4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
34 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 unsigned long max_mapnr
;
59 unsigned long num_physpages
;
60 unsigned long highest_memmap_pfn
;
61 struct percpu_counter vm_committed_as
;
62 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
63 int sysctl_overcommit_ratio
= 50; /* default is 50% */
64 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
65 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
66 int heap_stack_gap
= 0;
68 atomic_long_t mmap_pages_allocated
;
70 EXPORT_SYMBOL(mem_map
);
71 EXPORT_SYMBOL(num_physpages
);
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache
*vm_region_jar
;
75 struct rb_root nommu_region_tree
= RB_ROOT
;
76 DECLARE_RWSEM(nommu_region_sem
);
78 const struct vm_operations_struct generic_file_vm_ops
= {
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
85 * Doesn't have to be accurate, i.e. may have races.
87 unsigned int kobjsize(const void *objp
)
92 * If the object we have should not have ksize performed on it,
95 if (!objp
|| !virt_addr_valid(objp
))
98 page
= virt_to_head_page(objp
);
101 * If the allocator sets PageSlab, we know the pointer came from
108 * If it's not a compound page, see if we have a matching VMA
109 * region. This test is intentionally done in reverse order,
110 * so if there's no VMA, we still fall through and hand back
111 * PAGE_SIZE for 0-order pages.
113 if (!PageCompound(page
)) {
114 struct vm_area_struct
*vma
;
116 vma
= find_vma(current
->mm
, (unsigned long)objp
);
118 return vma
->vm_end
- vma
->vm_start
;
122 * The ksize() function is only guaranteed to work for pointers
123 * returned by kmalloc(). So handle arbitrary pointers here.
125 return PAGE_SIZE
<< compound_order(page
);
128 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
129 unsigned long start
, int nr_pages
, unsigned int foll_flags
,
130 struct page
**pages
, struct vm_area_struct
**vmas
,
133 struct vm_area_struct
*vma
;
134 unsigned long vm_flags
;
137 /* calculate required read or write permissions.
138 * If FOLL_FORCE is set, we only require the "MAY" flags.
140 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
141 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
142 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
143 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
145 for (i
= 0; i
< nr_pages
; i
++) {
146 vma
= find_vma(mm
, start
);
148 goto finish_or_fault
;
150 /* protect what we can, including chardevs */
151 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
152 !(vm_flags
& vma
->vm_flags
))
153 goto finish_or_fault
;
156 pages
[i
] = virt_to_page(start
);
158 page_cache_get(pages
[i
]);
162 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
168 return i
? : -EFAULT
;
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 * slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
178 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
179 unsigned long start
, int nr_pages
, int write
, int force
,
180 struct page
**pages
, struct vm_area_struct
**vmas
)
189 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
192 EXPORT_SYMBOL(get_user_pages
);
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
200 * Only IO mappings and raw PFN mappings are allowed.
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
204 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
207 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
210 *pfn
= address
>> PAGE_SHIFT
;
213 EXPORT_SYMBOL(follow_pfn
);
215 DEFINE_RWLOCK(vmlist_lock
);
216 struct vm_struct
*vmlist
;
218 void vfree(const void *addr
)
222 EXPORT_SYMBOL(vfree
);
224 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
227 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 * returns only a logical address.
230 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
232 EXPORT_SYMBOL(__vmalloc
);
234 void *vmalloc_user(unsigned long size
)
238 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
241 struct vm_area_struct
*vma
;
243 down_write(¤t
->mm
->mmap_sem
);
244 vma
= find_vma(current
->mm
, (unsigned long)ret
);
246 vma
->vm_flags
|= VM_USERMAP
;
247 up_write(¤t
->mm
->mmap_sem
);
252 EXPORT_SYMBOL(vmalloc_user
);
254 struct page
*vmalloc_to_page(const void *addr
)
256 return virt_to_page(addr
);
258 EXPORT_SYMBOL(vmalloc_to_page
);
260 unsigned long vmalloc_to_pfn(const void *addr
)
262 return page_to_pfn(virt_to_page(addr
));
264 EXPORT_SYMBOL(vmalloc_to_pfn
);
266 long vread(char *buf
, char *addr
, unsigned long count
)
268 memcpy(buf
, addr
, count
);
272 long vwrite(char *buf
, char *addr
, unsigned long count
)
274 /* Don't allow overflow */
275 if ((unsigned long) addr
+ count
< count
)
276 count
= -(unsigned long) addr
;
278 memcpy(addr
, buf
, count
);
283 * vmalloc - allocate virtually continguos memory
285 * @size: allocation size
287 * Allocate enough pages to cover @size from the page level
288 * allocator and map them into continguos kernel virtual space.
290 * For tight control over page level allocator and protection flags
291 * use __vmalloc() instead.
293 void *vmalloc(unsigned long size
)
295 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
297 EXPORT_SYMBOL(vmalloc
);
300 * vzalloc - allocate virtually continguos memory with zero fill
302 * @size: allocation size
304 * Allocate enough pages to cover @size from the page level
305 * allocator and map them into continguos kernel virtual space.
306 * The memory allocated is set to zero.
308 * For tight control over page level allocator and protection flags
309 * use __vmalloc() instead.
311 void *vzalloc(unsigned long size
)
313 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
316 EXPORT_SYMBOL(vzalloc
);
319 * vmalloc_node - allocate memory on a specific node
320 * @size: allocation size
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
329 void *vmalloc_node(unsigned long size
, int node
)
331 return vmalloc(size
);
333 EXPORT_SYMBOL(vmalloc_node
);
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size: allocation size
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
347 void *vzalloc_node(unsigned long size
, int node
)
349 return vzalloc(size
);
351 EXPORT_SYMBOL(vzalloc_node
);
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
358 * vmalloc_exec - allocate virtually contiguous, executable memory
359 * @size: allocation size
361 * Kernel-internal function to allocate enough pages to cover @size
362 * the page level allocator and map them into contiguous and
363 * executable kernel virtual space.
365 * For tight control over page level allocator and protection flags
366 * use __vmalloc() instead.
369 void *vmalloc_exec(unsigned long size
)
371 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
375 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
376 * @size: allocation size
378 * Allocate enough 32bit PA addressable pages to cover @size from the
379 * page level allocator and map them into continguos kernel virtual space.
381 void *vmalloc_32(unsigned long size
)
383 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
385 EXPORT_SYMBOL(vmalloc_32
);
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 * @size: allocation size
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
397 void *vmalloc_32_user(unsigned long size
)
400 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 * but for now this can simply use vmalloc_user() directly.
403 return vmalloc_user(size
);
405 EXPORT_SYMBOL(vmalloc_32_user
);
407 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
414 void vunmap(const void *addr
)
418 EXPORT_SYMBOL(vunmap
);
420 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
425 EXPORT_SYMBOL(vm_map_ram
);
427 void vm_unmap_ram(const void *mem
, unsigned int count
)
431 EXPORT_SYMBOL(vm_unmap_ram
);
433 void vm_unmap_aliases(void)
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
442 void __attribute__((weak
)) vmalloc_sync_all(void)
447 * alloc_vm_area - allocate a range of kernel address space
448 * @size: size of the area
450 * Returns: NULL on failure, vm_struct on success
452 * This function reserves a range of kernel address space, and
453 * allocates pagetables to map that range. No actual mappings
454 * are created. If the kernel address space is not shared
455 * between processes, it syncs the pagetable across all
458 struct vm_struct
*alloc_vm_area(size_t size
)
463 EXPORT_SYMBOL_GPL(alloc_vm_area
);
465 void free_vm_area(struct vm_struct
*area
)
469 EXPORT_SYMBOL_GPL(free_vm_area
);
471 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
476 EXPORT_SYMBOL(vm_insert_page
);
479 * sys_brk() for the most part doesn't need the global kernel
480 * lock, except when an application is doing something nasty
481 * like trying to un-brk an area that has already been mapped
482 * to a regular file. in this case, the unmapping will need
483 * to invoke file system routines that need the global lock.
485 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
487 struct mm_struct
*mm
= current
->mm
;
489 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
496 * Always allow shrinking brk
498 if (brk
<= mm
->brk
) {
504 * Ok, looks good - let it rip.
506 flush_icache_range(mm
->brk
, brk
);
507 return mm
->brk
= brk
;
511 * initialise the VMA and region record slabs
513 void __init
mmap_init(void)
517 ret
= percpu_counter_init(&vm_committed_as
, 0);
519 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
523 * validate the region tree
524 * - the caller must hold the region lock
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
527 static noinline
void validate_nommu_regions(void)
529 struct vm_region
*region
, *last
;
530 struct rb_node
*p
, *lastp
;
532 lastp
= rb_first(&nommu_region_tree
);
536 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
537 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
538 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
540 while ((p
= rb_next(lastp
))) {
541 region
= rb_entry(p
, struct vm_region
, vm_rb
);
542 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
544 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
545 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
546 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
552 static void validate_nommu_regions(void)
558 * add a region into the global tree
560 static void add_nommu_region(struct vm_region
*region
)
562 struct vm_region
*pregion
;
563 struct rb_node
**p
, *parent
;
565 validate_nommu_regions();
568 p
= &nommu_region_tree
.rb_node
;
571 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
572 if (region
->vm_start
< pregion
->vm_start
)
574 else if (region
->vm_start
> pregion
->vm_start
)
576 else if (pregion
== region
)
582 rb_link_node(®ion
->vm_rb
, parent
, p
);
583 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
585 validate_nommu_regions();
589 * delete a region from the global tree
591 static void delete_nommu_region(struct vm_region
*region
)
593 BUG_ON(!nommu_region_tree
.rb_node
);
595 validate_nommu_regions();
596 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
597 validate_nommu_regions();
601 * free a contiguous series of pages
603 static void free_page_series(unsigned long from
, unsigned long to
)
605 for (; from
< to
; from
+= PAGE_SIZE
) {
606 struct page
*page
= virt_to_page(from
);
608 kdebug("- free %lx", from
);
609 atomic_long_dec(&mmap_pages_allocated
);
610 if (page_count(page
) != 1)
611 kdebug("free page %p: refcount not one: %d",
612 page
, page_count(page
));
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 * will equal vm_start
623 static void __put_nommu_region(struct vm_region
*region
)
624 __releases(nommu_region_sem
)
626 kenter("%p{%d}", region
, region
->vm_usage
);
628 BUG_ON(!nommu_region_tree
.rb_node
);
630 if (--region
->vm_usage
== 0) {
631 if (region
->vm_top
> region
->vm_start
)
632 delete_nommu_region(region
);
633 up_write(&nommu_region_sem
);
636 fput(region
->vm_file
);
638 /* IO memory and memory shared directly out of the pagecache
639 * from ramfs/tmpfs mustn't be released here */
640 if (region
->vm_flags
& VM_MAPPED_COPY
) {
641 kdebug("free series");
642 free_page_series(region
->vm_start
, region
->vm_top
);
644 kmem_cache_free(vm_region_jar
, region
);
646 up_write(&nommu_region_sem
);
651 * release a reference to a region
653 static void put_nommu_region(struct vm_region
*region
)
655 down_write(&nommu_region_sem
);
656 __put_nommu_region(region
);
660 * update protection on a vma
662 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
665 struct mm_struct
*mm
= vma
->vm_mm
;
666 long start
= vma
->vm_start
& PAGE_MASK
;
667 while (start
< vma
->vm_end
) {
668 protect_page(mm
, start
, flags
);
671 update_protections(mm
);
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
679 * - should be called with mm->mmap_sem held writelocked
681 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
683 struct vm_area_struct
*pvma
, **pp
, *next
;
684 struct address_space
*mapping
;
685 struct rb_node
**p
, *parent
;
689 BUG_ON(!vma
->vm_region
);
694 protect_vma(vma
, vma
->vm_flags
);
696 /* add the VMA to the mapping */
698 mapping
= vma
->vm_file
->f_mapping
;
700 flush_dcache_mmap_lock(mapping
);
701 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
702 flush_dcache_mmap_unlock(mapping
);
705 /* add the VMA to the tree */
707 p
= &mm
->mm_rb
.rb_node
;
710 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
712 /* sort by: start addr, end addr, VMA struct addr in that order
713 * (the latter is necessary as we may get identical VMAs) */
714 if (vma
->vm_start
< pvma
->vm_start
)
716 else if (vma
->vm_start
> pvma
->vm_start
)
718 else if (vma
->vm_end
< pvma
->vm_end
)
720 else if (vma
->vm_end
> pvma
->vm_end
)
730 rb_link_node(&vma
->vm_rb
, parent
, p
);
731 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
733 /* add VMA to the VMA list also */
734 for (pp
= &mm
->mmap
; (pvma
= *pp
); pp
= &(*pp
)->vm_next
) {
735 if (pvma
->vm_start
> vma
->vm_start
)
737 if (pvma
->vm_start
< vma
->vm_start
)
739 if (pvma
->vm_end
< vma
->vm_end
)
751 * delete a VMA from its owning mm_struct and address space
753 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
755 struct vm_area_struct
**pp
;
756 struct address_space
*mapping
;
757 struct mm_struct
*mm
= vma
->vm_mm
;
764 if (mm
->mmap_cache
== vma
)
765 mm
->mmap_cache
= NULL
;
767 /* remove the VMA from the mapping */
769 mapping
= vma
->vm_file
->f_mapping
;
771 flush_dcache_mmap_lock(mapping
);
772 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
773 flush_dcache_mmap_unlock(mapping
);
776 /* remove from the MM's tree and list */
777 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
778 for (pp
= &mm
->mmap
; *pp
; pp
= &(*pp
)->vm_next
) {
789 * destroy a VMA record
791 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
794 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
795 vma
->vm_ops
->close(vma
);
798 if (vma
->vm_flags
& VM_EXECUTABLE
)
799 removed_exe_file_vma(mm
);
801 put_nommu_region(vma
->vm_region
);
802 kmem_cache_free(vm_area_cachep
, vma
);
806 * look up the first VMA in which addr resides, NULL if none
807 * - should be called with mm->mmap_sem at least held readlocked
809 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
811 struct vm_area_struct
*vma
;
812 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
814 /* check the cache first */
815 vma
= mm
->mmap_cache
;
816 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
819 /* trawl the tree (there may be multiple mappings in which addr
821 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
822 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
823 if (vma
->vm_start
> addr
)
825 if (vma
->vm_end
> addr
) {
826 mm
->mmap_cache
= vma
;
833 EXPORT_SYMBOL(find_vma
);
837 * - we don't extend stack VMAs under NOMMU conditions
839 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
841 return find_vma(mm
, addr
);
845 * expand a stack to a given address
846 * - not supported under NOMMU conditions
848 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
854 * look up the first VMA exactly that exactly matches addr
855 * - should be called with mm->mmap_sem at least held readlocked
857 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
861 struct vm_area_struct
*vma
;
862 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
863 unsigned long end
= addr
+ len
;
865 /* check the cache first */
866 vma
= mm
->mmap_cache
;
867 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
870 /* trawl the tree (there may be multiple mappings in which addr
872 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
873 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
874 if (vma
->vm_start
< addr
)
876 if (vma
->vm_start
> addr
)
878 if (vma
->vm_end
== end
) {
879 mm
->mmap_cache
= vma
;
888 * determine whether a mapping should be permitted and, if so, what sort of
889 * mapping we're capable of supporting
891 static int validate_mmap_request(struct file
*file
,
897 unsigned long *_capabilities
)
899 unsigned long capabilities
, rlen
;
900 unsigned long reqprot
= prot
;
903 /* do the simple checks first */
904 if (flags
& MAP_FIXED
) {
906 "%d: Can't do fixed-address/overlay mmap of RAM\n",
911 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
912 (flags
& MAP_TYPE
) != MAP_SHARED
)
918 /* Careful about overflows.. */
919 rlen
= PAGE_ALIGN(len
);
920 if (!rlen
|| rlen
> TASK_SIZE
)
923 /* offset overflow? */
924 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
928 /* validate file mapping requests */
929 struct address_space
*mapping
;
931 /* files must support mmap */
932 if (!file
->f_op
|| !file
->f_op
->mmap
)
935 /* work out if what we've got could possibly be shared
936 * - we support chardevs that provide their own "memory"
937 * - we support files/blockdevs that are memory backed
939 mapping
= file
->f_mapping
;
941 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
944 if (mapping
&& mapping
->backing_dev_info
)
945 capabilities
= mapping
->backing_dev_info
->capabilities
;
948 /* no explicit capabilities set, so assume some
950 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
953 capabilities
= BDI_CAP_MAP_COPY
;
968 /* eliminate any capabilities that we can't support on this
970 if (!file
->f_op
->get_unmapped_area
)
971 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
972 if (!file
->f_op
->read
)
973 capabilities
&= ~BDI_CAP_MAP_COPY
;
975 /* The file shall have been opened with read permission. */
976 if (!(file
->f_mode
& FMODE_READ
))
979 if (flags
& MAP_SHARED
) {
980 /* do checks for writing, appending and locking */
981 if ((prot
& PROT_WRITE
) &&
982 !(file
->f_mode
& FMODE_WRITE
))
985 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
986 (file
->f_mode
& FMODE_WRITE
))
989 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
992 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
995 /* we mustn't privatise shared mappings */
996 capabilities
&= ~BDI_CAP_MAP_COPY
;
999 /* we're going to read the file into private memory we
1001 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1004 /* we don't permit a private writable mapping to be
1005 * shared with the backing device */
1006 if (prot
& PROT_WRITE
)
1007 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1010 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1011 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1012 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1013 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1015 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1016 if (flags
& MAP_SHARED
) {
1018 "MAP_SHARED not completely supported on !MMU\n");
1024 /* handle executable mappings and implied executable
1026 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1027 if (prot
& PROT_EXEC
)
1030 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1031 /* handle implication of PROT_EXEC by PROT_READ */
1032 if (current
->personality
& READ_IMPLIES_EXEC
) {
1033 if (capabilities
& BDI_CAP_EXEC_MAP
)
1037 else if ((prot
& PROT_READ
) &&
1038 (prot
& PROT_EXEC
) &&
1039 !(capabilities
& BDI_CAP_EXEC_MAP
)
1041 /* backing file is not executable, try to copy */
1042 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1046 /* anonymous mappings are always memory backed and can be
1049 capabilities
= BDI_CAP_MAP_COPY
;
1051 /* handle PROT_EXEC implication by PROT_READ */
1052 if ((prot
& PROT_READ
) &&
1053 (current
->personality
& READ_IMPLIES_EXEC
))
1057 /* allow the security API to have its say */
1058 ret
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1063 *_capabilities
= capabilities
;
1068 * we've determined that we can make the mapping, now translate what we
1069 * now know into VMA flags
1071 static unsigned long determine_vm_flags(struct file
*file
,
1073 unsigned long flags
,
1074 unsigned long capabilities
)
1076 unsigned long vm_flags
;
1078 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1079 /* vm_flags |= mm->def_flags; */
1081 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1082 /* attempt to share read-only copies of mapped file chunks */
1083 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1084 if (file
&& !(prot
& PROT_WRITE
))
1085 vm_flags
|= VM_MAYSHARE
;
1087 /* overlay a shareable mapping on the backing device or inode
1088 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1090 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1091 if (flags
& MAP_SHARED
)
1092 vm_flags
|= VM_SHARED
;
1095 /* refuse to let anyone share private mappings with this process if
1096 * it's being traced - otherwise breakpoints set in it may interfere
1097 * with another untraced process
1099 if ((flags
& MAP_PRIVATE
) && tracehook_expect_breakpoints(current
))
1100 vm_flags
&= ~VM_MAYSHARE
;
1106 * set up a shared mapping on a file (the driver or filesystem provides and
1109 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1113 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1115 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1121 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1122 * opposed to tried but failed) so we can only give a suitable error as
1123 * it's not possible to make a private copy if MAP_SHARED was given */
1128 * set up a private mapping or an anonymous shared mapping
1130 static int do_mmap_private(struct vm_area_struct
*vma
,
1131 struct vm_region
*region
,
1133 unsigned long capabilities
)
1136 unsigned long total
, point
, n
, rlen
;
1140 /* invoke the file's mapping function so that it can keep track of
1141 * shared mappings on devices or memory
1142 * - VM_MAYSHARE will be set if it may attempt to share
1144 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1145 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1147 /* shouldn't return success if we're not sharing */
1148 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1149 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1155 /* getting an ENOSYS error indicates that direct mmap isn't
1156 * possible (as opposed to tried but failed) so we'll try to
1157 * make a private copy of the data and map that instead */
1160 rlen
= PAGE_ALIGN(len
);
1162 /* allocate some memory to hold the mapping
1163 * - note that this may not return a page-aligned address if the object
1164 * we're allocating is smaller than a page
1166 order
= get_order(rlen
);
1167 kdebug("alloc order %d for %lx", order
, len
);
1169 pages
= alloc_pages(GFP_KERNEL
, order
);
1174 atomic_long_add(total
, &mmap_pages_allocated
);
1176 point
= rlen
>> PAGE_SHIFT
;
1178 /* we allocated a power-of-2 sized page set, so we may want to trim off
1180 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1181 while (total
> point
) {
1182 order
= ilog2(total
- point
);
1184 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1185 atomic_long_sub(n
, &mmap_pages_allocated
);
1187 set_page_refcounted(pages
+ total
);
1188 __free_pages(pages
+ total
, order
);
1192 for (point
= 1; point
< total
; point
++)
1193 set_page_refcounted(&pages
[point
]);
1195 base
= page_address(pages
);
1196 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1197 region
->vm_start
= (unsigned long) base
;
1198 region
->vm_end
= region
->vm_start
+ rlen
;
1199 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1201 vma
->vm_start
= region
->vm_start
;
1202 vma
->vm_end
= region
->vm_start
+ len
;
1205 /* read the contents of a file into the copy */
1206 mm_segment_t old_fs
;
1209 fpos
= vma
->vm_pgoff
;
1210 fpos
<<= PAGE_SHIFT
;
1214 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, rlen
, &fpos
);
1220 /* clear the last little bit */
1222 memset(base
+ ret
, 0, rlen
- ret
);
1229 free_page_series(region
->vm_start
, region
->vm_end
);
1230 region
->vm_start
= vma
->vm_start
= 0;
1231 region
->vm_end
= vma
->vm_end
= 0;
1236 printk("Allocation of length %lu from process %d (%s) failed\n",
1237 len
, current
->pid
, current
->comm
);
1243 * handle mapping creation for uClinux
1245 unsigned long do_mmap_pgoff(struct file
*file
,
1249 unsigned long flags
,
1250 unsigned long pgoff
)
1252 struct vm_area_struct
*vma
;
1253 struct vm_region
*region
;
1255 unsigned long capabilities
, vm_flags
, result
;
1258 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1260 /* decide whether we should attempt the mapping, and if so what sort of
1262 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1265 kleave(" = %d [val]", ret
);
1269 /* we ignore the address hint */
1272 /* we've determined that we can make the mapping, now translate what we
1273 * now know into VMA flags */
1274 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1276 /* we're going to need to record the mapping */
1277 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1279 goto error_getting_region
;
1281 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1283 goto error_getting_vma
;
1285 region
->vm_usage
= 1;
1286 region
->vm_flags
= vm_flags
;
1287 region
->vm_pgoff
= pgoff
;
1289 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1290 vma
->vm_flags
= vm_flags
;
1291 vma
->vm_pgoff
= pgoff
;
1294 region
->vm_file
= file
;
1296 vma
->vm_file
= file
;
1298 if (vm_flags
& VM_EXECUTABLE
) {
1299 added_exe_file_vma(current
->mm
);
1300 vma
->vm_mm
= current
->mm
;
1304 down_write(&nommu_region_sem
);
1306 /* if we want to share, we need to check for regions created by other
1307 * mmap() calls that overlap with our proposed mapping
1308 * - we can only share with a superset match on most regular files
1309 * - shared mappings on character devices and memory backed files are
1310 * permitted to overlap inexactly as far as we are concerned for in
1311 * these cases, sharing is handled in the driver or filesystem rather
1314 if (vm_flags
& VM_MAYSHARE
) {
1315 struct vm_region
*pregion
;
1316 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1318 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1319 pgend
= pgoff
+ pglen
;
1321 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1322 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1324 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1327 /* search for overlapping mappings on the same file */
1328 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1329 file
->f_path
.dentry
->d_inode
)
1332 if (pregion
->vm_pgoff
>= pgend
)
1335 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1336 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1337 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1338 if (pgoff
>= rpgend
)
1341 /* handle inexactly overlapping matches between
1343 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1344 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1345 /* new mapping is not a subset of the region */
1346 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1347 goto sharing_violation
;
1351 /* we've found a region we can share */
1352 pregion
->vm_usage
++;
1353 vma
->vm_region
= pregion
;
1354 start
= pregion
->vm_start
;
1355 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1356 vma
->vm_start
= start
;
1357 vma
->vm_end
= start
+ len
;
1359 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1360 kdebug("share copy");
1361 vma
->vm_flags
|= VM_MAPPED_COPY
;
1363 kdebug("share mmap");
1364 ret
= do_mmap_shared_file(vma
);
1366 vma
->vm_region
= NULL
;
1369 pregion
->vm_usage
--;
1371 goto error_just_free
;
1374 fput(region
->vm_file
);
1375 kmem_cache_free(vm_region_jar
, region
);
1381 /* obtain the address at which to make a shared mapping
1382 * - this is the hook for quasi-memory character devices to
1383 * tell us the location of a shared mapping
1385 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1386 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1388 if (IS_ERR((void *) addr
)) {
1390 if (ret
!= (unsigned long) -ENOSYS
)
1391 goto error_just_free
;
1393 /* the driver refused to tell us where to site
1394 * the mapping so we'll have to attempt to copy
1396 ret
= (unsigned long) -ENODEV
;
1397 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1398 goto error_just_free
;
1400 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1402 vma
->vm_start
= region
->vm_start
= addr
;
1403 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1408 vma
->vm_region
= region
;
1410 /* set up the mapping
1411 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1413 if (file
&& vma
->vm_flags
& VM_SHARED
)
1414 ret
= do_mmap_shared_file(vma
);
1416 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1418 goto error_just_free
;
1419 add_nommu_region(region
);
1421 /* clear anonymous mappings that don't ask for uninitialized data */
1422 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1423 memset((void *)region
->vm_start
, 0,
1424 region
->vm_end
- region
->vm_start
);
1426 /* okay... we have a mapping; now we have to register it */
1427 result
= vma
->vm_start
;
1429 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1432 add_vma_to_mm(current
->mm
, vma
);
1434 /* we flush the region from the icache only when the first executable
1435 * mapping of it is made */
1436 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1437 flush_icache_range(region
->vm_start
, region
->vm_end
);
1438 region
->vm_icache_flushed
= true;
1441 up_write(&nommu_region_sem
);
1443 kleave(" = %lx", result
);
1447 up_write(&nommu_region_sem
);
1449 if (region
->vm_file
)
1450 fput(region
->vm_file
);
1451 kmem_cache_free(vm_region_jar
, region
);
1454 if (vma
->vm_flags
& VM_EXECUTABLE
)
1455 removed_exe_file_vma(vma
->vm_mm
);
1456 kmem_cache_free(vm_area_cachep
, vma
);
1457 kleave(" = %d", ret
);
1461 up_write(&nommu_region_sem
);
1462 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1467 kmem_cache_free(vm_region_jar
, region
);
1468 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1469 " from process %d failed\n",
1474 error_getting_region
:
1475 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1476 " from process %d failed\n",
1481 EXPORT_SYMBOL(do_mmap_pgoff
);
1483 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1484 unsigned long, prot
, unsigned long, flags
,
1485 unsigned long, fd
, unsigned long, pgoff
)
1487 struct file
*file
= NULL
;
1488 unsigned long retval
= -EBADF
;
1490 audit_mmap_fd(fd
, flags
);
1491 if (!(flags
& MAP_ANONYMOUS
)) {
1497 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1499 down_write(¤t
->mm
->mmap_sem
);
1500 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1501 up_write(¤t
->mm
->mmap_sem
);
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct
{
1514 unsigned long flags
;
1516 unsigned long offset
;
1519 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1521 struct mmap_arg_struct a
;
1523 if (copy_from_user(&a
, arg
, sizeof(a
)))
1525 if (a
.offset
& ~PAGE_MASK
)
1528 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1529 a
.offset
>> PAGE_SHIFT
);
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1534 * split a vma into two pieces at address 'addr', a new vma is allocated either
1535 * for the first part or the tail.
1537 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1538 unsigned long addr
, int new_below
)
1540 struct vm_area_struct
*new;
1541 struct vm_region
*region
;
1542 unsigned long npages
;
1546 /* we're only permitted to split anonymous regions (these should have
1547 * only a single usage on the region) */
1551 if (mm
->map_count
>= sysctl_max_map_count
)
1554 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1558 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1560 kmem_cache_free(vm_region_jar
, region
);
1564 /* most fields are the same, copy all, and then fixup */
1566 *region
= *vma
->vm_region
;
1567 new->vm_region
= region
;
1569 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1572 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1574 region
->vm_start
= new->vm_start
= addr
;
1575 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1578 if (new->vm_ops
&& new->vm_ops
->open
)
1579 new->vm_ops
->open(new);
1581 delete_vma_from_mm(vma
);
1582 down_write(&nommu_region_sem
);
1583 delete_nommu_region(vma
->vm_region
);
1585 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1586 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1588 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1589 vma
->vm_region
->vm_top
= addr
;
1591 add_nommu_region(vma
->vm_region
);
1592 add_nommu_region(new->vm_region
);
1593 up_write(&nommu_region_sem
);
1594 add_vma_to_mm(mm
, vma
);
1595 add_vma_to_mm(mm
, new);
1600 * shrink a VMA by removing the specified chunk from either the beginning or
1603 static int shrink_vma(struct mm_struct
*mm
,
1604 struct vm_area_struct
*vma
,
1605 unsigned long from
, unsigned long to
)
1607 struct vm_region
*region
;
1611 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1613 delete_vma_from_mm(vma
);
1614 if (from
> vma
->vm_start
)
1618 add_vma_to_mm(mm
, vma
);
1620 /* cut the backing region down to size */
1621 region
= vma
->vm_region
;
1622 BUG_ON(region
->vm_usage
!= 1);
1624 down_write(&nommu_region_sem
);
1625 delete_nommu_region(region
);
1626 if (from
> region
->vm_start
) {
1627 to
= region
->vm_top
;
1628 region
->vm_top
= region
->vm_end
= from
;
1630 region
->vm_start
= to
;
1632 add_nommu_region(region
);
1633 up_write(&nommu_region_sem
);
1635 free_page_series(from
, to
);
1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642 * VMA, though it need not cover the whole VMA
1644 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1646 struct vm_area_struct
*vma
;
1648 unsigned long end
= start
+ len
;
1651 kenter(",%lx,%zx", start
, len
);
1656 /* find the first potentially overlapping VMA */
1657 vma
= find_vma(mm
, start
);
1659 static int limit
= 0;
1662 "munmap of memory not mmapped by process %d"
1663 " (%s): 0x%lx-0x%lx\n",
1664 current
->pid
, current
->comm
,
1665 start
, start
+ len
- 1);
1671 /* we're allowed to split an anonymous VMA but not a file-backed one */
1674 if (start
> vma
->vm_start
) {
1675 kleave(" = -EINVAL [miss]");
1678 if (end
== vma
->vm_end
)
1679 goto erase_whole_vma
;
1680 rb
= rb_next(&vma
->vm_rb
);
1681 vma
= rb_entry(rb
, struct vm_area_struct
, vm_rb
);
1683 kleave(" = -EINVAL [split file]");
1686 /* the chunk must be a subset of the VMA found */
1687 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1688 goto erase_whole_vma
;
1689 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1690 kleave(" = -EINVAL [superset]");
1693 if (start
& ~PAGE_MASK
) {
1694 kleave(" = -EINVAL [unaligned start]");
1697 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1698 kleave(" = -EINVAL [unaligned split]");
1701 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1702 ret
= split_vma(mm
, vma
, start
, 1);
1704 kleave(" = %d [split]", ret
);
1708 return shrink_vma(mm
, vma
, start
, end
);
1712 delete_vma_from_mm(vma
);
1713 delete_vma(mm
, vma
);
1717 EXPORT_SYMBOL(do_munmap
);
1719 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1722 struct mm_struct
*mm
= current
->mm
;
1724 down_write(&mm
->mmap_sem
);
1725 ret
= do_munmap(mm
, addr
, len
);
1726 up_write(&mm
->mmap_sem
);
1731 * release all the mappings made in a process's VM space
1733 void exit_mmap(struct mm_struct
*mm
)
1735 struct vm_area_struct
*vma
;
1744 while ((vma
= mm
->mmap
)) {
1745 mm
->mmap
= vma
->vm_next
;
1746 delete_vma_from_mm(vma
);
1747 delete_vma(mm
, vma
);
1754 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1760 * expand (or shrink) an existing mapping, potentially moving it at the same
1761 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1763 * under NOMMU conditions, we only permit changing a mapping's size, and only
1764 * as long as it stays within the region allocated by do_mmap_private() and the
1765 * block is not shareable
1767 * MREMAP_FIXED is not supported under NOMMU conditions
1769 unsigned long do_mremap(unsigned long addr
,
1770 unsigned long old_len
, unsigned long new_len
,
1771 unsigned long flags
, unsigned long new_addr
)
1773 struct vm_area_struct
*vma
;
1775 /* insanity checks first */
1776 if (old_len
== 0 || new_len
== 0)
1777 return (unsigned long) -EINVAL
;
1779 if (addr
& ~PAGE_MASK
)
1782 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1783 return (unsigned long) -EINVAL
;
1785 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1787 return (unsigned long) -EINVAL
;
1789 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1790 return (unsigned long) -EFAULT
;
1792 if (vma
->vm_flags
& VM_MAYSHARE
)
1793 return (unsigned long) -EPERM
;
1795 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1796 return (unsigned long) -ENOMEM
;
1798 /* all checks complete - do it */
1799 vma
->vm_end
= vma
->vm_start
+ new_len
;
1800 return vma
->vm_start
;
1802 EXPORT_SYMBOL(do_mremap
);
1804 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1805 unsigned long, new_len
, unsigned long, flags
,
1806 unsigned long, new_addr
)
1810 down_write(¤t
->mm
->mmap_sem
);
1811 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1812 up_write(¤t
->mm
->mmap_sem
);
1816 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1817 unsigned int foll_flags
)
1822 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long from
,
1823 unsigned long to
, unsigned long size
, pgprot_t prot
)
1825 vma
->vm_start
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1828 EXPORT_SYMBOL(remap_pfn_range
);
1830 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1831 unsigned long pgoff
)
1833 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1835 if (!(vma
->vm_flags
& VM_USERMAP
))
1838 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1839 vma
->vm_end
= vma
->vm_start
+ size
;
1843 EXPORT_SYMBOL(remap_vmalloc_range
);
1845 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1846 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1851 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1855 void unmap_mapping_range(struct address_space
*mapping
,
1856 loff_t
const holebegin
, loff_t
const holelen
,
1860 EXPORT_SYMBOL(unmap_mapping_range
);
1863 * Check that a process has enough memory to allocate a new virtual
1864 * mapping. 0 means there is enough memory for the allocation to
1865 * succeed and -ENOMEM implies there is not.
1867 * We currently support three overcommit policies, which are set via the
1868 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1870 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1871 * Additional code 2002 Jul 20 by Robert Love.
1873 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1875 * Note this is a helper function intended to be used by LSMs which
1876 * wish to use this logic.
1878 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1880 unsigned long free
, allowed
;
1882 vm_acct_memory(pages
);
1885 * Sometimes we want to use more memory than we have
1887 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1890 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1893 free
= global_page_state(NR_FILE_PAGES
);
1894 free
+= nr_swap_pages
;
1897 * Any slabs which are created with the
1898 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1899 * which are reclaimable, under pressure. The dentry
1900 * cache and most inode caches should fall into this
1902 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1905 * Leave the last 3% for root
1914 * nr_free_pages() is very expensive on large systems,
1915 * only call if we're about to fail.
1917 n
= nr_free_pages();
1920 * Leave reserved pages. The pages are not for anonymous pages.
1922 if (n
<= totalreserve_pages
)
1925 n
-= totalreserve_pages
;
1928 * Leave the last 3% for root
1940 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1942 * Leave the last 3% for root
1945 allowed
-= allowed
/ 32;
1946 allowed
+= total_swap_pages
;
1948 /* Don't let a single process grow too big:
1949 leave 3% of the size of this process for other processes */
1951 allowed
-= mm
->total_vm
/ 32;
1953 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1957 vm_unacct_memory(pages
);
1962 int in_gate_area_no_task(unsigned long addr
)
1967 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1972 EXPORT_SYMBOL(filemap_fault
);
1975 * Access another process' address space.
1976 * - source/target buffer must be kernel space
1978 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1980 struct vm_area_struct
*vma
;
1981 struct mm_struct
*mm
;
1983 if (addr
+ len
< addr
)
1986 mm
= get_task_mm(tsk
);
1990 down_read(&mm
->mmap_sem
);
1992 /* the access must start within one of the target process's mappings */
1993 vma
= find_vma(mm
, addr
);
1995 /* don't overrun this mapping */
1996 if (addr
+ len
>= vma
->vm_end
)
1997 len
= vma
->vm_end
- addr
;
1999 /* only read or write mappings where it is permitted */
2000 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2001 copy_to_user_page(vma
, NULL
, addr
,
2002 (void *) addr
, buf
, len
);
2003 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2004 copy_from_user_page(vma
, NULL
, addr
,
2005 buf
, (void *) addr
, len
);
2012 up_read(&mm
->mmap_sem
);
2018 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2019 * @inode: The inode to check
2020 * @size: The current filesize of the inode
2021 * @newsize: The proposed filesize of the inode
2023 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2024 * make sure that that any outstanding VMAs aren't broken and then shrink the
2025 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2026 * automatically grant mappings that are too large.
2028 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2031 struct vm_area_struct
*vma
;
2032 struct prio_tree_iter iter
;
2033 struct vm_region
*region
;
2035 size_t r_size
, r_top
;
2037 low
= newsize
>> PAGE_SHIFT
;
2038 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2040 down_write(&nommu_region_sem
);
2042 /* search for VMAs that fall within the dead zone */
2043 vma_prio_tree_foreach(vma
, &iter
, &inode
->i_mapping
->i_mmap
,
2045 /* found one - only interested if it's shared out of the page
2047 if (vma
->vm_flags
& VM_SHARED
) {
2048 up_write(&nommu_region_sem
);
2049 return -ETXTBSY
; /* not quite true, but near enough */
2053 /* reduce any regions that overlap the dead zone - if in existence,
2054 * these will be pointed to by VMAs that don't overlap the dead zone
2056 * we don't check for any regions that start beyond the EOF as there
2059 vma_prio_tree_foreach(vma
, &iter
, &inode
->i_mapping
->i_mmap
,
2061 if (!(vma
->vm_flags
& VM_SHARED
))
2064 region
= vma
->vm_region
;
2065 r_size
= region
->vm_top
- region
->vm_start
;
2066 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2068 if (r_top
> newsize
) {
2069 region
->vm_top
-= r_top
- newsize
;
2070 if (region
->vm_end
> region
->vm_top
)
2071 region
->vm_end
= region
->vm_top
;
2075 up_write(&nommu_region_sem
);