4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
68 struct list_head vec
[TVN_SIZE
];
72 struct list_head vec
[TVR_SIZE
];
77 struct timer_list
*running_timer
;
78 unsigned long timer_jiffies
;
79 unsigned long next_timer
;
85 } ____cacheline_aligned
;
87 struct tvec_base boot_tvec_bases
;
88 EXPORT_SYMBOL(boot_tvec_bases
);
89 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
94 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
97 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
99 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
102 static inline void timer_set_deferrable(struct timer_list
*timer
)
104 timer
->base
= TBASE_MAKE_DEFERRED(timer
->base
);
108 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
110 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
111 tbase_get_deferrable(timer
->base
));
114 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
118 unsigned long original
= j
;
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
139 if (rem
< HZ
/4 && !force_up
) /* round down */
144 /* now that we have rounded, subtract the extra skew again */
147 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
170 * The return value is the rounded version of the @j parameter.
172 unsigned long __round_jiffies(unsigned long j
, int cpu
)
174 return round_jiffies_common(j
, cpu
, false);
176 EXPORT_SYMBOL_GPL(__round_jiffies
);
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
196 * The return value is the rounded version of the @j parameter.
198 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
200 unsigned long j0
= jiffies
;
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
220 * The return value is the rounded version of the @j parameter.
222 unsigned long round_jiffies(unsigned long j
)
224 return round_jiffies_common(j
, raw_smp_processor_id(), false);
226 EXPORT_SYMBOL_GPL(round_jiffies
);
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
241 * The return value is the rounded version of the @j parameter.
243 unsigned long round_jiffies_relative(unsigned long j
)
245 return __round_jiffies_relative(j
, raw_smp_processor_id());
247 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
259 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
261 return round_jiffies_common(j
, cpu
, true);
263 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
275 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
277 unsigned long j0
= jiffies
;
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
293 unsigned long round_jiffies_up(unsigned long j
)
295 return round_jiffies_common(j
, raw_smp_processor_id(), true);
297 EXPORT_SYMBOL_GPL(round_jiffies_up
);
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
308 unsigned long round_jiffies_up_relative(unsigned long j
)
310 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
324 * By setting the slack to -1, a percentage of the delay is used
327 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
329 timer
->slack
= slack_hz
;
331 EXPORT_SYMBOL_GPL(set_timer_slack
);
333 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
335 unsigned long expires
= timer
->expires
;
336 unsigned long idx
= expires
- base
->timer_jiffies
;
337 struct list_head
*vec
;
339 if (idx
< TVR_SIZE
) {
340 int i
= expires
& TVR_MASK
;
341 vec
= base
->tv1
.vec
+ i
;
342 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
343 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
344 vec
= base
->tv2
.vec
+ i
;
345 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
346 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
347 vec
= base
->tv3
.vec
+ i
;
348 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
349 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
350 vec
= base
->tv4
.vec
+ i
;
351 } else if ((signed long) idx
< 0) {
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
356 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
362 if (idx
> 0xffffffffUL
) {
364 expires
= idx
+ base
->timer_jiffies
;
366 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
367 vec
= base
->tv5
.vec
+ i
;
372 list_add_tail(&timer
->entry
, vec
);
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
378 if (timer
->start_site
)
381 timer
->start_site
= addr
;
382 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
383 timer
->start_pid
= current
->pid
;
386 static void timer_stats_account_timer(struct timer_list
*timer
)
388 unsigned int flag
= 0;
390 if (likely(!timer
->start_site
))
392 if (unlikely(tbase_get_deferrable(timer
->base
)))
393 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
395 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
396 timer
->function
, timer
->start_comm
, flag
);
400 static void timer_stats_account_timer(struct timer_list
*timer
) {}
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
405 static struct debug_obj_descr timer_debug_descr
;
408 * fixup_init is called when:
409 * - an active object is initialized
411 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
413 struct timer_list
*timer
= addr
;
416 case ODEBUG_STATE_ACTIVE
:
417 del_timer_sync(timer
);
418 debug_object_init(timer
, &timer_debug_descr
);
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
430 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
432 struct timer_list
*timer
= addr
;
436 case ODEBUG_STATE_NOTAVAILABLE
:
438 * This is not really a fixup. The timer was
439 * statically initialized. We just make sure that it
440 * is tracked in the object tracker.
442 if (timer
->entry
.next
== NULL
&&
443 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
444 debug_object_init(timer
, &timer_debug_descr
);
445 debug_object_activate(timer
, &timer_debug_descr
);
452 case ODEBUG_STATE_ACTIVE
:
461 * fixup_free is called when:
462 * - an active object is freed
464 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
466 struct timer_list
*timer
= addr
;
469 case ODEBUG_STATE_ACTIVE
:
470 del_timer_sync(timer
);
471 debug_object_free(timer
, &timer_debug_descr
);
478 static struct debug_obj_descr timer_debug_descr
= {
479 .name
= "timer_list",
480 .fixup_init
= timer_fixup_init
,
481 .fixup_activate
= timer_fixup_activate
,
482 .fixup_free
= timer_fixup_free
,
485 static inline void debug_timer_init(struct timer_list
*timer
)
487 debug_object_init(timer
, &timer_debug_descr
);
490 static inline void debug_timer_activate(struct timer_list
*timer
)
492 debug_object_activate(timer
, &timer_debug_descr
);
495 static inline void debug_timer_deactivate(struct timer_list
*timer
)
497 debug_object_deactivate(timer
, &timer_debug_descr
);
500 static inline void debug_timer_free(struct timer_list
*timer
)
502 debug_object_free(timer
, &timer_debug_descr
);
505 static void __init_timer(struct timer_list
*timer
,
507 struct lock_class_key
*key
);
509 void init_timer_on_stack_key(struct timer_list
*timer
,
511 struct lock_class_key
*key
)
513 debug_object_init_on_stack(timer
, &timer_debug_descr
);
514 __init_timer(timer
, name
, key
);
516 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
518 void destroy_timer_on_stack(struct timer_list
*timer
)
520 debug_object_free(timer
, &timer_debug_descr
);
522 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
525 static inline void debug_timer_init(struct timer_list
*timer
) { }
526 static inline void debug_timer_activate(struct timer_list
*timer
) { }
527 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
530 static inline void debug_init(struct timer_list
*timer
)
532 debug_timer_init(timer
);
533 trace_timer_init(timer
);
537 debug_activate(struct timer_list
*timer
, unsigned long expires
)
539 debug_timer_activate(timer
);
540 trace_timer_start(timer
, expires
);
543 static inline void debug_deactivate(struct timer_list
*timer
)
545 debug_timer_deactivate(timer
);
546 trace_timer_cancel(timer
);
549 static void __init_timer(struct timer_list
*timer
,
551 struct lock_class_key
*key
)
553 timer
->entry
.next
= NULL
;
554 timer
->base
= __raw_get_cpu_var(tvec_bases
);
556 #ifdef CONFIG_TIMER_STATS
557 timer
->start_site
= NULL
;
558 timer
->start_pid
= -1;
559 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
561 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
564 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
566 struct lock_class_key
*key
,
567 void (*function
)(unsigned long),
570 timer
->function
= function
;
572 init_timer_on_stack_key(timer
, name
, key
);
573 timer_set_deferrable(timer
);
575 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
578 * init_timer_key - initialize a timer
579 * @timer: the timer to be initialized
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
584 * init_timer_key() must be done to a timer prior calling *any* of the
585 * other timer functions.
587 void init_timer_key(struct timer_list
*timer
,
589 struct lock_class_key
*key
)
592 __init_timer(timer
, name
, key
);
594 EXPORT_SYMBOL(init_timer_key
);
596 void init_timer_deferrable_key(struct timer_list
*timer
,
598 struct lock_class_key
*key
)
600 init_timer_key(timer
, name
, key
);
601 timer_set_deferrable(timer
);
603 EXPORT_SYMBOL(init_timer_deferrable_key
);
605 static inline void detach_timer(struct timer_list
*timer
,
608 struct list_head
*entry
= &timer
->entry
;
610 debug_deactivate(timer
);
612 __list_del(entry
->prev
, entry
->next
);
615 entry
->prev
= LIST_POISON2
;
619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
630 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
631 unsigned long *flags
)
632 __acquires(timer
->base
->lock
)
634 struct tvec_base
*base
;
637 struct tvec_base
*prelock_base
= timer
->base
;
638 base
= tbase_get_base(prelock_base
);
639 if (likely(base
!= NULL
)) {
640 spin_lock_irqsave(&base
->lock
, *flags
);
641 if (likely(prelock_base
== timer
->base
))
643 /* The timer has migrated to another CPU */
644 spin_unlock_irqrestore(&base
->lock
, *flags
);
651 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
652 bool pending_only
, int pinned
)
654 struct tvec_base
*base
, *new_base
;
658 timer_stats_timer_set_start_info(timer
);
659 BUG_ON(!timer
->function
);
661 base
= lock_timer_base(timer
, &flags
);
663 if (timer_pending(timer
)) {
664 detach_timer(timer
, 0);
665 if (timer
->expires
== base
->next_timer
&&
666 !tbase_get_deferrable(timer
->base
))
667 base
->next_timer
= base
->timer_jiffies
;
674 debug_activate(timer
, expires
);
676 cpu
= smp_processor_id();
678 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
679 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
680 cpu
= get_nohz_timer_target();
682 new_base
= per_cpu(tvec_bases
, cpu
);
684 if (base
!= new_base
) {
686 * We are trying to schedule the timer on the local CPU.
687 * However we can't change timer's base while it is running,
688 * otherwise del_timer_sync() can't detect that the timer's
689 * handler yet has not finished. This also guarantees that
690 * the timer is serialized wrt itself.
692 if (likely(base
->running_timer
!= timer
)) {
693 /* See the comment in lock_timer_base() */
694 timer_set_base(timer
, NULL
);
695 spin_unlock(&base
->lock
);
697 spin_lock(&base
->lock
);
698 timer_set_base(timer
, base
);
702 timer
->expires
= expires
;
703 if (time_before(timer
->expires
, base
->next_timer
) &&
704 !tbase_get_deferrable(timer
->base
))
705 base
->next_timer
= timer
->expires
;
706 internal_add_timer(base
, timer
);
709 spin_unlock_irqrestore(&base
->lock
, flags
);
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
722 * It is useful for unserialized use of timers.
724 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
726 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
728 EXPORT_SYMBOL(mod_timer_pending
);
731 * Decide where to put the timer while taking the slack into account
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
741 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
743 unsigned long expires_limit
, mask
;
746 expires_limit
= expires
;
748 if (timer
->slack
>= 0) {
749 expires_limit
= expires
+ timer
->slack
;
751 unsigned long now
= jiffies
;
753 /* No slack, if already expired else auto slack 0.4% */
754 if (time_after(expires
, now
))
755 expires_limit
= expires
+ (expires
- now
)/256;
757 mask
= expires
^ expires_limit
;
761 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
763 mask
= (1 << bit
) - 1;
765 expires_limit
= expires_limit
& ~(mask
);
767 return expires_limit
;
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
773 * @expires: new timeout in jiffies
775 * mod_timer() is a more efficient way to update the expire field of an
776 * active timer (if the timer is inactive it will be activated)
778 * mod_timer(timer, expires) is equivalent to:
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
790 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
793 * This is a common optimization triggered by the
794 * networking code - if the timer is re-modified
795 * to be the same thing then just return:
797 if (timer_pending(timer
) && timer
->expires
== expires
)
800 expires
= apply_slack(timer
, expires
);
802 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
804 EXPORT_SYMBOL(mod_timer
);
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
815 * mod_timer_pinned(timer, expires) is equivalent to:
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
819 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
821 if (timer
->expires
== expires
&& timer_pending(timer
))
824 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
826 EXPORT_SYMBOL(mod_timer_pinned
);
829 * add_timer - start a timer
830 * @timer: the timer to be added
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
839 * Timers with an ->expires field in the past will be executed in the next
842 void add_timer(struct timer_list
*timer
)
844 BUG_ON(timer_pending(timer
));
845 mod_timer(timer
, timer
->expires
);
847 EXPORT_SYMBOL(add_timer
);
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
854 * This is not very scalable on SMP. Double adds are not possible.
856 void add_timer_on(struct timer_list
*timer
, int cpu
)
858 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
861 timer_stats_timer_set_start_info(timer
);
862 BUG_ON(timer_pending(timer
) || !timer
->function
);
863 spin_lock_irqsave(&base
->lock
, flags
);
864 timer_set_base(timer
, base
);
865 debug_activate(timer
, timer
->expires
);
866 if (time_before(timer
->expires
, base
->next_timer
) &&
867 !tbase_get_deferrable(timer
->base
))
868 base
->next_timer
= timer
->expires
;
869 internal_add_timer(base
, timer
);
871 * Check whether the other CPU is idle and needs to be
872 * triggered to reevaluate the timer wheel when nohz is
873 * active. We are protected against the other CPU fiddling
874 * with the timer by holding the timer base lock. This also
875 * makes sure that a CPU on the way to idle can not evaluate
878 wake_up_idle_cpu(cpu
);
879 spin_unlock_irqrestore(&base
->lock
, flags
);
881 EXPORT_SYMBOL_GPL(add_timer_on
);
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
887 * del_timer() deactivates a timer - this works on both active and inactive
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
894 int del_timer(struct timer_list
*timer
)
896 struct tvec_base
*base
;
900 timer_stats_timer_clear_start_info(timer
);
901 if (timer_pending(timer
)) {
902 base
= lock_timer_base(timer
, &flags
);
903 if (timer_pending(timer
)) {
904 detach_timer(timer
, 1);
905 if (timer
->expires
== base
->next_timer
&&
906 !tbase_get_deferrable(timer
->base
))
907 base
->next_timer
= base
->timer_jiffies
;
910 spin_unlock_irqrestore(&base
->lock
, flags
);
915 EXPORT_SYMBOL(del_timer
);
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
924 int try_to_del_timer_sync(struct timer_list
*timer
)
926 struct tvec_base
*base
;
930 base
= lock_timer_base(timer
, &flags
);
932 if (base
->running_timer
== timer
)
935 timer_stats_timer_clear_start_info(timer
);
937 if (timer_pending(timer
)) {
938 detach_timer(timer
, 1);
939 if (timer
->expires
== base
->next_timer
&&
940 !tbase_get_deferrable(timer
->base
))
941 base
->next_timer
= base
->timer_jiffies
;
945 spin_unlock_irqrestore(&base
->lock
, flags
);
949 EXPORT_SYMBOL(try_to_del_timer_sync
);
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
960 * Synchronization rules: Callers must prevent restarting of the timer,
961 * otherwise this function is meaningless. It must not be called from
962 * hardirq contexts. The caller must not hold locks which would prevent
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
967 * The function returns whether it has deactivated a pending timer or not.
969 int del_timer_sync(struct timer_list
*timer
)
971 #ifdef CONFIG_LOCKDEP
973 lock_map_acquire(&timer
->lockdep_map
);
974 lock_map_release(&timer
->lockdep_map
);
978 * don't use it in hardirq context, because it
979 * could lead to deadlock.
983 int ret
= try_to_del_timer_sync(timer
);
989 EXPORT_SYMBOL(del_timer_sync
);
992 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
994 /* cascade all the timers from tv up one level */
995 struct timer_list
*timer
, *tmp
;
996 struct list_head tv_list
;
998 list_replace_init(tv
->vec
+ index
, &tv_list
);
1001 * We are removing _all_ timers from the list, so we
1002 * don't have to detach them individually.
1004 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1005 BUG_ON(tbase_get_base(timer
->base
) != base
);
1006 internal_add_timer(base
, timer
);
1012 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1015 int preempt_count
= preempt_count();
1017 #ifdef CONFIG_LOCKDEP
1019 * It is permissible to free the timer from inside the
1020 * function that is called from it, this we need to take into
1021 * account for lockdep too. To avoid bogus "held lock freed"
1022 * warnings as well as problems when looking into
1023 * timer->lockdep_map, make a copy and use that here.
1025 struct lockdep_map lockdep_map
= timer
->lockdep_map
;
1028 * Couple the lock chain with the lock chain at
1029 * del_timer_sync() by acquiring the lock_map around the fn()
1030 * call here and in del_timer_sync().
1032 lock_map_acquire(&lockdep_map
);
1034 trace_timer_expire_entry(timer
);
1036 trace_timer_expire_exit(timer
);
1038 lock_map_release(&lockdep_map
);
1040 if (preempt_count
!= preempt_count()) {
1041 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1042 fn
, preempt_count
, preempt_count());
1044 * Restore the preempt count. That gives us a decent
1045 * chance to survive and extract information. If the
1046 * callback kept a lock held, bad luck, but not worse
1047 * than the BUG() we had.
1049 preempt_count() = preempt_count
;
1053 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1056 * __run_timers - run all expired timers (if any) on this CPU.
1057 * @base: the timer vector to be processed.
1059 * This function cascades all vectors and executes all expired timer
1062 static inline void __run_timers(struct tvec_base
*base
)
1064 struct timer_list
*timer
;
1066 spin_lock_irq(&base
->lock
);
1067 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1068 struct list_head work_list
;
1069 struct list_head
*head
= &work_list
;
1070 int index
= base
->timer_jiffies
& TVR_MASK
;
1076 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1077 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1078 !cascade(base
, &base
->tv4
, INDEX(2)))
1079 cascade(base
, &base
->tv5
, INDEX(3));
1080 ++base
->timer_jiffies
;
1081 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1082 while (!list_empty(head
)) {
1083 void (*fn
)(unsigned long);
1086 timer
= list_first_entry(head
, struct timer_list
,entry
);
1087 fn
= timer
->function
;
1090 timer_stats_account_timer(timer
);
1092 base
->running_timer
= timer
;
1093 detach_timer(timer
, 1);
1095 spin_unlock_irq(&base
->lock
);
1096 call_timer_fn(timer
, fn
, data
);
1097 spin_lock_irq(&base
->lock
);
1100 base
->running_timer
= NULL
;
1101 spin_unlock_irq(&base
->lock
);
1106 * Find out when the next timer event is due to happen. This
1107 * is used on S/390 to stop all activity when a CPU is idle.
1108 * This function needs to be called with interrupts disabled.
1110 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1112 unsigned long timer_jiffies
= base
->timer_jiffies
;
1113 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1114 int index
, slot
, array
, found
= 0;
1115 struct timer_list
*nte
;
1116 struct tvec
*varray
[4];
1118 /* Look for timer events in tv1. */
1119 index
= slot
= timer_jiffies
& TVR_MASK
;
1121 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1122 if (tbase_get_deferrable(nte
->base
))
1126 expires
= nte
->expires
;
1127 /* Look at the cascade bucket(s)? */
1128 if (!index
|| slot
< index
)
1132 slot
= (slot
+ 1) & TVR_MASK
;
1133 } while (slot
!= index
);
1136 /* Calculate the next cascade event */
1138 timer_jiffies
+= TVR_SIZE
- index
;
1139 timer_jiffies
>>= TVR_BITS
;
1141 /* Check tv2-tv5. */
1142 varray
[0] = &base
->tv2
;
1143 varray
[1] = &base
->tv3
;
1144 varray
[2] = &base
->tv4
;
1145 varray
[3] = &base
->tv5
;
1147 for (array
= 0; array
< 4; array
++) {
1148 struct tvec
*varp
= varray
[array
];
1150 index
= slot
= timer_jiffies
& TVN_MASK
;
1152 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1153 if (tbase_get_deferrable(nte
->base
))
1157 if (time_before(nte
->expires
, expires
))
1158 expires
= nte
->expires
;
1161 * Do we still search for the first timer or are
1162 * we looking up the cascade buckets ?
1165 /* Look at the cascade bucket(s)? */
1166 if (!index
|| slot
< index
)
1170 slot
= (slot
+ 1) & TVN_MASK
;
1171 } while (slot
!= index
);
1174 timer_jiffies
+= TVN_SIZE
- index
;
1175 timer_jiffies
>>= TVN_BITS
;
1181 * Check, if the next hrtimer event is before the next timer wheel
1184 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1185 unsigned long expires
)
1187 ktime_t hr_delta
= hrtimer_get_next_event();
1188 struct timespec tsdelta
;
1189 unsigned long delta
;
1191 if (hr_delta
.tv64
== KTIME_MAX
)
1195 * Expired timer available, let it expire in the next tick
1197 if (hr_delta
.tv64
<= 0)
1200 tsdelta
= ktime_to_timespec(hr_delta
);
1201 delta
= timespec_to_jiffies(&tsdelta
);
1204 * Limit the delta to the max value, which is checked in
1205 * tick_nohz_stop_sched_tick():
1207 if (delta
> NEXT_TIMER_MAX_DELTA
)
1208 delta
= NEXT_TIMER_MAX_DELTA
;
1211 * Take rounding errors in to account and make sure, that it
1212 * expires in the next tick. Otherwise we go into an endless
1213 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1219 if (time_before(now
, expires
))
1225 * get_next_timer_interrupt - return the jiffy of the next pending timer
1226 * @now: current time (in jiffies)
1228 unsigned long get_next_timer_interrupt(unsigned long now
)
1230 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1231 unsigned long expires
;
1234 * Pretend that there is no timer pending if the cpu is offline.
1235 * Possible pending timers will be migrated later to an active cpu.
1237 if (cpu_is_offline(smp_processor_id()))
1238 return now
+ NEXT_TIMER_MAX_DELTA
;
1239 spin_lock(&base
->lock
);
1240 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1241 base
->next_timer
= __next_timer_interrupt(base
);
1242 expires
= base
->next_timer
;
1243 spin_unlock(&base
->lock
);
1245 if (time_before_eq(expires
, now
))
1248 return cmp_next_hrtimer_event(now
, expires
);
1253 * Called from the timer interrupt handler to charge one tick to the current
1254 * process. user_tick is 1 if the tick is user time, 0 for system.
1256 void update_process_times(int user_tick
)
1258 struct task_struct
*p
= current
;
1259 int cpu
= smp_processor_id();
1261 /* Note: this timer irq context must be accounted for as well. */
1262 account_process_tick(p
, user_tick
);
1264 rcu_check_callbacks(cpu
, user_tick
);
1266 #ifdef CONFIG_IRQ_WORK
1271 run_posix_cpu_timers(p
);
1275 * This function runs timers and the timer-tq in bottom half context.
1277 static void run_timer_softirq(struct softirq_action
*h
)
1279 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1281 hrtimer_run_pending();
1283 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1288 * Called by the local, per-CPU timer interrupt on SMP.
1290 void run_local_timers(void)
1292 hrtimer_run_queues();
1293 raise_softirq(TIMER_SOFTIRQ
);
1296 #ifdef __ARCH_WANT_SYS_ALARM
1299 * For backwards compatibility? This can be done in libc so Alpha
1300 * and all newer ports shouldn't need it.
1302 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1304 return alarm_setitimer(seconds
);
1312 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1313 * should be moved into arch/i386 instead?
1317 * sys_getpid - return the thread group id of the current process
1319 * Note, despite the name, this returns the tgid not the pid. The tgid and
1320 * the pid are identical unless CLONE_THREAD was specified on clone() in
1321 * which case the tgid is the same in all threads of the same group.
1323 * This is SMP safe as current->tgid does not change.
1325 SYSCALL_DEFINE0(getpid
)
1327 return task_tgid_vnr(current
);
1331 * Accessing ->real_parent is not SMP-safe, it could
1332 * change from under us. However, we can use a stale
1333 * value of ->real_parent under rcu_read_lock(), see
1334 * release_task()->call_rcu(delayed_put_task_struct).
1336 SYSCALL_DEFINE0(getppid
)
1341 pid
= task_tgid_vnr(current
->real_parent
);
1347 SYSCALL_DEFINE0(getuid
)
1349 /* Only we change this so SMP safe */
1350 return current_uid();
1353 SYSCALL_DEFINE0(geteuid
)
1355 /* Only we change this so SMP safe */
1356 return current_euid();
1359 SYSCALL_DEFINE0(getgid
)
1361 /* Only we change this so SMP safe */
1362 return current_gid();
1365 SYSCALL_DEFINE0(getegid
)
1367 /* Only we change this so SMP safe */
1368 return current_egid();
1373 static void process_timeout(unsigned long __data
)
1375 wake_up_process((struct task_struct
*)__data
);
1379 * schedule_timeout - sleep until timeout
1380 * @timeout: timeout value in jiffies
1382 * Make the current task sleep until @timeout jiffies have
1383 * elapsed. The routine will return immediately unless
1384 * the current task state has been set (see set_current_state()).
1386 * You can set the task state as follows -
1388 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1389 * pass before the routine returns. The routine will return 0
1391 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1392 * delivered to the current task. In this case the remaining time
1393 * in jiffies will be returned, or 0 if the timer expired in time
1395 * The current task state is guaranteed to be TASK_RUNNING when this
1398 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1399 * the CPU away without a bound on the timeout. In this case the return
1400 * value will be %MAX_SCHEDULE_TIMEOUT.
1402 * In all cases the return value is guaranteed to be non-negative.
1404 signed long __sched
schedule_timeout(signed long timeout
)
1406 struct timer_list timer
;
1407 unsigned long expire
;
1411 case MAX_SCHEDULE_TIMEOUT
:
1413 * These two special cases are useful to be comfortable
1414 * in the caller. Nothing more. We could take
1415 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1416 * but I' d like to return a valid offset (>=0) to allow
1417 * the caller to do everything it want with the retval.
1423 * Another bit of PARANOID. Note that the retval will be
1424 * 0 since no piece of kernel is supposed to do a check
1425 * for a negative retval of schedule_timeout() (since it
1426 * should never happens anyway). You just have the printk()
1427 * that will tell you if something is gone wrong and where.
1430 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1431 "value %lx\n", timeout
);
1433 current
->state
= TASK_RUNNING
;
1438 expire
= timeout
+ jiffies
;
1440 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1441 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1443 del_singleshot_timer_sync(&timer
);
1445 /* Remove the timer from the object tracker */
1446 destroy_timer_on_stack(&timer
);
1448 timeout
= expire
- jiffies
;
1451 return timeout
< 0 ? 0 : timeout
;
1453 EXPORT_SYMBOL(schedule_timeout
);
1456 * We can use __set_current_state() here because schedule_timeout() calls
1457 * schedule() unconditionally.
1459 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1461 __set_current_state(TASK_INTERRUPTIBLE
);
1462 return schedule_timeout(timeout
);
1464 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1466 signed long __sched
schedule_timeout_killable(signed long timeout
)
1468 __set_current_state(TASK_KILLABLE
);
1469 return schedule_timeout(timeout
);
1471 EXPORT_SYMBOL(schedule_timeout_killable
);
1473 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1475 __set_current_state(TASK_UNINTERRUPTIBLE
);
1476 return schedule_timeout(timeout
);
1478 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1480 /* Thread ID - the internal kernel "pid" */
1481 SYSCALL_DEFINE0(gettid
)
1483 return task_pid_vnr(current
);
1487 * do_sysinfo - fill in sysinfo struct
1488 * @info: pointer to buffer to fill
1490 int do_sysinfo(struct sysinfo
*info
)
1492 unsigned long mem_total
, sav_total
;
1493 unsigned int mem_unit
, bitcount
;
1496 memset(info
, 0, sizeof(struct sysinfo
));
1499 monotonic_to_bootbased(&tp
);
1500 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1502 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1504 info
->procs
= nr_threads
;
1510 * If the sum of all the available memory (i.e. ram + swap)
1511 * is less than can be stored in a 32 bit unsigned long then
1512 * we can be binary compatible with 2.2.x kernels. If not,
1513 * well, in that case 2.2.x was broken anyways...
1515 * -Erik Andersen <andersee@debian.org>
1518 mem_total
= info
->totalram
+ info
->totalswap
;
1519 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1522 mem_unit
= info
->mem_unit
;
1523 while (mem_unit
> 1) {
1526 sav_total
= mem_total
;
1528 if (mem_total
< sav_total
)
1533 * If mem_total did not overflow, multiply all memory values by
1534 * info->mem_unit and set it to 1. This leaves things compatible
1535 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1540 info
->totalram
<<= bitcount
;
1541 info
->freeram
<<= bitcount
;
1542 info
->sharedram
<<= bitcount
;
1543 info
->bufferram
<<= bitcount
;
1544 info
->totalswap
<<= bitcount
;
1545 info
->freeswap
<<= bitcount
;
1546 info
->totalhigh
<<= bitcount
;
1547 info
->freehigh
<<= bitcount
;
1553 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1559 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1565 static int __cpuinit
init_timers_cpu(int cpu
)
1568 struct tvec_base
*base
;
1569 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1571 if (!tvec_base_done
[cpu
]) {
1572 static char boot_done
;
1576 * The APs use this path later in boot
1578 base
= kmalloc_node(sizeof(*base
),
1579 GFP_KERNEL
| __GFP_ZERO
,
1584 /* Make sure that tvec_base is 2 byte aligned */
1585 if (tbase_get_deferrable(base
)) {
1590 per_cpu(tvec_bases
, cpu
) = base
;
1593 * This is for the boot CPU - we use compile-time
1594 * static initialisation because per-cpu memory isn't
1595 * ready yet and because the memory allocators are not
1596 * initialised either.
1599 base
= &boot_tvec_bases
;
1601 tvec_base_done
[cpu
] = 1;
1603 base
= per_cpu(tvec_bases
, cpu
);
1606 spin_lock_init(&base
->lock
);
1608 for (j
= 0; j
< TVN_SIZE
; j
++) {
1609 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1610 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1611 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1612 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1614 for (j
= 0; j
< TVR_SIZE
; j
++)
1615 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1617 base
->timer_jiffies
= jiffies
;
1618 base
->next_timer
= base
->timer_jiffies
;
1622 #ifdef CONFIG_HOTPLUG_CPU
1623 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1625 struct timer_list
*timer
;
1627 while (!list_empty(head
)) {
1628 timer
= list_first_entry(head
, struct timer_list
, entry
);
1629 detach_timer(timer
, 0);
1630 timer_set_base(timer
, new_base
);
1631 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1632 !tbase_get_deferrable(timer
->base
))
1633 new_base
->next_timer
= timer
->expires
;
1634 internal_add_timer(new_base
, timer
);
1638 static void __cpuinit
migrate_timers(int cpu
)
1640 struct tvec_base
*old_base
;
1641 struct tvec_base
*new_base
;
1644 BUG_ON(cpu_online(cpu
));
1645 old_base
= per_cpu(tvec_bases
, cpu
);
1646 new_base
= get_cpu_var(tvec_bases
);
1648 * The caller is globally serialized and nobody else
1649 * takes two locks at once, deadlock is not possible.
1651 spin_lock_irq(&new_base
->lock
);
1652 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1654 BUG_ON(old_base
->running_timer
);
1656 for (i
= 0; i
< TVR_SIZE
; i
++)
1657 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1658 for (i
= 0; i
< TVN_SIZE
; i
++) {
1659 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1660 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1661 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1662 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1665 spin_unlock(&old_base
->lock
);
1666 spin_unlock_irq(&new_base
->lock
);
1667 put_cpu_var(tvec_bases
);
1669 #endif /* CONFIG_HOTPLUG_CPU */
1671 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1672 unsigned long action
, void *hcpu
)
1674 long cpu
= (long)hcpu
;
1678 case CPU_UP_PREPARE
:
1679 case CPU_UP_PREPARE_FROZEN
:
1680 err
= init_timers_cpu(cpu
);
1682 return notifier_from_errno(err
);
1684 #ifdef CONFIG_HOTPLUG_CPU
1686 case CPU_DEAD_FROZEN
:
1687 migrate_timers(cpu
);
1696 static struct notifier_block __cpuinitdata timers_nb
= {
1697 .notifier_call
= timer_cpu_notify
,
1701 void __init
init_timers(void)
1703 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1704 (void *)(long)smp_processor_id());
1708 BUG_ON(err
!= NOTIFY_OK
);
1709 register_cpu_notifier(&timers_nb
);
1710 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1714 * msleep - sleep safely even with waitqueue interruptions
1715 * @msecs: Time in milliseconds to sleep for
1717 void msleep(unsigned int msecs
)
1719 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1722 timeout
= schedule_timeout_uninterruptible(timeout
);
1725 EXPORT_SYMBOL(msleep
);
1728 * msleep_interruptible - sleep waiting for signals
1729 * @msecs: Time in milliseconds to sleep for
1731 unsigned long msleep_interruptible(unsigned int msecs
)
1733 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1735 while (timeout
&& !signal_pending(current
))
1736 timeout
= schedule_timeout_interruptible(timeout
);
1737 return jiffies_to_msecs(timeout
);
1740 EXPORT_SYMBOL(msleep_interruptible
);
1742 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1745 unsigned long delta
;
1747 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1748 delta
= (max
- min
) * NSEC_PER_USEC
;
1749 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1753 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1754 * @min: Minimum time in usecs to sleep
1755 * @max: Maximum time in usecs to sleep
1757 void usleep_range(unsigned long min
, unsigned long max
)
1759 __set_current_state(TASK_UNINTERRUPTIBLE
);
1760 do_usleep_range(min
, max
);
1762 EXPORT_SYMBOL(usleep_range
);