2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
68 u16 heads
, u16 sectors
);
69 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
70 static void ata_dev_xfermask(struct ata_device
*dev
);
72 static unsigned int ata_unique_id
= 1;
73 static struct workqueue_struct
*ata_wq
;
75 struct workqueue_struct
*ata_aux_wq
;
77 int atapi_enabled
= 1;
78 module_param(atapi_enabled
, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir
, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua
, libata_fua
, int, 0444);
87 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
90 module_param(ata_probe_timeout
, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION
);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
114 fis
[0] = 0x27; /* Register - Host to Device FIS */
115 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis
[2] = tf
->command
;
118 fis
[3] = tf
->feature
;
125 fis
[8] = tf
->hob_lbal
;
126 fis
[9] = tf
->hob_lbam
;
127 fis
[10] = tf
->hob_lbah
;
128 fis
[11] = tf
->hob_feature
;
131 fis
[13] = tf
->hob_nsect
;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
154 tf
->command
= fis
[2]; /* status */
155 tf
->feature
= fis
[3]; /* error */
162 tf
->hob_lbal
= fis
[8];
163 tf
->hob_lbam
= fis
[9];
164 tf
->hob_lbah
= fis
[10];
167 tf
->hob_nsect
= fis
[13];
170 static const u8 ata_rw_cmds
[] = {
174 ATA_CMD_READ_MULTI_EXT
,
175 ATA_CMD_WRITE_MULTI_EXT
,
179 ATA_CMD_WRITE_MULTI_FUA_EXT
,
183 ATA_CMD_PIO_READ_EXT
,
184 ATA_CMD_PIO_WRITE_EXT
,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
210 int ata_rwcmd_protocol(struct ata_queued_cmd
*qc
)
212 struct ata_taskfile
*tf
= &qc
->tf
;
213 struct ata_device
*dev
= qc
->dev
;
216 int index
, fua
, lba48
, write
;
218 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
219 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
220 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
222 if (dev
->flags
& ATA_DFLAG_PIO
) {
223 tf
->protocol
= ATA_PROT_PIO
;
224 index
= dev
->multi_count
? 0 : 8;
225 } else if (lba48
&& (qc
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
226 /* Unable to use DMA due to host limitation */
227 tf
->protocol
= ATA_PROT_PIO
;
228 index
= dev
->multi_count
? 0 : 8;
230 tf
->protocol
= ATA_PROT_DMA
;
234 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
258 unsigned int mwdma_mask
,
259 unsigned int udma_mask
)
261 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
262 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
263 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask
,
277 unsigned int *pio_mask
,
278 unsigned int *mwdma_mask
,
279 unsigned int *udma_mask
)
282 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
284 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
286 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
289 static const struct ata_xfer_ent
{
293 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
294 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
295 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
310 * Matching XFER_* value, 0 if no match found.
312 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
314 int highbit
= fls(xfer_mask
) - 1;
315 const struct ata_xfer_ent
*ent
;
317 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
318 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
319 return ent
->base
+ highbit
- ent
->shift
;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
337 const struct ata_xfer_ent
*ent
;
339 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
340 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
341 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
359 const struct ata_xfer_ent
*ent
;
361 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
362 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask
)
383 static const char * const xfer_mode_str
[] = {
407 highbit
= fls(xfer_mask
) - 1;
408 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
409 return xfer_mode_str
[highbit
];
413 static const char *sata_spd_string(unsigned int spd
)
415 static const char * const spd_str
[] = {
420 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
422 return spd_str
[spd
- 1];
425 void ata_dev_disable(struct ata_device
*dev
)
427 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
428 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
451 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
454 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
457 ap
->ops
->dev_select(ap
, device
);
459 outb(0x55, ioaddr
->nsect_addr
);
460 outb(0xaa, ioaddr
->lbal_addr
);
462 outb(0xaa, ioaddr
->nsect_addr
);
463 outb(0x55, ioaddr
->lbal_addr
);
465 outb(0x55, ioaddr
->nsect_addr
);
466 outb(0xaa, ioaddr
->lbal_addr
);
468 nsect
= inb(ioaddr
->nsect_addr
);
469 lbal
= inb(ioaddr
->lbal_addr
);
471 if ((nsect
== 0x55) && (lbal
== 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
495 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
498 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
501 ap
->ops
->dev_select(ap
, device
);
503 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
504 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
506 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
507 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
509 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
510 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
512 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
513 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
515 if ((nsect
== 0x55) && (lbal
== 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
534 static unsigned int ata_devchk(struct ata_port
*ap
,
537 if (ap
->flags
& ATA_FLAG_MMIO
)
538 return ata_mmio_devchk(ap
, device
);
539 return ata_pio_devchk(ap
, device
);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
566 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
571 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
572 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI
;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN
;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
604 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
606 struct ata_taskfile tf
;
610 ap
->ops
->dev_select(ap
, device
);
612 memset(&tf
, 0, sizeof(tf
));
614 ap
->ops
->tf_read(ap
, &tf
);
619 /* see if device passed diags: if master then continue and warn later */
620 if (err
== 0 && device
== 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
625 else if ((device
== 0) && (err
== 0x81))
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf
);
633 if (class == ATA_DEV_UNKNOWN
)
635 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
655 void ata_id_string(const u16
*id
, unsigned char *s
,
656 unsigned int ofs
, unsigned int len
)
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
688 void ata_id_c_string(const u16
*id
, unsigned char *s
,
689 unsigned int ofs
, unsigned int len
)
695 ata_id_string(id
, s
, ofs
, len
- 1);
697 p
= s
+ strnlen(s
, len
- 1);
698 while (p
> s
&& p
[-1] == ' ')
703 static u64
ata_id_n_sectors(const u16
*id
)
705 if (ata_id_has_lba(id
)) {
706 if (ata_id_has_lba48(id
))
707 return ata_id_u64(id
, 100);
709 return ata_id_u32(id
, 60);
711 if (ata_id_current_chs_valid(id
))
712 return ata_id_u32(id
, 57);
714 return id
[1] * id
[3] * id
[6];
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
723 * This function performs no actual function.
725 * May be used as the dev_select() entry in ata_port_operations.
730 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
744 * May be used as the dev_select() entry in ata_port_operations.
750 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
755 tmp
= ATA_DEVICE_OBS
;
757 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
759 if (ap
->flags
& ATA_FLAG_MMIO
) {
760 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
762 outb(tmp
, ap
->ioaddr
.device_addr
);
764 ata_pause(ap
); /* needed; also flushes, for mmio */
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
786 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
787 unsigned int wait
, unsigned int can_sleep
)
789 if (ata_msg_probe(ap
))
790 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap
->id
, device
, wait
);
796 ap
->ops
->dev_select(ap
, device
);
799 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
816 static inline void ata_dump_id(const u16
*id
)
818 DPRINTK("49==0x%04x "
828 DPRINTK("80==0x%04x "
838 DPRINTK("88==0x%04x "
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
851 * FIXME: pre IDE drive timing (do we care ?).
859 static unsigned int ata_id_xfermask(const u16
*id
)
861 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
865 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
873 u8 mode
= id
[ATA_ID_OLD_PIO_MODES
] & 0xFF;
874 if (mode
< 5) /* Valid PIO range */
875 pio_mask
= (2 << mode
) - 1;
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
887 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
889 if (ata_id_is_cfa(id
)) {
891 * Process compact flash extended modes
893 int pio
= id
[163] & 0x7;
894 int dma
= (id
[163] >> 3) & 7;
897 pio_mask
|= (1 << 5);
899 pio_mask
|= (1 << 6);
901 mwdma_mask
|= (1 << 3);
903 mwdma_mask
|= (1 << 4);
907 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
908 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
910 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
930 * Inherited from caller.
932 void ata_port_queue_task(struct ata_port
*ap
, void (*fn
)(void *), void *data
,
937 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
940 PREPARE_WORK(&ap
->port_task
, fn
, data
);
943 rc
= queue_work(ata_wq
, &ap
->port_task
);
945 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
947 /* rc == 0 means that another user is using port task */
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
959 * Kernel thread context (may sleep)
961 void ata_port_flush_task(struct ata_port
*ap
)
967 spin_lock_irqsave(ap
->lock
, flags
);
968 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
969 spin_unlock_irqrestore(ap
->lock
, flags
);
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq
);
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
979 if (!cancel_delayed_work(&ap
->port_task
)) {
981 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
983 flush_workqueue(ata_wq
);
986 spin_lock_irqsave(ap
->lock
, flags
);
987 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
988 spin_unlock_irqrestore(ap
->lock
, flags
);
991 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
994 void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
996 struct completion
*waiting
= qc
->private_data
;
1002 * ata_exec_internal - execute libata internal command
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
1005 * @cdb: CDB for packet command
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1017 * None. Should be called with kernel context, might sleep.
1020 * Zero on success, AC_ERR_* mask on failure
1022 unsigned ata_exec_internal(struct ata_device
*dev
,
1023 struct ata_taskfile
*tf
, const u8
*cdb
,
1024 int dma_dir
, void *buf
, unsigned int buflen
)
1026 struct ata_port
*ap
= dev
->ap
;
1027 u8 command
= tf
->command
;
1028 struct ata_queued_cmd
*qc
;
1029 unsigned int tag
, preempted_tag
;
1030 u32 preempted_sactive
, preempted_qc_active
;
1031 DECLARE_COMPLETION_ONSTACK(wait
);
1032 unsigned long flags
;
1033 unsigned int err_mask
;
1036 spin_lock_irqsave(ap
->lock
, flags
);
1038 /* no internal command while frozen */
1039 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1040 spin_unlock_irqrestore(ap
->lock
, flags
);
1041 return AC_ERR_SYSTEM
;
1044 /* initialize internal qc */
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1051 if (ap
->ops
->error_handler
)
1052 tag
= ATA_TAG_INTERNAL
;
1056 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1058 qc
= __ata_qc_from_tag(ap
, tag
);
1066 preempted_tag
= ap
->active_tag
;
1067 preempted_sactive
= ap
->sactive
;
1068 preempted_qc_active
= ap
->qc_active
;
1069 ap
->active_tag
= ATA_TAG_POISON
;
1073 /* prepare & issue qc */
1076 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1077 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1078 qc
->dma_dir
= dma_dir
;
1079 if (dma_dir
!= DMA_NONE
) {
1080 ata_sg_init_one(qc
, buf
, buflen
);
1081 qc
->nsect
= buflen
/ ATA_SECT_SIZE
;
1084 qc
->private_data
= &wait
;
1085 qc
->complete_fn
= ata_qc_complete_internal
;
1089 spin_unlock_irqrestore(ap
->lock
, flags
);
1091 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1093 ata_port_flush_task(ap
);
1096 spin_lock_irqsave(ap
->lock
, flags
);
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
1103 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1104 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1106 if (ap
->ops
->error_handler
)
1107 ata_port_freeze(ap
);
1109 ata_qc_complete(qc
);
1111 if (ata_msg_warn(ap
))
1112 ata_dev_printk(dev
, KERN_WARNING
,
1113 "qc timeout (cmd 0x%x)\n", command
);
1116 spin_unlock_irqrestore(ap
->lock
, flags
);
1119 /* do post_internal_cmd */
1120 if (ap
->ops
->post_internal_cmd
)
1121 ap
->ops
->post_internal_cmd(qc
);
1123 if (qc
->flags
& ATA_QCFLAG_FAILED
&& !qc
->err_mask
) {
1124 if (ata_msg_warn(ap
))
1125 ata_dev_printk(dev
, KERN_WARNING
,
1126 "zero err_mask for failed "
1127 "internal command, assuming AC_ERR_OTHER\n");
1128 qc
->err_mask
|= AC_ERR_OTHER
;
1132 spin_lock_irqsave(ap
->lock
, flags
);
1134 *tf
= qc
->result_tf
;
1135 err_mask
= qc
->err_mask
;
1138 ap
->active_tag
= preempted_tag
;
1139 ap
->sactive
= preempted_sactive
;
1140 ap
->qc_active
= preempted_qc_active
;
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1151 * Kill the following code as soon as those drivers are fixed.
1153 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1154 err_mask
|= AC_ERR_SYSTEM
;
1158 spin_unlock_irqrestore(ap
->lock
, flags
);
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1172 * Kernel thread context (may sleep).
1175 * Zero on success, AC_ERR_* mask on failure
1177 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1179 struct ata_taskfile tf
;
1181 ata_tf_init(dev
, &tf
);
1184 tf
.flags
|= ATA_TFLAG_DEVICE
;
1185 tf
.protocol
= ATA_PROT_NODATA
;
1187 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1191 * ata_pio_need_iordy - check if iordy needed
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1198 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1201 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1210 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1211 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio
> 240) /* PIO2 is 240nS per cycle */
1224 * ata_dev_read_id - Read ID data from the specified device
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
1228 * @id: buffer to read IDENTIFY data into
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1236 * Kernel thread context (may sleep)
1239 * 0 on success, -errno otherwise.
1241 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1242 int post_reset
, u16
*id
)
1244 struct ata_port
*ap
= dev
->ap
;
1245 unsigned int class = *p_class
;
1246 struct ata_taskfile tf
;
1247 unsigned int err_mask
= 0;
1251 if (ata_msg_ctl(ap
))
1252 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__
, ap
->id
, dev
->devno
);
1255 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1258 ata_tf_init(dev
, &tf
);
1262 tf
.command
= ATA_CMD_ID_ATA
;
1265 tf
.command
= ATA_CMD_ID_ATAPI
;
1269 reason
= "unsupported class";
1273 tf
.protocol
= ATA_PROT_PIO
;
1275 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1276 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1279 reason
= "I/O error";
1283 swap_buf_le16(id
, ATA_ID_WORDS
);
1287 reason
= "device reports illegal type";
1289 if (class == ATA_DEV_ATA
) {
1290 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1293 if (ata_id_is_ata(id
))
1297 if (post_reset
&& class == ATA_DEV_ATA
) {
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1302 * INITIALIZE DEVICE PARAMETERS
1304 * Some drives were very specific about that exact sequence.
1306 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1307 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1310 reason
= "INIT_DEV_PARAMS failed";
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1327 if (ata_msg_warn(ap
))
1328 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1329 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1333 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1335 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1338 static void ata_dev_config_ncq(struct ata_device
*dev
,
1339 char *desc
, size_t desc_sz
)
1341 struct ata_port
*ap
= dev
->ap
;
1342 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1344 if (!ata_id_has_ncq(dev
->id
)) {
1349 if (ap
->flags
& ATA_FLAG_NCQ
) {
1350 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1351 dev
->flags
|= ATA_DFLAG_NCQ
;
1354 if (hdepth
>= ddepth
)
1355 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1357 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1360 static void ata_set_port_max_cmd_len(struct ata_port
*ap
)
1364 if (ap
->scsi_host
) {
1365 unsigned int len
= 0;
1367 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1368 len
= max(len
, ap
->device
[i
].cdb_len
);
1370 ap
->scsi_host
->max_cmd_len
= len
;
1375 * ata_dev_configure - Configure the specified ATA/ATAPI device
1376 * @dev: Target device to configure
1377 * @print_info: Enable device info printout
1379 * Configure @dev according to @dev->id. Generic and low-level
1380 * driver specific fixups are also applied.
1383 * Kernel thread context (may sleep)
1386 * 0 on success, -errno otherwise
1388 int ata_dev_configure(struct ata_device
*dev
, int print_info
)
1390 struct ata_port
*ap
= dev
->ap
;
1391 const u16
*id
= dev
->id
;
1392 unsigned int xfer_mask
;
1393 char revbuf
[7]; /* XYZ-99\0 */
1396 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1397 ata_dev_printk(dev
, KERN_INFO
,
1398 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1399 __FUNCTION__
, ap
->id
, dev
->devno
);
1403 if (ata_msg_probe(ap
))
1404 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER, host %u, dev %u\n",
1405 __FUNCTION__
, ap
->id
, dev
->devno
);
1407 /* print device capabilities */
1408 if (ata_msg_probe(ap
))
1409 ata_dev_printk(dev
, KERN_DEBUG
,
1410 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1411 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1413 id
[49], id
[82], id
[83], id
[84],
1414 id
[85], id
[86], id
[87], id
[88]);
1416 /* initialize to-be-configured parameters */
1417 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1418 dev
->max_sectors
= 0;
1426 * common ATA, ATAPI feature tests
1429 /* find max transfer mode; for printk only */
1430 xfer_mask
= ata_id_xfermask(id
);
1432 if (ata_msg_probe(ap
))
1435 /* ATA-specific feature tests */
1436 if (dev
->class == ATA_DEV_ATA
) {
1437 if (ata_id_is_cfa(id
)) {
1438 if (id
[162] & 1) /* CPRM may make this media unusable */
1439 ata_dev_printk(dev
, KERN_WARNING
, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1440 ap
->id
, dev
->devno
);
1441 snprintf(revbuf
, 7, "CFA");
1444 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1446 dev
->n_sectors
= ata_id_n_sectors(id
);
1448 if (ata_id_has_lba(id
)) {
1449 const char *lba_desc
;
1453 dev
->flags
|= ATA_DFLAG_LBA
;
1454 if (ata_id_has_lba48(id
)) {
1455 dev
->flags
|= ATA_DFLAG_LBA48
;
1460 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1462 /* print device info to dmesg */
1463 if (ata_msg_drv(ap
) && print_info
)
1464 ata_dev_printk(dev
, KERN_INFO
, "%s, "
1465 "max %s, %Lu sectors: %s %s\n",
1467 ata_mode_string(xfer_mask
),
1468 (unsigned long long)dev
->n_sectors
,
1469 lba_desc
, ncq_desc
);
1473 /* Default translation */
1474 dev
->cylinders
= id
[1];
1476 dev
->sectors
= id
[6];
1478 if (ata_id_current_chs_valid(id
)) {
1479 /* Current CHS translation is valid. */
1480 dev
->cylinders
= id
[54];
1481 dev
->heads
= id
[55];
1482 dev
->sectors
= id
[56];
1485 /* print device info to dmesg */
1486 if (ata_msg_drv(ap
) && print_info
)
1487 ata_dev_printk(dev
, KERN_INFO
, "%s, "
1488 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1490 ata_mode_string(xfer_mask
),
1491 (unsigned long long)dev
->n_sectors
,
1492 dev
->cylinders
, dev
->heads
,
1496 if (dev
->id
[59] & 0x100) {
1497 dev
->multi_count
= dev
->id
[59] & 0xff;
1498 if (ata_msg_drv(ap
) && print_info
)
1499 ata_dev_printk(dev
, KERN_INFO
,
1500 "ata%u: dev %u multi count %u\n",
1501 ap
->id
, dev
->devno
, dev
->multi_count
);
1507 /* ATAPI-specific feature tests */
1508 else if (dev
->class == ATA_DEV_ATAPI
) {
1509 char *cdb_intr_string
= "";
1511 rc
= atapi_cdb_len(id
);
1512 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1513 if (ata_msg_warn(ap
))
1514 ata_dev_printk(dev
, KERN_WARNING
,
1515 "unsupported CDB len\n");
1519 dev
->cdb_len
= (unsigned int) rc
;
1521 if (ata_id_cdb_intr(dev
->id
)) {
1522 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1523 cdb_intr_string
= ", CDB intr";
1526 /* print device info to dmesg */
1527 if (ata_msg_drv(ap
) && print_info
)
1528 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1529 ata_mode_string(xfer_mask
),
1533 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
1534 /* Let the user know. We don't want to disallow opens for
1535 rescue purposes, or in case the vendor is just a blithering
1538 ata_dev_printk(dev
, KERN_WARNING
,
1539 "Drive reports diagnostics failure. This may indicate a drive\n");
1540 ata_dev_printk(dev
, KERN_WARNING
,
1541 "fault or invalid emulation. Contact drive vendor for information.\n");
1545 ata_set_port_max_cmd_len(ap
);
1547 /* limit bridge transfers to udma5, 200 sectors */
1548 if (ata_dev_knobble(dev
)) {
1549 if (ata_msg_drv(ap
) && print_info
)
1550 ata_dev_printk(dev
, KERN_INFO
,
1551 "applying bridge limits\n");
1552 dev
->udma_mask
&= ATA_UDMA5
;
1553 dev
->max_sectors
= ATA_MAX_SECTORS
;
1556 if (ap
->ops
->dev_config
)
1557 ap
->ops
->dev_config(ap
, dev
);
1559 if (ata_msg_probe(ap
))
1560 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
1561 __FUNCTION__
, ata_chk_status(ap
));
1565 if (ata_msg_probe(ap
))
1566 ata_dev_printk(dev
, KERN_DEBUG
,
1567 "%s: EXIT, err\n", __FUNCTION__
);
1572 * ata_bus_probe - Reset and probe ATA bus
1575 * Master ATA bus probing function. Initiates a hardware-dependent
1576 * bus reset, then attempts to identify any devices found on
1580 * PCI/etc. bus probe sem.
1583 * Zero on success, negative errno otherwise.
1586 int ata_bus_probe(struct ata_port
*ap
)
1588 unsigned int classes
[ATA_MAX_DEVICES
];
1589 int tries
[ATA_MAX_DEVICES
];
1590 int i
, rc
, down_xfermask
;
1591 struct ata_device
*dev
;
1595 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1596 tries
[i
] = ATA_PROBE_MAX_TRIES
;
1601 /* reset and determine device classes */
1602 ap
->ops
->phy_reset(ap
);
1604 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1605 dev
= &ap
->device
[i
];
1607 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
1608 dev
->class != ATA_DEV_UNKNOWN
)
1609 classes
[dev
->devno
] = dev
->class;
1611 classes
[dev
->devno
] = ATA_DEV_NONE
;
1613 dev
->class = ATA_DEV_UNKNOWN
;
1618 /* after the reset the device state is PIO 0 and the controller
1619 state is undefined. Record the mode */
1621 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1622 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
1624 /* read IDENTIFY page and configure devices */
1625 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1626 dev
= &ap
->device
[i
];
1629 dev
->class = classes
[i
];
1631 if (!ata_dev_enabled(dev
))
1634 rc
= ata_dev_read_id(dev
, &dev
->class, 1, dev
->id
);
1638 rc
= ata_dev_configure(dev
, 1);
1643 /* configure transfer mode */
1644 rc
= ata_set_mode(ap
, &dev
);
1650 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1651 if (ata_dev_enabled(&ap
->device
[i
]))
1654 /* no device present, disable port */
1655 ata_port_disable(ap
);
1656 ap
->ops
->port_disable(ap
);
1663 tries
[dev
->devno
] = 0;
1666 sata_down_spd_limit(ap
);
1669 tries
[dev
->devno
]--;
1670 if (down_xfermask
&&
1671 ata_down_xfermask_limit(dev
, tries
[dev
->devno
] == 1))
1672 tries
[dev
->devno
] = 0;
1675 if (!tries
[dev
->devno
]) {
1676 ata_down_xfermask_limit(dev
, 1);
1677 ata_dev_disable(dev
);
1684 * ata_port_probe - Mark port as enabled
1685 * @ap: Port for which we indicate enablement
1687 * Modify @ap data structure such that the system
1688 * thinks that the entire port is enabled.
1690 * LOCKING: host lock, or some other form of
1694 void ata_port_probe(struct ata_port
*ap
)
1696 ap
->flags
&= ~ATA_FLAG_DISABLED
;
1700 * sata_print_link_status - Print SATA link status
1701 * @ap: SATA port to printk link status about
1703 * This function prints link speed and status of a SATA link.
1708 static void sata_print_link_status(struct ata_port
*ap
)
1710 u32 sstatus
, scontrol
, tmp
;
1712 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
1714 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
1716 if (ata_port_online(ap
)) {
1717 tmp
= (sstatus
>> 4) & 0xf;
1718 ata_port_printk(ap
, KERN_INFO
,
1719 "SATA link up %s (SStatus %X SControl %X)\n",
1720 sata_spd_string(tmp
), sstatus
, scontrol
);
1722 ata_port_printk(ap
, KERN_INFO
,
1723 "SATA link down (SStatus %X SControl %X)\n",
1729 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1730 * @ap: SATA port associated with target SATA PHY.
1732 * This function issues commands to standard SATA Sxxx
1733 * PHY registers, to wake up the phy (and device), and
1734 * clear any reset condition.
1737 * PCI/etc. bus probe sem.
1740 void __sata_phy_reset(struct ata_port
*ap
)
1743 unsigned long timeout
= jiffies
+ (HZ
* 5);
1745 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1746 /* issue phy wake/reset */
1747 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1748 /* Couldn't find anything in SATA I/II specs, but
1749 * AHCI-1.1 10.4.2 says at least 1 ms. */
1752 /* phy wake/clear reset */
1753 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1755 /* wait for phy to become ready, if necessary */
1758 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1759 if ((sstatus
& 0xf) != 1)
1761 } while (time_before(jiffies
, timeout
));
1763 /* print link status */
1764 sata_print_link_status(ap
);
1766 /* TODO: phy layer with polling, timeouts, etc. */
1767 if (!ata_port_offline(ap
))
1770 ata_port_disable(ap
);
1772 if (ap
->flags
& ATA_FLAG_DISABLED
)
1775 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1776 ata_port_disable(ap
);
1780 ap
->cbl
= ATA_CBL_SATA
;
1784 * sata_phy_reset - Reset SATA bus.
1785 * @ap: SATA port associated with target SATA PHY.
1787 * This function resets the SATA bus, and then probes
1788 * the bus for devices.
1791 * PCI/etc. bus probe sem.
1794 void sata_phy_reset(struct ata_port
*ap
)
1796 __sata_phy_reset(ap
);
1797 if (ap
->flags
& ATA_FLAG_DISABLED
)
1803 * ata_dev_pair - return other device on cable
1806 * Obtain the other device on the same cable, or if none is
1807 * present NULL is returned
1810 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
1812 struct ata_port
*ap
= adev
->ap
;
1813 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
1814 if (!ata_dev_enabled(pair
))
1820 * ata_port_disable - Disable port.
1821 * @ap: Port to be disabled.
1823 * Modify @ap data structure such that the system
1824 * thinks that the entire port is disabled, and should
1825 * never attempt to probe or communicate with devices
1828 * LOCKING: host lock, or some other form of
1832 void ata_port_disable(struct ata_port
*ap
)
1834 ap
->device
[0].class = ATA_DEV_NONE
;
1835 ap
->device
[1].class = ATA_DEV_NONE
;
1836 ap
->flags
|= ATA_FLAG_DISABLED
;
1840 * sata_down_spd_limit - adjust SATA spd limit downward
1841 * @ap: Port to adjust SATA spd limit for
1843 * Adjust SATA spd limit of @ap downward. Note that this
1844 * function only adjusts the limit. The change must be applied
1845 * using sata_set_spd().
1848 * Inherited from caller.
1851 * 0 on success, negative errno on failure
1853 int sata_down_spd_limit(struct ata_port
*ap
)
1855 u32 sstatus
, spd
, mask
;
1858 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1862 mask
= ap
->sata_spd_limit
;
1865 highbit
= fls(mask
) - 1;
1866 mask
&= ~(1 << highbit
);
1868 spd
= (sstatus
>> 4) & 0xf;
1872 mask
&= (1 << spd
) - 1;
1876 ap
->sata_spd_limit
= mask
;
1878 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
1879 sata_spd_string(fls(mask
)));
1884 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
1888 if (ap
->sata_spd_limit
== UINT_MAX
)
1891 limit
= fls(ap
->sata_spd_limit
);
1893 spd
= (*scontrol
>> 4) & 0xf;
1894 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
1896 return spd
!= limit
;
1900 * sata_set_spd_needed - is SATA spd configuration needed
1901 * @ap: Port in question
1903 * Test whether the spd limit in SControl matches
1904 * @ap->sata_spd_limit. This function is used to determine
1905 * whether hardreset is necessary to apply SATA spd
1909 * Inherited from caller.
1912 * 1 if SATA spd configuration is needed, 0 otherwise.
1914 int sata_set_spd_needed(struct ata_port
*ap
)
1918 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
1921 return __sata_set_spd_needed(ap
, &scontrol
);
1925 * sata_set_spd - set SATA spd according to spd limit
1926 * @ap: Port to set SATA spd for
1928 * Set SATA spd of @ap according to sata_spd_limit.
1931 * Inherited from caller.
1934 * 0 if spd doesn't need to be changed, 1 if spd has been
1935 * changed. Negative errno if SCR registers are inaccessible.
1937 int sata_set_spd(struct ata_port
*ap
)
1942 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
1945 if (!__sata_set_spd_needed(ap
, &scontrol
))
1948 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
1955 * This mode timing computation functionality is ported over from
1956 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1959 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1960 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1961 * for UDMA6, which is currently supported only by Maxtor drives.
1963 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1966 static const struct ata_timing ata_timing
[] = {
1968 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
1969 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
1970 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
1971 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
1973 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
1974 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
1975 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
1976 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
1977 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
1979 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1981 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
1982 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
1983 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
1985 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
1986 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
1987 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
1989 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
1990 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
1991 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
1992 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
1994 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
1995 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
1996 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
1998 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2003 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2004 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2006 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2008 q
->setup
= EZ(t
->setup
* 1000, T
);
2009 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2010 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2011 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2012 q
->active
= EZ(t
->active
* 1000, T
);
2013 q
->recover
= EZ(t
->recover
* 1000, T
);
2014 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2015 q
->udma
= EZ(t
->udma
* 1000, UT
);
2018 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2019 struct ata_timing
*m
, unsigned int what
)
2021 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2022 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2023 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2024 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2025 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2026 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2027 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2028 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2031 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2033 const struct ata_timing
*t
;
2035 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2036 if (t
->mode
== 0xFF)
2041 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2042 struct ata_timing
*t
, int T
, int UT
)
2044 const struct ata_timing
*s
;
2045 struct ata_timing p
;
2051 if (!(s
= ata_timing_find_mode(speed
)))
2054 memcpy(t
, s
, sizeof(*s
));
2057 * If the drive is an EIDE drive, it can tell us it needs extended
2058 * PIO/MW_DMA cycle timing.
2061 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2062 memset(&p
, 0, sizeof(p
));
2063 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2064 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2065 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2066 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2067 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2069 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2073 * Convert the timing to bus clock counts.
2076 ata_timing_quantize(t
, t
, T
, UT
);
2079 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2080 * S.M.A.R.T * and some other commands. We have to ensure that the
2081 * DMA cycle timing is slower/equal than the fastest PIO timing.
2084 if (speed
> XFER_PIO_4
) {
2085 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2086 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2090 * Lengthen active & recovery time so that cycle time is correct.
2093 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2094 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2095 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2098 if (t
->active
+ t
->recover
< t
->cycle
) {
2099 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2100 t
->recover
= t
->cycle
- t
->active
;
2107 * ata_down_xfermask_limit - adjust dev xfer masks downward
2108 * @dev: Device to adjust xfer masks
2109 * @force_pio0: Force PIO0
2111 * Adjust xfer masks of @dev downward. Note that this function
2112 * does not apply the change. Invoking ata_set_mode() afterwards
2113 * will apply the limit.
2116 * Inherited from caller.
2119 * 0 on success, negative errno on failure
2121 int ata_down_xfermask_limit(struct ata_device
*dev
, int force_pio0
)
2123 unsigned long xfer_mask
;
2126 xfer_mask
= ata_pack_xfermask(dev
->pio_mask
, dev
->mwdma_mask
,
2131 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2132 if (xfer_mask
& ATA_MASK_UDMA
)
2133 xfer_mask
&= ~ATA_MASK_MWDMA
;
2135 highbit
= fls(xfer_mask
) - 1;
2136 xfer_mask
&= ~(1 << highbit
);
2138 xfer_mask
&= 1 << ATA_SHIFT_PIO
;
2142 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2145 ata_dev_printk(dev
, KERN_WARNING
, "limiting speed to %s\n",
2146 ata_mode_string(xfer_mask
));
2154 static int ata_dev_set_mode(struct ata_device
*dev
)
2156 unsigned int err_mask
;
2159 dev
->flags
&= ~ATA_DFLAG_PIO
;
2160 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2161 dev
->flags
|= ATA_DFLAG_PIO
;
2163 err_mask
= ata_dev_set_xfermode(dev
);
2165 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2166 "(err_mask=0x%x)\n", err_mask
);
2170 rc
= ata_dev_revalidate(dev
, 0);
2174 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2175 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2177 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2178 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2183 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2184 * @ap: port on which timings will be programmed
2185 * @r_failed_dev: out paramter for failed device
2187 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2188 * ata_set_mode() fails, pointer to the failing device is
2189 * returned in @r_failed_dev.
2192 * PCI/etc. bus probe sem.
2195 * 0 on success, negative errno otherwise
2197 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2199 struct ata_device
*dev
;
2200 int i
, rc
= 0, used_dma
= 0, found
= 0;
2202 /* has private set_mode? */
2203 if (ap
->ops
->set_mode
) {
2204 /* FIXME: make ->set_mode handle no device case and
2205 * return error code and failing device on failure.
2207 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2208 if (ata_dev_ready(&ap
->device
[i
])) {
2209 ap
->ops
->set_mode(ap
);
2216 /* step 1: calculate xfer_mask */
2217 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2218 unsigned int pio_mask
, dma_mask
;
2220 dev
= &ap
->device
[i
];
2222 if (!ata_dev_enabled(dev
))
2225 ata_dev_xfermask(dev
);
2227 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2228 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2229 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2230 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2239 /* step 2: always set host PIO timings */
2240 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2241 dev
= &ap
->device
[i
];
2242 if (!ata_dev_enabled(dev
))
2245 if (!dev
->pio_mode
) {
2246 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2251 dev
->xfer_mode
= dev
->pio_mode
;
2252 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2253 if (ap
->ops
->set_piomode
)
2254 ap
->ops
->set_piomode(ap
, dev
);
2257 /* step 3: set host DMA timings */
2258 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2259 dev
= &ap
->device
[i
];
2261 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2264 dev
->xfer_mode
= dev
->dma_mode
;
2265 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2266 if (ap
->ops
->set_dmamode
)
2267 ap
->ops
->set_dmamode(ap
, dev
);
2270 /* step 4: update devices' xfer mode */
2271 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2272 dev
= &ap
->device
[i
];
2274 /* don't udpate suspended devices' xfer mode */
2275 if (!ata_dev_ready(dev
))
2278 rc
= ata_dev_set_mode(dev
);
2283 /* Record simplex status. If we selected DMA then the other
2284 * host channels are not permitted to do so.
2286 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2287 ap
->host
->simplex_claimed
= 1;
2289 /* step5: chip specific finalisation */
2290 if (ap
->ops
->post_set_mode
)
2291 ap
->ops
->post_set_mode(ap
);
2295 *r_failed_dev
= dev
;
2300 * ata_tf_to_host - issue ATA taskfile to host controller
2301 * @ap: port to which command is being issued
2302 * @tf: ATA taskfile register set
2304 * Issues ATA taskfile register set to ATA host controller,
2305 * with proper synchronization with interrupt handler and
2309 * spin_lock_irqsave(host lock)
2312 static inline void ata_tf_to_host(struct ata_port
*ap
,
2313 const struct ata_taskfile
*tf
)
2315 ap
->ops
->tf_load(ap
, tf
);
2316 ap
->ops
->exec_command(ap
, tf
);
2320 * ata_busy_sleep - sleep until BSY clears, or timeout
2321 * @ap: port containing status register to be polled
2322 * @tmout_pat: impatience timeout
2323 * @tmout: overall timeout
2325 * Sleep until ATA Status register bit BSY clears,
2326 * or a timeout occurs.
2331 unsigned int ata_busy_sleep (struct ata_port
*ap
,
2332 unsigned long tmout_pat
, unsigned long tmout
)
2334 unsigned long timer_start
, timeout
;
2337 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2338 timer_start
= jiffies
;
2339 timeout
= timer_start
+ tmout_pat
;
2340 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
2342 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2345 if (status
& ATA_BUSY
)
2346 ata_port_printk(ap
, KERN_WARNING
,
2347 "port is slow to respond, please be patient "
2348 "(Status 0x%x)\n", status
);
2350 timeout
= timer_start
+ tmout
;
2351 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
2353 status
= ata_chk_status(ap
);
2356 if (status
& ATA_BUSY
) {
2357 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2358 "(%lu secs, Status 0x%x)\n",
2359 tmout
/ HZ
, status
);
2366 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
2368 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2369 unsigned int dev0
= devmask
& (1 << 0);
2370 unsigned int dev1
= devmask
& (1 << 1);
2371 unsigned long timeout
;
2373 /* if device 0 was found in ata_devchk, wait for its
2377 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2379 /* if device 1 was found in ata_devchk, wait for
2380 * register access, then wait for BSY to clear
2382 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
2386 ap
->ops
->dev_select(ap
, 1);
2387 if (ap
->flags
& ATA_FLAG_MMIO
) {
2388 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
2389 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
2391 nsect
= inb(ioaddr
->nsect_addr
);
2392 lbal
= inb(ioaddr
->lbal_addr
);
2394 if ((nsect
== 1) && (lbal
== 1))
2396 if (time_after(jiffies
, timeout
)) {
2400 msleep(50); /* give drive a breather */
2403 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2405 /* is all this really necessary? */
2406 ap
->ops
->dev_select(ap
, 0);
2408 ap
->ops
->dev_select(ap
, 1);
2410 ap
->ops
->dev_select(ap
, 0);
2413 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
2414 unsigned int devmask
)
2416 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2418 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
2420 /* software reset. causes dev0 to be selected */
2421 if (ap
->flags
& ATA_FLAG_MMIO
) {
2422 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2423 udelay(20); /* FIXME: flush */
2424 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
2425 udelay(20); /* FIXME: flush */
2426 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2428 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2430 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2432 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2435 /* spec mandates ">= 2ms" before checking status.
2436 * We wait 150ms, because that was the magic delay used for
2437 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2438 * between when the ATA command register is written, and then
2439 * status is checked. Because waiting for "a while" before
2440 * checking status is fine, post SRST, we perform this magic
2441 * delay here as well.
2443 * Old drivers/ide uses the 2mS rule and then waits for ready
2447 /* Before we perform post reset processing we want to see if
2448 * the bus shows 0xFF because the odd clown forgets the D7
2449 * pulldown resistor.
2451 if (ata_check_status(ap
) == 0xFF) {
2452 ata_port_printk(ap
, KERN_ERR
, "SRST failed (status 0xFF)\n");
2453 return AC_ERR_OTHER
;
2456 ata_bus_post_reset(ap
, devmask
);
2462 * ata_bus_reset - reset host port and associated ATA channel
2463 * @ap: port to reset
2465 * This is typically the first time we actually start issuing
2466 * commands to the ATA channel. We wait for BSY to clear, then
2467 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2468 * result. Determine what devices, if any, are on the channel
2469 * by looking at the device 0/1 error register. Look at the signature
2470 * stored in each device's taskfile registers, to determine if
2471 * the device is ATA or ATAPI.
2474 * PCI/etc. bus probe sem.
2475 * Obtains host lock.
2478 * Sets ATA_FLAG_DISABLED if bus reset fails.
2481 void ata_bus_reset(struct ata_port
*ap
)
2483 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2484 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2486 unsigned int dev0
, dev1
= 0, devmask
= 0;
2488 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
2490 /* determine if device 0/1 are present */
2491 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2494 dev0
= ata_devchk(ap
, 0);
2496 dev1
= ata_devchk(ap
, 1);
2500 devmask
|= (1 << 0);
2502 devmask
|= (1 << 1);
2504 /* select device 0 again */
2505 ap
->ops
->dev_select(ap
, 0);
2507 /* issue bus reset */
2508 if (ap
->flags
& ATA_FLAG_SRST
)
2509 if (ata_bus_softreset(ap
, devmask
))
2513 * determine by signature whether we have ATA or ATAPI devices
2515 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2516 if ((slave_possible
) && (err
!= 0x81))
2517 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2519 /* re-enable interrupts */
2520 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2523 /* is double-select really necessary? */
2524 if (ap
->device
[1].class != ATA_DEV_NONE
)
2525 ap
->ops
->dev_select(ap
, 1);
2526 if (ap
->device
[0].class != ATA_DEV_NONE
)
2527 ap
->ops
->dev_select(ap
, 0);
2529 /* if no devices were detected, disable this port */
2530 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2531 (ap
->device
[1].class == ATA_DEV_NONE
))
2534 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2535 /* set up device control for ATA_FLAG_SATA_RESET */
2536 if (ap
->flags
& ATA_FLAG_MMIO
)
2537 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2539 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2546 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
2547 ap
->ops
->port_disable(ap
);
2553 * sata_phy_debounce - debounce SATA phy status
2554 * @ap: ATA port to debounce SATA phy status for
2555 * @params: timing parameters { interval, duratinon, timeout } in msec
2557 * Make sure SStatus of @ap reaches stable state, determined by
2558 * holding the same value where DET is not 1 for @duration polled
2559 * every @interval, before @timeout. Timeout constraints the
2560 * beginning of the stable state. Because, after hot unplugging,
2561 * DET gets stuck at 1 on some controllers, this functions waits
2562 * until timeout then returns 0 if DET is stable at 1.
2565 * Kernel thread context (may sleep)
2568 * 0 on success, -errno on failure.
2570 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
)
2572 unsigned long interval_msec
= params
[0];
2573 unsigned long duration
= params
[1] * HZ
/ 1000;
2574 unsigned long timeout
= jiffies
+ params
[2] * HZ
/ 1000;
2575 unsigned long last_jiffies
;
2579 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2584 last_jiffies
= jiffies
;
2587 msleep(interval_msec
);
2588 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2594 if (cur
== 1 && time_before(jiffies
, timeout
))
2596 if (time_after(jiffies
, last_jiffies
+ duration
))
2601 /* unstable, start over */
2603 last_jiffies
= jiffies
;
2606 if (time_after(jiffies
, timeout
))
2612 * sata_phy_resume - resume SATA phy
2613 * @ap: ATA port to resume SATA phy for
2614 * @params: timing parameters { interval, duratinon, timeout } in msec
2616 * Resume SATA phy of @ap and debounce it.
2619 * Kernel thread context (may sleep)
2622 * 0 on success, -errno on failure.
2624 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
)
2629 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2632 scontrol
= (scontrol
& 0x0f0) | 0x300;
2634 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2637 /* Some PHYs react badly if SStatus is pounded immediately
2638 * after resuming. Delay 200ms before debouncing.
2642 return sata_phy_debounce(ap
, params
);
2645 static void ata_wait_spinup(struct ata_port
*ap
)
2647 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2648 unsigned long end
, secs
;
2651 /* first, debounce phy if SATA */
2652 if (ap
->cbl
== ATA_CBL_SATA
) {
2653 rc
= sata_phy_debounce(ap
, sata_deb_timing_hotplug
);
2655 /* if debounced successfully and offline, no need to wait */
2656 if ((rc
== 0 || rc
== -EOPNOTSUPP
) && ata_port_offline(ap
))
2660 /* okay, let's give the drive time to spin up */
2661 end
= ehc
->i
.hotplug_timestamp
+ ATA_SPINUP_WAIT
* HZ
/ 1000;
2662 secs
= ((end
- jiffies
) + HZ
- 1) / HZ
;
2664 if (time_after(jiffies
, end
))
2668 ata_port_printk(ap
, KERN_INFO
, "waiting for device to spin up "
2669 "(%lu secs)\n", secs
);
2671 schedule_timeout_uninterruptible(end
- jiffies
);
2675 * ata_std_prereset - prepare for reset
2676 * @ap: ATA port to be reset
2678 * @ap is about to be reset. Initialize it.
2681 * Kernel thread context (may sleep)
2684 * 0 on success, -errno otherwise.
2686 int ata_std_prereset(struct ata_port
*ap
)
2688 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2689 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2692 /* handle link resume & hotplug spinup */
2693 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
2694 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
2695 ehc
->i
.action
|= ATA_EH_HARDRESET
;
2697 if ((ehc
->i
.flags
& ATA_EHI_HOTPLUGGED
) &&
2698 (ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
))
2699 ata_wait_spinup(ap
);
2701 /* if we're about to do hardreset, nothing more to do */
2702 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
2705 /* if SATA, resume phy */
2706 if (ap
->cbl
== ATA_CBL_SATA
) {
2707 rc
= sata_phy_resume(ap
, timing
);
2708 if (rc
&& rc
!= -EOPNOTSUPP
) {
2709 /* phy resume failed */
2710 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
2711 "link for reset (errno=%d)\n", rc
);
2716 /* Wait for !BSY if the controller can wait for the first D2H
2717 * Reg FIS and we don't know that no device is attached.
2719 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
))
2720 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2726 * ata_std_softreset - reset host port via ATA SRST
2727 * @ap: port to reset
2728 * @classes: resulting classes of attached devices
2730 * Reset host port using ATA SRST.
2733 * Kernel thread context (may sleep)
2736 * 0 on success, -errno otherwise.
2738 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
)
2740 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2741 unsigned int devmask
= 0, err_mask
;
2746 if (ata_port_offline(ap
)) {
2747 classes
[0] = ATA_DEV_NONE
;
2751 /* determine if device 0/1 are present */
2752 if (ata_devchk(ap
, 0))
2753 devmask
|= (1 << 0);
2754 if (slave_possible
&& ata_devchk(ap
, 1))
2755 devmask
|= (1 << 1);
2757 /* select device 0 again */
2758 ap
->ops
->dev_select(ap
, 0);
2760 /* issue bus reset */
2761 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2762 err_mask
= ata_bus_softreset(ap
, devmask
);
2764 ata_port_printk(ap
, KERN_ERR
, "SRST failed (err_mask=0x%x)\n",
2769 /* determine by signature whether we have ATA or ATAPI devices */
2770 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
2771 if (slave_possible
&& err
!= 0x81)
2772 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
2775 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2780 * sata_std_hardreset - reset host port via SATA phy reset
2781 * @ap: port to reset
2782 * @class: resulting class of attached device
2784 * SATA phy-reset host port using DET bits of SControl register.
2787 * Kernel thread context (may sleep)
2790 * 0 on success, -errno otherwise.
2792 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class)
2794 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2795 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2801 if (sata_set_spd_needed(ap
)) {
2802 /* SATA spec says nothing about how to reconfigure
2803 * spd. To be on the safe side, turn off phy during
2804 * reconfiguration. This works for at least ICH7 AHCI
2807 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2810 scontrol
= (scontrol
& 0x0f0) | 0x304;
2812 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2818 /* issue phy wake/reset */
2819 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2822 scontrol
= (scontrol
& 0x0f0) | 0x301;
2824 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
2827 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2828 * 10.4.2 says at least 1 ms.
2832 /* bring phy back */
2833 sata_phy_resume(ap
, timing
);
2835 /* TODO: phy layer with polling, timeouts, etc. */
2836 if (ata_port_offline(ap
)) {
2837 *class = ATA_DEV_NONE
;
2838 DPRINTK("EXIT, link offline\n");
2842 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2843 ata_port_printk(ap
, KERN_ERR
,
2844 "COMRESET failed (device not ready)\n");
2848 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
2850 *class = ata_dev_try_classify(ap
, 0, NULL
);
2852 DPRINTK("EXIT, class=%u\n", *class);
2857 * ata_std_postreset - standard postreset callback
2858 * @ap: the target ata_port
2859 * @classes: classes of attached devices
2861 * This function is invoked after a successful reset. Note that
2862 * the device might have been reset more than once using
2863 * different reset methods before postreset is invoked.
2866 * Kernel thread context (may sleep)
2868 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
2874 /* print link status */
2875 sata_print_link_status(ap
);
2878 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
2879 sata_scr_write(ap
, SCR_ERROR
, serror
);
2881 /* re-enable interrupts */
2882 if (!ap
->ops
->error_handler
) {
2883 /* FIXME: hack. create a hook instead */
2884 if (ap
->ioaddr
.ctl_addr
)
2888 /* is double-select really necessary? */
2889 if (classes
[0] != ATA_DEV_NONE
)
2890 ap
->ops
->dev_select(ap
, 1);
2891 if (classes
[1] != ATA_DEV_NONE
)
2892 ap
->ops
->dev_select(ap
, 0);
2894 /* bail out if no device is present */
2895 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2896 DPRINTK("EXIT, no device\n");
2900 /* set up device control */
2901 if (ap
->ioaddr
.ctl_addr
) {
2902 if (ap
->flags
& ATA_FLAG_MMIO
)
2903 writeb(ap
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
2905 outb(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
2912 * ata_dev_same_device - Determine whether new ID matches configured device
2913 * @dev: device to compare against
2914 * @new_class: class of the new device
2915 * @new_id: IDENTIFY page of the new device
2917 * Compare @new_class and @new_id against @dev and determine
2918 * whether @dev is the device indicated by @new_class and
2925 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2927 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
2930 const u16
*old_id
= dev
->id
;
2931 unsigned char model
[2][41], serial
[2][21];
2934 if (dev
->class != new_class
) {
2935 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
2936 dev
->class, new_class
);
2940 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD_OFS
, sizeof(model
[0]));
2941 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD_OFS
, sizeof(model
[1]));
2942 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO_OFS
, sizeof(serial
[0]));
2943 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO_OFS
, sizeof(serial
[1]));
2944 new_n_sectors
= ata_id_n_sectors(new_id
);
2946 if (strcmp(model
[0], model
[1])) {
2947 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
2948 "'%s' != '%s'\n", model
[0], model
[1]);
2952 if (strcmp(serial
[0], serial
[1])) {
2953 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
2954 "'%s' != '%s'\n", serial
[0], serial
[1]);
2958 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
2959 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
2961 (unsigned long long)dev
->n_sectors
,
2962 (unsigned long long)new_n_sectors
);
2970 * ata_dev_revalidate - Revalidate ATA device
2971 * @dev: device to revalidate
2972 * @post_reset: is this revalidation after reset?
2974 * Re-read IDENTIFY page and make sure @dev is still attached to
2978 * Kernel thread context (may sleep)
2981 * 0 on success, negative errno otherwise
2983 int ata_dev_revalidate(struct ata_device
*dev
, int post_reset
)
2985 unsigned int class = dev
->class;
2986 u16
*id
= (void *)dev
->ap
->sector_buf
;
2989 if (!ata_dev_enabled(dev
)) {
2995 rc
= ata_dev_read_id(dev
, &class, post_reset
, id
);
2999 /* is the device still there? */
3000 if (!ata_dev_same_device(dev
, class, id
)) {
3005 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3007 /* configure device according to the new ID */
3008 rc
= ata_dev_configure(dev
, 0);
3013 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3017 static const char * const ata_dma_blacklist
[] = {
3018 "WDC AC11000H", NULL
,
3019 "WDC AC22100H", NULL
,
3020 "WDC AC32500H", NULL
,
3021 "WDC AC33100H", NULL
,
3022 "WDC AC31600H", NULL
,
3023 "WDC AC32100H", "24.09P07",
3024 "WDC AC23200L", "21.10N21",
3025 "Compaq CRD-8241B", NULL
,
3030 "SanDisk SDP3B", NULL
,
3031 "SanDisk SDP3B-64", NULL
,
3032 "SANYO CD-ROM CRD", NULL
,
3033 "HITACHI CDR-8", NULL
,
3034 "HITACHI CDR-8335", NULL
,
3035 "HITACHI CDR-8435", NULL
,
3036 "Toshiba CD-ROM XM-6202B", NULL
,
3037 "TOSHIBA CD-ROM XM-1702BC", NULL
,
3039 "E-IDE CD-ROM CR-840", NULL
,
3040 "CD-ROM Drive/F5A", NULL
,
3041 "WPI CDD-820", NULL
,
3042 "SAMSUNG CD-ROM SC-148C", NULL
,
3043 "SAMSUNG CD-ROM SC", NULL
,
3044 "SanDisk SDP3B-64", NULL
,
3045 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,
3046 "_NEC DV5800A", NULL
,
3047 "SAMSUNG CD-ROM SN-124", "N001"
3050 static int ata_strim(char *s
, size_t len
)
3052 len
= strnlen(s
, len
);
3054 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3055 while ((len
> 0) && (s
[len
- 1] == ' ')) {
3062 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3064 unsigned char model_num
[40];
3065 unsigned char model_rev
[16];
3066 unsigned int nlen
, rlen
;
3069 /* We don't support polling DMA.
3070 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3071 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3073 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3074 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3077 ata_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
3079 ata_id_string(dev
->id
, model_rev
, ATA_ID_FW_REV_OFS
,
3081 nlen
= ata_strim(model_num
, sizeof(model_num
));
3082 rlen
= ata_strim(model_rev
, sizeof(model_rev
));
3084 for (i
= 0; i
< ARRAY_SIZE(ata_dma_blacklist
); i
+= 2) {
3085 if (!strncmp(ata_dma_blacklist
[i
], model_num
, nlen
)) {
3086 if (ata_dma_blacklist
[i
+1] == NULL
)
3088 if (!strncmp(ata_dma_blacklist
[i
], model_rev
, rlen
))
3096 * ata_dev_xfermask - Compute supported xfermask of the given device
3097 * @dev: Device to compute xfermask for
3099 * Compute supported xfermask of @dev and store it in
3100 * dev->*_mask. This function is responsible for applying all
3101 * known limits including host controller limits, device
3107 static void ata_dev_xfermask(struct ata_device
*dev
)
3109 struct ata_port
*ap
= dev
->ap
;
3110 struct ata_host
*host
= ap
->host
;
3111 unsigned long xfer_mask
;
3113 /* controller modes available */
3114 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3115 ap
->mwdma_mask
, ap
->udma_mask
);
3117 /* Apply cable rule here. Don't apply it early because when
3118 * we handle hot plug the cable type can itself change.
3120 if (ap
->cbl
== ATA_CBL_PATA40
)
3121 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3123 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3124 dev
->mwdma_mask
, dev
->udma_mask
);
3125 xfer_mask
&= ata_id_xfermask(dev
->id
);
3128 * CFA Advanced TrueIDE timings are not allowed on a shared
3131 if (ata_dev_pair(dev
)) {
3132 /* No PIO5 or PIO6 */
3133 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3134 /* No MWDMA3 or MWDMA 4 */
3135 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3138 if (ata_dma_blacklisted(dev
)) {
3139 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3140 ata_dev_printk(dev
, KERN_WARNING
,
3141 "device is on DMA blacklist, disabling DMA\n");
3144 if ((host
->flags
& ATA_HOST_SIMPLEX
) && host
->simplex_claimed
) {
3145 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3146 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3147 "other device, disabling DMA\n");
3150 if (ap
->ops
->mode_filter
)
3151 xfer_mask
= ap
->ops
->mode_filter(ap
, dev
, xfer_mask
);
3153 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3154 &dev
->mwdma_mask
, &dev
->udma_mask
);
3158 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3159 * @dev: Device to which command will be sent
3161 * Issue SET FEATURES - XFER MODE command to device @dev
3165 * PCI/etc. bus probe sem.
3168 * 0 on success, AC_ERR_* mask otherwise.
3171 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3173 struct ata_taskfile tf
;
3174 unsigned int err_mask
;
3176 /* set up set-features taskfile */
3177 DPRINTK("set features - xfer mode\n");
3179 ata_tf_init(dev
, &tf
);
3180 tf
.command
= ATA_CMD_SET_FEATURES
;
3181 tf
.feature
= SETFEATURES_XFER
;
3182 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3183 tf
.protocol
= ATA_PROT_NODATA
;
3184 tf
.nsect
= dev
->xfer_mode
;
3186 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3188 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3193 * ata_dev_init_params - Issue INIT DEV PARAMS command
3194 * @dev: Device to which command will be sent
3195 * @heads: Number of heads (taskfile parameter)
3196 * @sectors: Number of sectors (taskfile parameter)
3199 * Kernel thread context (may sleep)
3202 * 0 on success, AC_ERR_* mask otherwise.
3204 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3205 u16 heads
, u16 sectors
)
3207 struct ata_taskfile tf
;
3208 unsigned int err_mask
;
3210 /* Number of sectors per track 1-255. Number of heads 1-16 */
3211 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3212 return AC_ERR_INVALID
;
3214 /* set up init dev params taskfile */
3215 DPRINTK("init dev params \n");
3217 ata_tf_init(dev
, &tf
);
3218 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3219 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3220 tf
.protocol
= ATA_PROT_NODATA
;
3222 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3224 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3226 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3231 * ata_sg_clean - Unmap DMA memory associated with command
3232 * @qc: Command containing DMA memory to be released
3234 * Unmap all mapped DMA memory associated with this command.
3237 * spin_lock_irqsave(host lock)
3240 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
3242 struct ata_port
*ap
= qc
->ap
;
3243 struct scatterlist
*sg
= qc
->__sg
;
3244 int dir
= qc
->dma_dir
;
3245 void *pad_buf
= NULL
;
3247 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3248 WARN_ON(sg
== NULL
);
3250 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3251 WARN_ON(qc
->n_elem
> 1);
3253 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3255 /* if we padded the buffer out to 32-bit bound, and data
3256 * xfer direction is from-device, we must copy from the
3257 * pad buffer back into the supplied buffer
3259 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3260 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3262 if (qc
->flags
& ATA_QCFLAG_SG
) {
3264 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3265 /* restore last sg */
3266 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3268 struct scatterlist
*psg
= &qc
->pad_sgent
;
3269 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3270 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3271 kunmap_atomic(addr
, KM_IRQ0
);
3275 dma_unmap_single(ap
->dev
,
3276 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3279 sg
->length
+= qc
->pad_len
;
3281 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3282 pad_buf
, qc
->pad_len
);
3285 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3290 * ata_fill_sg - Fill PCI IDE PRD table
3291 * @qc: Metadata associated with taskfile to be transferred
3293 * Fill PCI IDE PRD (scatter-gather) table with segments
3294 * associated with the current disk command.
3297 * spin_lock_irqsave(host lock)
3300 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
3302 struct ata_port
*ap
= qc
->ap
;
3303 struct scatterlist
*sg
;
3306 WARN_ON(qc
->__sg
== NULL
);
3307 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
3310 ata_for_each_sg(sg
, qc
) {
3314 /* determine if physical DMA addr spans 64K boundary.
3315 * Note h/w doesn't support 64-bit, so we unconditionally
3316 * truncate dma_addr_t to u32.
3318 addr
= (u32
) sg_dma_address(sg
);
3319 sg_len
= sg_dma_len(sg
);
3322 offset
= addr
& 0xffff;
3324 if ((offset
+ sg_len
) > 0x10000)
3325 len
= 0x10000 - offset
;
3327 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
3328 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
3329 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
3338 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
3341 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3342 * @qc: Metadata associated with taskfile to check
3344 * Allow low-level driver to filter ATA PACKET commands, returning
3345 * a status indicating whether or not it is OK to use DMA for the
3346 * supplied PACKET command.
3349 * spin_lock_irqsave(host lock)
3351 * RETURNS: 0 when ATAPI DMA can be used
3354 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
3356 struct ata_port
*ap
= qc
->ap
;
3357 int rc
= 0; /* Assume ATAPI DMA is OK by default */
3359 if (ap
->ops
->check_atapi_dma
)
3360 rc
= ap
->ops
->check_atapi_dma(qc
);
3365 * ata_qc_prep - Prepare taskfile for submission
3366 * @qc: Metadata associated with taskfile to be prepared
3368 * Prepare ATA taskfile for submission.
3371 * spin_lock_irqsave(host lock)
3373 void ata_qc_prep(struct ata_queued_cmd
*qc
)
3375 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3381 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
3384 * ata_sg_init_one - Associate command with memory buffer
3385 * @qc: Command to be associated
3386 * @buf: Memory buffer
3387 * @buflen: Length of memory buffer, in bytes.
3389 * Initialize the data-related elements of queued_cmd @qc
3390 * to point to a single memory buffer, @buf of byte length @buflen.
3393 * spin_lock_irqsave(host lock)
3396 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
3398 struct scatterlist
*sg
;
3400 qc
->flags
|= ATA_QCFLAG_SINGLE
;
3402 memset(&qc
->sgent
, 0, sizeof(qc
->sgent
));
3403 qc
->__sg
= &qc
->sgent
;
3405 qc
->orig_n_elem
= 1;
3407 qc
->nbytes
= buflen
;
3410 sg_init_one(sg
, buf
, buflen
);
3414 * ata_sg_init - Associate command with scatter-gather table.
3415 * @qc: Command to be associated
3416 * @sg: Scatter-gather table.
3417 * @n_elem: Number of elements in s/g table.
3419 * Initialize the data-related elements of queued_cmd @qc
3420 * to point to a scatter-gather table @sg, containing @n_elem
3424 * spin_lock_irqsave(host lock)
3427 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
3428 unsigned int n_elem
)
3430 qc
->flags
|= ATA_QCFLAG_SG
;
3432 qc
->n_elem
= n_elem
;
3433 qc
->orig_n_elem
= n_elem
;
3437 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3438 * @qc: Command with memory buffer to be mapped.
3440 * DMA-map the memory buffer associated with queued_cmd @qc.
3443 * spin_lock_irqsave(host lock)
3446 * Zero on success, negative on error.
3449 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
3451 struct ata_port
*ap
= qc
->ap
;
3452 int dir
= qc
->dma_dir
;
3453 struct scatterlist
*sg
= qc
->__sg
;
3454 dma_addr_t dma_address
;
3457 /* we must lengthen transfers to end on a 32-bit boundary */
3458 qc
->pad_len
= sg
->length
& 3;
3460 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3461 struct scatterlist
*psg
= &qc
->pad_sgent
;
3463 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3465 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3467 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
3468 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3471 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3472 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3474 sg
->length
-= qc
->pad_len
;
3475 if (sg
->length
== 0)
3478 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3479 sg
->length
, qc
->pad_len
);
3487 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3489 if (dma_mapping_error(dma_address
)) {
3491 sg
->length
+= qc
->pad_len
;
3495 sg_dma_address(sg
) = dma_address
;
3496 sg_dma_len(sg
) = sg
->length
;
3499 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3500 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3506 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3507 * @qc: Command with scatter-gather table to be mapped.
3509 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3512 * spin_lock_irqsave(host lock)
3515 * Zero on success, negative on error.
3519 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3521 struct ata_port
*ap
= qc
->ap
;
3522 struct scatterlist
*sg
= qc
->__sg
;
3523 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3524 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3526 VPRINTK("ENTER, ata%u\n", ap
->id
);
3527 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3529 /* we must lengthen transfers to end on a 32-bit boundary */
3530 qc
->pad_len
= lsg
->length
& 3;
3532 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3533 struct scatterlist
*psg
= &qc
->pad_sgent
;
3534 unsigned int offset
;
3536 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3538 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3541 * psg->page/offset are used to copy to-be-written
3542 * data in this function or read data in ata_sg_clean.
3544 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3545 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3546 psg
->offset
= offset_in_page(offset
);
3548 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3549 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3550 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3551 kunmap_atomic(addr
, KM_IRQ0
);
3554 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3555 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3557 lsg
->length
-= qc
->pad_len
;
3558 if (lsg
->length
== 0)
3561 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3562 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3565 pre_n_elem
= qc
->n_elem
;
3566 if (trim_sg
&& pre_n_elem
)
3575 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3577 /* restore last sg */
3578 lsg
->length
+= qc
->pad_len
;
3582 DPRINTK("%d sg elements mapped\n", n_elem
);
3585 qc
->n_elem
= n_elem
;
3591 * swap_buf_le16 - swap halves of 16-bit words in place
3592 * @buf: Buffer to swap
3593 * @buf_words: Number of 16-bit words in buffer.
3595 * Swap halves of 16-bit words if needed to convert from
3596 * little-endian byte order to native cpu byte order, or
3600 * Inherited from caller.
3602 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3607 for (i
= 0; i
< buf_words
; i
++)
3608 buf
[i
] = le16_to_cpu(buf
[i
]);
3609 #endif /* __BIG_ENDIAN */
3613 * ata_mmio_data_xfer - Transfer data by MMIO
3614 * @adev: device for this I/O
3616 * @buflen: buffer length
3617 * @write_data: read/write
3619 * Transfer data from/to the device data register by MMIO.
3622 * Inherited from caller.
3625 void ata_mmio_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3626 unsigned int buflen
, int write_data
)
3628 struct ata_port
*ap
= adev
->ap
;
3630 unsigned int words
= buflen
>> 1;
3631 u16
*buf16
= (u16
*) buf
;
3632 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
3634 /* Transfer multiple of 2 bytes */
3636 for (i
= 0; i
< words
; i
++)
3637 writew(le16_to_cpu(buf16
[i
]), mmio
);
3639 for (i
= 0; i
< words
; i
++)
3640 buf16
[i
] = cpu_to_le16(readw(mmio
));
3643 /* Transfer trailing 1 byte, if any. */
3644 if (unlikely(buflen
& 0x01)) {
3645 u16 align_buf
[1] = { 0 };
3646 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3649 memcpy(align_buf
, trailing_buf
, 1);
3650 writew(le16_to_cpu(align_buf
[0]), mmio
);
3652 align_buf
[0] = cpu_to_le16(readw(mmio
));
3653 memcpy(trailing_buf
, align_buf
, 1);
3659 * ata_pio_data_xfer - Transfer data by PIO
3660 * @adev: device to target
3662 * @buflen: buffer length
3663 * @write_data: read/write
3665 * Transfer data from/to the device data register by PIO.
3668 * Inherited from caller.
3671 void ata_pio_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3672 unsigned int buflen
, int write_data
)
3674 struct ata_port
*ap
= adev
->ap
;
3675 unsigned int words
= buflen
>> 1;
3677 /* Transfer multiple of 2 bytes */
3679 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
3681 insw(ap
->ioaddr
.data_addr
, buf
, words
);
3683 /* Transfer trailing 1 byte, if any. */
3684 if (unlikely(buflen
& 0x01)) {
3685 u16 align_buf
[1] = { 0 };
3686 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3689 memcpy(align_buf
, trailing_buf
, 1);
3690 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3692 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
3693 memcpy(trailing_buf
, align_buf
, 1);
3699 * ata_pio_data_xfer_noirq - Transfer data by PIO
3700 * @adev: device to target
3702 * @buflen: buffer length
3703 * @write_data: read/write
3705 * Transfer data from/to the device data register by PIO. Do the
3706 * transfer with interrupts disabled.
3709 * Inherited from caller.
3712 void ata_pio_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
3713 unsigned int buflen
, int write_data
)
3715 unsigned long flags
;
3716 local_irq_save(flags
);
3717 ata_pio_data_xfer(adev
, buf
, buflen
, write_data
);
3718 local_irq_restore(flags
);
3723 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3724 * @qc: Command on going
3726 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3729 * Inherited from caller.
3732 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3734 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3735 struct scatterlist
*sg
= qc
->__sg
;
3736 struct ata_port
*ap
= qc
->ap
;
3738 unsigned int offset
;
3741 if (qc
->cursect
== (qc
->nsect
- 1))
3742 ap
->hsm_task_state
= HSM_ST_LAST
;
3744 page
= sg
[qc
->cursg
].page
;
3745 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
3747 /* get the current page and offset */
3748 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3749 offset
%= PAGE_SIZE
;
3751 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3753 if (PageHighMem(page
)) {
3754 unsigned long flags
;
3756 /* FIXME: use a bounce buffer */
3757 local_irq_save(flags
);
3758 buf
= kmap_atomic(page
, KM_IRQ0
);
3760 /* do the actual data transfer */
3761 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3763 kunmap_atomic(buf
, KM_IRQ0
);
3764 local_irq_restore(flags
);
3766 buf
= page_address(page
);
3767 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3773 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
3780 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3781 * @qc: Command on going
3783 * Transfer one or many ATA_SECT_SIZE of data from/to the
3784 * ATA device for the DRQ request.
3787 * Inherited from caller.
3790 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
3792 if (is_multi_taskfile(&qc
->tf
)) {
3793 /* READ/WRITE MULTIPLE */
3796 WARN_ON(qc
->dev
->multi_count
== 0);
3798 nsect
= min(qc
->nsect
- qc
->cursect
, qc
->dev
->multi_count
);
3806 * atapi_send_cdb - Write CDB bytes to hardware
3807 * @ap: Port to which ATAPI device is attached.
3808 * @qc: Taskfile currently active
3810 * When device has indicated its readiness to accept
3811 * a CDB, this function is called. Send the CDB.
3817 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
3820 DPRINTK("send cdb\n");
3821 WARN_ON(qc
->dev
->cdb_len
< 12);
3823 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
3824 ata_altstatus(ap
); /* flush */
3826 switch (qc
->tf
.protocol
) {
3827 case ATA_PROT_ATAPI
:
3828 ap
->hsm_task_state
= HSM_ST
;
3830 case ATA_PROT_ATAPI_NODATA
:
3831 ap
->hsm_task_state
= HSM_ST_LAST
;
3833 case ATA_PROT_ATAPI_DMA
:
3834 ap
->hsm_task_state
= HSM_ST_LAST
;
3835 /* initiate bmdma */
3836 ap
->ops
->bmdma_start(qc
);
3842 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3843 * @qc: Command on going
3844 * @bytes: number of bytes
3846 * Transfer Transfer data from/to the ATAPI device.
3849 * Inherited from caller.
3853 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
3855 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3856 struct scatterlist
*sg
= qc
->__sg
;
3857 struct ata_port
*ap
= qc
->ap
;
3860 unsigned int offset
, count
;
3862 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
3863 ap
->hsm_task_state
= HSM_ST_LAST
;
3866 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
3868 * The end of qc->sg is reached and the device expects
3869 * more data to transfer. In order not to overrun qc->sg
3870 * and fulfill length specified in the byte count register,
3871 * - for read case, discard trailing data from the device
3872 * - for write case, padding zero data to the device
3874 u16 pad_buf
[1] = { 0 };
3875 unsigned int words
= bytes
>> 1;
3878 if (words
) /* warning if bytes > 1 */
3879 ata_dev_printk(qc
->dev
, KERN_WARNING
,
3880 "%u bytes trailing data\n", bytes
);
3882 for (i
= 0; i
< words
; i
++)
3883 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
3885 ap
->hsm_task_state
= HSM_ST_LAST
;
3889 sg
= &qc
->__sg
[qc
->cursg
];
3892 offset
= sg
->offset
+ qc
->cursg_ofs
;
3894 /* get the current page and offset */
3895 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3896 offset
%= PAGE_SIZE
;
3898 /* don't overrun current sg */
3899 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
3901 /* don't cross page boundaries */
3902 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
3904 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3906 if (PageHighMem(page
)) {
3907 unsigned long flags
;
3909 /* FIXME: use bounce buffer */
3910 local_irq_save(flags
);
3911 buf
= kmap_atomic(page
, KM_IRQ0
);
3913 /* do the actual data transfer */
3914 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
3916 kunmap_atomic(buf
, KM_IRQ0
);
3917 local_irq_restore(flags
);
3919 buf
= page_address(page
);
3920 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
3924 qc
->curbytes
+= count
;
3925 qc
->cursg_ofs
+= count
;
3927 if (qc
->cursg_ofs
== sg
->length
) {
3937 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3938 * @qc: Command on going
3940 * Transfer Transfer data from/to the ATAPI device.
3943 * Inherited from caller.
3946 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
3948 struct ata_port
*ap
= qc
->ap
;
3949 struct ata_device
*dev
= qc
->dev
;
3950 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
3951 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
3953 /* Abuse qc->result_tf for temp storage of intermediate TF
3954 * here to save some kernel stack usage.
3955 * For normal completion, qc->result_tf is not relevant. For
3956 * error, qc->result_tf is later overwritten by ata_qc_complete().
3957 * So, the correctness of qc->result_tf is not affected.
3959 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
3960 ireason
= qc
->result_tf
.nsect
;
3961 bc_lo
= qc
->result_tf
.lbam
;
3962 bc_hi
= qc
->result_tf
.lbah
;
3963 bytes
= (bc_hi
<< 8) | bc_lo
;
3965 /* shall be cleared to zero, indicating xfer of data */
3966 if (ireason
& (1 << 0))
3969 /* make sure transfer direction matches expected */
3970 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
3971 if (do_write
!= i_write
)
3974 VPRINTK("ata%u: xfering %d bytes\n", ap
->id
, bytes
);
3976 __atapi_pio_bytes(qc
, bytes
);
3981 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
3982 qc
->err_mask
|= AC_ERR_HSM
;
3983 ap
->hsm_task_state
= HSM_ST_ERR
;
3987 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3988 * @ap: the target ata_port
3992 * 1 if ok in workqueue, 0 otherwise.
3995 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
3997 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4000 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4001 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4002 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4005 if (is_atapi_taskfile(&qc
->tf
) &&
4006 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4014 * ata_hsm_qc_complete - finish a qc running on standard HSM
4015 * @qc: Command to complete
4016 * @in_wq: 1 if called from workqueue, 0 otherwise
4018 * Finish @qc which is running on standard HSM.
4021 * If @in_wq is zero, spin_lock_irqsave(host lock).
4022 * Otherwise, none on entry and grabs host lock.
4024 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4026 struct ata_port
*ap
= qc
->ap
;
4027 unsigned long flags
;
4029 if (ap
->ops
->error_handler
) {
4031 spin_lock_irqsave(ap
->lock
, flags
);
4033 /* EH might have kicked in while host lock is
4036 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4038 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4040 ata_qc_complete(qc
);
4042 ata_port_freeze(ap
);
4045 spin_unlock_irqrestore(ap
->lock
, flags
);
4047 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4048 ata_qc_complete(qc
);
4050 ata_port_freeze(ap
);
4054 spin_lock_irqsave(ap
->lock
, flags
);
4056 ata_qc_complete(qc
);
4057 spin_unlock_irqrestore(ap
->lock
, flags
);
4059 ata_qc_complete(qc
);
4062 ata_altstatus(ap
); /* flush */
4066 * ata_hsm_move - move the HSM to the next state.
4067 * @ap: the target ata_port
4069 * @status: current device status
4070 * @in_wq: 1 if called from workqueue, 0 otherwise
4073 * 1 when poll next status needed, 0 otherwise.
4075 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4076 u8 status
, int in_wq
)
4078 unsigned long flags
= 0;
4081 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4083 /* Make sure ata_qc_issue_prot() does not throw things
4084 * like DMA polling into the workqueue. Notice that
4085 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4087 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4090 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4091 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4093 switch (ap
->hsm_task_state
) {
4095 /* Send first data block or PACKET CDB */
4097 /* If polling, we will stay in the work queue after
4098 * sending the data. Otherwise, interrupt handler
4099 * takes over after sending the data.
4101 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4103 /* check device status */
4104 if (unlikely((status
& ATA_DRQ
) == 0)) {
4105 /* handle BSY=0, DRQ=0 as error */
4106 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4107 /* device stops HSM for abort/error */
4108 qc
->err_mask
|= AC_ERR_DEV
;
4110 /* HSM violation. Let EH handle this */
4111 qc
->err_mask
|= AC_ERR_HSM
;
4113 ap
->hsm_task_state
= HSM_ST_ERR
;
4117 /* Device should not ask for data transfer (DRQ=1)
4118 * when it finds something wrong.
4119 * We ignore DRQ here and stop the HSM by
4120 * changing hsm_task_state to HSM_ST_ERR and
4121 * let the EH abort the command or reset the device.
4123 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4124 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4126 qc
->err_mask
|= AC_ERR_HSM
;
4127 ap
->hsm_task_state
= HSM_ST_ERR
;
4131 /* Send the CDB (atapi) or the first data block (ata pio out).
4132 * During the state transition, interrupt handler shouldn't
4133 * be invoked before the data transfer is complete and
4134 * hsm_task_state is changed. Hence, the following locking.
4137 spin_lock_irqsave(ap
->lock
, flags
);
4139 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4140 /* PIO data out protocol.
4141 * send first data block.
4144 /* ata_pio_sectors() might change the state
4145 * to HSM_ST_LAST. so, the state is changed here
4146 * before ata_pio_sectors().
4148 ap
->hsm_task_state
= HSM_ST
;
4149 ata_pio_sectors(qc
);
4150 ata_altstatus(ap
); /* flush */
4153 atapi_send_cdb(ap
, qc
);
4156 spin_unlock_irqrestore(ap
->lock
, flags
);
4158 /* if polling, ata_pio_task() handles the rest.
4159 * otherwise, interrupt handler takes over from here.
4164 /* complete command or read/write the data register */
4165 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4166 /* ATAPI PIO protocol */
4167 if ((status
& ATA_DRQ
) == 0) {
4168 /* No more data to transfer or device error.
4169 * Device error will be tagged in HSM_ST_LAST.
4171 ap
->hsm_task_state
= HSM_ST_LAST
;
4175 /* Device should not ask for data transfer (DRQ=1)
4176 * when it finds something wrong.
4177 * We ignore DRQ here and stop the HSM by
4178 * changing hsm_task_state to HSM_ST_ERR and
4179 * let the EH abort the command or reset the device.
4181 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4182 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4184 qc
->err_mask
|= AC_ERR_HSM
;
4185 ap
->hsm_task_state
= HSM_ST_ERR
;
4189 atapi_pio_bytes(qc
);
4191 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4192 /* bad ireason reported by device */
4196 /* ATA PIO protocol */
4197 if (unlikely((status
& ATA_DRQ
) == 0)) {
4198 /* handle BSY=0, DRQ=0 as error */
4199 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4200 /* device stops HSM for abort/error */
4201 qc
->err_mask
|= AC_ERR_DEV
;
4203 /* HSM violation. Let EH handle this */
4204 qc
->err_mask
|= AC_ERR_HSM
;
4206 ap
->hsm_task_state
= HSM_ST_ERR
;
4210 /* For PIO reads, some devices may ask for
4211 * data transfer (DRQ=1) alone with ERR=1.
4212 * We respect DRQ here and transfer one
4213 * block of junk data before changing the
4214 * hsm_task_state to HSM_ST_ERR.
4216 * For PIO writes, ERR=1 DRQ=1 doesn't make
4217 * sense since the data block has been
4218 * transferred to the device.
4220 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4221 /* data might be corrputed */
4222 qc
->err_mask
|= AC_ERR_DEV
;
4224 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4225 ata_pio_sectors(qc
);
4227 status
= ata_wait_idle(ap
);
4230 if (status
& (ATA_BUSY
| ATA_DRQ
))
4231 qc
->err_mask
|= AC_ERR_HSM
;
4233 /* ata_pio_sectors() might change the
4234 * state to HSM_ST_LAST. so, the state
4235 * is changed after ata_pio_sectors().
4237 ap
->hsm_task_state
= HSM_ST_ERR
;
4241 ata_pio_sectors(qc
);
4243 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4244 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4247 status
= ata_wait_idle(ap
);
4252 ata_altstatus(ap
); /* flush */
4257 if (unlikely(!ata_ok(status
))) {
4258 qc
->err_mask
|= __ac_err_mask(status
);
4259 ap
->hsm_task_state
= HSM_ST_ERR
;
4263 /* no more data to transfer */
4264 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4265 ap
->id
, qc
->dev
->devno
, status
);
4267 WARN_ON(qc
->err_mask
);
4269 ap
->hsm_task_state
= HSM_ST_IDLE
;
4271 /* complete taskfile transaction */
4272 ata_hsm_qc_complete(qc
, in_wq
);
4278 /* make sure qc->err_mask is available to
4279 * know what's wrong and recover
4281 WARN_ON(qc
->err_mask
== 0);
4283 ap
->hsm_task_state
= HSM_ST_IDLE
;
4285 /* complete taskfile transaction */
4286 ata_hsm_qc_complete(qc
, in_wq
);
4298 static void ata_pio_task(void *_data
)
4300 struct ata_queued_cmd
*qc
= _data
;
4301 struct ata_port
*ap
= qc
->ap
;
4306 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
4309 * This is purely heuristic. This is a fast path.
4310 * Sometimes when we enter, BSY will be cleared in
4311 * a chk-status or two. If not, the drive is probably seeking
4312 * or something. Snooze for a couple msecs, then
4313 * chk-status again. If still busy, queue delayed work.
4315 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
4316 if (status
& ATA_BUSY
) {
4318 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
4319 if (status
& ATA_BUSY
) {
4320 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
4326 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
4328 /* another command or interrupt handler
4329 * may be running at this point.
4336 * ata_qc_new - Request an available ATA command, for queueing
4337 * @ap: Port associated with device @dev
4338 * @dev: Device from whom we request an available command structure
4344 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4346 struct ata_queued_cmd
*qc
= NULL
;
4349 /* no command while frozen */
4350 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4353 /* the last tag is reserved for internal command. */
4354 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4355 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4356 qc
= __ata_qc_from_tag(ap
, i
);
4367 * ata_qc_new_init - Request an available ATA command, and initialize it
4368 * @dev: Device from whom we request an available command structure
4374 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4376 struct ata_port
*ap
= dev
->ap
;
4377 struct ata_queued_cmd
*qc
;
4379 qc
= ata_qc_new(ap
);
4392 * ata_qc_free - free unused ata_queued_cmd
4393 * @qc: Command to complete
4395 * Designed to free unused ata_queued_cmd object
4396 * in case something prevents using it.
4399 * spin_lock_irqsave(host lock)
4401 void ata_qc_free(struct ata_queued_cmd
*qc
)
4403 struct ata_port
*ap
= qc
->ap
;
4406 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4410 if (likely(ata_tag_valid(tag
))) {
4411 qc
->tag
= ATA_TAG_POISON
;
4412 clear_bit(tag
, &ap
->qc_allocated
);
4416 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4418 struct ata_port
*ap
= qc
->ap
;
4420 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4421 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4423 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4426 /* command should be marked inactive atomically with qc completion */
4427 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
4428 ap
->sactive
&= ~(1 << qc
->tag
);
4430 ap
->active_tag
= ATA_TAG_POISON
;
4432 /* atapi: mark qc as inactive to prevent the interrupt handler
4433 * from completing the command twice later, before the error handler
4434 * is called. (when rc != 0 and atapi request sense is needed)
4436 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4437 ap
->qc_active
&= ~(1 << qc
->tag
);
4439 /* call completion callback */
4440 qc
->complete_fn(qc
);
4444 * ata_qc_complete - Complete an active ATA command
4445 * @qc: Command to complete
4446 * @err_mask: ATA Status register contents
4448 * Indicate to the mid and upper layers that an ATA
4449 * command has completed, with either an ok or not-ok status.
4452 * spin_lock_irqsave(host lock)
4454 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4456 struct ata_port
*ap
= qc
->ap
;
4458 /* XXX: New EH and old EH use different mechanisms to
4459 * synchronize EH with regular execution path.
4461 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4462 * Normal execution path is responsible for not accessing a
4463 * failed qc. libata core enforces the rule by returning NULL
4464 * from ata_qc_from_tag() for failed qcs.
4466 * Old EH depends on ata_qc_complete() nullifying completion
4467 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4468 * not synchronize with interrupt handler. Only PIO task is
4471 if (ap
->ops
->error_handler
) {
4472 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4474 if (unlikely(qc
->err_mask
))
4475 qc
->flags
|= ATA_QCFLAG_FAILED
;
4477 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4478 if (!ata_tag_internal(qc
->tag
)) {
4479 /* always fill result TF for failed qc */
4480 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4481 ata_qc_schedule_eh(qc
);
4486 /* read result TF if requested */
4487 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4488 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4490 __ata_qc_complete(qc
);
4492 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4495 /* read result TF if failed or requested */
4496 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4497 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4499 __ata_qc_complete(qc
);
4504 * ata_qc_complete_multiple - Complete multiple qcs successfully
4505 * @ap: port in question
4506 * @qc_active: new qc_active mask
4507 * @finish_qc: LLDD callback invoked before completing a qc
4509 * Complete in-flight commands. This functions is meant to be
4510 * called from low-level driver's interrupt routine to complete
4511 * requests normally. ap->qc_active and @qc_active is compared
4512 * and commands are completed accordingly.
4515 * spin_lock_irqsave(host lock)
4518 * Number of completed commands on success, -errno otherwise.
4520 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
4521 void (*finish_qc
)(struct ata_queued_cmd
*))
4527 done_mask
= ap
->qc_active
^ qc_active
;
4529 if (unlikely(done_mask
& qc_active
)) {
4530 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4531 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4535 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4536 struct ata_queued_cmd
*qc
;
4538 if (!(done_mask
& (1 << i
)))
4541 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4544 ata_qc_complete(qc
);
4552 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
4554 struct ata_port
*ap
= qc
->ap
;
4556 switch (qc
->tf
.protocol
) {
4559 case ATA_PROT_ATAPI_DMA
:
4562 case ATA_PROT_ATAPI
:
4564 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
4577 * ata_qc_issue - issue taskfile to device
4578 * @qc: command to issue to device
4580 * Prepare an ATA command to submission to device.
4581 * This includes mapping the data into a DMA-able
4582 * area, filling in the S/G table, and finally
4583 * writing the taskfile to hardware, starting the command.
4586 * spin_lock_irqsave(host lock)
4588 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4590 struct ata_port
*ap
= qc
->ap
;
4592 /* Make sure only one non-NCQ command is outstanding. The
4593 * check is skipped for old EH because it reuses active qc to
4594 * request ATAPI sense.
4596 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
4598 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4599 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
4600 ap
->sactive
|= 1 << qc
->tag
;
4602 WARN_ON(ap
->sactive
);
4603 ap
->active_tag
= qc
->tag
;
4606 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4607 ap
->qc_active
|= 1 << qc
->tag
;
4609 if (ata_should_dma_map(qc
)) {
4610 if (qc
->flags
& ATA_QCFLAG_SG
) {
4611 if (ata_sg_setup(qc
))
4613 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4614 if (ata_sg_setup_one(qc
))
4618 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4621 ap
->ops
->qc_prep(qc
);
4623 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4624 if (unlikely(qc
->err_mask
))
4629 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4630 qc
->err_mask
|= AC_ERR_SYSTEM
;
4632 ata_qc_complete(qc
);
4636 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4637 * @qc: command to issue to device
4639 * Using various libata functions and hooks, this function
4640 * starts an ATA command. ATA commands are grouped into
4641 * classes called "protocols", and issuing each type of protocol
4642 * is slightly different.
4644 * May be used as the qc_issue() entry in ata_port_operations.
4647 * spin_lock_irqsave(host lock)
4650 * Zero on success, AC_ERR_* mask on failure
4653 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4655 struct ata_port
*ap
= qc
->ap
;
4657 /* Use polling pio if the LLD doesn't handle
4658 * interrupt driven pio and atapi CDB interrupt.
4660 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
4661 switch (qc
->tf
.protocol
) {
4663 case ATA_PROT_ATAPI
:
4664 case ATA_PROT_ATAPI_NODATA
:
4665 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4667 case ATA_PROT_ATAPI_DMA
:
4668 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
4669 /* see ata_dma_blacklisted() */
4677 /* select the device */
4678 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
4680 /* start the command */
4681 switch (qc
->tf
.protocol
) {
4682 case ATA_PROT_NODATA
:
4683 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4684 ata_qc_set_polling(qc
);
4686 ata_tf_to_host(ap
, &qc
->tf
);
4687 ap
->hsm_task_state
= HSM_ST_LAST
;
4689 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4690 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4695 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4697 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4698 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4699 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4700 ap
->hsm_task_state
= HSM_ST_LAST
;
4704 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4705 ata_qc_set_polling(qc
);
4707 ata_tf_to_host(ap
, &qc
->tf
);
4709 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4710 /* PIO data out protocol */
4711 ap
->hsm_task_state
= HSM_ST_FIRST
;
4712 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4714 /* always send first data block using
4715 * the ata_pio_task() codepath.
4718 /* PIO data in protocol */
4719 ap
->hsm_task_state
= HSM_ST
;
4721 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4722 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4724 /* if polling, ata_pio_task() handles the rest.
4725 * otherwise, interrupt handler takes over from here.
4731 case ATA_PROT_ATAPI
:
4732 case ATA_PROT_ATAPI_NODATA
:
4733 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4734 ata_qc_set_polling(qc
);
4736 ata_tf_to_host(ap
, &qc
->tf
);
4738 ap
->hsm_task_state
= HSM_ST_FIRST
;
4740 /* send cdb by polling if no cdb interrupt */
4741 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
4742 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
4743 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4746 case ATA_PROT_ATAPI_DMA
:
4747 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4749 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4750 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4751 ap
->hsm_task_state
= HSM_ST_FIRST
;
4753 /* send cdb by polling if no cdb interrupt */
4754 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4755 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4760 return AC_ERR_SYSTEM
;
4767 * ata_host_intr - Handle host interrupt for given (port, task)
4768 * @ap: Port on which interrupt arrived (possibly...)
4769 * @qc: Taskfile currently active in engine
4771 * Handle host interrupt for given queued command. Currently,
4772 * only DMA interrupts are handled. All other commands are
4773 * handled via polling with interrupts disabled (nIEN bit).
4776 * spin_lock_irqsave(host lock)
4779 * One if interrupt was handled, zero if not (shared irq).
4782 inline unsigned int ata_host_intr (struct ata_port
*ap
,
4783 struct ata_queued_cmd
*qc
)
4785 u8 status
, host_stat
= 0;
4787 VPRINTK("ata%u: protocol %d task_state %d\n",
4788 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
4790 /* Check whether we are expecting interrupt in this state */
4791 switch (ap
->hsm_task_state
) {
4793 /* Some pre-ATAPI-4 devices assert INTRQ
4794 * at this state when ready to receive CDB.
4797 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4798 * The flag was turned on only for atapi devices.
4799 * No need to check is_atapi_taskfile(&qc->tf) again.
4801 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4805 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
4806 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
4807 /* check status of DMA engine */
4808 host_stat
= ap
->ops
->bmdma_status(ap
);
4809 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
4811 /* if it's not our irq... */
4812 if (!(host_stat
& ATA_DMA_INTR
))
4815 /* before we do anything else, clear DMA-Start bit */
4816 ap
->ops
->bmdma_stop(qc
);
4818 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
4819 /* error when transfering data to/from memory */
4820 qc
->err_mask
|= AC_ERR_HOST_BUS
;
4821 ap
->hsm_task_state
= HSM_ST_ERR
;
4831 /* check altstatus */
4832 status
= ata_altstatus(ap
);
4833 if (status
& ATA_BUSY
)
4836 /* check main status, clearing INTRQ */
4837 status
= ata_chk_status(ap
);
4838 if (unlikely(status
& ATA_BUSY
))
4841 /* ack bmdma irq events */
4842 ap
->ops
->irq_clear(ap
);
4844 ata_hsm_move(ap
, qc
, status
, 0);
4845 return 1; /* irq handled */
4848 ap
->stats
.idle_irq
++;
4851 if ((ap
->stats
.idle_irq
% 1000) == 0) {
4852 ata_irq_ack(ap
, 0); /* debug trap */
4853 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
4857 return 0; /* irq not handled */
4861 * ata_interrupt - Default ATA host interrupt handler
4862 * @irq: irq line (unused)
4863 * @dev_instance: pointer to our ata_host information structure
4865 * Default interrupt handler for PCI IDE devices. Calls
4866 * ata_host_intr() for each port that is not disabled.
4869 * Obtains host lock during operation.
4872 * IRQ_NONE or IRQ_HANDLED.
4875 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
4877 struct ata_host
*host
= dev_instance
;
4879 unsigned int handled
= 0;
4880 unsigned long flags
;
4882 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4883 spin_lock_irqsave(&host
->lock
, flags
);
4885 for (i
= 0; i
< host
->n_ports
; i
++) {
4886 struct ata_port
*ap
;
4888 ap
= host
->ports
[i
];
4890 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
4891 struct ata_queued_cmd
*qc
;
4893 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4894 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
4895 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
4896 handled
|= ata_host_intr(ap
, qc
);
4900 spin_unlock_irqrestore(&host
->lock
, flags
);
4902 return IRQ_RETVAL(handled
);
4906 * sata_scr_valid - test whether SCRs are accessible
4907 * @ap: ATA port to test SCR accessibility for
4909 * Test whether SCRs are accessible for @ap.
4915 * 1 if SCRs are accessible, 0 otherwise.
4917 int sata_scr_valid(struct ata_port
*ap
)
4919 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
4923 * sata_scr_read - read SCR register of the specified port
4924 * @ap: ATA port to read SCR for
4926 * @val: Place to store read value
4928 * Read SCR register @reg of @ap into *@val. This function is
4929 * guaranteed to succeed if the cable type of the port is SATA
4930 * and the port implements ->scr_read.
4936 * 0 on success, negative errno on failure.
4938 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
4940 if (sata_scr_valid(ap
)) {
4941 *val
= ap
->ops
->scr_read(ap
, reg
);
4948 * sata_scr_write - write SCR register of the specified port
4949 * @ap: ATA port to write SCR for
4950 * @reg: SCR to write
4951 * @val: value to write
4953 * Write @val to SCR register @reg of @ap. This function is
4954 * guaranteed to succeed if the cable type of the port is SATA
4955 * and the port implements ->scr_read.
4961 * 0 on success, negative errno on failure.
4963 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
4965 if (sata_scr_valid(ap
)) {
4966 ap
->ops
->scr_write(ap
, reg
, val
);
4973 * sata_scr_write_flush - write SCR register of the specified port and flush
4974 * @ap: ATA port to write SCR for
4975 * @reg: SCR to write
4976 * @val: value to write
4978 * This function is identical to sata_scr_write() except that this
4979 * function performs flush after writing to the register.
4985 * 0 on success, negative errno on failure.
4987 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
4989 if (sata_scr_valid(ap
)) {
4990 ap
->ops
->scr_write(ap
, reg
, val
);
4991 ap
->ops
->scr_read(ap
, reg
);
4998 * ata_port_online - test whether the given port is online
4999 * @ap: ATA port to test
5001 * Test whether @ap is online. Note that this function returns 0
5002 * if online status of @ap cannot be obtained, so
5003 * ata_port_online(ap) != !ata_port_offline(ap).
5009 * 1 if the port online status is available and online.
5011 int ata_port_online(struct ata_port
*ap
)
5015 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5021 * ata_port_offline - test whether the given port is offline
5022 * @ap: ATA port to test
5024 * Test whether @ap is offline. Note that this function returns
5025 * 0 if offline status of @ap cannot be obtained, so
5026 * ata_port_online(ap) != !ata_port_offline(ap).
5032 * 1 if the port offline status is available and offline.
5034 int ata_port_offline(struct ata_port
*ap
)
5038 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5043 int ata_flush_cache(struct ata_device
*dev
)
5045 unsigned int err_mask
;
5048 if (!ata_try_flush_cache(dev
))
5051 if (ata_id_has_flush_ext(dev
->id
))
5052 cmd
= ATA_CMD_FLUSH_EXT
;
5054 cmd
= ATA_CMD_FLUSH
;
5056 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5058 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5065 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5066 unsigned int action
, unsigned int ehi_flags
,
5069 unsigned long flags
;
5072 for (i
= 0; i
< host
->n_ports
; i
++) {
5073 struct ata_port
*ap
= host
->ports
[i
];
5075 /* Previous resume operation might still be in
5076 * progress. Wait for PM_PENDING to clear.
5078 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5079 ata_port_wait_eh(ap
);
5080 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5083 /* request PM ops to EH */
5084 spin_lock_irqsave(ap
->lock
, flags
);
5089 ap
->pm_result
= &rc
;
5092 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5093 ap
->eh_info
.action
|= action
;
5094 ap
->eh_info
.flags
|= ehi_flags
;
5096 ata_port_schedule_eh(ap
);
5098 spin_unlock_irqrestore(ap
->lock
, flags
);
5100 /* wait and check result */
5102 ata_port_wait_eh(ap
);
5103 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5113 * ata_host_suspend - suspend host
5114 * @host: host to suspend
5117 * Suspend @host. Actual operation is performed by EH. This
5118 * function requests EH to perform PM operations and waits for EH
5122 * Kernel thread context (may sleep).
5125 * 0 on success, -errno on failure.
5127 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5131 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5135 /* EH is quiescent now. Fail if we have any ready device.
5136 * This happens if hotplug occurs between completion of device
5137 * suspension and here.
5139 for (i
= 0; i
< host
->n_ports
; i
++) {
5140 struct ata_port
*ap
= host
->ports
[i
];
5142 for (j
= 0; j
< ATA_MAX_DEVICES
; j
++) {
5143 struct ata_device
*dev
= &ap
->device
[j
];
5145 if (ata_dev_ready(dev
)) {
5146 ata_port_printk(ap
, KERN_WARNING
,
5147 "suspend failed, device %d "
5148 "still active\n", dev
->devno
);
5155 host
->dev
->power
.power_state
= mesg
;
5159 ata_host_resume(host
);
5164 * ata_host_resume - resume host
5165 * @host: host to resume
5167 * Resume @host. Actual operation is performed by EH. This
5168 * function requests EH to perform PM operations and returns.
5169 * Note that all resume operations are performed parallely.
5172 * Kernel thread context (may sleep).
5174 void ata_host_resume(struct ata_host
*host
)
5176 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5177 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5178 host
->dev
->power
.power_state
= PMSG_ON
;
5182 * ata_port_start - Set port up for dma.
5183 * @ap: Port to initialize
5185 * Called just after data structures for each port are
5186 * initialized. Allocates space for PRD table.
5188 * May be used as the port_start() entry in ata_port_operations.
5191 * Inherited from caller.
5194 int ata_port_start (struct ata_port
*ap
)
5196 struct device
*dev
= ap
->dev
;
5199 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
5203 rc
= ata_pad_alloc(ap
, dev
);
5205 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
5209 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
5216 * ata_port_stop - Undo ata_port_start()
5217 * @ap: Port to shut down
5219 * Frees the PRD table.
5221 * May be used as the port_stop() entry in ata_port_operations.
5224 * Inherited from caller.
5227 void ata_port_stop (struct ata_port
*ap
)
5229 struct device
*dev
= ap
->dev
;
5231 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
5232 ata_pad_free(ap
, dev
);
5235 void ata_host_stop (struct ata_host
*host
)
5237 if (host
->mmio_base
)
5238 iounmap(host
->mmio_base
);
5242 * ata_dev_init - Initialize an ata_device structure
5243 * @dev: Device structure to initialize
5245 * Initialize @dev in preparation for probing.
5248 * Inherited from caller.
5250 void ata_dev_init(struct ata_device
*dev
)
5252 struct ata_port
*ap
= dev
->ap
;
5253 unsigned long flags
;
5255 /* SATA spd limit is bound to the first device */
5256 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5258 /* High bits of dev->flags are used to record warm plug
5259 * requests which occur asynchronously. Synchronize using
5262 spin_lock_irqsave(ap
->lock
, flags
);
5263 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5264 spin_unlock_irqrestore(ap
->lock
, flags
);
5266 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5267 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5268 dev
->pio_mask
= UINT_MAX
;
5269 dev
->mwdma_mask
= UINT_MAX
;
5270 dev
->udma_mask
= UINT_MAX
;
5274 * ata_port_init - Initialize an ata_port structure
5275 * @ap: Structure to initialize
5276 * @host: Collection of hosts to which @ap belongs
5277 * @ent: Probe information provided by low-level driver
5278 * @port_no: Port number associated with this ata_port
5280 * Initialize a new ata_port structure.
5283 * Inherited from caller.
5285 void ata_port_init(struct ata_port
*ap
, struct ata_host
*host
,
5286 const struct ata_probe_ent
*ent
, unsigned int port_no
)
5290 ap
->lock
= &host
->lock
;
5291 ap
->flags
= ATA_FLAG_DISABLED
;
5292 ap
->id
= ata_unique_id
++;
5293 ap
->ctl
= ATA_DEVCTL_OBS
;
5296 ap
->port_no
= port_no
;
5297 if (port_no
== 1 && ent
->pinfo2
) {
5298 ap
->pio_mask
= ent
->pinfo2
->pio_mask
;
5299 ap
->mwdma_mask
= ent
->pinfo2
->mwdma_mask
;
5300 ap
->udma_mask
= ent
->pinfo2
->udma_mask
;
5301 ap
->flags
|= ent
->pinfo2
->flags
;
5302 ap
->ops
= ent
->pinfo2
->port_ops
;
5304 ap
->pio_mask
= ent
->pio_mask
;
5305 ap
->mwdma_mask
= ent
->mwdma_mask
;
5306 ap
->udma_mask
= ent
->udma_mask
;
5307 ap
->flags
|= ent
->port_flags
;
5308 ap
->ops
= ent
->port_ops
;
5310 ap
->hw_sata_spd_limit
= UINT_MAX
;
5311 ap
->active_tag
= ATA_TAG_POISON
;
5312 ap
->last_ctl
= 0xFF;
5314 #if defined(ATA_VERBOSE_DEBUG)
5315 /* turn on all debugging levels */
5316 ap
->msg_enable
= 0x00FF;
5317 #elif defined(ATA_DEBUG)
5318 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5320 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5323 INIT_WORK(&ap
->port_task
, NULL
, NULL
);
5324 INIT_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
, ap
);
5325 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
, ap
);
5326 INIT_LIST_HEAD(&ap
->eh_done_q
);
5327 init_waitqueue_head(&ap
->eh_wait_q
);
5329 /* set cable type */
5330 ap
->cbl
= ATA_CBL_NONE
;
5331 if (ap
->flags
& ATA_FLAG_SATA
)
5332 ap
->cbl
= ATA_CBL_SATA
;
5334 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5335 struct ata_device
*dev
= &ap
->device
[i
];
5342 ap
->stats
.unhandled_irq
= 1;
5343 ap
->stats
.idle_irq
= 1;
5346 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
5350 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5351 * @ap: ATA port to initialize SCSI host for
5352 * @shost: SCSI host associated with @ap
5354 * Initialize SCSI host @shost associated with ATA port @ap.
5357 * Inherited from caller.
5359 static void ata_port_init_shost(struct ata_port
*ap
, struct Scsi_Host
*shost
)
5361 ap
->scsi_host
= shost
;
5363 shost
->unique_id
= ap
->id
;
5366 shost
->max_channel
= 1;
5367 shost
->max_cmd_len
= 12;
5371 * ata_port_add - Attach low-level ATA driver to system
5372 * @ent: Information provided by low-level driver
5373 * @host: Collections of ports to which we add
5374 * @port_no: Port number associated with this host
5376 * Attach low-level ATA driver to system.
5379 * PCI/etc. bus probe sem.
5382 * New ata_port on success, for NULL on error.
5384 static struct ata_port
* ata_port_add(const struct ata_probe_ent
*ent
,
5385 struct ata_host
*host
,
5386 unsigned int port_no
)
5388 struct Scsi_Host
*shost
;
5389 struct ata_port
*ap
;
5393 if (!ent
->port_ops
->error_handler
&&
5394 !(ent
->port_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
5395 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
5400 shost
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
5404 shost
->transportt
= &ata_scsi_transport_template
;
5406 ap
= ata_shost_to_port(shost
);
5408 ata_port_init(ap
, host
, ent
, port_no
);
5409 ata_port_init_shost(ap
, shost
);
5415 * ata_sas_host_init - Initialize a host struct
5416 * @host: host to initialize
5417 * @dev: device host is attached to
5418 * @flags: host flags
5422 * PCI/etc. bus probe sem.
5426 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5427 unsigned long flags
, const struct ata_port_operations
*ops
)
5429 spin_lock_init(&host
->lock
);
5431 host
->flags
= flags
;
5436 * ata_device_add - Register hardware device with ATA and SCSI layers
5437 * @ent: Probe information describing hardware device to be registered
5439 * This function processes the information provided in the probe
5440 * information struct @ent, allocates the necessary ATA and SCSI
5441 * host information structures, initializes them, and registers
5442 * everything with requisite kernel subsystems.
5444 * This function requests irqs, probes the ATA bus, and probes
5448 * PCI/etc. bus probe sem.
5451 * Number of ports registered. Zero on error (no ports registered).
5453 int ata_device_add(const struct ata_probe_ent
*ent
)
5456 struct device
*dev
= ent
->dev
;
5457 struct ata_host
*host
;
5462 if (ent
->irq
== 0) {
5463 dev_printk(KERN_ERR
, dev
, "is not available: No interrupt assigned.\n");
5466 /* alloc a container for our list of ATA ports (buses) */
5467 host
= kzalloc(sizeof(struct ata_host
) +
5468 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
5472 ata_host_init(host
, dev
, ent
->_host_flags
, ent
->port_ops
);
5473 host
->n_ports
= ent
->n_ports
;
5474 host
->irq
= ent
->irq
;
5475 host
->irq2
= ent
->irq2
;
5476 host
->mmio_base
= ent
->mmio_base
;
5477 host
->private_data
= ent
->private_data
;
5479 /* register each port bound to this device */
5480 for (i
= 0; i
< host
->n_ports
; i
++) {
5481 struct ata_port
*ap
;
5482 unsigned long xfer_mode_mask
;
5483 int irq_line
= ent
->irq
;
5485 ap
= ata_port_add(ent
, host
, i
);
5486 host
->ports
[i
] = ap
;
5491 if (ent
->dummy_port_mask
& (1 << i
)) {
5492 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5493 ap
->ops
= &ata_dummy_port_ops
;
5498 rc
= ap
->ops
->port_start(ap
);
5500 host
->ports
[i
] = NULL
;
5501 scsi_host_put(ap
->scsi_host
);
5505 /* Report the secondary IRQ for second channel legacy */
5506 if (i
== 1 && ent
->irq2
)
5507 irq_line
= ent
->irq2
;
5509 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
5510 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
5511 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
5513 /* print per-port info to dmesg */
5514 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%lX "
5515 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5516 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
5517 ata_mode_string(xfer_mode_mask
),
5518 ap
->ioaddr
.cmd_addr
,
5519 ap
->ioaddr
.ctl_addr
,
5520 ap
->ioaddr
.bmdma_addr
,
5524 host
->ops
->irq_clear(ap
);
5525 ata_eh_freeze_port(ap
); /* freeze port before requesting IRQ */
5528 /* obtain irq, that may be shared between channels */
5529 rc
= request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5532 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5537 /* do we have a second IRQ for the other channel, eg legacy mode */
5539 /* We will get weird core code crashes later if this is true
5541 BUG_ON(ent
->irq
== ent
->irq2
);
5543 rc
= request_irq(ent
->irq2
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5546 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5548 goto err_out_free_irq
;
5552 /* perform each probe synchronously */
5553 DPRINTK("probe begin\n");
5554 for (i
= 0; i
< host
->n_ports
; i
++) {
5555 struct ata_port
*ap
= host
->ports
[i
];
5559 /* init sata_spd_limit to the current value */
5560 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
5561 int spd
= (scontrol
>> 4) & 0xf;
5562 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5564 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5566 rc
= scsi_add_host(ap
->scsi_host
, dev
);
5568 ata_port_printk(ap
, KERN_ERR
, "scsi_add_host failed\n");
5569 /* FIXME: do something useful here */
5570 /* FIXME: handle unconditional calls to
5571 * scsi_scan_host and ata_host_remove, below,
5576 if (ap
->ops
->error_handler
) {
5577 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5578 unsigned long flags
;
5582 /* kick EH for boot probing */
5583 spin_lock_irqsave(ap
->lock
, flags
);
5585 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
5586 ehi
->action
|= ATA_EH_SOFTRESET
;
5587 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5589 ap
->pflags
|= ATA_PFLAG_LOADING
;
5590 ata_port_schedule_eh(ap
);
5592 spin_unlock_irqrestore(ap
->lock
, flags
);
5594 /* wait for EH to finish */
5595 ata_port_wait_eh(ap
);
5597 DPRINTK("ata%u: bus probe begin\n", ap
->id
);
5598 rc
= ata_bus_probe(ap
);
5599 DPRINTK("ata%u: bus probe end\n", ap
->id
);
5602 /* FIXME: do something useful here?
5603 * Current libata behavior will
5604 * tear down everything when
5605 * the module is removed
5606 * or the h/w is unplugged.
5612 /* probes are done, now scan each port's disk(s) */
5613 DPRINTK("host probe begin\n");
5614 for (i
= 0; i
< host
->n_ports
; i
++) {
5615 struct ata_port
*ap
= host
->ports
[i
];
5617 ata_scsi_scan_host(ap
);
5620 dev_set_drvdata(dev
, host
);
5622 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
5623 return ent
->n_ports
; /* success */
5626 free_irq(ent
->irq
, host
);
5628 for (i
= 0; i
< host
->n_ports
; i
++) {
5629 struct ata_port
*ap
= host
->ports
[i
];
5631 ap
->ops
->port_stop(ap
);
5632 scsi_host_put(ap
->scsi_host
);
5637 VPRINTK("EXIT, returning 0\n");
5642 * ata_port_detach - Detach ATA port in prepration of device removal
5643 * @ap: ATA port to be detached
5645 * Detach all ATA devices and the associated SCSI devices of @ap;
5646 * then, remove the associated SCSI host. @ap is guaranteed to
5647 * be quiescent on return from this function.
5650 * Kernel thread context (may sleep).
5652 void ata_port_detach(struct ata_port
*ap
)
5654 unsigned long flags
;
5657 if (!ap
->ops
->error_handler
)
5660 /* tell EH we're leaving & flush EH */
5661 spin_lock_irqsave(ap
->lock
, flags
);
5662 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5663 spin_unlock_irqrestore(ap
->lock
, flags
);
5665 ata_port_wait_eh(ap
);
5667 /* EH is now guaranteed to see UNLOADING, so no new device
5668 * will be attached. Disable all existing devices.
5670 spin_lock_irqsave(ap
->lock
, flags
);
5672 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
5673 ata_dev_disable(&ap
->device
[i
]);
5675 spin_unlock_irqrestore(ap
->lock
, flags
);
5677 /* Final freeze & EH. All in-flight commands are aborted. EH
5678 * will be skipped and retrials will be terminated with bad
5681 spin_lock_irqsave(ap
->lock
, flags
);
5682 ata_port_freeze(ap
); /* won't be thawed */
5683 spin_unlock_irqrestore(ap
->lock
, flags
);
5685 ata_port_wait_eh(ap
);
5687 /* Flush hotplug task. The sequence is similar to
5688 * ata_port_flush_task().
5690 flush_workqueue(ata_aux_wq
);
5691 cancel_delayed_work(&ap
->hotplug_task
);
5692 flush_workqueue(ata_aux_wq
);
5695 /* remove the associated SCSI host */
5696 scsi_remove_host(ap
->scsi_host
);
5700 * ata_host_remove - PCI layer callback for device removal
5701 * @host: ATA host set that was removed
5703 * Unregister all objects associated with this host set. Free those
5707 * Inherited from calling layer (may sleep).
5710 void ata_host_remove(struct ata_host
*host
)
5714 for (i
= 0; i
< host
->n_ports
; i
++)
5715 ata_port_detach(host
->ports
[i
]);
5717 free_irq(host
->irq
, host
);
5719 free_irq(host
->irq2
, host
);
5721 for (i
= 0; i
< host
->n_ports
; i
++) {
5722 struct ata_port
*ap
= host
->ports
[i
];
5724 ata_scsi_release(ap
->scsi_host
);
5726 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
5727 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
5729 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5730 if (ioaddr
->cmd_addr
== ATA_PRIMARY_CMD
)
5731 release_region(ATA_PRIMARY_CMD
, 8);
5732 else if (ioaddr
->cmd_addr
== ATA_SECONDARY_CMD
)
5733 release_region(ATA_SECONDARY_CMD
, 8);
5736 scsi_host_put(ap
->scsi_host
);
5739 if (host
->ops
->host_stop
)
5740 host
->ops
->host_stop(host
);
5746 * ata_scsi_release - SCSI layer callback hook for host unload
5747 * @shost: libata host to be unloaded
5749 * Performs all duties necessary to shut down a libata port...
5750 * Kill port kthread, disable port, and release resources.
5753 * Inherited from SCSI layer.
5759 int ata_scsi_release(struct Scsi_Host
*shost
)
5761 struct ata_port
*ap
= ata_shost_to_port(shost
);
5765 ap
->ops
->port_disable(ap
);
5766 ap
->ops
->port_stop(ap
);
5772 struct ata_probe_ent
*
5773 ata_probe_ent_alloc(struct device
*dev
, const struct ata_port_info
*port
)
5775 struct ata_probe_ent
*probe_ent
;
5777 probe_ent
= kzalloc(sizeof(*probe_ent
), GFP_KERNEL
);
5779 printk(KERN_ERR DRV_NAME
"(%s): out of memory\n",
5780 kobject_name(&(dev
->kobj
)));
5784 INIT_LIST_HEAD(&probe_ent
->node
);
5785 probe_ent
->dev
= dev
;
5787 probe_ent
->sht
= port
->sht
;
5788 probe_ent
->port_flags
= port
->flags
;
5789 probe_ent
->pio_mask
= port
->pio_mask
;
5790 probe_ent
->mwdma_mask
= port
->mwdma_mask
;
5791 probe_ent
->udma_mask
= port
->udma_mask
;
5792 probe_ent
->port_ops
= port
->port_ops
;
5793 probe_ent
->private_data
= port
->private_data
;
5799 * ata_std_ports - initialize ioaddr with standard port offsets.
5800 * @ioaddr: IO address structure to be initialized
5802 * Utility function which initializes data_addr, error_addr,
5803 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5804 * device_addr, status_addr, and command_addr to standard offsets
5805 * relative to cmd_addr.
5807 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5810 void ata_std_ports(struct ata_ioports
*ioaddr
)
5812 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
5813 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
5814 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
5815 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
5816 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
5817 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
5818 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
5819 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
5820 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
5821 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
5827 void ata_pci_host_stop (struct ata_host
*host
)
5829 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
5831 pci_iounmap(pdev
, host
->mmio_base
);
5835 * ata_pci_remove_one - PCI layer callback for device removal
5836 * @pdev: PCI device that was removed
5838 * PCI layer indicates to libata via this hook that
5839 * hot-unplug or module unload event has occurred.
5840 * Handle this by unregistering all objects associated
5841 * with this PCI device. Free those objects. Then finally
5842 * release PCI resources and disable device.
5845 * Inherited from PCI layer (may sleep).
5848 void ata_pci_remove_one (struct pci_dev
*pdev
)
5850 struct device
*dev
= pci_dev_to_dev(pdev
);
5851 struct ata_host
*host
= dev_get_drvdata(dev
);
5853 ata_host_remove(host
);
5855 pci_release_regions(pdev
);
5856 pci_disable_device(pdev
);
5857 dev_set_drvdata(dev
, NULL
);
5860 /* move to PCI subsystem */
5861 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5863 unsigned long tmp
= 0;
5865 switch (bits
->width
) {
5868 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5874 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5880 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5891 return (tmp
== bits
->val
) ? 1 : 0;
5894 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5896 pci_save_state(pdev
);
5898 if (mesg
.event
== PM_EVENT_SUSPEND
) {
5899 pci_disable_device(pdev
);
5900 pci_set_power_state(pdev
, PCI_D3hot
);
5904 void ata_pci_device_do_resume(struct pci_dev
*pdev
)
5906 pci_set_power_state(pdev
, PCI_D0
);
5907 pci_restore_state(pdev
);
5908 pci_enable_device(pdev
);
5909 pci_set_master(pdev
);
5912 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5914 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
5917 rc
= ata_host_suspend(host
, mesg
);
5921 ata_pci_device_do_suspend(pdev
, mesg
);
5926 int ata_pci_device_resume(struct pci_dev
*pdev
)
5928 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
5930 ata_pci_device_do_resume(pdev
);
5931 ata_host_resume(host
);
5934 #endif /* CONFIG_PCI */
5937 static int __init
ata_init(void)
5939 ata_probe_timeout
*= HZ
;
5940 ata_wq
= create_workqueue("ata");
5944 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
5946 destroy_workqueue(ata_wq
);
5950 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
5954 static void __exit
ata_exit(void)
5956 destroy_workqueue(ata_wq
);
5957 destroy_workqueue(ata_aux_wq
);
5960 subsys_initcall(ata_init
);
5961 module_exit(ata_exit
);
5963 static unsigned long ratelimit_time
;
5964 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
5966 int ata_ratelimit(void)
5969 unsigned long flags
;
5971 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
5973 if (time_after(jiffies
, ratelimit_time
)) {
5975 ratelimit_time
= jiffies
+ (HZ
/5);
5979 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
5985 * ata_wait_register - wait until register value changes
5986 * @reg: IO-mapped register
5987 * @mask: Mask to apply to read register value
5988 * @val: Wait condition
5989 * @interval_msec: polling interval in milliseconds
5990 * @timeout_msec: timeout in milliseconds
5992 * Waiting for some bits of register to change is a common
5993 * operation for ATA controllers. This function reads 32bit LE
5994 * IO-mapped register @reg and tests for the following condition.
5996 * (*@reg & mask) != val
5998 * If the condition is met, it returns; otherwise, the process is
5999 * repeated after @interval_msec until timeout.
6002 * Kernel thread context (may sleep)
6005 * The final register value.
6007 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6008 unsigned long interval_msec
,
6009 unsigned long timeout_msec
)
6011 unsigned long timeout
;
6014 tmp
= ioread32(reg
);
6016 /* Calculate timeout _after_ the first read to make sure
6017 * preceding writes reach the controller before starting to
6018 * eat away the timeout.
6020 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6022 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6023 msleep(interval_msec
);
6024 tmp
= ioread32(reg
);
6033 static void ata_dummy_noret(struct ata_port
*ap
) { }
6034 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6035 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6037 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6042 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6044 return AC_ERR_SYSTEM
;
6047 const struct ata_port_operations ata_dummy_port_ops
= {
6048 .port_disable
= ata_port_disable
,
6049 .check_status
= ata_dummy_check_status
,
6050 .check_altstatus
= ata_dummy_check_status
,
6051 .dev_select
= ata_noop_dev_select
,
6052 .qc_prep
= ata_noop_qc_prep
,
6053 .qc_issue
= ata_dummy_qc_issue
,
6054 .freeze
= ata_dummy_noret
,
6055 .thaw
= ata_dummy_noret
,
6056 .error_handler
= ata_dummy_noret
,
6057 .post_internal_cmd
= ata_dummy_qc_noret
,
6058 .irq_clear
= ata_dummy_noret
,
6059 .port_start
= ata_dummy_ret0
,
6060 .port_stop
= ata_dummy_noret
,
6064 * libata is essentially a library of internal helper functions for
6065 * low-level ATA host controller drivers. As such, the API/ABI is
6066 * likely to change as new drivers are added and updated.
6067 * Do not depend on ABI/API stability.
6070 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6071 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6072 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6073 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6074 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6075 EXPORT_SYMBOL_GPL(ata_std_ports
);
6076 EXPORT_SYMBOL_GPL(ata_host_init
);
6077 EXPORT_SYMBOL_GPL(ata_device_add
);
6078 EXPORT_SYMBOL_GPL(ata_port_detach
);
6079 EXPORT_SYMBOL_GPL(ata_host_remove
);
6080 EXPORT_SYMBOL_GPL(ata_sg_init
);
6081 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6082 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6083 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6084 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6085 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6086 EXPORT_SYMBOL_GPL(ata_tf_load
);
6087 EXPORT_SYMBOL_GPL(ata_tf_read
);
6088 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6089 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6090 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6091 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6092 EXPORT_SYMBOL_GPL(ata_check_status
);
6093 EXPORT_SYMBOL_GPL(ata_altstatus
);
6094 EXPORT_SYMBOL_GPL(ata_exec_command
);
6095 EXPORT_SYMBOL_GPL(ata_port_start
);
6096 EXPORT_SYMBOL_GPL(ata_port_stop
);
6097 EXPORT_SYMBOL_GPL(ata_host_stop
);
6098 EXPORT_SYMBOL_GPL(ata_interrupt
);
6099 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer
);
6100 EXPORT_SYMBOL_GPL(ata_pio_data_xfer
);
6101 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq
);
6102 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6103 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6104 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6105 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6106 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6107 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6108 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6109 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6110 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6111 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6112 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6113 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6114 EXPORT_SYMBOL_GPL(ata_port_probe
);
6115 EXPORT_SYMBOL_GPL(sata_set_spd
);
6116 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6117 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6118 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6119 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6120 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6121 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6122 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6123 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6124 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6125 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6126 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6127 EXPORT_SYMBOL_GPL(ata_port_disable
);
6128 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6129 EXPORT_SYMBOL_GPL(ata_wait_register
);
6130 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6131 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6132 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6133 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6134 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6135 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6136 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6137 EXPORT_SYMBOL_GPL(ata_scsi_release
);
6138 EXPORT_SYMBOL_GPL(ata_host_intr
);
6139 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6140 EXPORT_SYMBOL_GPL(sata_scr_read
);
6141 EXPORT_SYMBOL_GPL(sata_scr_write
);
6142 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6143 EXPORT_SYMBOL_GPL(ata_port_online
);
6144 EXPORT_SYMBOL_GPL(ata_port_offline
);
6145 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6146 EXPORT_SYMBOL_GPL(ata_host_resume
);
6147 EXPORT_SYMBOL_GPL(ata_id_string
);
6148 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6149 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6151 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6152 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6153 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6156 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6157 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
6158 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
6159 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6160 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6161 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6162 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6163 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6164 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6165 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6166 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6167 #endif /* CONFIG_PCI */
6169 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
6170 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
6172 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6173 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6174 EXPORT_SYMBOL_GPL(ata_port_abort
);
6175 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6176 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6177 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6178 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6179 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6180 EXPORT_SYMBOL_GPL(ata_do_eh
);