1676 goto do_time_wait;
1678 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1679 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1680 goto discard_and_relse;
1683 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1684 goto discard_and_relse;
1685 nf_reset(skb);
1687 if (sk_filter(sk, skb))
1688 goto discard_and_relse;
1690 skb->dev = NULL;
1692 bh_lock_sock_nested(sk);
1693 ret = 0;
1694 if (!sock_owned_by_user(sk)) {
1695 #ifdef CONFIG_NET_DMA
1696 struct tcp_sock *tp = tcp_sk(sk);
1697 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1698 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1699 if (tp->ucopy.dma_chan)
1700 ret = tcp_v4_do_rcv(sk, skb);
1701 else
1702 #endif
1704 if (!tcp_prequeue(sk, skb))
1705 ret = tcp_v4_do_rcv(sk, skb);
1707 } else if (unlikely(sk_add_backlog(sk, skb))) {
1708 bh_unlock_sock(sk);
1709 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1710 goto discard_and_relse;
1712 bh_unlock_sock(sk);
1714 sock_put(sk);
1716 return ret;
1718 no_tcp_socket:
1719 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1720 goto discard_it;
1722 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1723 bad_packet:
1724 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1725 } else {
1726 tcp_v4_send_reset(NULL, skb);
1729 discard_it:
1730 /* Discard frame. */
1731 kfree_skb(skb);
1732 return 0;
1734 discard_and_relse:
1735 sock_put(sk);
1736 goto discard_it;
1738 do_time_wait:
1739 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1740 inet_twsk_put(inet_twsk(sk));
1741 goto discard_it;
1744 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1745 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1746 inet_twsk_put(inet_twsk(sk));
1747 goto discard_it;
1749 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1750 case TCP_TW_SYN: {
1751 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1752 &tcp_hashinfo,
1753 iph->daddr, th->dest,
1754 inet_iif(skb));
1755 if (sk2) {
1756 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1757 inet_twsk_put(inet_twsk(sk));
1758 sk = sk2;
1759 goto process;
1761 /* Fall through to ACK */
1763 case TCP_TW_ACK:
1764 tcp_v4_timewait_ack(sk, skb);
1765 break;
1766 case TCP_TW_RST:
1767 goto no_tcp_socket;
1768 case TCP_TW_SUCCESS:;
1770 goto discard_it;
1773 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1775 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1776 struct inet_sock *inet = inet_sk(sk);
1777 struct inet_peer *peer;
1779 if (!rt ||
1780 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1781 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1782 *release_it = true;
1783 } else {
1784 if (!rt->peer)
1785 rt_bind_peer(rt, inet->inet_daddr, 1);
1786 peer = rt->peer;
1787 *release_it = false;
1790 return peer;
1792 EXPORT_SYMBOL(tcp_v4_get_peer);
1794 void *tcp_v4_tw_get_peer(struct sock *sk)
1796 struct inet_timewait_sock *tw = inet_twsk(sk);
1798 return inet_getpeer_v4(tw->tw_daddr, 1);
1800 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1802 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1803 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1804 .twsk_unique = tcp_twsk_unique,
1805 .twsk_destructor= tcp_twsk_destructor,
1806 .twsk_getpeer = tcp_v4_tw_get_peer,
1809 const struct inet_connection_sock_af_ops ipv4_specific = {
1810 .queue_xmit = ip_queue_xmit,
1811 .send_check = tcp_v4_send_check,
1812 .rebuild_header = inet_sk_rebuild_header,
1813 .conn_request = tcp_v4_conn_request,
1814 .syn_recv_sock = tcp_v4_syn_recv_sock,
1815 .get_peer = tcp_v4_get_peer,
1816 .net_header_len = sizeof(struct iphdr),
1817 .setsockopt = ip_setsockopt,
1818 .getsockopt = ip_getsockopt,
1819 .addr2sockaddr = inet_csk_addr2sockaddr,
1820 .sockaddr_len = sizeof(struct sockaddr_in),
1821 .bind_conflict = inet_csk_bind_conflict,
1822 #ifdef CONFIG_COMPAT
1823 .compat_setsockopt = compat_ip_setsockopt,
1824 .compat_getsockopt = compat_ip_getsockopt,
1825 #endif
1827 EXPORT_SYMBOL(ipv4_specific);
1829 #ifdef CONFIG_TCP_MD5SIG
1830 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1831 .md5_lookup = tcp_v4_md5_lookup,
1832 .calc_md5_hash = tcp_v4_md5_hash_skb,
1833 .md5_add = tcp_v4_md5_add_func,
1834 .md5_parse = tcp_v4_parse_md5_keys,
1836 #endif
1838 /* NOTE: A lot of things set to zero explicitly by call to
1839 * sk_alloc() so need not be done here.
1841 static int tcp_v4_init_sock(struct sock *sk)
1843 struct inet_connection_sock *icsk = inet_csk(sk);
1844 struct tcp_sock *tp = tcp_sk(sk);
1846 skb_queue_head_init(&tp->out_of_order_queue);
1847 tcp_init_xmit_timers(sk);
1848 tcp_prequeue_init(tp);
1850 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1851 tp->mdev = TCP_TIMEOUT_INIT;
1853 /* So many TCP implementations out there (incorrectly) count the
1854 * initial SYN frame in their delayed-ACK and congestion control
1855 * algorithms that we must have the following bandaid to talk
1856 * efficiently to them. -DaveM
1858 tp->snd_cwnd = 2;
1860 /* See draft-stevens-tcpca-spec-01 for discussion of the
1861 * initialization of these values.
1863 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1864 tp->snd_cwnd_clamp = ~0;
1865 tp->mss_cache = TCP_MSS_DEFAULT;
1867 tp->reordering = sysctl_tcp_reordering;
1868 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1870 sk->sk_state = TCP_CLOSE;
1872 sk->sk_write_space = sk_stream_write_space;
1873 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1875 icsk->icsk_af_ops = &ipv4_specific;
1876 icsk->icsk_sync_mss = tcp_sync_mss;
1877 #ifdef CONFIG_TCP_MD5SIG
1878 tp->af_specific = &tcp_sock_ipv4_specific;
1879 #endif
1881 /* TCP Cookie Transactions */
1882 if (sysctl_tcp_cookie_size > 0) {
1883 /* Default, cookies without s_data_payload. */
1884 tp->cookie_values =
1885 kzalloc(sizeof(*tp->cookie_values),
1886 sk->sk_allocation);
1887 if (tp->cookie_values != NULL)
1888 kref_init(&tp->cookie_values->kref);
1890 /* Presumed zeroed, in order of appearance:
1891 * cookie_in_always, cookie_out_never,
1892 * s_data_constant, s_data_in, s_data_out
1894 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1895 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1897 local_bh_disable();
1898 percpu_counter_inc(&tcp_sockets_allocated);
1899 local_bh_enable();
1901 return 0;
1904 void tcp_v4_destroy_sock(struct sock *sk)
1906 struct tcp_sock *tp = tcp_sk(sk);
1908 tcp_clear_xmit_timers(sk);
1910 tcp_cleanup_congestion_control(sk);
1912 /* Cleanup up the write buffer. */
1913 tcp_write_queue_purge(sk);
1915 /* Cleans up our, hopefully empty, out_of_order_queue. */
1916 __skb_queue_purge(&tp->out_of_order_queue);
1918 #ifdef CONFIG_TCP_MD5SIG
1919 /* Clean up the MD5 key list, if any */
1920 if (tp->md5sig_info) {
1921 tcp_v4_clear_md5_list(sk);
1922 kfree(tp->md5sig_info);
1923 tp->md5sig_info = NULL;
1925 #endif
1927 #ifdef CONFIG_NET_DMA
1928 /* Cleans up our sk_async_wait_queue */
1929 __skb_queue_purge(&sk->sk_async_wait_queue);
1930 #endif
1932 /* Clean prequeue, it must be empty really */
1933 __skb_queue_purge(&tp->ucopy.prequeue);
1935 /* Clean up a referenced TCP bind bucket. */
1936 if (inet_csk(sk)->icsk_bind_hash)
1937 inet_put_port(sk);
1940 * If sendmsg cached page exists, toss it.
1942 if (sk->sk_sndmsg_page) {
1943 __free_page(sk->sk_sndmsg_page);
1944 sk->sk_sndmsg_page = NULL;
1947 /* TCP Cookie Transactions */
1948 if (tp->cookie_values != NULL) {
1949 kref_put(&tp->cookie_values->kref,
1950 tcp_cookie_values_release);
1951 tp->cookie_values = NULL;
1954 percpu_counter_dec(&tcp_sockets_allocated);
1956 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1958 #ifdef CONFIG_PROC_FS
1959 /* Proc filesystem TCP sock list dumping. */
1961 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1963 return hlist_nulls_empty(head) ? NULL :
1964 list_entry(head->first, struct inet_timewait_sock, tw_node);
1967 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1969 return !is_a_nulls(tw->tw_node.next) ?
1970 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1974 * Get next listener socket follow cur. If cur is NULL, get first socket
1975 * starting from bucket given in st->bucket; when st->bucket is zero the
1976 * very first socket in the hash table is returned.
1978 static void *listening_get_next(struct seq_file *seq, void *cur)
1980 struct inet_connection_sock *icsk;
1981 struct hlist_nulls_node *node;
1982 struct sock *sk = cur;
1983 struct inet_listen_hashbucket *ilb;
1984 struct tcp_iter_state *st = seq->private;
1985 struct net *net = seq_file_net(seq);
1987 if (!sk) {
1988 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1989 spin_lock_bh(&ilb->lock);
1990 sk = sk_nulls_head(&ilb->head);
1991 st->offset = 0;
1992 goto get_sk;
1994 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1995 ++st->num;
1996 ++st->offset;
1998 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1999 struct request_sock *req = cur;
2001 icsk = inet_csk(st->syn_wait_sk);
2002 req = req->dl_next;
2003 while (1) {
2004 while (req) {
2005 if (req->rsk_ops->family == st->family) {
2006 cur = req;
2007 goto out;
2009 req = req->dl_next;
2011 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2012 break;
2013 get_req:
2014 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2016 sk = sk_nulls_next(st->syn_wait_sk);
2017 st->state = TCP_SEQ_STATE_LISTENING;
2018 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2019 } else {
2020 icsk = inet_csk(sk);
2021 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2023 goto start_req;
2024 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 sk = sk_nulls_next(sk);
2027 get_sk:
2028 sk_nulls_for_each_from(sk, node) {
2029 if (!net_eq(sock_net(sk), net))
2030 continue;
2031 if (sk->sk_family == st->family) {
2032 cur = sk;
2033 goto out;
2035 icsk = inet_csk(sk);
2036 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2038 start_req:
2039 st->uid = sock_i_uid(sk);
2040 st->syn_wait_sk = sk;
2041 st->state = TCP_SEQ_STATE_OPENREQ;
2042 st->sbucket = 0;
2043 goto get_req;
2045 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2047 spin_unlock_bh(&ilb->lock);
2048 st->offset = 0;
2049 if (++st->bucket < INET_LHTABLE_SIZE) {
2050 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2051 spin_lock_bh(&ilb->lock);
2052 sk = sk_nulls_head(&ilb->head);
2053 goto get_sk;
2055 cur = NULL;
2056 out:
2057 return cur;
2060 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2062 struct tcp_iter_state *st = seq->private;
2063 void *rc;
2065 st->bucket = 0;
2066 st->offset = 0;
2067 rc = listening_get_next(seq, NULL);
2069 while (rc && *pos) {
2070 rc = listening_get_next(seq, rc);
2071 --*pos;
2073 return rc;
2076 static inline int empty_bucket(struct tcp_iter_state *st)
2078 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2079 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083 * Get first established socket starting from bucket given in st->bucket.
2084 * If st->bucket is zero, the very first socket in the hash is returned.
2086 static void *established_get_first(struct seq_file *seq)
2088 struct tcp_iter_state *st = seq->private;
2089 struct net *net = seq_file_net(seq);
2090 void *rc = NULL;
2092 st->offset = 0;
2093 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2094 struct sock *sk;
2095 struct hlist_nulls_node *node;
2096 struct inet_timewait_sock *tw;
2097 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2099 /* Lockless fast path for the common case of empty buckets */
2100 if (empty_bucket(st))
2101 continue;
2103 spin_lock_bh(lock);
2104 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2105 if (sk->sk_family != st->family ||
2106 !net_eq(sock_net(sk), net)) {
2107 continue;
2109 rc = sk;
2110 goto out;
2112 st->state = TCP_SEQ_STATE_TIME_WAIT;
2113 inet_twsk_for_each(tw, node,
2114 &tcp_hashinfo.ehash[st->bucket].twchain) {
2115 if (tw->tw_family != st->family ||
2116 !net_eq(twsk_net(tw), net)) {
2117 continue;
2119 rc = tw;
2120 goto out;
2122 spin_unlock_bh(lock);
2123 st->state = TCP_SEQ_STATE_ESTABLISHED;
2125 out:
2126 return rc;
2129 static void *established_get_next(struct seq_file *seq, void *cur)
2131 struct sock *sk = cur;
2132 struct inet_timewait_sock *tw;
2133 struct hlist_nulls_node *node;
2134 struct tcp_iter_state *st = seq->private;
2135 struct net *net = seq_file_net(seq);
2137 ++st->num;
2138 ++st->offset;
2140 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2141 tw = cur;
2142 tw = tw_next(tw);
2143 get_tw:
2144 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2145 tw = tw_next(tw);
2147 if (tw) {
2148 cur = tw;
2149 goto out;
2151 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2152 st->state = TCP_SEQ_STATE_ESTABLISHED;
2154 /* Look for next non empty bucket */
2155 st->offset = 0;
2156 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2157 empty_bucket(st))
2159 if (st->bucket > tcp_hashinfo.ehash_mask)
2160 return NULL;
2162 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2163 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2164 } else
2165 sk = sk_nulls_next(sk);
2167 sk_nulls_for_each_from(sk, node) {
2168 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2169 goto found;
2172 st->state = TCP_SEQ_STATE_TIME_WAIT;
2173 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2174 goto get_tw;
2175 found:
2176 cur = sk;
2177 out:
2178 return cur;
2181 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2183 struct tcp_iter_state *st = seq->private;
2184 void *rc;
2186 st->bucket = 0;
2187 rc = established_get_first(seq);
2189 while (rc && pos) {
2190 rc = established_get_next(seq, rc);
2191 --pos;
2193 return rc;
2196 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2198 void *rc;
2199 struct tcp_iter_state *st = seq->private;
2201 st->state = TCP_SEQ_STATE_LISTENING;
2202 rc = listening_get_idx(seq, &pos);
2204 if (!rc) {
2205 st->state = TCP_SEQ_STATE_ESTABLISHED;
2206 rc = established_get_idx(seq, pos);
2209 return rc;
2212 static void *tcp_seek_last_pos(struct seq_file *seq)
2214 struct tcp_iter_state *st = seq->private;
2215 int offset = st->offset;
2216 int orig_num = st->num;
2217 void *rc = NULL;
2219 switch (st->state) {
2220 case TCP_SEQ_STATE_OPENREQ:
2221 case TCP_SEQ_STATE_LISTENING:
2222 if (st->bucket >= INET_LHTABLE_SIZE)
2223 break;
2224 st->state = TCP_SEQ_STATE_LISTENING;
2225 rc = listening_get_next(seq, NULL);
2226 while (offset-- && rc)
2227 rc = listening_get_next(seq, rc);
2228 if (rc)
2229 break;
2230 st->bucket = 0;
2231 /* Fallthrough */
2232 case TCP_SEQ_STATE_ESTABLISHED:
2233 case TCP_SEQ_STATE_TIME_WAIT:
2234 st->state = TCP_SEQ_STATE_ESTABLISHED;
2235 if (st->bucket > tcp_hashinfo.ehash_mask)
2236 break;
2237 rc = established_get_first(seq);
2238 while (offset-- && rc)
2239 rc = established_get_next(seq, rc);
2242 st->num = orig_num;
2244 return rc;
2247 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2249 struct tcp_iter_state *st = seq->private;
2250 void *rc;
2252 if (*pos && *pos == st->last_pos) {
2253 rc = tcp_seek_last_pos(seq);
2254 if (rc)
2255 goto out;
2258 st->state = TCP_SEQ_STATE_LISTENING;
2259 st->num = 0;
2260 st->bucket = 0;
2261 st->offset = 0;
2262 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2264 out:
2265 st->last_pos = *pos;
2266 return rc;
2269 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2271 struct tcp_iter_state *st = seq->private;
2272 void *rc = NULL;
2274 if (v == SEQ_START_TOKEN) {
2275 rc = tcp_get_idx(seq, 0);
2276 goto out;
2279 switch (st->state) {
2280 case TCP_SEQ_STATE_OPENREQ:
2281 case TCP_SEQ_STATE_LISTENING:
2282 rc = listening_get_next(seq, v);
2283 if (!rc) {
2284 st->state = TCP_SEQ_STATE_ESTABLISHED;
2285 st->bucket = 0;
2286 st->offset = 0;
2287 rc = established_get_first(seq);
2289 break;
2290 case TCP_SEQ_STATE_ESTABLISHED:
2291 case TCP_SEQ_STATE_TIME_WAIT:
2292 rc = established_get_next(seq, v);
2293 break;
2295 out:
2296 ++*pos;
2297 st->last_pos = *pos;
2298 return rc;
2301 static void tcp_seq_stop(struct seq_file *seq, void *v)
2303 struct tcp_iter_state *st = seq->private;
2305 switch (st->state) {
2306 case TCP_SEQ_STATE_OPENREQ:
2307 if (v) {
2308 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2309 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2311 case TCP_SEQ_STATE_LISTENING:
2312 if (v != SEQ_START_TOKEN)
2313 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2314 break;
2315 case TCP_SEQ_STATE_TIME_WAIT:
2316 case TCP_SEQ_STATE_ESTABLISHED:
2317 if (v)
2318 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2319 break;
2323 static int tcp_seq_open(struct inode *inode, struct file *file)
2325 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2326 struct tcp_iter_state *s;
2327 int err;
2329 err = seq_open_net(inode, file, &afinfo->seq_ops,
2330 sizeof(struct tcp_iter_state));
2331 if (err < 0)
2332 return err;
2334 s = ((struct seq_file *)file->private_data)->private;
2335 s->family = afinfo->family;
2336 s->last_pos = 0;
2337 return 0;
2340 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2342 int rc = 0;
2343 struct proc_dir_entry *p;
2345 afinfo->seq_fops.open = tcp_seq_open;
2346 afinfo->seq_fops.read = seq_read;
2347 afinfo->seq_fops.llseek = seq_lseek;
2348 afinfo->seq_fops.release = seq_release_net;
2350 afinfo->seq_ops.start = tcp_seq_start;
2351 afinfo->seq_ops.next = tcp_seq_next;
2352 afinfo->seq_ops.stop = tcp_seq_stop;
2354 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2355 &afinfo->seq_fops, afinfo);
2356 if (!p)
2357 rc = -ENOMEM;
2358 return rc;
2360 EXPORT_SYMBOL(tcp_proc_register);
2362 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2364 proc_net_remove(net, afinfo->name);
2366 EXPORT_SYMBOL(tcp_proc_unregister);
2368 static void get_openreq4(struct sock *sk, struct request_sock *req,
2369 struct seq_file *f, int i, int uid, int *len)
2371 const struct inet_request_sock *ireq = inet_rsk(req);
2372 int ttd = req->expires - jiffies;
2374 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2375 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2377 ireq->loc_addr,
2378 ntohs(inet_sk(sk)->inet_sport),
2379 ireq->rmt_addr,
2380 ntohs(ireq->rmt_port),
2381 TCP_SYN_RECV,
2382 0, 0, /* could print option size, but that is af dependent. */
2383 1, /* timers active (only the expire timer) */
2384 jiffies_to_clock_t(ttd),
2385 req->retrans,
2386 uid,
2387 0, /* non standard timer */
2388 0, /* open_requests have no inode */
2389 atomic_read(&sk->sk_refcnt),
2390 req,
2391 len);
2394 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2396 int timer_active;
2397 unsigned long timer_expires;
2398 struct tcp_sock *tp = tcp_sk(sk);
2399 const struct inet_connection_sock *icsk = inet_csk(sk);
2400 struct inet_sock *inet = inet_sk(sk);
2401 __be32 dest = inet->inet_daddr;
2402 __be32 src = inet->inet_rcv_saddr;
2403 __u16 destp = ntohs(inet->inet_dport);
2404 __u16 srcp = ntohs(inet->inet_sport);
2405 int rx_queue;
2407 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2408 timer_active = 1;
2409 timer_expires = icsk->icsk_timeout;
2410 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2411 timer_active = 4;
2412 timer_expires = icsk->icsk_timeout;
2413 } else if (timer_pending(&sk->sk_timer)) {
2414 timer_active = 2;
2415 timer_expires = sk->sk_timer.expires;
2416 } else {
2417 timer_active = 0;
2418 timer_expires = jiffies;
2421 if (sk->sk_state == TCP_LISTEN)
2422 rx_queue = sk->sk_ack_backlog;
2423 else
2425 * because we dont lock socket, we might find a transient negative value
2427 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2429 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2430 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2431 i, src, srcp, dest, destp, sk->sk_state,
2432 tp->write_seq - tp->snd_una,
2433 rx_queue,
2434 timer_active,
2435 jiffies_to_clock_t(timer_expires - jiffies),
2436 icsk->icsk_retransmits,
2437 sock_i_uid(sk),
2438 icsk->icsk_probes_out,
2439 sock_i_ino(sk),
2440 atomic_read(&sk->sk_refcnt), sk,
2441 jiffies_to_clock_t(icsk->icsk_rto),
2442 jiffies_to_clock_t(icsk->icsk_ack.ato),
2443 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2444 tp->snd_cwnd,
2445 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2446 len);
2449 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2450 struct seq_file *f, int i, int *len)
2452 __be32 dest, src;
2453 __u16 destp, srcp;
2454 int ttd = tw->tw_ttd - jiffies;
2456 if (ttd < 0)
2457 ttd = 0;
2459 dest = tw->tw_daddr;
2460 src = tw->tw_rcv_saddr;
2461 destp = ntohs(tw->tw_dport);
2462 srcp = ntohs(tw->tw_sport);
2464 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2465 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2466 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2467 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2468 atomic_read(&tw->tw_refcnt), tw, len);
2471 #define TMPSZ 150
2473 static int tcp4_seq_show(struct seq_file *seq, void *v)
2475 struct tcp_iter_state *st;
2476 int len;
2478 if (v == SEQ_START_TOKEN) {
2479 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2480 " sl local_address rem_address st tx_queue "
2481 "rx_queue tr tm->when retrnsmt uid timeout "
2482 "inode");
2483 goto out;
2485 st = seq->private;
2487 switch (st->state) {
2488 case TCP_SEQ_STATE_LISTENING:
2489 case TCP_SEQ_STATE_ESTABLISHED:
2490 get_tcp4_sock(v, seq, st->num, &len);
2491 break;
2492 case TCP_SEQ_STATE_OPENREQ:
2493 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2494 break;
2495 case TCP_SEQ_STATE_TIME_WAIT:
2496 get_timewait4_sock(v, seq, st->num, &len);
2497 break;
2499 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2500 out:
2501 return 0;
2504 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2505 .name = "tcp",
2506 .family = AF_INET,
2507 .seq_fops = {
2508 .owner = THIS_MODULE,
2510 .seq_ops = {
2511 .show = tcp4_seq_show,
2515 static int __net_init tcp4_proc_init_net(struct net *net)
2517 return tcp_proc_register(net, &tcp4_seq_afinfo);
2520 static void __net_exit tcp4_proc_exit_net(struct net *net)
2522 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2525 static struct pernet_operations tcp4_net_ops = {
2526 .init = tcp4_proc_init_net,
2527 .exit = tcp4_proc_exit_net,
2530 int __init tcp4_proc_init(void)
2532 return register_pernet_subsys(&tcp4_net_ops);
2535 void tcp4_proc_exit(void)
2537 unregister_pernet_subsys(&tcp4_net_ops);
2539 #endif /* CONFIG_PROC_FS */
2541 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2543 const struct iphdr *iph = skb_gro_network_header(skb);
2545 switch (skb->ip_summed) {
2546 case CHECKSUM_COMPLETE:
2547 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2548 skb->csum)) {
2549 skb->ip_summed = CHECKSUM_UNNECESSARY;
2550 break;
2553 /* fall through */
2554 case CHECKSUM_NONE:
2555 NAPI_GRO_CB(skb)->flush = 1;
2556 return NULL;
2559 return tcp_gro_receive(head, skb);
2562 int tcp4_gro_complete(struct sk_buff *skb)
2564 const struct iphdr *iph = ip_hdr(skb);
2565 struct tcphdr *th = tcp_hdr(skb);
2567 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2568 iph->saddr, iph->daddr, 0);
2569 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2571 return tcp_gro_complete(skb);
2574 struct proto tcp_prot = {
2575 .name = "TCP",
2576 .owner = THIS_MODULE,
2577 .close = tcp_close,
2578 .connect = tcp_v4_connect,
2579 .disconnect = tcp_disconnect,
2580 .accept = inet_csk_accept,
2581 .ioctl = tcp_ioctl,
2582 .init = tcp_v4_init_sock,
2583 .destroy = tcp_v4_destroy_sock,
2584 .shutdown = tcp_shutdown,
2585 .setsockopt = tcp_setsockopt,
2586 .getsockopt = tcp_getsockopt,
2587 .recvmsg = tcp_recvmsg,
2588 .sendmsg = tcp_sendmsg,
2589 .sendpage = tcp_sendpage,
2590 .backlog_rcv = tcp_v4_do_rcv,
2591 .hash = inet_hash,
2592 .unhash = inet_unhash,
2593 .get_port = inet_csk_get_port,
2594 .enter_memory_pressure = tcp_enter_memory_pressure,
2595 .sockets_allocated = &tcp_sockets_allocated,
2596 .orphan_count = &tcp_orphan_count,
2597 .memory_allocated = &tcp_memory_allocated,
2598 .memory_pressure = &tcp_memory_pressure,
2599 .sysctl_mem = sysctl_tcp_mem,
2600 .sysctl_wmem = sysctl_tcp_wmem,
2601 .sysctl_rmem = sysctl_tcp_rmem,
2602 .max_header = MAX_TCP_HEADER,
2603 .obj_size = sizeof(struct tcp_sock),
2604 .slab_flags = SLAB_DESTROY_BY_RCU,
2605 .twsk_prot = &tcp_timewait_sock_ops,
2606 .rsk_prot = &tcp_request_sock_ops,
2607 .h.hashinfo = &tcp_hashinfo,
2608 .no_autobind = true,
2609 #ifdef CONFIG_COMPAT
2610 .compat_setsockopt = compat_tcp_setsockopt,
2611 .compat_getsockopt = compat_tcp_getsockopt,
2612 #endif
2614 EXPORT_SYMBOL(tcp_prot);
2617 static int __net_init tcp_sk_init(struct net *net)
2619 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2620 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2623 static void __net_exit tcp_sk_exit(struct net *net)
2625 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2628 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2630 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2633 static struct pernet_operations __net_initdata tcp_sk_ops = {
2634 .init = tcp_sk_init,
2635 .exit = tcp_sk_exit,
2636 .exit_batch = tcp_sk_exit_batch,
2639 void __init tcp_v4_init(void)
2641 inet_hashinfo_init(&tcp_hashinfo);
2642 if (register_pernet_subsys(&tcp_sk_ops))
2643 panic("Failed to create the TCP control socket.\n");