2 * Copyright 2002-2004, Instant802 Networks, Inc.
3 * Copyright 2005, Devicescape Software, Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 #include <linux/kernel.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/netdevice.h>
13 #include <asm/unaligned.h>
15 #include <net/mac80211.h>
16 #include "driver-ops.h"
21 #define PHASE1_LOOP_COUNT 8
24 * 2-byte by 2-byte subset of the full AES S-box table; second part of this
25 * table is identical to first part but byte-swapped
27 static const u16 tkip_sbox
[256] =
29 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
30 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
31 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
32 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
33 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
34 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
35 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
36 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
37 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
38 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
39 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
40 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
41 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
42 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
43 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
44 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
45 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
46 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
47 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
48 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
49 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
50 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
51 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
52 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
53 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
54 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
55 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
56 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
57 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
58 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
59 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
60 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
63 static u16
tkipS(u16 val
)
65 return tkip_sbox
[val
& 0xff] ^ swab16(tkip_sbox
[val
>> 8]);
68 static u8
*write_tkip_iv(u8
*pos
, u16 iv16
)
71 *pos
++ = ((iv16
>> 8) | 0x20) & 0x7f;
77 * P1K := Phase1(TA, TK, TSC)
78 * TA = transmitter address (48 bits)
79 * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
80 * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
83 static void tkip_mixing_phase1(const u8
*tk
, struct tkip_ctx
*ctx
,
84 const u8
*ta
, u32 tsc_IV32
)
89 p1k
[0] = tsc_IV32
& 0xFFFF;
90 p1k
[1] = tsc_IV32
>> 16;
91 p1k
[2] = get_unaligned_le16(ta
+ 0);
92 p1k
[3] = get_unaligned_le16(ta
+ 2);
93 p1k
[4] = get_unaligned_le16(ta
+ 4);
95 for (i
= 0; i
< PHASE1_LOOP_COUNT
; i
++) {
97 p1k
[0] += tkipS(p1k
[4] ^ get_unaligned_le16(tk
+ 0 + j
));
98 p1k
[1] += tkipS(p1k
[0] ^ get_unaligned_le16(tk
+ 4 + j
));
99 p1k
[2] += tkipS(p1k
[1] ^ get_unaligned_le16(tk
+ 8 + j
));
100 p1k
[3] += tkipS(p1k
[2] ^ get_unaligned_le16(tk
+ 12 + j
));
101 p1k
[4] += tkipS(p1k
[3] ^ get_unaligned_le16(tk
+ 0 + j
)) + i
;
103 ctx
->state
= TKIP_STATE_PHASE1_DONE
;
106 static void tkip_mixing_phase2(const u8
*tk
, struct tkip_ctx
*ctx
,
107 u16 tsc_IV16
, u8
*rc4key
)
110 const u16
*p1k
= ctx
->p1k
;
118 ppk
[5] = p1k
[4] + tsc_IV16
;
120 ppk
[0] += tkipS(ppk
[5] ^ get_unaligned_le16(tk
+ 0));
121 ppk
[1] += tkipS(ppk
[0] ^ get_unaligned_le16(tk
+ 2));
122 ppk
[2] += tkipS(ppk
[1] ^ get_unaligned_le16(tk
+ 4));
123 ppk
[3] += tkipS(ppk
[2] ^ get_unaligned_le16(tk
+ 6));
124 ppk
[4] += tkipS(ppk
[3] ^ get_unaligned_le16(tk
+ 8));
125 ppk
[5] += tkipS(ppk
[4] ^ get_unaligned_le16(tk
+ 10));
126 ppk
[0] += ror16(ppk
[5] ^ get_unaligned_le16(tk
+ 12), 1);
127 ppk
[1] += ror16(ppk
[0] ^ get_unaligned_le16(tk
+ 14), 1);
128 ppk
[2] += ror16(ppk
[1], 1);
129 ppk
[3] += ror16(ppk
[2], 1);
130 ppk
[4] += ror16(ppk
[3], 1);
131 ppk
[5] += ror16(ppk
[4], 1);
133 rc4key
= write_tkip_iv(rc4key
, tsc_IV16
);
134 *rc4key
++ = ((ppk
[5] ^ get_unaligned_le16(tk
)) >> 1) & 0xFF;
136 for (i
= 0; i
< 6; i
++)
137 put_unaligned_le16(ppk
[i
], rc4key
+ 2 * i
);
140 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
141 * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
142 * the packet payload). */
143 u8
*ieee80211_tkip_add_iv(u8
*pos
, struct ieee80211_key
*key
, u16 iv16
)
145 pos
= write_tkip_iv(pos
, iv16
);
146 *pos
++ = (key
->conf
.keyidx
<< 6) | (1 << 5) /* Ext IV */;
147 put_unaligned_le32(key
->u
.tkip
.tx
.iv32
, pos
);
151 void ieee80211_get_tkip_key(struct ieee80211_key_conf
*keyconf
,
152 struct sk_buff
*skb
, enum ieee80211_tkip_key_type type
,
155 struct ieee80211_key
*key
= (struct ieee80211_key
*)
156 container_of(keyconf
, struct ieee80211_key
, conf
);
157 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
160 struct tkip_ctx
*ctx
;
164 data
= (u8
*)hdr
+ ieee80211_hdrlen(hdr
->frame_control
);
165 iv16
= data
[2] | (data
[0] << 8);
166 iv32
= get_unaligned_le32(&data
[4]);
168 tk
= &key
->conf
.key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
169 ctx
= &key
->u
.tkip
.tx
;
171 #ifdef CONFIG_MAC80211_TKIP_DEBUG
172 printk(KERN_DEBUG
"TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
175 if (iv32
!= ctx
->iv32
) {
176 printk(KERN_DEBUG
"skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
178 printk(KERN_DEBUG
"Wrap around of iv16 in the middle of a "
179 "fragmented packet\n");
183 /* Update the p1k only when the iv16 in the packet wraps around, this
184 * might occur after the wrap around of iv16 in the key in case of
185 * fragmented packets. */
186 if (iv16
== 0 || ctx
->state
== TKIP_STATE_NOT_INIT
)
187 tkip_mixing_phase1(tk
, ctx
, hdr
->addr2
, iv32
);
189 if (type
== IEEE80211_TKIP_P1_KEY
) {
190 memcpy(outkey
, ctx
->p1k
, sizeof(u16
) * 5);
194 tkip_mixing_phase2(tk
, ctx
, iv16
, outkey
);
196 EXPORT_SYMBOL(ieee80211_get_tkip_key
);
198 /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
199 * beginning of the buffer containing payload. This payload must include
200 * headroom of eight octets for IV and Ext. IV and taildroom of four octets
201 * for ICV. @payload_len is the length of payload (_not_ including extra
202 * headroom and tailroom). @ta is the transmitter addresses. */
203 void ieee80211_tkip_encrypt_data(struct crypto_blkcipher
*tfm
,
204 struct ieee80211_key
*key
,
205 u8
*pos
, size_t payload_len
, u8
*ta
)
208 struct tkip_ctx
*ctx
= &key
->u
.tkip
.tx
;
209 const u8
*tk
= &key
->conf
.key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
211 /* Calculate per-packet key */
212 if (ctx
->iv16
== 0 || ctx
->state
== TKIP_STATE_NOT_INIT
)
213 tkip_mixing_phase1(tk
, ctx
, ta
, ctx
->iv32
);
215 tkip_mixing_phase2(tk
, ctx
, ctx
->iv16
, rc4key
);
217 pos
= ieee80211_tkip_add_iv(pos
, key
, key
->u
.tkip
.tx
.iv16
);
218 ieee80211_wep_encrypt_data(tfm
, rc4key
, 16, pos
, payload_len
);
221 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
222 * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
223 * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
224 * length of payload, including IV, Ext. IV, MIC, ICV. */
225 int ieee80211_tkip_decrypt_data(struct crypto_blkcipher
*tfm
,
226 struct ieee80211_key
*key
,
227 u8
*payload
, size_t payload_len
, u8
*ta
,
228 u8
*ra
, int only_iv
, int queue
,
229 u32
*out_iv32
, u16
*out_iv16
)
233 u8 rc4key
[16], keyid
, *pos
= payload
;
235 const u8
*tk
= &key
->conf
.key
[NL80211_TKIP_DATA_OFFSET_ENCR_KEY
];
237 if (payload_len
< 12)
240 iv16
= (pos
[0] << 8) | pos
[2];
242 iv32
= get_unaligned_le32(pos
+ 4);
244 #ifdef CONFIG_MAC80211_TKIP_DEBUG
247 printk(KERN_DEBUG
"TKIP decrypt: data(len=%zd)", payload_len
);
248 for (i
= 0; i
< payload_len
; i
++)
249 printk(" %02x", payload
[i
]);
251 printk(KERN_DEBUG
"TKIP decrypt: iv16=%04x iv32=%08x\n",
256 if (!(keyid
& (1 << 5)))
257 return TKIP_DECRYPT_NO_EXT_IV
;
259 if ((keyid
>> 6) != key
->conf
.keyidx
)
260 return TKIP_DECRYPT_INVALID_KEYIDX
;
262 if (key
->u
.tkip
.rx
[queue
].state
!= TKIP_STATE_NOT_INIT
&&
263 (iv32
< key
->u
.tkip
.rx
[queue
].iv32
||
264 (iv32
== key
->u
.tkip
.rx
[queue
].iv32
&&
265 iv16
<= key
->u
.tkip
.rx
[queue
].iv16
))) {
266 #ifdef CONFIG_MAC80211_TKIP_DEBUG
267 printk(KERN_DEBUG
"TKIP replay detected for RX frame from "
268 "%pM (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
270 iv32
, iv16
, key
->u
.tkip
.rx
[queue
].iv32
,
271 key
->u
.tkip
.rx
[queue
].iv16
);
273 return TKIP_DECRYPT_REPLAY
;
277 res
= TKIP_DECRYPT_OK
;
278 key
->u
.tkip
.rx
[queue
].state
= TKIP_STATE_PHASE1_HW_UPLOADED
;
282 if (key
->u
.tkip
.rx
[queue
].state
== TKIP_STATE_NOT_INIT
||
283 key
->u
.tkip
.rx
[queue
].iv32
!= iv32
) {
284 /* IV16 wrapped around - perform TKIP phase 1 */
285 tkip_mixing_phase1(tk
, &key
->u
.tkip
.rx
[queue
], ta
, iv32
);
286 #ifdef CONFIG_MAC80211_TKIP_DEBUG
289 u8 key_offset
= NL80211_TKIP_DATA_OFFSET_ENCR_KEY
;
290 printk(KERN_DEBUG
"TKIP decrypt: Phase1 TA=%pM"
292 for (i
= 0; i
< 16; i
++)
294 key
->conf
.key
[key_offset
+ i
]);
296 printk(KERN_DEBUG
"TKIP decrypt: P1K=");
297 for (i
= 0; i
< 5; i
++)
298 printk("%04x ", key
->u
.tkip
.rx
[queue
].p1k
[i
]);
303 if (key
->local
->ops
->update_tkip_key
&&
304 key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
&&
305 key
->u
.tkip
.rx
[queue
].state
!= TKIP_STATE_PHASE1_HW_UPLOADED
) {
306 static const u8 bcast
[ETH_ALEN
] =
307 {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
308 const u8
*sta_addr
= key
->sta
->sta
.addr
;
310 if (is_multicast_ether_addr(ra
))
313 drv_update_tkip_key(key
->local
, &key
->conf
, sta_addr
,
314 iv32
, key
->u
.tkip
.rx
[queue
].p1k
);
315 key
->u
.tkip
.rx
[queue
].state
= TKIP_STATE_PHASE1_HW_UPLOADED
;
318 tkip_mixing_phase2(tk
, &key
->u
.tkip
.rx
[queue
], iv16
, rc4key
);
319 #ifdef CONFIG_MAC80211_TKIP_DEBUG
322 printk(KERN_DEBUG
"TKIP decrypt: Phase2 rc4key=");
323 for (i
= 0; i
< 16; i
++)
324 printk("%02x ", rc4key
[i
]);
329 res
= ieee80211_wep_decrypt_data(tfm
, rc4key
, 16, pos
, payload_len
- 12);
331 if (res
== TKIP_DECRYPT_OK
) {
333 * Record previously received IV, will be copied into the
334 * key information after MIC verification. It is possible
335 * that we don't catch replays of fragments but that's ok
336 * because the Michael MIC verication will then fail.