Merge branch 'for-linus' of git://neil.brown.name/md
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blobd41bebb6da0fb719aff854112567249ed597d73e
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
69 unplug_slaves(conf->mddev);
71 return r10_bio;
74 static void r10bio_pool_free(void *r10_bio, void *data)
76 kfree(r10_bio);
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio) {
103 unplug_slaves(conf->mddev);
104 return NULL;
107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 nalloc = conf->copies; /* resync */
109 else
110 nalloc = 2; /* recovery */
113 * Allocate bios.
115 for (j = nalloc ; j-- ; ) {
116 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 if (!bio)
118 goto out_free_bio;
119 r10_bio->devs[j].bio = bio;
122 * Allocate RESYNC_PAGES data pages and attach them
123 * where needed.
125 for (j = 0 ; j < nalloc; j++) {
126 bio = r10_bio->devs[j].bio;
127 for (i = 0; i < RESYNC_PAGES; i++) {
128 page = alloc_page(gfp_flags);
129 if (unlikely(!page))
130 goto out_free_pages;
132 bio->bi_io_vec[i].bv_page = page;
136 return r10_bio;
138 out_free_pages:
139 for ( ; i > 0 ; i--)
140 safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 while (j--)
142 for (i = 0; i < RESYNC_PAGES ; i++)
143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 j = -1;
145 out_free_bio:
146 while ( ++j < nalloc )
147 bio_put(r10_bio->devs[j].bio);
148 r10bio_pool_free(r10_bio, conf);
149 return NULL;
152 static void r10buf_pool_free(void *__r10_bio, void *data)
154 int i;
155 conf_t *conf = data;
156 r10bio_t *r10bio = __r10_bio;
157 int j;
159 for (j=0; j < conf->copies; j++) {
160 struct bio *bio = r10bio->devs[j].bio;
161 if (bio) {
162 for (i = 0; i < RESYNC_PAGES; i++) {
163 safe_put_page(bio->bi_io_vec[i].bv_page);
164 bio->bi_io_vec[i].bv_page = NULL;
166 bio_put(bio);
169 r10bio_pool_free(r10bio, conf);
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
174 int i;
176 for (i = 0; i < conf->copies; i++) {
177 struct bio **bio = & r10_bio->devs[i].bio;
178 if (*bio && *bio != IO_BLOCKED)
179 bio_put(*bio);
180 *bio = NULL;
184 static void free_r10bio(r10bio_t *r10_bio)
186 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
192 allow_barrier(conf);
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
202 mempool_free(r10_bio, conf->r10buf_pool);
204 lower_barrier(conf);
207 static void reschedule_retry(r10bio_t *r10_bio)
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev_to_conf(mddev);
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
215 conf->nr_queued ++;
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r10bio_t *r10_bio)
231 struct bio *bio = r10_bio->master_bio;
233 bio_endio(bio,
234 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
235 free_r10bio(r10_bio);
239 * Update disk head position estimator based on IRQ completion info.
241 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
243 conf_t *conf = mddev_to_conf(r10_bio->mddev);
245 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
246 r10_bio->devs[slot].addr + (r10_bio->sectors);
249 static void raid10_end_read_request(struct bio *bio, int error)
251 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
252 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
253 int slot, dev;
254 conf_t *conf = mddev_to_conf(r10_bio->mddev);
257 slot = r10_bio->read_slot;
258 dev = r10_bio->devs[slot].devnum;
260 * this branch is our 'one mirror IO has finished' event handler:
262 update_head_pos(slot, r10_bio);
264 if (uptodate) {
266 * Set R10BIO_Uptodate in our master bio, so that
267 * we will return a good error code to the higher
268 * levels even if IO on some other mirrored buffer fails.
270 * The 'master' represents the composite IO operation to
271 * user-side. So if something waits for IO, then it will
272 * wait for the 'master' bio.
274 set_bit(R10BIO_Uptodate, &r10_bio->state);
275 raid_end_bio_io(r10_bio);
276 } else {
278 * oops, read error:
280 char b[BDEVNAME_SIZE];
281 if (printk_ratelimit())
282 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
283 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
284 reschedule_retry(r10_bio);
287 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
290 static void raid10_end_write_request(struct bio *bio, int error)
292 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
293 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
294 int slot, dev;
295 conf_t *conf = mddev_to_conf(r10_bio->mddev);
297 for (slot = 0; slot < conf->copies; slot++)
298 if (r10_bio->devs[slot].bio == bio)
299 break;
300 dev = r10_bio->devs[slot].devnum;
303 * this branch is our 'one mirror IO has finished' event handler:
305 if (!uptodate) {
306 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
307 /* an I/O failed, we can't clear the bitmap */
308 set_bit(R10BIO_Degraded, &r10_bio->state);
309 } else
311 * Set R10BIO_Uptodate in our master bio, so that
312 * we will return a good error code for to the higher
313 * levels even if IO on some other mirrored buffer fails.
315 * The 'master' represents the composite IO operation to
316 * user-side. So if something waits for IO, then it will
317 * wait for the 'master' bio.
319 set_bit(R10BIO_Uptodate, &r10_bio->state);
321 update_head_pos(slot, r10_bio);
325 * Let's see if all mirrored write operations have finished
326 * already.
328 if (atomic_dec_and_test(&r10_bio->remaining)) {
329 /* clear the bitmap if all writes complete successfully */
330 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
331 r10_bio->sectors,
332 !test_bit(R10BIO_Degraded, &r10_bio->state),
334 md_write_end(r10_bio->mddev);
335 raid_end_bio_io(r10_bio);
338 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
343 * RAID10 layout manager
344 * Aswell as the chunksize and raid_disks count, there are two
345 * parameters: near_copies and far_copies.
346 * near_copies * far_copies must be <= raid_disks.
347 * Normally one of these will be 1.
348 * If both are 1, we get raid0.
349 * If near_copies == raid_disks, we get raid1.
351 * Chunks are layed out in raid0 style with near_copies copies of the
352 * first chunk, followed by near_copies copies of the next chunk and
353 * so on.
354 * If far_copies > 1, then after 1/far_copies of the array has been assigned
355 * as described above, we start again with a device offset of near_copies.
356 * So we effectively have another copy of the whole array further down all
357 * the drives, but with blocks on different drives.
358 * With this layout, and block is never stored twice on the one device.
360 * raid10_find_phys finds the sector offset of a given virtual sector
361 * on each device that it is on.
363 * raid10_find_virt does the reverse mapping, from a device and a
364 * sector offset to a virtual address
367 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
369 int n,f;
370 sector_t sector;
371 sector_t chunk;
372 sector_t stripe;
373 int dev;
375 int slot = 0;
377 /* now calculate first sector/dev */
378 chunk = r10bio->sector >> conf->chunk_shift;
379 sector = r10bio->sector & conf->chunk_mask;
381 chunk *= conf->near_copies;
382 stripe = chunk;
383 dev = sector_div(stripe, conf->raid_disks);
384 if (conf->far_offset)
385 stripe *= conf->far_copies;
387 sector += stripe << conf->chunk_shift;
389 /* and calculate all the others */
390 for (n=0; n < conf->near_copies; n++) {
391 int d = dev;
392 sector_t s = sector;
393 r10bio->devs[slot].addr = sector;
394 r10bio->devs[slot].devnum = d;
395 slot++;
397 for (f = 1; f < conf->far_copies; f++) {
398 d += conf->near_copies;
399 if (d >= conf->raid_disks)
400 d -= conf->raid_disks;
401 s += conf->stride;
402 r10bio->devs[slot].devnum = d;
403 r10bio->devs[slot].addr = s;
404 slot++;
406 dev++;
407 if (dev >= conf->raid_disks) {
408 dev = 0;
409 sector += (conf->chunk_mask + 1);
412 BUG_ON(slot != conf->copies);
415 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
417 sector_t offset, chunk, vchunk;
419 offset = sector & conf->chunk_mask;
420 if (conf->far_offset) {
421 int fc;
422 chunk = sector >> conf->chunk_shift;
423 fc = sector_div(chunk, conf->far_copies);
424 dev -= fc * conf->near_copies;
425 if (dev < 0)
426 dev += conf->raid_disks;
427 } else {
428 while (sector >= conf->stride) {
429 sector -= conf->stride;
430 if (dev < conf->near_copies)
431 dev += conf->raid_disks - conf->near_copies;
432 else
433 dev -= conf->near_copies;
435 chunk = sector >> conf->chunk_shift;
437 vchunk = chunk * conf->raid_disks + dev;
438 sector_div(vchunk, conf->near_copies);
439 return (vchunk << conf->chunk_shift) + offset;
443 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
444 * @q: request queue
445 * @bvm: properties of new bio
446 * @biovec: the request that could be merged to it.
448 * Return amount of bytes we can accept at this offset
449 * If near_copies == raid_disk, there are no striping issues,
450 * but in that case, the function isn't called at all.
452 static int raid10_mergeable_bvec(struct request_queue *q,
453 struct bvec_merge_data *bvm,
454 struct bio_vec *biovec)
456 mddev_t *mddev = q->queuedata;
457 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
458 int max;
459 unsigned int chunk_sectors = mddev->chunk_size >> 9;
460 unsigned int bio_sectors = bvm->bi_size >> 9;
462 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
463 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
464 if (max <= biovec->bv_len && bio_sectors == 0)
465 return biovec->bv_len;
466 else
467 return max;
471 * This routine returns the disk from which the requested read should
472 * be done. There is a per-array 'next expected sequential IO' sector
473 * number - if this matches on the next IO then we use the last disk.
474 * There is also a per-disk 'last know head position' sector that is
475 * maintained from IRQ contexts, both the normal and the resync IO
476 * completion handlers update this position correctly. If there is no
477 * perfect sequential match then we pick the disk whose head is closest.
479 * If there are 2 mirrors in the same 2 devices, performance degrades
480 * because position is mirror, not device based.
482 * The rdev for the device selected will have nr_pending incremented.
486 * FIXME: possibly should rethink readbalancing and do it differently
487 * depending on near_copies / far_copies geometry.
489 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
491 const unsigned long this_sector = r10_bio->sector;
492 int disk, slot, nslot;
493 const int sectors = r10_bio->sectors;
494 sector_t new_distance, current_distance;
495 mdk_rdev_t *rdev;
497 raid10_find_phys(conf, r10_bio);
498 rcu_read_lock();
500 * Check if we can balance. We can balance on the whole
501 * device if no resync is going on (recovery is ok), or below
502 * the resync window. We take the first readable disk when
503 * above the resync window.
505 if (conf->mddev->recovery_cp < MaxSector
506 && (this_sector + sectors >= conf->next_resync)) {
507 /* make sure that disk is operational */
508 slot = 0;
509 disk = r10_bio->devs[slot].devnum;
511 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
512 r10_bio->devs[slot].bio == IO_BLOCKED ||
513 !test_bit(In_sync, &rdev->flags)) {
514 slot++;
515 if (slot == conf->copies) {
516 slot = 0;
517 disk = -1;
518 break;
520 disk = r10_bio->devs[slot].devnum;
522 goto rb_out;
526 /* make sure the disk is operational */
527 slot = 0;
528 disk = r10_bio->devs[slot].devnum;
529 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
530 r10_bio->devs[slot].bio == IO_BLOCKED ||
531 !test_bit(In_sync, &rdev->flags)) {
532 slot ++;
533 if (slot == conf->copies) {
534 disk = -1;
535 goto rb_out;
537 disk = r10_bio->devs[slot].devnum;
541 current_distance = abs(r10_bio->devs[slot].addr -
542 conf->mirrors[disk].head_position);
544 /* Find the disk whose head is closest,
545 * or - for far > 1 - find the closest to partition beginning */
547 for (nslot = slot; nslot < conf->copies; nslot++) {
548 int ndisk = r10_bio->devs[nslot].devnum;
551 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
552 r10_bio->devs[nslot].bio == IO_BLOCKED ||
553 !test_bit(In_sync, &rdev->flags))
554 continue;
556 /* This optimisation is debatable, and completely destroys
557 * sequential read speed for 'far copies' arrays. So only
558 * keep it for 'near' arrays, and review those later.
560 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
561 disk = ndisk;
562 slot = nslot;
563 break;
566 /* for far > 1 always use the lowest address */
567 if (conf->far_copies > 1)
568 new_distance = r10_bio->devs[nslot].addr;
569 else
570 new_distance = abs(r10_bio->devs[nslot].addr -
571 conf->mirrors[ndisk].head_position);
572 if (new_distance < current_distance) {
573 current_distance = new_distance;
574 disk = ndisk;
575 slot = nslot;
579 rb_out:
580 r10_bio->read_slot = slot;
581 /* conf->next_seq_sect = this_sector + sectors;*/
583 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
584 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
585 else
586 disk = -1;
587 rcu_read_unlock();
589 return disk;
592 static void unplug_slaves(mddev_t *mddev)
594 conf_t *conf = mddev_to_conf(mddev);
595 int i;
597 rcu_read_lock();
598 for (i=0; i<mddev->raid_disks; i++) {
599 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
600 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
601 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
603 atomic_inc(&rdev->nr_pending);
604 rcu_read_unlock();
606 blk_unplug(r_queue);
608 rdev_dec_pending(rdev, mddev);
609 rcu_read_lock();
612 rcu_read_unlock();
615 static void raid10_unplug(struct request_queue *q)
617 mddev_t *mddev = q->queuedata;
619 unplug_slaves(q->queuedata);
620 md_wakeup_thread(mddev->thread);
623 static int raid10_congested(void *data, int bits)
625 mddev_t *mddev = data;
626 conf_t *conf = mddev_to_conf(mddev);
627 int i, ret = 0;
629 rcu_read_lock();
630 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
631 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
632 if (rdev && !test_bit(Faulty, &rdev->flags)) {
633 struct request_queue *q = bdev_get_queue(rdev->bdev);
635 ret |= bdi_congested(&q->backing_dev_info, bits);
638 rcu_read_unlock();
639 return ret;
642 static int flush_pending_writes(conf_t *conf)
644 /* Any writes that have been queued but are awaiting
645 * bitmap updates get flushed here.
646 * We return 1 if any requests were actually submitted.
648 int rv = 0;
650 spin_lock_irq(&conf->device_lock);
652 if (conf->pending_bio_list.head) {
653 struct bio *bio;
654 bio = bio_list_get(&conf->pending_bio_list);
655 blk_remove_plug(conf->mddev->queue);
656 spin_unlock_irq(&conf->device_lock);
657 /* flush any pending bitmap writes to disk
658 * before proceeding w/ I/O */
659 bitmap_unplug(conf->mddev->bitmap);
661 while (bio) { /* submit pending writes */
662 struct bio *next = bio->bi_next;
663 bio->bi_next = NULL;
664 generic_make_request(bio);
665 bio = next;
667 rv = 1;
668 } else
669 spin_unlock_irq(&conf->device_lock);
670 return rv;
672 /* Barriers....
673 * Sometimes we need to suspend IO while we do something else,
674 * either some resync/recovery, or reconfigure the array.
675 * To do this we raise a 'barrier'.
676 * The 'barrier' is a counter that can be raised multiple times
677 * to count how many activities are happening which preclude
678 * normal IO.
679 * We can only raise the barrier if there is no pending IO.
680 * i.e. if nr_pending == 0.
681 * We choose only to raise the barrier if no-one is waiting for the
682 * barrier to go down. This means that as soon as an IO request
683 * is ready, no other operations which require a barrier will start
684 * until the IO request has had a chance.
686 * So: regular IO calls 'wait_barrier'. When that returns there
687 * is no backgroup IO happening, It must arrange to call
688 * allow_barrier when it has finished its IO.
689 * backgroup IO calls must call raise_barrier. Once that returns
690 * there is no normal IO happeing. It must arrange to call
691 * lower_barrier when the particular background IO completes.
693 #define RESYNC_DEPTH 32
695 static void raise_barrier(conf_t *conf, int force)
697 BUG_ON(force && !conf->barrier);
698 spin_lock_irq(&conf->resync_lock);
700 /* Wait until no block IO is waiting (unless 'force') */
701 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
702 conf->resync_lock,
703 raid10_unplug(conf->mddev->queue));
705 /* block any new IO from starting */
706 conf->barrier++;
708 /* No wait for all pending IO to complete */
709 wait_event_lock_irq(conf->wait_barrier,
710 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
711 conf->resync_lock,
712 raid10_unplug(conf->mddev->queue));
714 spin_unlock_irq(&conf->resync_lock);
717 static void lower_barrier(conf_t *conf)
719 unsigned long flags;
720 spin_lock_irqsave(&conf->resync_lock, flags);
721 conf->barrier--;
722 spin_unlock_irqrestore(&conf->resync_lock, flags);
723 wake_up(&conf->wait_barrier);
726 static void wait_barrier(conf_t *conf)
728 spin_lock_irq(&conf->resync_lock);
729 if (conf->barrier) {
730 conf->nr_waiting++;
731 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
732 conf->resync_lock,
733 raid10_unplug(conf->mddev->queue));
734 conf->nr_waiting--;
736 conf->nr_pending++;
737 spin_unlock_irq(&conf->resync_lock);
740 static void allow_barrier(conf_t *conf)
742 unsigned long flags;
743 spin_lock_irqsave(&conf->resync_lock, flags);
744 conf->nr_pending--;
745 spin_unlock_irqrestore(&conf->resync_lock, flags);
746 wake_up(&conf->wait_barrier);
749 static void freeze_array(conf_t *conf)
751 /* stop syncio and normal IO and wait for everything to
752 * go quiet.
753 * We increment barrier and nr_waiting, and then
754 * wait until nr_pending match nr_queued+1
755 * This is called in the context of one normal IO request
756 * that has failed. Thus any sync request that might be pending
757 * will be blocked by nr_pending, and we need to wait for
758 * pending IO requests to complete or be queued for re-try.
759 * Thus the number queued (nr_queued) plus this request (1)
760 * must match the number of pending IOs (nr_pending) before
761 * we continue.
763 spin_lock_irq(&conf->resync_lock);
764 conf->barrier++;
765 conf->nr_waiting++;
766 wait_event_lock_irq(conf->wait_barrier,
767 conf->nr_pending == conf->nr_queued+1,
768 conf->resync_lock,
769 ({ flush_pending_writes(conf);
770 raid10_unplug(conf->mddev->queue); }));
771 spin_unlock_irq(&conf->resync_lock);
774 static void unfreeze_array(conf_t *conf)
776 /* reverse the effect of the freeze */
777 spin_lock_irq(&conf->resync_lock);
778 conf->barrier--;
779 conf->nr_waiting--;
780 wake_up(&conf->wait_barrier);
781 spin_unlock_irq(&conf->resync_lock);
784 static int make_request(struct request_queue *q, struct bio * bio)
786 mddev_t *mddev = q->queuedata;
787 conf_t *conf = mddev_to_conf(mddev);
788 mirror_info_t *mirror;
789 r10bio_t *r10_bio;
790 struct bio *read_bio;
791 int i;
792 int chunk_sects = conf->chunk_mask + 1;
793 const int rw = bio_data_dir(bio);
794 const int do_sync = bio_sync(bio);
795 struct bio_list bl;
796 unsigned long flags;
797 mdk_rdev_t *blocked_rdev;
799 if (unlikely(bio_barrier(bio))) {
800 bio_endio(bio, -EOPNOTSUPP);
801 return 0;
804 /* If this request crosses a chunk boundary, we need to
805 * split it. This will only happen for 1 PAGE (or less) requests.
807 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
808 > chunk_sects &&
809 conf->near_copies < conf->raid_disks)) {
810 struct bio_pair *bp;
811 /* Sanity check -- queue functions should prevent this happening */
812 if (bio->bi_vcnt != 1 ||
813 bio->bi_idx != 0)
814 goto bad_map;
815 /* This is a one page bio that upper layers
816 * refuse to split for us, so we need to split it.
818 bp = bio_split(bio, bio_split_pool,
819 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
820 if (make_request(q, &bp->bio1))
821 generic_make_request(&bp->bio1);
822 if (make_request(q, &bp->bio2))
823 generic_make_request(&bp->bio2);
825 bio_pair_release(bp);
826 return 0;
827 bad_map:
828 printk("raid10_make_request bug: can't convert block across chunks"
829 " or bigger than %dk %llu %d\n", chunk_sects/2,
830 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
832 bio_io_error(bio);
833 return 0;
836 md_write_start(mddev, bio);
839 * Register the new request and wait if the reconstruction
840 * thread has put up a bar for new requests.
841 * Continue immediately if no resync is active currently.
843 wait_barrier(conf);
845 disk_stat_inc(mddev->gendisk, ios[rw]);
846 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
848 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
850 r10_bio->master_bio = bio;
851 r10_bio->sectors = bio->bi_size >> 9;
853 r10_bio->mddev = mddev;
854 r10_bio->sector = bio->bi_sector;
855 r10_bio->state = 0;
857 if (rw == READ) {
859 * read balancing logic:
861 int disk = read_balance(conf, r10_bio);
862 int slot = r10_bio->read_slot;
863 if (disk < 0) {
864 raid_end_bio_io(r10_bio);
865 return 0;
867 mirror = conf->mirrors + disk;
869 read_bio = bio_clone(bio, GFP_NOIO);
871 r10_bio->devs[slot].bio = read_bio;
873 read_bio->bi_sector = r10_bio->devs[slot].addr +
874 mirror->rdev->data_offset;
875 read_bio->bi_bdev = mirror->rdev->bdev;
876 read_bio->bi_end_io = raid10_end_read_request;
877 read_bio->bi_rw = READ | do_sync;
878 read_bio->bi_private = r10_bio;
880 generic_make_request(read_bio);
881 return 0;
885 * WRITE:
887 /* first select target devices under rcu_lock and
888 * inc refcount on their rdev. Record them by setting
889 * bios[x] to bio
891 raid10_find_phys(conf, r10_bio);
892 retry_write:
893 blocked_rdev = NULL;
894 rcu_read_lock();
895 for (i = 0; i < conf->copies; i++) {
896 int d = r10_bio->devs[i].devnum;
897 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
898 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
899 atomic_inc(&rdev->nr_pending);
900 blocked_rdev = rdev;
901 break;
903 if (rdev && !test_bit(Faulty, &rdev->flags)) {
904 atomic_inc(&rdev->nr_pending);
905 r10_bio->devs[i].bio = bio;
906 } else {
907 r10_bio->devs[i].bio = NULL;
908 set_bit(R10BIO_Degraded, &r10_bio->state);
911 rcu_read_unlock();
913 if (unlikely(blocked_rdev)) {
914 /* Have to wait for this device to get unblocked, then retry */
915 int j;
916 int d;
918 for (j = 0; j < i; j++)
919 if (r10_bio->devs[j].bio) {
920 d = r10_bio->devs[j].devnum;
921 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
923 allow_barrier(conf);
924 md_wait_for_blocked_rdev(blocked_rdev, mddev);
925 wait_barrier(conf);
926 goto retry_write;
929 atomic_set(&r10_bio->remaining, 0);
931 bio_list_init(&bl);
932 for (i = 0; i < conf->copies; i++) {
933 struct bio *mbio;
934 int d = r10_bio->devs[i].devnum;
935 if (!r10_bio->devs[i].bio)
936 continue;
938 mbio = bio_clone(bio, GFP_NOIO);
939 r10_bio->devs[i].bio = mbio;
941 mbio->bi_sector = r10_bio->devs[i].addr+
942 conf->mirrors[d].rdev->data_offset;
943 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
944 mbio->bi_end_io = raid10_end_write_request;
945 mbio->bi_rw = WRITE | do_sync;
946 mbio->bi_private = r10_bio;
948 atomic_inc(&r10_bio->remaining);
949 bio_list_add(&bl, mbio);
952 if (unlikely(!atomic_read(&r10_bio->remaining))) {
953 /* the array is dead */
954 md_write_end(mddev);
955 raid_end_bio_io(r10_bio);
956 return 0;
959 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
960 spin_lock_irqsave(&conf->device_lock, flags);
961 bio_list_merge(&conf->pending_bio_list, &bl);
962 blk_plug_device(mddev->queue);
963 spin_unlock_irqrestore(&conf->device_lock, flags);
965 /* In case raid10d snuck in to freeze_array */
966 wake_up(&conf->wait_barrier);
968 if (do_sync)
969 md_wakeup_thread(mddev->thread);
971 return 0;
974 static void status(struct seq_file *seq, mddev_t *mddev)
976 conf_t *conf = mddev_to_conf(mddev);
977 int i;
979 if (conf->near_copies < conf->raid_disks)
980 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
981 if (conf->near_copies > 1)
982 seq_printf(seq, " %d near-copies", conf->near_copies);
983 if (conf->far_copies > 1) {
984 if (conf->far_offset)
985 seq_printf(seq, " %d offset-copies", conf->far_copies);
986 else
987 seq_printf(seq, " %d far-copies", conf->far_copies);
989 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
990 conf->raid_disks - mddev->degraded);
991 for (i = 0; i < conf->raid_disks; i++)
992 seq_printf(seq, "%s",
993 conf->mirrors[i].rdev &&
994 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
995 seq_printf(seq, "]");
998 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1000 char b[BDEVNAME_SIZE];
1001 conf_t *conf = mddev_to_conf(mddev);
1004 * If it is not operational, then we have already marked it as dead
1005 * else if it is the last working disks, ignore the error, let the
1006 * next level up know.
1007 * else mark the drive as failed
1009 if (test_bit(In_sync, &rdev->flags)
1010 && conf->raid_disks-mddev->degraded == 1)
1012 * Don't fail the drive, just return an IO error.
1013 * The test should really be more sophisticated than
1014 * "working_disks == 1", but it isn't critical, and
1015 * can wait until we do more sophisticated "is the drive
1016 * really dead" tests...
1018 return;
1019 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1020 unsigned long flags;
1021 spin_lock_irqsave(&conf->device_lock, flags);
1022 mddev->degraded++;
1023 spin_unlock_irqrestore(&conf->device_lock, flags);
1025 * if recovery is running, make sure it aborts.
1027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1029 set_bit(Faulty, &rdev->flags);
1030 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1031 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1032 "raid10: Operation continuing on %d devices.\n",
1033 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1036 static void print_conf(conf_t *conf)
1038 int i;
1039 mirror_info_t *tmp;
1041 printk("RAID10 conf printout:\n");
1042 if (!conf) {
1043 printk("(!conf)\n");
1044 return;
1046 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1047 conf->raid_disks);
1049 for (i = 0; i < conf->raid_disks; i++) {
1050 char b[BDEVNAME_SIZE];
1051 tmp = conf->mirrors + i;
1052 if (tmp->rdev)
1053 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1054 i, !test_bit(In_sync, &tmp->rdev->flags),
1055 !test_bit(Faulty, &tmp->rdev->flags),
1056 bdevname(tmp->rdev->bdev,b));
1060 static void close_sync(conf_t *conf)
1062 wait_barrier(conf);
1063 allow_barrier(conf);
1065 mempool_destroy(conf->r10buf_pool);
1066 conf->r10buf_pool = NULL;
1069 /* check if there are enough drives for
1070 * every block to appear on atleast one
1072 static int enough(conf_t *conf)
1074 int first = 0;
1076 do {
1077 int n = conf->copies;
1078 int cnt = 0;
1079 while (n--) {
1080 if (conf->mirrors[first].rdev)
1081 cnt++;
1082 first = (first+1) % conf->raid_disks;
1084 if (cnt == 0)
1085 return 0;
1086 } while (first != 0);
1087 return 1;
1090 static int raid10_spare_active(mddev_t *mddev)
1092 int i;
1093 conf_t *conf = mddev->private;
1094 mirror_info_t *tmp;
1097 * Find all non-in_sync disks within the RAID10 configuration
1098 * and mark them in_sync
1100 for (i = 0; i < conf->raid_disks; i++) {
1101 tmp = conf->mirrors + i;
1102 if (tmp->rdev
1103 && !test_bit(Faulty, &tmp->rdev->flags)
1104 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1105 unsigned long flags;
1106 spin_lock_irqsave(&conf->device_lock, flags);
1107 mddev->degraded--;
1108 spin_unlock_irqrestore(&conf->device_lock, flags);
1112 print_conf(conf);
1113 return 0;
1117 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1119 conf_t *conf = mddev->private;
1120 int err = -EEXIST;
1121 int mirror;
1122 mirror_info_t *p;
1123 int first = 0;
1124 int last = mddev->raid_disks - 1;
1126 if (mddev->recovery_cp < MaxSector)
1127 /* only hot-add to in-sync arrays, as recovery is
1128 * very different from resync
1130 return -EBUSY;
1131 if (!enough(conf))
1132 return -EINVAL;
1134 if (rdev->raid_disk)
1135 first = last = rdev->raid_disk;
1137 if (rdev->saved_raid_disk >= 0 &&
1138 rdev->saved_raid_disk >= first &&
1139 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1140 mirror = rdev->saved_raid_disk;
1141 else
1142 mirror = first;
1143 for ( ; mirror <= last ; mirror++)
1144 if ( !(p=conf->mirrors+mirror)->rdev) {
1146 blk_queue_stack_limits(mddev->queue,
1147 rdev->bdev->bd_disk->queue);
1148 /* as we don't honour merge_bvec_fn, we must never risk
1149 * violating it, so limit ->max_sector to one PAGE, as
1150 * a one page request is never in violation.
1152 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1153 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1154 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1156 p->head_position = 0;
1157 rdev->raid_disk = mirror;
1158 err = 0;
1159 if (rdev->saved_raid_disk != mirror)
1160 conf->fullsync = 1;
1161 rcu_assign_pointer(p->rdev, rdev);
1162 break;
1165 print_conf(conf);
1166 return err;
1169 static int raid10_remove_disk(mddev_t *mddev, int number)
1171 conf_t *conf = mddev->private;
1172 int err = 0;
1173 mdk_rdev_t *rdev;
1174 mirror_info_t *p = conf->mirrors+ number;
1176 print_conf(conf);
1177 rdev = p->rdev;
1178 if (rdev) {
1179 if (test_bit(In_sync, &rdev->flags) ||
1180 atomic_read(&rdev->nr_pending)) {
1181 err = -EBUSY;
1182 goto abort;
1184 /* Only remove faulty devices in recovery
1185 * is not possible.
1187 if (!test_bit(Faulty, &rdev->flags) &&
1188 enough(conf)) {
1189 err = -EBUSY;
1190 goto abort;
1192 p->rdev = NULL;
1193 synchronize_rcu();
1194 if (atomic_read(&rdev->nr_pending)) {
1195 /* lost the race, try later */
1196 err = -EBUSY;
1197 p->rdev = rdev;
1200 abort:
1202 print_conf(conf);
1203 return err;
1207 static void end_sync_read(struct bio *bio, int error)
1209 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1210 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1211 int i,d;
1213 for (i=0; i<conf->copies; i++)
1214 if (r10_bio->devs[i].bio == bio)
1215 break;
1216 BUG_ON(i == conf->copies);
1217 update_head_pos(i, r10_bio);
1218 d = r10_bio->devs[i].devnum;
1220 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1221 set_bit(R10BIO_Uptodate, &r10_bio->state);
1222 else {
1223 atomic_add(r10_bio->sectors,
1224 &conf->mirrors[d].rdev->corrected_errors);
1225 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1226 md_error(r10_bio->mddev,
1227 conf->mirrors[d].rdev);
1230 /* for reconstruct, we always reschedule after a read.
1231 * for resync, only after all reads
1233 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1234 atomic_dec_and_test(&r10_bio->remaining)) {
1235 /* we have read all the blocks,
1236 * do the comparison in process context in raid10d
1238 reschedule_retry(r10_bio);
1240 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1243 static void end_sync_write(struct bio *bio, int error)
1245 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1246 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1247 mddev_t *mddev = r10_bio->mddev;
1248 conf_t *conf = mddev_to_conf(mddev);
1249 int i,d;
1251 for (i = 0; i < conf->copies; i++)
1252 if (r10_bio->devs[i].bio == bio)
1253 break;
1254 d = r10_bio->devs[i].devnum;
1256 if (!uptodate)
1257 md_error(mddev, conf->mirrors[d].rdev);
1259 update_head_pos(i, r10_bio);
1261 while (atomic_dec_and_test(&r10_bio->remaining)) {
1262 if (r10_bio->master_bio == NULL) {
1263 /* the primary of several recovery bios */
1264 md_done_sync(mddev, r10_bio->sectors, 1);
1265 put_buf(r10_bio);
1266 break;
1267 } else {
1268 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1269 put_buf(r10_bio);
1270 r10_bio = r10_bio2;
1273 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1277 * Note: sync and recover and handled very differently for raid10
1278 * This code is for resync.
1279 * For resync, we read through virtual addresses and read all blocks.
1280 * If there is any error, we schedule a write. The lowest numbered
1281 * drive is authoritative.
1282 * However requests come for physical address, so we need to map.
1283 * For every physical address there are raid_disks/copies virtual addresses,
1284 * which is always are least one, but is not necessarly an integer.
1285 * This means that a physical address can span multiple chunks, so we may
1286 * have to submit multiple io requests for a single sync request.
1289 * We check if all blocks are in-sync and only write to blocks that
1290 * aren't in sync
1292 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1294 conf_t *conf = mddev_to_conf(mddev);
1295 int i, first;
1296 struct bio *tbio, *fbio;
1298 atomic_set(&r10_bio->remaining, 1);
1300 /* find the first device with a block */
1301 for (i=0; i<conf->copies; i++)
1302 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1303 break;
1305 if (i == conf->copies)
1306 goto done;
1308 first = i;
1309 fbio = r10_bio->devs[i].bio;
1311 /* now find blocks with errors */
1312 for (i=0 ; i < conf->copies ; i++) {
1313 int j, d;
1314 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1316 tbio = r10_bio->devs[i].bio;
1318 if (tbio->bi_end_io != end_sync_read)
1319 continue;
1320 if (i == first)
1321 continue;
1322 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1323 /* We know that the bi_io_vec layout is the same for
1324 * both 'first' and 'i', so we just compare them.
1325 * All vec entries are PAGE_SIZE;
1327 for (j = 0; j < vcnt; j++)
1328 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1329 page_address(tbio->bi_io_vec[j].bv_page),
1330 PAGE_SIZE))
1331 break;
1332 if (j == vcnt)
1333 continue;
1334 mddev->resync_mismatches += r10_bio->sectors;
1336 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1337 /* Don't fix anything. */
1338 continue;
1339 /* Ok, we need to write this bio
1340 * First we need to fixup bv_offset, bv_len and
1341 * bi_vecs, as the read request might have corrupted these
1343 tbio->bi_vcnt = vcnt;
1344 tbio->bi_size = r10_bio->sectors << 9;
1345 tbio->bi_idx = 0;
1346 tbio->bi_phys_segments = 0;
1347 tbio->bi_hw_segments = 0;
1348 tbio->bi_hw_front_size = 0;
1349 tbio->bi_hw_back_size = 0;
1350 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1351 tbio->bi_flags |= 1 << BIO_UPTODATE;
1352 tbio->bi_next = NULL;
1353 tbio->bi_rw = WRITE;
1354 tbio->bi_private = r10_bio;
1355 tbio->bi_sector = r10_bio->devs[i].addr;
1357 for (j=0; j < vcnt ; j++) {
1358 tbio->bi_io_vec[j].bv_offset = 0;
1359 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1361 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1362 page_address(fbio->bi_io_vec[j].bv_page),
1363 PAGE_SIZE);
1365 tbio->bi_end_io = end_sync_write;
1367 d = r10_bio->devs[i].devnum;
1368 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1369 atomic_inc(&r10_bio->remaining);
1370 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1372 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1373 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1374 generic_make_request(tbio);
1377 done:
1378 if (atomic_dec_and_test(&r10_bio->remaining)) {
1379 md_done_sync(mddev, r10_bio->sectors, 1);
1380 put_buf(r10_bio);
1385 * Now for the recovery code.
1386 * Recovery happens across physical sectors.
1387 * We recover all non-is_sync drives by finding the virtual address of
1388 * each, and then choose a working drive that also has that virt address.
1389 * There is a separate r10_bio for each non-in_sync drive.
1390 * Only the first two slots are in use. The first for reading,
1391 * The second for writing.
1395 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1397 conf_t *conf = mddev_to_conf(mddev);
1398 int i, d;
1399 struct bio *bio, *wbio;
1402 /* move the pages across to the second bio
1403 * and submit the write request
1405 bio = r10_bio->devs[0].bio;
1406 wbio = r10_bio->devs[1].bio;
1407 for (i=0; i < wbio->bi_vcnt; i++) {
1408 struct page *p = bio->bi_io_vec[i].bv_page;
1409 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1410 wbio->bi_io_vec[i].bv_page = p;
1412 d = r10_bio->devs[1].devnum;
1414 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1415 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1416 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1417 generic_make_request(wbio);
1418 else
1419 bio_endio(wbio, -EIO);
1424 * This is a kernel thread which:
1426 * 1. Retries failed read operations on working mirrors.
1427 * 2. Updates the raid superblock when problems encounter.
1428 * 3. Performs writes following reads for array synchronising.
1431 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1433 int sect = 0; /* Offset from r10_bio->sector */
1434 int sectors = r10_bio->sectors;
1435 mdk_rdev_t*rdev;
1436 while(sectors) {
1437 int s = sectors;
1438 int sl = r10_bio->read_slot;
1439 int success = 0;
1440 int start;
1442 if (s > (PAGE_SIZE>>9))
1443 s = PAGE_SIZE >> 9;
1445 rcu_read_lock();
1446 do {
1447 int d = r10_bio->devs[sl].devnum;
1448 rdev = rcu_dereference(conf->mirrors[d].rdev);
1449 if (rdev &&
1450 test_bit(In_sync, &rdev->flags)) {
1451 atomic_inc(&rdev->nr_pending);
1452 rcu_read_unlock();
1453 success = sync_page_io(rdev->bdev,
1454 r10_bio->devs[sl].addr +
1455 sect + rdev->data_offset,
1456 s<<9,
1457 conf->tmppage, READ);
1458 rdev_dec_pending(rdev, mddev);
1459 rcu_read_lock();
1460 if (success)
1461 break;
1463 sl++;
1464 if (sl == conf->copies)
1465 sl = 0;
1466 } while (!success && sl != r10_bio->read_slot);
1467 rcu_read_unlock();
1469 if (!success) {
1470 /* Cannot read from anywhere -- bye bye array */
1471 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1472 md_error(mddev, conf->mirrors[dn].rdev);
1473 break;
1476 start = sl;
1477 /* write it back and re-read */
1478 rcu_read_lock();
1479 while (sl != r10_bio->read_slot) {
1480 int d;
1481 if (sl==0)
1482 sl = conf->copies;
1483 sl--;
1484 d = r10_bio->devs[sl].devnum;
1485 rdev = rcu_dereference(conf->mirrors[d].rdev);
1486 if (rdev &&
1487 test_bit(In_sync, &rdev->flags)) {
1488 atomic_inc(&rdev->nr_pending);
1489 rcu_read_unlock();
1490 atomic_add(s, &rdev->corrected_errors);
1491 if (sync_page_io(rdev->bdev,
1492 r10_bio->devs[sl].addr +
1493 sect + rdev->data_offset,
1494 s<<9, conf->tmppage, WRITE)
1495 == 0)
1496 /* Well, this device is dead */
1497 md_error(mddev, rdev);
1498 rdev_dec_pending(rdev, mddev);
1499 rcu_read_lock();
1502 sl = start;
1503 while (sl != r10_bio->read_slot) {
1504 int d;
1505 if (sl==0)
1506 sl = conf->copies;
1507 sl--;
1508 d = r10_bio->devs[sl].devnum;
1509 rdev = rcu_dereference(conf->mirrors[d].rdev);
1510 if (rdev &&
1511 test_bit(In_sync, &rdev->flags)) {
1512 char b[BDEVNAME_SIZE];
1513 atomic_inc(&rdev->nr_pending);
1514 rcu_read_unlock();
1515 if (sync_page_io(rdev->bdev,
1516 r10_bio->devs[sl].addr +
1517 sect + rdev->data_offset,
1518 s<<9, conf->tmppage, READ) == 0)
1519 /* Well, this device is dead */
1520 md_error(mddev, rdev);
1521 else
1522 printk(KERN_INFO
1523 "raid10:%s: read error corrected"
1524 " (%d sectors at %llu on %s)\n",
1525 mdname(mddev), s,
1526 (unsigned long long)(sect+
1527 rdev->data_offset),
1528 bdevname(rdev->bdev, b));
1530 rdev_dec_pending(rdev, mddev);
1531 rcu_read_lock();
1534 rcu_read_unlock();
1536 sectors -= s;
1537 sect += s;
1541 static void raid10d(mddev_t *mddev)
1543 r10bio_t *r10_bio;
1544 struct bio *bio;
1545 unsigned long flags;
1546 conf_t *conf = mddev_to_conf(mddev);
1547 struct list_head *head = &conf->retry_list;
1548 int unplug=0;
1549 mdk_rdev_t *rdev;
1551 md_check_recovery(mddev);
1553 for (;;) {
1554 char b[BDEVNAME_SIZE];
1556 unplug += flush_pending_writes(conf);
1558 spin_lock_irqsave(&conf->device_lock, flags);
1559 if (list_empty(head)) {
1560 spin_unlock_irqrestore(&conf->device_lock, flags);
1561 break;
1563 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1564 list_del(head->prev);
1565 conf->nr_queued--;
1566 spin_unlock_irqrestore(&conf->device_lock, flags);
1568 mddev = r10_bio->mddev;
1569 conf = mddev_to_conf(mddev);
1570 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1571 sync_request_write(mddev, r10_bio);
1572 unplug = 1;
1573 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1574 recovery_request_write(mddev, r10_bio);
1575 unplug = 1;
1576 } else {
1577 int mirror;
1578 /* we got a read error. Maybe the drive is bad. Maybe just
1579 * the block and we can fix it.
1580 * We freeze all other IO, and try reading the block from
1581 * other devices. When we find one, we re-write
1582 * and check it that fixes the read error.
1583 * This is all done synchronously while the array is
1584 * frozen.
1586 if (mddev->ro == 0) {
1587 freeze_array(conf);
1588 fix_read_error(conf, mddev, r10_bio);
1589 unfreeze_array(conf);
1592 bio = r10_bio->devs[r10_bio->read_slot].bio;
1593 r10_bio->devs[r10_bio->read_slot].bio =
1594 mddev->ro ? IO_BLOCKED : NULL;
1595 mirror = read_balance(conf, r10_bio);
1596 if (mirror == -1) {
1597 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1598 " read error for block %llu\n",
1599 bdevname(bio->bi_bdev,b),
1600 (unsigned long long)r10_bio->sector);
1601 raid_end_bio_io(r10_bio);
1602 bio_put(bio);
1603 } else {
1604 const int do_sync = bio_sync(r10_bio->master_bio);
1605 bio_put(bio);
1606 rdev = conf->mirrors[mirror].rdev;
1607 if (printk_ratelimit())
1608 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1609 " another mirror\n",
1610 bdevname(rdev->bdev,b),
1611 (unsigned long long)r10_bio->sector);
1612 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1613 r10_bio->devs[r10_bio->read_slot].bio = bio;
1614 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1615 + rdev->data_offset;
1616 bio->bi_bdev = rdev->bdev;
1617 bio->bi_rw = READ | do_sync;
1618 bio->bi_private = r10_bio;
1619 bio->bi_end_io = raid10_end_read_request;
1620 unplug = 1;
1621 generic_make_request(bio);
1625 if (unplug)
1626 unplug_slaves(mddev);
1630 static int init_resync(conf_t *conf)
1632 int buffs;
1634 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1635 BUG_ON(conf->r10buf_pool);
1636 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1637 if (!conf->r10buf_pool)
1638 return -ENOMEM;
1639 conf->next_resync = 0;
1640 return 0;
1644 * perform a "sync" on one "block"
1646 * We need to make sure that no normal I/O request - particularly write
1647 * requests - conflict with active sync requests.
1649 * This is achieved by tracking pending requests and a 'barrier' concept
1650 * that can be installed to exclude normal IO requests.
1652 * Resync and recovery are handled very differently.
1653 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1655 * For resync, we iterate over virtual addresses, read all copies,
1656 * and update if there are differences. If only one copy is live,
1657 * skip it.
1658 * For recovery, we iterate over physical addresses, read a good
1659 * value for each non-in_sync drive, and over-write.
1661 * So, for recovery we may have several outstanding complex requests for a
1662 * given address, one for each out-of-sync device. We model this by allocating
1663 * a number of r10_bio structures, one for each out-of-sync device.
1664 * As we setup these structures, we collect all bio's together into a list
1665 * which we then process collectively to add pages, and then process again
1666 * to pass to generic_make_request.
1668 * The r10_bio structures are linked using a borrowed master_bio pointer.
1669 * This link is counted in ->remaining. When the r10_bio that points to NULL
1670 * has its remaining count decremented to 0, the whole complex operation
1671 * is complete.
1675 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1677 conf_t *conf = mddev_to_conf(mddev);
1678 r10bio_t *r10_bio;
1679 struct bio *biolist = NULL, *bio;
1680 sector_t max_sector, nr_sectors;
1681 int disk;
1682 int i;
1683 int max_sync;
1684 int sync_blocks;
1686 sector_t sectors_skipped = 0;
1687 int chunks_skipped = 0;
1689 if (!conf->r10buf_pool)
1690 if (init_resync(conf))
1691 return 0;
1693 skipped:
1694 max_sector = mddev->size << 1;
1695 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1696 max_sector = mddev->resync_max_sectors;
1697 if (sector_nr >= max_sector) {
1698 /* If we aborted, we need to abort the
1699 * sync on the 'current' bitmap chucks (there can
1700 * be several when recovering multiple devices).
1701 * as we may have started syncing it but not finished.
1702 * We can find the current address in
1703 * mddev->curr_resync, but for recovery,
1704 * we need to convert that to several
1705 * virtual addresses.
1707 if (mddev->curr_resync < max_sector) { /* aborted */
1708 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1709 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1710 &sync_blocks, 1);
1711 else for (i=0; i<conf->raid_disks; i++) {
1712 sector_t sect =
1713 raid10_find_virt(conf, mddev->curr_resync, i);
1714 bitmap_end_sync(mddev->bitmap, sect,
1715 &sync_blocks, 1);
1717 } else /* completed sync */
1718 conf->fullsync = 0;
1720 bitmap_close_sync(mddev->bitmap);
1721 close_sync(conf);
1722 *skipped = 1;
1723 return sectors_skipped;
1725 if (chunks_skipped >= conf->raid_disks) {
1726 /* if there has been nothing to do on any drive,
1727 * then there is nothing to do at all..
1729 *skipped = 1;
1730 return (max_sector - sector_nr) + sectors_skipped;
1733 if (max_sector > mddev->resync_max)
1734 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1736 /* make sure whole request will fit in a chunk - if chunks
1737 * are meaningful
1739 if (conf->near_copies < conf->raid_disks &&
1740 max_sector > (sector_nr | conf->chunk_mask))
1741 max_sector = (sector_nr | conf->chunk_mask) + 1;
1743 * If there is non-resync activity waiting for us then
1744 * put in a delay to throttle resync.
1746 if (!go_faster && conf->nr_waiting)
1747 msleep_interruptible(1000);
1749 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1751 /* Again, very different code for resync and recovery.
1752 * Both must result in an r10bio with a list of bios that
1753 * have bi_end_io, bi_sector, bi_bdev set,
1754 * and bi_private set to the r10bio.
1755 * For recovery, we may actually create several r10bios
1756 * with 2 bios in each, that correspond to the bios in the main one.
1757 * In this case, the subordinate r10bios link back through a
1758 * borrowed master_bio pointer, and the counter in the master
1759 * includes a ref from each subordinate.
1761 /* First, we decide what to do and set ->bi_end_io
1762 * To end_sync_read if we want to read, and
1763 * end_sync_write if we will want to write.
1766 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1767 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1768 /* recovery... the complicated one */
1769 int i, j, k;
1770 r10_bio = NULL;
1772 for (i=0 ; i<conf->raid_disks; i++)
1773 if (conf->mirrors[i].rdev &&
1774 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1775 int still_degraded = 0;
1776 /* want to reconstruct this device */
1777 r10bio_t *rb2 = r10_bio;
1778 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1779 int must_sync;
1780 /* Unless we are doing a full sync, we only need
1781 * to recover the block if it is set in the bitmap
1783 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1784 &sync_blocks, 1);
1785 if (sync_blocks < max_sync)
1786 max_sync = sync_blocks;
1787 if (!must_sync &&
1788 !conf->fullsync) {
1789 /* yep, skip the sync_blocks here, but don't assume
1790 * that there will never be anything to do here
1792 chunks_skipped = -1;
1793 continue;
1796 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1797 raise_barrier(conf, rb2 != NULL);
1798 atomic_set(&r10_bio->remaining, 0);
1800 r10_bio->master_bio = (struct bio*)rb2;
1801 if (rb2)
1802 atomic_inc(&rb2->remaining);
1803 r10_bio->mddev = mddev;
1804 set_bit(R10BIO_IsRecover, &r10_bio->state);
1805 r10_bio->sector = sect;
1807 raid10_find_phys(conf, r10_bio);
1808 /* Need to check if this section will still be
1809 * degraded
1811 for (j=0; j<conf->copies;j++) {
1812 int d = r10_bio->devs[j].devnum;
1813 if (conf->mirrors[d].rdev == NULL ||
1814 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1815 still_degraded = 1;
1816 break;
1819 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1820 &sync_blocks, still_degraded);
1822 for (j=0; j<conf->copies;j++) {
1823 int d = r10_bio->devs[j].devnum;
1824 if (conf->mirrors[d].rdev &&
1825 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1826 /* This is where we read from */
1827 bio = r10_bio->devs[0].bio;
1828 bio->bi_next = biolist;
1829 biolist = bio;
1830 bio->bi_private = r10_bio;
1831 bio->bi_end_io = end_sync_read;
1832 bio->bi_rw = READ;
1833 bio->bi_sector = r10_bio->devs[j].addr +
1834 conf->mirrors[d].rdev->data_offset;
1835 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1836 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1837 atomic_inc(&r10_bio->remaining);
1838 /* and we write to 'i' */
1840 for (k=0; k<conf->copies; k++)
1841 if (r10_bio->devs[k].devnum == i)
1842 break;
1843 BUG_ON(k == conf->copies);
1844 bio = r10_bio->devs[1].bio;
1845 bio->bi_next = biolist;
1846 biolist = bio;
1847 bio->bi_private = r10_bio;
1848 bio->bi_end_io = end_sync_write;
1849 bio->bi_rw = WRITE;
1850 bio->bi_sector = r10_bio->devs[k].addr +
1851 conf->mirrors[i].rdev->data_offset;
1852 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1854 r10_bio->devs[0].devnum = d;
1855 r10_bio->devs[1].devnum = i;
1857 break;
1860 if (j == conf->copies) {
1861 /* Cannot recover, so abort the recovery */
1862 put_buf(r10_bio);
1863 if (rb2)
1864 atomic_dec(&rb2->remaining);
1865 r10_bio = rb2;
1866 if (!test_and_set_bit(MD_RECOVERY_INTR,
1867 &mddev->recovery))
1868 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1869 mdname(mddev));
1870 break;
1873 if (biolist == NULL) {
1874 while (r10_bio) {
1875 r10bio_t *rb2 = r10_bio;
1876 r10_bio = (r10bio_t*) rb2->master_bio;
1877 rb2->master_bio = NULL;
1878 put_buf(rb2);
1880 goto giveup;
1882 } else {
1883 /* resync. Schedule a read for every block at this virt offset */
1884 int count = 0;
1886 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1887 &sync_blocks, mddev->degraded) &&
1888 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1889 /* We can skip this block */
1890 *skipped = 1;
1891 return sync_blocks + sectors_skipped;
1893 if (sync_blocks < max_sync)
1894 max_sync = sync_blocks;
1895 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1897 r10_bio->mddev = mddev;
1898 atomic_set(&r10_bio->remaining, 0);
1899 raise_barrier(conf, 0);
1900 conf->next_resync = sector_nr;
1902 r10_bio->master_bio = NULL;
1903 r10_bio->sector = sector_nr;
1904 set_bit(R10BIO_IsSync, &r10_bio->state);
1905 raid10_find_phys(conf, r10_bio);
1906 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1908 for (i=0; i<conf->copies; i++) {
1909 int d = r10_bio->devs[i].devnum;
1910 bio = r10_bio->devs[i].bio;
1911 bio->bi_end_io = NULL;
1912 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1913 if (conf->mirrors[d].rdev == NULL ||
1914 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1915 continue;
1916 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1917 atomic_inc(&r10_bio->remaining);
1918 bio->bi_next = biolist;
1919 biolist = bio;
1920 bio->bi_private = r10_bio;
1921 bio->bi_end_io = end_sync_read;
1922 bio->bi_rw = READ;
1923 bio->bi_sector = r10_bio->devs[i].addr +
1924 conf->mirrors[d].rdev->data_offset;
1925 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1926 count++;
1929 if (count < 2) {
1930 for (i=0; i<conf->copies; i++) {
1931 int d = r10_bio->devs[i].devnum;
1932 if (r10_bio->devs[i].bio->bi_end_io)
1933 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1935 put_buf(r10_bio);
1936 biolist = NULL;
1937 goto giveup;
1941 for (bio = biolist; bio ; bio=bio->bi_next) {
1943 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1944 if (bio->bi_end_io)
1945 bio->bi_flags |= 1 << BIO_UPTODATE;
1946 bio->bi_vcnt = 0;
1947 bio->bi_idx = 0;
1948 bio->bi_phys_segments = 0;
1949 bio->bi_hw_segments = 0;
1950 bio->bi_size = 0;
1953 nr_sectors = 0;
1954 if (sector_nr + max_sync < max_sector)
1955 max_sector = sector_nr + max_sync;
1956 do {
1957 struct page *page;
1958 int len = PAGE_SIZE;
1959 disk = 0;
1960 if (sector_nr + (len>>9) > max_sector)
1961 len = (max_sector - sector_nr) << 9;
1962 if (len == 0)
1963 break;
1964 for (bio= biolist ; bio ; bio=bio->bi_next) {
1965 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1966 if (bio_add_page(bio, page, len, 0) == 0) {
1967 /* stop here */
1968 struct bio *bio2;
1969 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1970 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1971 /* remove last page from this bio */
1972 bio2->bi_vcnt--;
1973 bio2->bi_size -= len;
1974 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1976 goto bio_full;
1978 disk = i;
1980 nr_sectors += len>>9;
1981 sector_nr += len>>9;
1982 } while (biolist->bi_vcnt < RESYNC_PAGES);
1983 bio_full:
1984 r10_bio->sectors = nr_sectors;
1986 while (biolist) {
1987 bio = biolist;
1988 biolist = biolist->bi_next;
1990 bio->bi_next = NULL;
1991 r10_bio = bio->bi_private;
1992 r10_bio->sectors = nr_sectors;
1994 if (bio->bi_end_io == end_sync_read) {
1995 md_sync_acct(bio->bi_bdev, nr_sectors);
1996 generic_make_request(bio);
2000 if (sectors_skipped)
2001 /* pretend they weren't skipped, it makes
2002 * no important difference in this case
2004 md_done_sync(mddev, sectors_skipped, 1);
2006 return sectors_skipped + nr_sectors;
2007 giveup:
2008 /* There is nowhere to write, so all non-sync
2009 * drives must be failed, so try the next chunk...
2012 sector_t sec = max_sector - sector_nr;
2013 sectors_skipped += sec;
2014 chunks_skipped ++;
2015 sector_nr = max_sector;
2016 goto skipped;
2020 static int run(mddev_t *mddev)
2022 conf_t *conf;
2023 int i, disk_idx;
2024 mirror_info_t *disk;
2025 mdk_rdev_t *rdev;
2026 struct list_head *tmp;
2027 int nc, fc, fo;
2028 sector_t stride, size;
2030 if (mddev->chunk_size == 0) {
2031 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2032 return -EINVAL;
2035 nc = mddev->layout & 255;
2036 fc = (mddev->layout >> 8) & 255;
2037 fo = mddev->layout & (1<<16);
2038 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2039 (mddev->layout >> 17)) {
2040 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2041 mdname(mddev), mddev->layout);
2042 goto out;
2045 * copy the already verified devices into our private RAID10
2046 * bookkeeping area. [whatever we allocate in run(),
2047 * should be freed in stop()]
2049 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2050 mddev->private = conf;
2051 if (!conf) {
2052 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2053 mdname(mddev));
2054 goto out;
2056 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2057 GFP_KERNEL);
2058 if (!conf->mirrors) {
2059 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2060 mdname(mddev));
2061 goto out_free_conf;
2064 conf->tmppage = alloc_page(GFP_KERNEL);
2065 if (!conf->tmppage)
2066 goto out_free_conf;
2068 conf->mddev = mddev;
2069 conf->raid_disks = mddev->raid_disks;
2070 conf->near_copies = nc;
2071 conf->far_copies = fc;
2072 conf->copies = nc*fc;
2073 conf->far_offset = fo;
2074 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2075 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2076 size = mddev->size >> (conf->chunk_shift-1);
2077 sector_div(size, fc);
2078 size = size * conf->raid_disks;
2079 sector_div(size, nc);
2080 /* 'size' is now the number of chunks in the array */
2081 /* calculate "used chunks per device" in 'stride' */
2082 stride = size * conf->copies;
2084 /* We need to round up when dividing by raid_disks to
2085 * get the stride size.
2087 stride += conf->raid_disks - 1;
2088 sector_div(stride, conf->raid_disks);
2089 mddev->size = stride << (conf->chunk_shift-1);
2091 if (fo)
2092 stride = 1;
2093 else
2094 sector_div(stride, fc);
2095 conf->stride = stride << conf->chunk_shift;
2097 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2098 r10bio_pool_free, conf);
2099 if (!conf->r10bio_pool) {
2100 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2101 mdname(mddev));
2102 goto out_free_conf;
2105 spin_lock_init(&conf->device_lock);
2106 mddev->queue->queue_lock = &conf->device_lock;
2108 rdev_for_each(rdev, tmp, mddev) {
2109 disk_idx = rdev->raid_disk;
2110 if (disk_idx >= mddev->raid_disks
2111 || disk_idx < 0)
2112 continue;
2113 disk = conf->mirrors + disk_idx;
2115 disk->rdev = rdev;
2117 blk_queue_stack_limits(mddev->queue,
2118 rdev->bdev->bd_disk->queue);
2119 /* as we don't honour merge_bvec_fn, we must never risk
2120 * violating it, so limit ->max_sector to one PAGE, as
2121 * a one page request is never in violation.
2123 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2124 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2125 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2127 disk->head_position = 0;
2129 INIT_LIST_HEAD(&conf->retry_list);
2131 spin_lock_init(&conf->resync_lock);
2132 init_waitqueue_head(&conf->wait_barrier);
2134 /* need to check that every block has at least one working mirror */
2135 if (!enough(conf)) {
2136 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2137 mdname(mddev));
2138 goto out_free_conf;
2141 mddev->degraded = 0;
2142 for (i = 0; i < conf->raid_disks; i++) {
2144 disk = conf->mirrors + i;
2146 if (!disk->rdev ||
2147 !test_bit(In_sync, &disk->rdev->flags)) {
2148 disk->head_position = 0;
2149 mddev->degraded++;
2150 if (disk->rdev)
2151 conf->fullsync = 1;
2156 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2157 if (!mddev->thread) {
2158 printk(KERN_ERR
2159 "raid10: couldn't allocate thread for %s\n",
2160 mdname(mddev));
2161 goto out_free_conf;
2164 printk(KERN_INFO
2165 "raid10: raid set %s active with %d out of %d devices\n",
2166 mdname(mddev), mddev->raid_disks - mddev->degraded,
2167 mddev->raid_disks);
2169 * Ok, everything is just fine now
2171 mddev->array_sectors = size << conf->chunk_shift;
2172 mddev->resync_max_sectors = size << conf->chunk_shift;
2174 mddev->queue->unplug_fn = raid10_unplug;
2175 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2176 mddev->queue->backing_dev_info.congested_data = mddev;
2178 /* Calculate max read-ahead size.
2179 * We need to readahead at least twice a whole stripe....
2180 * maybe...
2183 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2184 stripe /= conf->near_copies;
2185 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2186 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2189 if (conf->near_copies < mddev->raid_disks)
2190 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2191 return 0;
2193 out_free_conf:
2194 if (conf->r10bio_pool)
2195 mempool_destroy(conf->r10bio_pool);
2196 safe_put_page(conf->tmppage);
2197 kfree(conf->mirrors);
2198 kfree(conf);
2199 mddev->private = NULL;
2200 out:
2201 return -EIO;
2204 static int stop(mddev_t *mddev)
2206 conf_t *conf = mddev_to_conf(mddev);
2208 md_unregister_thread(mddev->thread);
2209 mddev->thread = NULL;
2210 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2211 if (conf->r10bio_pool)
2212 mempool_destroy(conf->r10bio_pool);
2213 kfree(conf->mirrors);
2214 kfree(conf);
2215 mddev->private = NULL;
2216 return 0;
2219 static void raid10_quiesce(mddev_t *mddev, int state)
2221 conf_t *conf = mddev_to_conf(mddev);
2223 switch(state) {
2224 case 1:
2225 raise_barrier(conf, 0);
2226 break;
2227 case 0:
2228 lower_barrier(conf);
2229 break;
2231 if (mddev->thread) {
2232 if (mddev->bitmap)
2233 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2234 else
2235 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2236 md_wakeup_thread(mddev->thread);
2240 static struct mdk_personality raid10_personality =
2242 .name = "raid10",
2243 .level = 10,
2244 .owner = THIS_MODULE,
2245 .make_request = make_request,
2246 .run = run,
2247 .stop = stop,
2248 .status = status,
2249 .error_handler = error,
2250 .hot_add_disk = raid10_add_disk,
2251 .hot_remove_disk= raid10_remove_disk,
2252 .spare_active = raid10_spare_active,
2253 .sync_request = sync_request,
2254 .quiesce = raid10_quiesce,
2257 static int __init raid_init(void)
2259 return register_md_personality(&raid10_personality);
2262 static void raid_exit(void)
2264 unregister_md_personality(&raid10_personality);
2267 module_init(raid_init);
2268 module_exit(raid_exit);
2269 MODULE_LICENSE("GPL");
2270 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2271 MODULE_ALIAS("md-raid10");
2272 MODULE_ALIAS("md-level-10");