2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
39 static int load_elf_binary(struct linux_binprm
*bprm
, struct pt_regs
*regs
);
40 static int load_elf_library(struct file
*);
41 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
42 int, int, unsigned long);
45 * If we don't support core dumping, then supply a NULL so we
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params
*cprm
);
51 #define elf_core_dump NULL
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
57 #define ELF_MIN_ALIGN PAGE_SIZE
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS 0
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
68 static struct linux_binfmt elf_format
= {
69 .module
= THIS_MODULE
,
70 .load_binary
= load_elf_binary
,
71 .load_shlib
= load_elf_library
,
72 .core_dump
= elf_core_dump
,
73 .min_coredump
= ELF_EXEC_PAGESIZE
,
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
78 static int set_brk(unsigned long start
, unsigned long end
)
80 start
= ELF_PAGEALIGN(start
);
81 end
= ELF_PAGEALIGN(end
);
84 down_write(¤t
->mm
->mmap_sem
);
85 addr
= do_brk(start
, end
- start
);
86 up_write(¤t
->mm
->mmap_sem
);
90 current
->mm
->start_brk
= current
->mm
->brk
= end
;
94 /* We need to explicitly zero any fractional pages
95 after the data section (i.e. bss). This would
96 contain the junk from the file that should not
99 static int padzero(unsigned long elf_bss
)
103 nbyte
= ELF_PAGEOFFSET(elf_bss
);
105 nbyte
= ELF_MIN_ALIGN
- nbyte
;
106 if (clear_user((void __user
*) elf_bss
, nbyte
))
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 (((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
127 #ifndef ELF_BASE_PLATFORM
129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131 * will be copied to the user stack in the same manner as AT_PLATFORM.
133 #define ELF_BASE_PLATFORM NULL
137 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
138 unsigned long load_addr
, unsigned long interp_load_addr
)
140 unsigned long p
= bprm
->p
;
141 int argc
= bprm
->argc
;
142 int envc
= bprm
->envc
;
143 elf_addr_t __user
*argv
;
144 elf_addr_t __user
*envp
;
145 elf_addr_t __user
*sp
;
146 elf_addr_t __user
*u_platform
;
147 elf_addr_t __user
*u_base_platform
;
148 elf_addr_t __user
*u_rand_bytes
;
149 const char *k_platform
= ELF_PLATFORM
;
150 const char *k_base_platform
= ELF_BASE_PLATFORM
;
151 unsigned char k_rand_bytes
[16];
153 elf_addr_t
*elf_info
;
155 const struct cred
*cred
= current_cred();
156 struct vm_area_struct
*vma
;
159 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 * evictions by the processes running on the same package. One
161 * thing we can do is to shuffle the initial stack for them.
164 p
= arch_align_stack(p
);
167 * If this architecture has a platform capability string, copy it
168 * to userspace. In some cases (Sparc), this info is impossible
169 * for userspace to get any other way, in others (i386) it is
174 size_t len
= strlen(k_platform
) + 1;
176 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
177 if (__copy_to_user(u_platform
, k_platform
, len
))
182 * If this architecture has a "base" platform capability
183 * string, copy it to userspace.
185 u_base_platform
= NULL
;
186 if (k_base_platform
) {
187 size_t len
= strlen(k_base_platform
) + 1;
189 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
190 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
195 * Generate 16 random bytes for userspace PRNG seeding.
197 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
198 u_rand_bytes
= (elf_addr_t __user
*)
199 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
200 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
203 /* Create the ELF interpreter info */
204 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
208 elf_info[ei_index++] = id; \
209 elf_info[ei_index++] = val; \
214 * ARCH_DLINFO must come first so PPC can do its special alignment of
216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 * ARCH_DLINFO changes
221 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
222 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
223 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
224 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
225 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
226 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
227 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
228 NEW_AUX_ENT(AT_FLAGS
, 0);
229 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
230 NEW_AUX_ENT(AT_UID
, cred
->uid
);
231 NEW_AUX_ENT(AT_EUID
, cred
->euid
);
232 NEW_AUX_ENT(AT_GID
, cred
->gid
);
233 NEW_AUX_ENT(AT_EGID
, cred
->egid
);
234 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
235 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
236 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
238 NEW_AUX_ENT(AT_PLATFORM
,
239 (elf_addr_t
)(unsigned long)u_platform
);
241 if (k_base_platform
) {
242 NEW_AUX_ENT(AT_BASE_PLATFORM
,
243 (elf_addr_t
)(unsigned long)u_base_platform
);
245 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
246 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
249 /* AT_NULL is zero; clear the rest too */
250 memset(&elf_info
[ei_index
], 0,
251 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
253 /* And advance past the AT_NULL entry. */
256 sp
= STACK_ADD(p
, ei_index
);
258 items
= (argc
+ 1) + (envc
+ 1) + 1;
259 bprm
->p
= STACK_ROUND(sp
, items
);
261 /* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
264 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
266 sp
= (elf_addr_t __user
*)bprm
->p
;
271 * Grow the stack manually; some architectures have a limit on how
272 * far ahead a user-space access may be in order to grow the stack.
274 vma
= find_extend_vma(current
->mm
, bprm
->p
);
278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 if (__put_user(argc
, sp
++))
282 envp
= argv
+ argc
+ 1;
284 /* Populate argv and envp */
285 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
288 if (__put_user((elf_addr_t
)p
, argv
++))
290 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
291 if (!len
|| len
> MAX_ARG_STRLEN
)
295 if (__put_user(0, argv
))
297 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
300 if (__put_user((elf_addr_t
)p
, envp
++))
302 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
303 if (!len
|| len
> MAX_ARG_STRLEN
)
307 if (__put_user(0, envp
))
309 current
->mm
->env_end
= p
;
311 /* Put the elf_info on the stack in the right place. */
312 sp
= (elf_addr_t __user
*)envp
+ 1;
313 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
318 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
319 struct elf_phdr
*eppnt
, int prot
, int type
,
320 unsigned long total_size
)
322 unsigned long map_addr
;
323 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
324 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
325 addr
= ELF_PAGESTART(addr
);
326 size
= ELF_PAGEALIGN(size
);
328 /* mmap() will return -EINVAL if given a zero size, but a
329 * segment with zero filesize is perfectly valid */
333 down_write(¤t
->mm
->mmap_sem
);
335 * total_size is the size of the ELF (interpreter) image.
336 * The _first_ mmap needs to know the full size, otherwise
337 * randomization might put this image into an overlapping
338 * position with the ELF binary image. (since size < total_size)
339 * So we first map the 'big' image - and unmap the remainder at
340 * the end. (which unmap is needed for ELF images with holes.)
343 total_size
= ELF_PAGEALIGN(total_size
);
344 map_addr
= do_mmap(filep
, addr
, total_size
, prot
, type
, off
);
345 if (!BAD_ADDR(map_addr
))
346 do_munmap(current
->mm
, map_addr
+size
, total_size
-size
);
348 map_addr
= do_mmap(filep
, addr
, size
, prot
, type
, off
);
350 up_write(¤t
->mm
->mmap_sem
);
354 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
356 int i
, first_idx
= -1, last_idx
= -1;
358 for (i
= 0; i
< nr
; i
++) {
359 if (cmds
[i
].p_type
== PT_LOAD
) {
368 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
369 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
373 /* This is much more generalized than the library routine read function,
374 so we keep this separate. Technically the library read function
375 is only provided so that we can read a.out libraries that have
378 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
379 struct file
*interpreter
, unsigned long *interp_map_addr
,
380 unsigned long no_base
)
382 struct elf_phdr
*elf_phdata
;
383 struct elf_phdr
*eppnt
;
384 unsigned long load_addr
= 0;
385 int load_addr_set
= 0;
386 unsigned long last_bss
= 0, elf_bss
= 0;
387 unsigned long error
= ~0UL;
388 unsigned long total_size
;
391 /* First of all, some simple consistency checks */
392 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
393 interp_elf_ex
->e_type
!= ET_DYN
)
395 if (!elf_check_arch(interp_elf_ex
))
397 if (!interpreter
->f_op
|| !interpreter
->f_op
->mmap
)
401 * If the size of this structure has changed, then punt, since
402 * we will be doing the wrong thing.
404 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
406 if (interp_elf_ex
->e_phnum
< 1 ||
407 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
410 /* Now read in all of the header information */
411 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
412 if (size
> ELF_MIN_ALIGN
)
414 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
418 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
419 (char *)elf_phdata
, size
);
421 if (retval
!= size
) {
427 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
434 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
435 if (eppnt
->p_type
== PT_LOAD
) {
436 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
438 unsigned long vaddr
= 0;
439 unsigned long k
, map_addr
;
441 if (eppnt
->p_flags
& PF_R
)
442 elf_prot
= PROT_READ
;
443 if (eppnt
->p_flags
& PF_W
)
444 elf_prot
|= PROT_WRITE
;
445 if (eppnt
->p_flags
& PF_X
)
446 elf_prot
|= PROT_EXEC
;
447 vaddr
= eppnt
->p_vaddr
;
448 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
449 elf_type
|= MAP_FIXED
;
450 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
453 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
454 eppnt
, elf_prot
, elf_type
, total_size
);
456 if (!*interp_map_addr
)
457 *interp_map_addr
= map_addr
;
459 if (BAD_ADDR(map_addr
))
462 if (!load_addr_set
&&
463 interp_elf_ex
->e_type
== ET_DYN
) {
464 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
469 * Check to see if the section's size will overflow the
470 * allowed task size. Note that p_filesz must always be
471 * <= p_memsize so it's only necessary to check p_memsz.
473 k
= load_addr
+ eppnt
->p_vaddr
;
475 eppnt
->p_filesz
> eppnt
->p_memsz
||
476 eppnt
->p_memsz
> TASK_SIZE
||
477 TASK_SIZE
- eppnt
->p_memsz
< k
) {
483 * Find the end of the file mapping for this phdr, and
484 * keep track of the largest address we see for this.
486 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
491 * Do the same thing for the memory mapping - between
492 * elf_bss and last_bss is the bss section.
494 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
500 if (last_bss
> elf_bss
) {
502 * Now fill out the bss section. First pad the last page up
503 * to the page boundary, and then perform a mmap to make sure
504 * that there are zero-mapped pages up to and including the
507 if (padzero(elf_bss
)) {
512 /* What we have mapped so far */
513 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
515 /* Map the last of the bss segment */
516 down_write(¤t
->mm
->mmap_sem
);
517 error
= do_brk(elf_bss
, last_bss
- elf_bss
);
518 up_write(¤t
->mm
->mmap_sem
);
532 * These are the functions used to load ELF style executables and shared
533 * libraries. There is no binary dependent code anywhere else.
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
543 static unsigned long randomize_stack_top(unsigned long stack_top
)
545 unsigned int random_variable
= 0;
547 if ((current
->flags
& PF_RANDOMIZE
) &&
548 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
549 random_variable
= get_random_int() & STACK_RND_MASK
;
550 random_variable
<<= PAGE_SHIFT
;
552 #ifdef CONFIG_STACK_GROWSUP
553 return PAGE_ALIGN(stack_top
) + random_variable
;
555 return PAGE_ALIGN(stack_top
) - random_variable
;
559 static int load_elf_binary(struct linux_binprm
*bprm
, struct pt_regs
*regs
)
561 struct file
*interpreter
= NULL
; /* to shut gcc up */
562 unsigned long load_addr
= 0, load_bias
= 0;
563 int load_addr_set
= 0;
564 char * elf_interpreter
= NULL
;
566 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
567 unsigned long elf_bss
, elf_brk
;
570 unsigned long elf_entry
;
571 unsigned long interp_load_addr
= 0;
572 unsigned long start_code
, end_code
, start_data
, end_data
;
573 unsigned long reloc_func_desc __maybe_unused
= 0;
574 int executable_stack
= EXSTACK_DEFAULT
;
575 unsigned long def_flags
= 0;
577 struct elfhdr elf_ex
;
578 struct elfhdr interp_elf_ex
;
581 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
587 /* Get the exec-header */
588 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
591 /* First of all, some simple consistency checks */
592 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
595 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
597 if (!elf_check_arch(&loc
->elf_ex
))
599 if (!bprm
->file
->f_op
|| !bprm
->file
->f_op
->mmap
)
602 /* Now read in all of the header information */
603 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
605 if (loc
->elf_ex
.e_phnum
< 1 ||
606 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
608 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
610 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
614 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
615 (char *)elf_phdata
, size
);
616 if (retval
!= size
) {
622 elf_ppnt
= elf_phdata
;
631 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
632 if (elf_ppnt
->p_type
== PT_INTERP
) {
633 /* This is the program interpreter used for
634 * shared libraries - for now assume that this
635 * is an a.out format binary
638 if (elf_ppnt
->p_filesz
> PATH_MAX
||
639 elf_ppnt
->p_filesz
< 2)
643 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
645 if (!elf_interpreter
)
648 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
651 if (retval
!= elf_ppnt
->p_filesz
) {
654 goto out_free_interp
;
656 /* make sure path is NULL terminated */
658 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
659 goto out_free_interp
;
661 interpreter
= open_exec(elf_interpreter
);
662 retval
= PTR_ERR(interpreter
);
663 if (IS_ERR(interpreter
))
664 goto out_free_interp
;
667 * If the binary is not readable then enforce
668 * mm->dumpable = 0 regardless of the interpreter's
671 if (file_permission(interpreter
, MAY_READ
) < 0)
672 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
674 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
676 if (retval
!= BINPRM_BUF_SIZE
) {
679 goto out_free_dentry
;
682 /* Get the exec headers */
683 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
689 elf_ppnt
= elf_phdata
;
690 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
691 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
692 if (elf_ppnt
->p_flags
& PF_X
)
693 executable_stack
= EXSTACK_ENABLE_X
;
695 executable_stack
= EXSTACK_DISABLE_X
;
699 /* Some simple consistency checks for the interpreter */
700 if (elf_interpreter
) {
702 /* Not an ELF interpreter */
703 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
704 goto out_free_dentry
;
705 /* Verify the interpreter has a valid arch */
706 if (!elf_check_arch(&loc
->interp_elf_ex
))
707 goto out_free_dentry
;
710 /* Flush all traces of the currently running executable */
711 retval
= flush_old_exec(bprm
);
713 goto out_free_dentry
;
715 /* OK, This is the point of no return */
716 current
->flags
&= ~PF_FORKNOEXEC
;
717 current
->mm
->def_flags
= def_flags
;
719 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
720 may depend on the personality. */
721 SET_PERSONALITY(loc
->elf_ex
);
722 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
723 current
->personality
|= READ_IMPLIES_EXEC
;
725 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
726 current
->flags
|= PF_RANDOMIZE
;
728 setup_new_exec(bprm
);
730 /* Do this so that we can load the interpreter, if need be. We will
731 change some of these later */
732 current
->mm
->free_area_cache
= current
->mm
->mmap_base
;
733 current
->mm
->cached_hole_size
= 0;
734 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
737 send_sig(SIGKILL
, current
, 0);
738 goto out_free_dentry
;
741 current
->mm
->start_stack
= bprm
->p
;
743 /* Now we do a little grungy work by mmapping the ELF image into
744 the correct location in memory. */
745 for(i
= 0, elf_ppnt
= elf_phdata
;
746 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
747 int elf_prot
= 0, elf_flags
;
748 unsigned long k
, vaddr
;
750 if (elf_ppnt
->p_type
!= PT_LOAD
)
753 if (unlikely (elf_brk
> elf_bss
)) {
756 /* There was a PT_LOAD segment with p_memsz > p_filesz
757 before this one. Map anonymous pages, if needed,
758 and clear the area. */
759 retval
= set_brk(elf_bss
+ load_bias
,
760 elf_brk
+ load_bias
);
762 send_sig(SIGKILL
, current
, 0);
763 goto out_free_dentry
;
765 nbyte
= ELF_PAGEOFFSET(elf_bss
);
767 nbyte
= ELF_MIN_ALIGN
- nbyte
;
768 if (nbyte
> elf_brk
- elf_bss
)
769 nbyte
= elf_brk
- elf_bss
;
770 if (clear_user((void __user
*)elf_bss
+
773 * This bss-zeroing can fail if the ELF
774 * file specifies odd protections. So
775 * we don't check the return value
781 if (elf_ppnt
->p_flags
& PF_R
)
782 elf_prot
|= PROT_READ
;
783 if (elf_ppnt
->p_flags
& PF_W
)
784 elf_prot
|= PROT_WRITE
;
785 if (elf_ppnt
->p_flags
& PF_X
)
786 elf_prot
|= PROT_EXEC
;
788 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
790 vaddr
= elf_ppnt
->p_vaddr
;
791 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
792 elf_flags
|= MAP_FIXED
;
793 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
794 /* Try and get dynamic programs out of the way of the
795 * default mmap base, as well as whatever program they
796 * might try to exec. This is because the brk will
797 * follow the loader, and is not movable. */
798 #if defined(CONFIG_X86) || defined(CONFIG_ARM)
801 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
805 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
806 elf_prot
, elf_flags
, 0);
807 if (BAD_ADDR(error
)) {
808 send_sig(SIGKILL
, current
, 0);
809 retval
= IS_ERR((void *)error
) ?
810 PTR_ERR((void*)error
) : -EINVAL
;
811 goto out_free_dentry
;
814 if (!load_addr_set
) {
816 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
817 if (loc
->elf_ex
.e_type
== ET_DYN
) {
819 ELF_PAGESTART(load_bias
+ vaddr
);
820 load_addr
+= load_bias
;
821 reloc_func_desc
= load_bias
;
824 k
= elf_ppnt
->p_vaddr
;
831 * Check to see if the section's size will overflow the
832 * allowed task size. Note that p_filesz must always be
833 * <= p_memsz so it is only necessary to check p_memsz.
835 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
836 elf_ppnt
->p_memsz
> TASK_SIZE
||
837 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
838 /* set_brk can never work. Avoid overflows. */
839 send_sig(SIGKILL
, current
, 0);
841 goto out_free_dentry
;
844 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
848 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
852 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
857 loc
->elf_ex
.e_entry
+= load_bias
;
858 elf_bss
+= load_bias
;
859 elf_brk
+= load_bias
;
860 start_code
+= load_bias
;
861 end_code
+= load_bias
;
862 start_data
+= load_bias
;
863 end_data
+= load_bias
;
865 /* Calling set_brk effectively mmaps the pages that we need
866 * for the bss and break sections. We must do this before
867 * mapping in the interpreter, to make sure it doesn't wind
868 * up getting placed where the bss needs to go.
870 retval
= set_brk(elf_bss
, elf_brk
);
872 send_sig(SIGKILL
, current
, 0);
873 goto out_free_dentry
;
875 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
876 send_sig(SIGSEGV
, current
, 0);
877 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
878 goto out_free_dentry
;
881 if (elf_interpreter
) {
882 unsigned long uninitialized_var(interp_map_addr
);
884 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
888 if (!IS_ERR((void *)elf_entry
)) {
890 * load_elf_interp() returns relocation
893 interp_load_addr
= elf_entry
;
894 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
896 if (BAD_ADDR(elf_entry
)) {
897 force_sig(SIGSEGV
, current
);
898 retval
= IS_ERR((void *)elf_entry
) ?
899 (int)elf_entry
: -EINVAL
;
900 goto out_free_dentry
;
902 reloc_func_desc
= interp_load_addr
;
904 allow_write_access(interpreter
);
906 kfree(elf_interpreter
);
908 elf_entry
= loc
->elf_ex
.e_entry
;
909 if (BAD_ADDR(elf_entry
)) {
910 force_sig(SIGSEGV
, current
);
912 goto out_free_dentry
;
918 set_binfmt(&elf_format
);
920 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
921 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
923 send_sig(SIGKILL
, current
, 0);
926 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
928 install_exec_creds(bprm
);
929 current
->flags
&= ~PF_FORKNOEXEC
;
930 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
931 load_addr
, interp_load_addr
);
933 send_sig(SIGKILL
, current
, 0);
936 /* N.B. passed_fileno might not be initialized? */
937 current
->mm
->end_code
= end_code
;
938 current
->mm
->start_code
= start_code
;
939 current
->mm
->start_data
= start_data
;
940 current
->mm
->end_data
= end_data
;
941 current
->mm
->start_stack
= bprm
->p
;
943 #ifdef arch_randomize_brk
944 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
945 current
->mm
->brk
= current
->mm
->start_brk
=
946 arch_randomize_brk(current
->mm
);
947 #ifdef CONFIG_COMPAT_BRK
948 current
->brk_randomized
= 1;
953 if (current
->personality
& MMAP_PAGE_ZERO
) {
954 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
955 and some applications "depend" upon this behavior.
956 Since we do not have the power to recompile these, we
957 emulate the SVr4 behavior. Sigh. */
958 down_write(¤t
->mm
->mmap_sem
);
959 error
= do_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
960 MAP_FIXED
| MAP_PRIVATE
, 0);
961 up_write(¤t
->mm
->mmap_sem
);
966 * The ABI may specify that certain registers be set up in special
967 * ways (on i386 %edx is the address of a DT_FINI function, for
968 * example. In addition, it may also specify (eg, PowerPC64 ELF)
969 * that the e_entry field is the address of the function descriptor
970 * for the startup routine, rather than the address of the startup
971 * routine itself. This macro performs whatever initialization to
972 * the regs structure is required as well as any relocations to the
973 * function descriptor entries when executing dynamically links apps.
975 ELF_PLAT_INIT(regs
, reloc_func_desc
);
978 start_thread(regs
, elf_entry
, bprm
->p
);
987 allow_write_access(interpreter
);
991 kfree(elf_interpreter
);
997 /* This is really simpleminded and specialized - we are loading an
998 a.out library that is given an ELF header. */
999 static int load_elf_library(struct file
*file
)
1001 struct elf_phdr
*elf_phdata
;
1002 struct elf_phdr
*eppnt
;
1003 unsigned long elf_bss
, bss
, len
;
1004 int retval
, error
, i
, j
;
1005 struct elfhdr elf_ex
;
1008 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1009 if (retval
!= sizeof(elf_ex
))
1012 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1015 /* First of all, some simple consistency checks */
1016 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1017 !elf_check_arch(&elf_ex
) || !file
->f_op
|| !file
->f_op
->mmap
)
1020 /* Now read in all of the header information */
1022 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1023 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1026 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1032 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1036 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1037 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1042 while (eppnt
->p_type
!= PT_LOAD
)
1045 /* Now use mmap to map the library into memory. */
1046 down_write(¤t
->mm
->mmap_sem
);
1047 error
= do_mmap(file
,
1048 ELF_PAGESTART(eppnt
->p_vaddr
),
1050 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1051 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1052 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1054 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1055 up_write(¤t
->mm
->mmap_sem
);
1056 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1059 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1060 if (padzero(elf_bss
)) {
1065 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1067 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1069 down_write(¤t
->mm
->mmap_sem
);
1070 do_brk(len
, bss
- len
);
1071 up_write(¤t
->mm
->mmap_sem
);
1081 #ifdef CONFIG_ELF_CORE
1085 * Modelled on fs/exec.c:aout_core_dump()
1086 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1090 * Decide what to dump of a segment, part, all or none.
1092 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1093 unsigned long mm_flags
)
1095 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1097 /* The vma can be set up to tell us the answer directly. */
1098 if (vma
->vm_flags
& VM_ALWAYSDUMP
)
1101 /* Hugetlb memory check */
1102 if (vma
->vm_flags
& VM_HUGETLB
) {
1103 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1105 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1109 /* Do not dump I/O mapped devices or special mappings */
1110 if (vma
->vm_flags
& (VM_IO
| VM_RESERVED
))
1113 /* By default, dump shared memory if mapped from an anonymous file. */
1114 if (vma
->vm_flags
& VM_SHARED
) {
1115 if (vma
->vm_file
->f_path
.dentry
->d_inode
->i_nlink
== 0 ?
1116 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1121 /* Dump segments that have been written to. */
1122 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1124 if (vma
->vm_file
== NULL
)
1127 if (FILTER(MAPPED_PRIVATE
))
1131 * If this looks like the beginning of a DSO or executable mapping,
1132 * check for an ELF header. If we find one, dump the first page to
1133 * aid in determining what was mapped here.
1135 if (FILTER(ELF_HEADERS
) &&
1136 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1137 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1139 mm_segment_t fs
= get_fs();
1141 * Doing it this way gets the constant folded by GCC.
1145 char elfmag
[SELFMAG
];
1147 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1148 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1149 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1150 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1151 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1153 * Switch to the user "segment" for get_user(),
1154 * then put back what elf_core_dump() had in place.
1157 if (unlikely(get_user(word
, header
)))
1160 if (word
== magic
.cmp
)
1169 return vma
->vm_end
- vma
->vm_start
;
1172 /* An ELF note in memory */
1177 unsigned int datasz
;
1181 static int notesize(struct memelfnote
*en
)
1185 sz
= sizeof(struct elf_note
);
1186 sz
+= roundup(strlen(en
->name
) + 1, 4);
1187 sz
+= roundup(en
->datasz
, 4);
1192 #define DUMP_WRITE(addr, nr, foffset) \
1193 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1195 static int alignfile(struct file
*file
, loff_t
*foffset
)
1197 static const char buf
[4] = { 0, };
1198 DUMP_WRITE(buf
, roundup(*foffset
, 4) - *foffset
, foffset
);
1202 static int writenote(struct memelfnote
*men
, struct file
*file
,
1206 en
.n_namesz
= strlen(men
->name
) + 1;
1207 en
.n_descsz
= men
->datasz
;
1208 en
.n_type
= men
->type
;
1210 DUMP_WRITE(&en
, sizeof(en
), foffset
);
1211 DUMP_WRITE(men
->name
, en
.n_namesz
, foffset
);
1212 if (!alignfile(file
, foffset
))
1214 DUMP_WRITE(men
->data
, men
->datasz
, foffset
);
1215 if (!alignfile(file
, foffset
))
1222 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1223 u16 machine
, u32 flags
, u8 osabi
)
1225 memset(elf
, 0, sizeof(*elf
));
1227 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1228 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1229 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1230 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1231 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1233 elf
->e_type
= ET_CORE
;
1234 elf
->e_machine
= machine
;
1235 elf
->e_version
= EV_CURRENT
;
1236 elf
->e_phoff
= sizeof(struct elfhdr
);
1237 elf
->e_flags
= flags
;
1238 elf
->e_ehsize
= sizeof(struct elfhdr
);
1239 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1240 elf
->e_phnum
= segs
;
1245 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1247 phdr
->p_type
= PT_NOTE
;
1248 phdr
->p_offset
= offset
;
1251 phdr
->p_filesz
= sz
;
1258 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1259 unsigned int sz
, void *data
)
1269 * fill up all the fields in prstatus from the given task struct, except
1270 * registers which need to be filled up separately.
1272 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1273 struct task_struct
*p
, long signr
)
1275 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1276 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1277 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1279 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1281 prstatus
->pr_pid
= task_pid_vnr(p
);
1282 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1283 prstatus
->pr_sid
= task_session_vnr(p
);
1284 if (thread_group_leader(p
)) {
1285 struct task_cputime cputime
;
1288 * This is the record for the group leader. It shows the
1289 * group-wide total, not its individual thread total.
1291 thread_group_cputime(p
, &cputime
);
1292 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1293 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1295 cputime_to_timeval(p
->utime
, &prstatus
->pr_utime
);
1296 cputime_to_timeval(p
->stime
, &prstatus
->pr_stime
);
1298 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1299 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1302 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1303 struct mm_struct
*mm
)
1305 const struct cred
*cred
;
1306 unsigned int i
, len
;
1308 /* first copy the parameters from user space */
1309 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1311 len
= mm
->arg_end
- mm
->arg_start
;
1312 if (len
>= ELF_PRARGSZ
)
1313 len
= ELF_PRARGSZ
-1;
1314 if (copy_from_user(&psinfo
->pr_psargs
,
1315 (const char __user
*)mm
->arg_start
, len
))
1317 for(i
= 0; i
< len
; i
++)
1318 if (psinfo
->pr_psargs
[i
] == 0)
1319 psinfo
->pr_psargs
[i
] = ' ';
1320 psinfo
->pr_psargs
[len
] = 0;
1323 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1325 psinfo
->pr_pid
= task_pid_vnr(p
);
1326 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1327 psinfo
->pr_sid
= task_session_vnr(p
);
1329 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1330 psinfo
->pr_state
= i
;
1331 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1332 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1333 psinfo
->pr_nice
= task_nice(p
);
1334 psinfo
->pr_flag
= p
->flags
;
1336 cred
= __task_cred(p
);
1337 SET_UID(psinfo
->pr_uid
, cred
->uid
);
1338 SET_GID(psinfo
->pr_gid
, cred
->gid
);
1340 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1345 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1347 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1351 while (auxv
[i
- 2] != AT_NULL
);
1352 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1355 #ifdef CORE_DUMP_USE_REGSET
1356 #include <linux/regset.h>
1358 struct elf_thread_core_info
{
1359 struct elf_thread_core_info
*next
;
1360 struct task_struct
*task
;
1361 struct elf_prstatus prstatus
;
1362 struct memelfnote notes
[0];
1365 struct elf_note_info
{
1366 struct elf_thread_core_info
*thread
;
1367 struct memelfnote psinfo
;
1368 struct memelfnote auxv
;
1374 * When a regset has a writeback hook, we call it on each thread before
1375 * dumping user memory. On register window machines, this makes sure the
1376 * user memory backing the register data is up to date before we read it.
1378 static void do_thread_regset_writeback(struct task_struct
*task
,
1379 const struct user_regset
*regset
)
1381 if (regset
->writeback
)
1382 regset
->writeback(task
, regset
, 1);
1385 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1386 const struct user_regset_view
*view
,
1387 long signr
, size_t *total
)
1392 * NT_PRSTATUS is the one special case, because the regset data
1393 * goes into the pr_reg field inside the note contents, rather
1394 * than being the whole note contents. We fill the reset in here.
1395 * We assume that regset 0 is NT_PRSTATUS.
1397 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1398 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1399 0, sizeof(t
->prstatus
.pr_reg
),
1400 &t
->prstatus
.pr_reg
, NULL
);
1402 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1403 sizeof(t
->prstatus
), &t
->prstatus
);
1404 *total
+= notesize(&t
->notes
[0]);
1406 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1409 * Each other regset might generate a note too. For each regset
1410 * that has no core_note_type or is inactive, we leave t->notes[i]
1411 * all zero and we'll know to skip writing it later.
1413 for (i
= 1; i
< view
->n
; ++i
) {
1414 const struct user_regset
*regset
= &view
->regsets
[i
];
1415 do_thread_regset_writeback(t
->task
, regset
);
1416 if (regset
->core_note_type
&&
1417 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1419 size_t size
= regset
->n
* regset
->size
;
1420 void *data
= kmalloc(size
, GFP_KERNEL
);
1421 if (unlikely(!data
))
1423 ret
= regset
->get(t
->task
, regset
,
1424 0, size
, data
, NULL
);
1428 if (regset
->core_note_type
!= NT_PRFPREG
)
1429 fill_note(&t
->notes
[i
], "LINUX",
1430 regset
->core_note_type
,
1433 t
->prstatus
.pr_fpvalid
= 1;
1434 fill_note(&t
->notes
[i
], "CORE",
1435 NT_PRFPREG
, size
, data
);
1437 *total
+= notesize(&t
->notes
[i
]);
1445 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1446 struct elf_note_info
*info
,
1447 long signr
, struct pt_regs
*regs
)
1449 struct task_struct
*dump_task
= current
;
1450 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1451 struct elf_thread_core_info
*t
;
1452 struct elf_prpsinfo
*psinfo
;
1453 struct core_thread
*ct
;
1457 info
->thread
= NULL
;
1459 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1463 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1466 * Figure out how many notes we're going to need for each thread.
1468 info
->thread_notes
= 0;
1469 for (i
= 0; i
< view
->n
; ++i
)
1470 if (view
->regsets
[i
].core_note_type
!= 0)
1471 ++info
->thread_notes
;
1474 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1475 * since it is our one special case.
1477 if (unlikely(info
->thread_notes
== 0) ||
1478 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1484 * Initialize the ELF file header.
1486 fill_elf_header(elf
, phdrs
,
1487 view
->e_machine
, view
->e_flags
, view
->ei_osabi
);
1490 * Allocate a structure for each thread.
1492 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1493 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1494 notes
[info
->thread_notes
]),
1500 if (ct
->task
== dump_task
|| !info
->thread
) {
1501 t
->next
= info
->thread
;
1505 * Make sure to keep the original task at
1506 * the head of the list.
1508 t
->next
= info
->thread
->next
;
1509 info
->thread
->next
= t
;
1514 * Now fill in each thread's information.
1516 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1517 if (!fill_thread_core_info(t
, view
, signr
, &info
->size
))
1521 * Fill in the two process-wide notes.
1523 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1524 info
->size
+= notesize(&info
->psinfo
);
1526 fill_auxv_note(&info
->auxv
, current
->mm
);
1527 info
->size
+= notesize(&info
->auxv
);
1532 static size_t get_note_info_size(struct elf_note_info
*info
)
1538 * Write all the notes for each thread. When writing the first thread, the
1539 * process-wide notes are interleaved after the first thread-specific note.
1541 static int write_note_info(struct elf_note_info
*info
,
1542 struct file
*file
, loff_t
*foffset
)
1545 struct elf_thread_core_info
*t
= info
->thread
;
1550 if (!writenote(&t
->notes
[0], file
, foffset
))
1553 if (first
&& !writenote(&info
->psinfo
, file
, foffset
))
1555 if (first
&& !writenote(&info
->auxv
, file
, foffset
))
1558 for (i
= 1; i
< info
->thread_notes
; ++i
)
1559 if (t
->notes
[i
].data
&&
1560 !writenote(&t
->notes
[i
], file
, foffset
))
1570 static void free_note_info(struct elf_note_info
*info
)
1572 struct elf_thread_core_info
*threads
= info
->thread
;
1575 struct elf_thread_core_info
*t
= threads
;
1577 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1578 for (i
= 1; i
< info
->thread_notes
; ++i
)
1579 kfree(t
->notes
[i
].data
);
1582 kfree(info
->psinfo
.data
);
1587 /* Here is the structure in which status of each thread is captured. */
1588 struct elf_thread_status
1590 struct list_head list
;
1591 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1592 elf_fpregset_t fpu
; /* NT_PRFPREG */
1593 struct task_struct
*thread
;
1594 #ifdef ELF_CORE_COPY_XFPREGS
1595 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1597 struct memelfnote notes
[3];
1602 * In order to add the specific thread information for the elf file format,
1603 * we need to keep a linked list of every threads pr_status and then create
1604 * a single section for them in the final core file.
1606 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1609 struct task_struct
*p
= t
->thread
;
1612 fill_prstatus(&t
->prstatus
, p
, signr
);
1613 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1615 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1618 sz
+= notesize(&t
->notes
[0]);
1620 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1622 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1625 sz
+= notesize(&t
->notes
[1]);
1628 #ifdef ELF_CORE_COPY_XFPREGS
1629 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1630 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1631 sizeof(t
->xfpu
), &t
->xfpu
);
1633 sz
+= notesize(&t
->notes
[2]);
1639 struct elf_note_info
{
1640 struct memelfnote
*notes
;
1641 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1642 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1643 struct list_head thread_list
;
1644 elf_fpregset_t
*fpu
;
1645 #ifdef ELF_CORE_COPY_XFPREGS
1646 elf_fpxregset_t
*xfpu
;
1648 int thread_status_size
;
1652 static int elf_note_info_init(struct elf_note_info
*info
)
1654 memset(info
, 0, sizeof(*info
));
1655 INIT_LIST_HEAD(&info
->thread_list
);
1657 /* Allocate space for six ELF notes */
1658 info
->notes
= kmalloc(6 * sizeof(struct memelfnote
), GFP_KERNEL
);
1661 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1664 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1665 if (!info
->prstatus
)
1667 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1670 #ifdef ELF_CORE_COPY_XFPREGS
1671 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1676 #ifdef ELF_CORE_COPY_XFPREGS
1681 kfree(info
->prstatus
);
1683 kfree(info
->psinfo
);
1689 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1690 struct elf_note_info
*info
,
1691 long signr
, struct pt_regs
*regs
)
1693 struct list_head
*t
;
1695 if (!elf_note_info_init(info
))
1699 struct core_thread
*ct
;
1700 struct elf_thread_status
*ets
;
1702 for (ct
= current
->mm
->core_state
->dumper
.next
;
1703 ct
; ct
= ct
->next
) {
1704 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1708 ets
->thread
= ct
->task
;
1709 list_add(&ets
->list
, &info
->thread_list
);
1712 list_for_each(t
, &info
->thread_list
) {
1715 ets
= list_entry(t
, struct elf_thread_status
, list
);
1716 sz
= elf_dump_thread_status(signr
, ets
);
1717 info
->thread_status_size
+= sz
;
1720 /* now collect the dump for the current */
1721 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1722 fill_prstatus(info
->prstatus
, current
, signr
);
1723 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1726 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
, ELF_OSABI
);
1729 * Set up the notes in similar form to SVR4 core dumps made
1730 * with info from their /proc.
1733 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1734 sizeof(*info
->prstatus
), info
->prstatus
);
1735 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1736 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1737 sizeof(*info
->psinfo
), info
->psinfo
);
1741 fill_auxv_note(&info
->notes
[info
->numnote
++], current
->mm
);
1743 /* Try to dump the FPU. */
1744 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1746 if (info
->prstatus
->pr_fpvalid
)
1747 fill_note(info
->notes
+ info
->numnote
++,
1748 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1749 #ifdef ELF_CORE_COPY_XFPREGS
1750 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1751 fill_note(info
->notes
+ info
->numnote
++,
1752 "LINUX", ELF_CORE_XFPREG_TYPE
,
1753 sizeof(*info
->xfpu
), info
->xfpu
);
1759 static size_t get_note_info_size(struct elf_note_info
*info
)
1764 for (i
= 0; i
< info
->numnote
; i
++)
1765 sz
+= notesize(info
->notes
+ i
);
1767 sz
+= info
->thread_status_size
;
1772 static int write_note_info(struct elf_note_info
*info
,
1773 struct file
*file
, loff_t
*foffset
)
1776 struct list_head
*t
;
1778 for (i
= 0; i
< info
->numnote
; i
++)
1779 if (!writenote(info
->notes
+ i
, file
, foffset
))
1782 /* write out the thread status notes section */
1783 list_for_each(t
, &info
->thread_list
) {
1784 struct elf_thread_status
*tmp
=
1785 list_entry(t
, struct elf_thread_status
, list
);
1787 for (i
= 0; i
< tmp
->num_notes
; i
++)
1788 if (!writenote(&tmp
->notes
[i
], file
, foffset
))
1795 static void free_note_info(struct elf_note_info
*info
)
1797 while (!list_empty(&info
->thread_list
)) {
1798 struct list_head
*tmp
= info
->thread_list
.next
;
1800 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1803 kfree(info
->prstatus
);
1804 kfree(info
->psinfo
);
1807 #ifdef ELF_CORE_COPY_XFPREGS
1814 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1815 struct vm_area_struct
*gate_vma
)
1817 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1824 * Helper function for iterating across a vma list. It ensures that the caller
1825 * will visit `gate_vma' prior to terminating the search.
1827 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1828 struct vm_area_struct
*gate_vma
)
1830 struct vm_area_struct
*ret
;
1832 ret
= this_vma
->vm_next
;
1835 if (this_vma
== gate_vma
)
1840 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1841 elf_addr_t e_shoff
, int segs
)
1843 elf
->e_shoff
= e_shoff
;
1844 elf
->e_shentsize
= sizeof(*shdr4extnum
);
1846 elf
->e_shstrndx
= SHN_UNDEF
;
1848 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
1850 shdr4extnum
->sh_type
= SHT_NULL
;
1851 shdr4extnum
->sh_size
= elf
->e_shnum
;
1852 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
1853 shdr4extnum
->sh_info
= segs
;
1856 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
1857 unsigned long mm_flags
)
1859 struct vm_area_struct
*vma
;
1862 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
1863 vma
= next_vma(vma
, gate_vma
))
1864 size
+= vma_dump_size(vma
, mm_flags
);
1871 * This is a two-pass process; first we find the offsets of the bits,
1872 * and then they are actually written out. If we run out of core limit
1875 static int elf_core_dump(struct coredump_params
*cprm
)
1881 struct vm_area_struct
*vma
, *gate_vma
;
1882 struct elfhdr
*elf
= NULL
;
1883 loff_t offset
= 0, dataoff
, foffset
;
1884 struct elf_note_info info
;
1885 struct elf_phdr
*phdr4note
= NULL
;
1886 struct elf_shdr
*shdr4extnum
= NULL
;
1891 * We no longer stop all VM operations.
1893 * This is because those proceses that could possibly change map_count
1894 * or the mmap / vma pages are now blocked in do_exit on current
1895 * finishing this core dump.
1897 * Only ptrace can touch these memory addresses, but it doesn't change
1898 * the map_count or the pages allocated. So no possibility of crashing
1899 * exists while dumping the mm->vm_next areas to the core file.
1902 /* alloc memory for large data structures: too large to be on stack */
1903 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
1907 * The number of segs are recored into ELF header as 16bit value.
1908 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1910 segs
= current
->mm
->map_count
;
1911 segs
+= elf_core_extra_phdrs();
1913 gate_vma
= get_gate_vma(current
->mm
);
1914 if (gate_vma
!= NULL
)
1917 /* for notes section */
1920 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1921 * this, kernel supports extended numbering. Have a look at
1922 * include/linux/elf.h for further information. */
1923 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
1926 * Collect all the non-memory information about the process for the
1927 * notes. This also sets up the file header.
1929 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->signr
, cprm
->regs
))
1933 current
->flags
|= PF_DUMPCORE
;
1938 offset
+= sizeof(*elf
); /* Elf header */
1939 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
1942 /* Write notes phdr entry */
1944 size_t sz
= get_note_info_size(&info
);
1946 sz
+= elf_coredump_extra_notes_size();
1948 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
1952 fill_elf_note_phdr(phdr4note
, sz
, offset
);
1956 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
1958 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
1959 offset
+= elf_core_extra_data_size();
1962 if (e_phnum
== PN_XNUM
) {
1963 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
1966 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
1971 size
+= sizeof(*elf
);
1972 if (size
> cprm
->limit
|| !dump_write(cprm
->file
, elf
, sizeof(*elf
)))
1975 size
+= sizeof(*phdr4note
);
1976 if (size
> cprm
->limit
1977 || !dump_write(cprm
->file
, phdr4note
, sizeof(*phdr4note
)))
1980 /* Write program headers for segments dump */
1981 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
1982 vma
= next_vma(vma
, gate_vma
)) {
1983 struct elf_phdr phdr
;
1985 phdr
.p_type
= PT_LOAD
;
1986 phdr
.p_offset
= offset
;
1987 phdr
.p_vaddr
= vma
->vm_start
;
1989 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
1990 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
1991 offset
+= phdr
.p_filesz
;
1992 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
1993 if (vma
->vm_flags
& VM_WRITE
)
1994 phdr
.p_flags
|= PF_W
;
1995 if (vma
->vm_flags
& VM_EXEC
)
1996 phdr
.p_flags
|= PF_X
;
1997 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
1999 size
+= sizeof(phdr
);
2000 if (size
> cprm
->limit
2001 || !dump_write(cprm
->file
, &phdr
, sizeof(phdr
)))
2005 if (!elf_core_write_extra_phdrs(cprm
->file
, offset
, &size
, cprm
->limit
))
2008 /* write out the notes section */
2009 if (!write_note_info(&info
, cprm
->file
, &foffset
))
2012 if (elf_coredump_extra_notes_write(cprm
->file
, &foffset
))
2016 if (!dump_seek(cprm
->file
, dataoff
- foffset
))
2019 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2020 vma
= next_vma(vma
, gate_vma
)) {
2024 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2026 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2030 page
= get_dump_page(addr
);
2032 void *kaddr
= kmap(page
);
2033 stop
= ((size
+= PAGE_SIZE
) > cprm
->limit
) ||
2034 !dump_write(cprm
->file
, kaddr
,
2037 page_cache_release(page
);
2039 stop
= !dump_seek(cprm
->file
, PAGE_SIZE
);
2045 if (!elf_core_write_extra_data(cprm
->file
, &size
, cprm
->limit
))
2048 if (e_phnum
== PN_XNUM
) {
2049 size
+= sizeof(*shdr4extnum
);
2050 if (size
> cprm
->limit
2051 || !dump_write(cprm
->file
, shdr4extnum
,
2052 sizeof(*shdr4extnum
)))
2060 free_note_info(&info
);
2068 #endif /* CONFIG_ELF_CORE */
2070 static int __init
init_elf_binfmt(void)
2072 return register_binfmt(&elf_format
);
2075 static void __exit
exit_elf_binfmt(void)
2077 /* Remove the COFF and ELF loaders. */
2078 unregister_binfmt(&elf_format
);
2081 core_initcall(init_elf_binfmt
);
2082 module_exit(exit_elf_binfmt
);
2083 MODULE_LICENSE("GPL");