sched: Revert nohz_ratelimit() for now
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blob5ee397ee3bca70fc5db304aa36456acb27a77a78
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
95 #include <asm/processor.h>
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
146 extern void calc_global_load(void);
148 extern unsigned long get_parent_ip(unsigned long addr);
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 static inline void proc_sched_set_task(struct task_struct *p)
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 #endif
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
238 * If the caller does not need such serialisation then use __set_current_state()
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
248 #include <linux/spinlock.h>
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
259 struct task_struct;
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
271 extern int runqueue_is_locked(int cpu);
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern int select_nohz_load_balancer(int cpu);
276 extern int get_nohz_load_balancer(void);
277 #else
278 static inline int select_nohz_load_balancer(int cpu)
280 return 0;
282 #endif
285 * Only dump TASK_* tasks. (0 for all tasks)
287 extern void show_state_filter(unsigned long state_filter);
289 static inline void show_state(void)
291 show_state_filter(0);
294 extern void show_regs(struct pt_regs *);
297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
298 * task), SP is the stack pointer of the first frame that should be shown in the back
299 * trace (or NULL if the entire call-chain of the task should be shown).
301 extern void show_stack(struct task_struct *task, unsigned long *sp);
303 void io_schedule(void);
304 long io_schedule_timeout(long timeout);
306 extern void cpu_init (void);
307 extern void trap_init(void);
308 extern void update_process_times(int user);
309 extern void scheduler_tick(void);
311 extern void sched_show_task(struct task_struct *p);
313 #ifdef CONFIG_DETECT_SOFTLOCKUP
314 extern void softlockup_tick(void);
315 extern void touch_softlockup_watchdog(void);
316 extern void touch_softlockup_watchdog_sync(void);
317 extern void touch_all_softlockup_watchdogs(void);
318 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
319 void __user *buffer,
320 size_t *lenp, loff_t *ppos);
321 extern unsigned int softlockup_panic;
322 extern int softlockup_thresh;
323 #else
324 static inline void softlockup_tick(void)
327 static inline void touch_softlockup_watchdog(void)
330 static inline void touch_softlockup_watchdog_sync(void)
333 static inline void touch_all_softlockup_watchdogs(void)
336 #endif
338 #ifdef CONFIG_DETECT_HUNG_TASK
339 extern unsigned int sysctl_hung_task_panic;
340 extern unsigned long sysctl_hung_task_check_count;
341 extern unsigned long sysctl_hung_task_timeout_secs;
342 extern unsigned long sysctl_hung_task_warnings;
343 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
344 void __user *buffer,
345 size_t *lenp, loff_t *ppos);
346 #endif
348 /* Attach to any functions which should be ignored in wchan output. */
349 #define __sched __attribute__((__section__(".sched.text")))
351 /* Linker adds these: start and end of __sched functions */
352 extern char __sched_text_start[], __sched_text_end[];
354 /* Is this address in the __sched functions? */
355 extern int in_sched_functions(unsigned long addr);
357 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
358 extern signed long schedule_timeout(signed long timeout);
359 extern signed long schedule_timeout_interruptible(signed long timeout);
360 extern signed long schedule_timeout_killable(signed long timeout);
361 extern signed long schedule_timeout_uninterruptible(signed long timeout);
362 asmlinkage void schedule(void);
363 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
365 struct nsproxy;
366 struct user_namespace;
369 * Default maximum number of active map areas, this limits the number of vmas
370 * per mm struct. Users can overwrite this number by sysctl but there is a
371 * problem.
373 * When a program's coredump is generated as ELF format, a section is created
374 * per a vma. In ELF, the number of sections is represented in unsigned short.
375 * This means the number of sections should be smaller than 65535 at coredump.
376 * Because the kernel adds some informative sections to a image of program at
377 * generating coredump, we need some margin. The number of extra sections is
378 * 1-3 now and depends on arch. We use "5" as safe margin, here.
380 #define MAPCOUNT_ELF_CORE_MARGIN (5)
381 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
383 extern int sysctl_max_map_count;
385 #include <linux/aio.h>
387 #ifdef CONFIG_MMU
388 extern void arch_pick_mmap_layout(struct mm_struct *mm);
389 extern unsigned long
390 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
391 unsigned long, unsigned long);
392 extern unsigned long
393 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
394 unsigned long len, unsigned long pgoff,
395 unsigned long flags);
396 extern void arch_unmap_area(struct mm_struct *, unsigned long);
397 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
398 #else
399 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
400 #endif
403 extern void set_dumpable(struct mm_struct *mm, int value);
404 extern int get_dumpable(struct mm_struct *mm);
406 /* mm flags */
407 /* dumpable bits */
408 #define MMF_DUMPABLE 0 /* core dump is permitted */
409 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
411 #define MMF_DUMPABLE_BITS 2
412 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
414 /* coredump filter bits */
415 #define MMF_DUMP_ANON_PRIVATE 2
416 #define MMF_DUMP_ANON_SHARED 3
417 #define MMF_DUMP_MAPPED_PRIVATE 4
418 #define MMF_DUMP_MAPPED_SHARED 5
419 #define MMF_DUMP_ELF_HEADERS 6
420 #define MMF_DUMP_HUGETLB_PRIVATE 7
421 #define MMF_DUMP_HUGETLB_SHARED 8
423 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
424 #define MMF_DUMP_FILTER_BITS 7
425 #define MMF_DUMP_FILTER_MASK \
426 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
427 #define MMF_DUMP_FILTER_DEFAULT \
428 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
429 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
431 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
432 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
433 #else
434 # define MMF_DUMP_MASK_DEFAULT_ELF 0
435 #endif
436 /* leave room for more dump flags */
437 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441 struct sighand_struct {
442 atomic_t count;
443 struct k_sigaction action[_NSIG];
444 spinlock_t siglock;
445 wait_queue_head_t signalfd_wqh;
448 struct pacct_struct {
449 int ac_flag;
450 long ac_exitcode;
451 unsigned long ac_mem;
452 cputime_t ac_utime, ac_stime;
453 unsigned long ac_minflt, ac_majflt;
456 struct cpu_itimer {
457 cputime_t expires;
458 cputime_t incr;
459 u32 error;
460 u32 incr_error;
464 * struct task_cputime - collected CPU time counts
465 * @utime: time spent in user mode, in &cputime_t units
466 * @stime: time spent in kernel mode, in &cputime_t units
467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
469 * This structure groups together three kinds of CPU time that are
470 * tracked for threads and thread groups. Most things considering
471 * CPU time want to group these counts together and treat all three
472 * of them in parallel.
474 struct task_cputime {
475 cputime_t utime;
476 cputime_t stime;
477 unsigned long long sum_exec_runtime;
479 /* Alternate field names when used to cache expirations. */
480 #define prof_exp stime
481 #define virt_exp utime
482 #define sched_exp sum_exec_runtime
484 #define INIT_CPUTIME \
485 (struct task_cputime) { \
486 .utime = cputime_zero, \
487 .stime = cputime_zero, \
488 .sum_exec_runtime = 0, \
492 * Disable preemption until the scheduler is running.
493 * Reset by start_kernel()->sched_init()->init_idle().
495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496 * before the scheduler is active -- see should_resched().
498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
501 * struct thread_group_cputimer - thread group interval timer counts
502 * @cputime: thread group interval timers.
503 * @running: non-zero when there are timers running and
504 * @cputime receives updates.
505 * @lock: lock for fields in this struct.
507 * This structure contains the version of task_cputime, above, that is
508 * used for thread group CPU timer calculations.
510 struct thread_group_cputimer {
511 struct task_cputime cputime;
512 int running;
513 spinlock_t lock;
517 * NOTE! "signal_struct" does not have it's own
518 * locking, because a shared signal_struct always
519 * implies a shared sighand_struct, so locking
520 * sighand_struct is always a proper superset of
521 * the locking of signal_struct.
523 struct signal_struct {
524 atomic_t sigcnt;
525 atomic_t live;
526 int nr_threads;
528 wait_queue_head_t wait_chldexit; /* for wait4() */
530 /* current thread group signal load-balancing target: */
531 struct task_struct *curr_target;
533 /* shared signal handling: */
534 struct sigpending shared_pending;
536 /* thread group exit support */
537 int group_exit_code;
538 /* overloaded:
539 * - notify group_exit_task when ->count is equal to notify_count
540 * - everyone except group_exit_task is stopped during signal delivery
541 * of fatal signals, group_exit_task processes the signal.
543 int notify_count;
544 struct task_struct *group_exit_task;
546 /* thread group stop support, overloads group_exit_code too */
547 int group_stop_count;
548 unsigned int flags; /* see SIGNAL_* flags below */
550 /* POSIX.1b Interval Timers */
551 struct list_head posix_timers;
553 /* ITIMER_REAL timer for the process */
554 struct hrtimer real_timer;
555 struct pid *leader_pid;
556 ktime_t it_real_incr;
559 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
560 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
561 * values are defined to 0 and 1 respectively
563 struct cpu_itimer it[2];
566 * Thread group totals for process CPU timers.
567 * See thread_group_cputimer(), et al, for details.
569 struct thread_group_cputimer cputimer;
571 /* Earliest-expiration cache. */
572 struct task_cputime cputime_expires;
574 struct list_head cpu_timers[3];
576 struct pid *tty_old_pgrp;
578 /* boolean value for session group leader */
579 int leader;
581 struct tty_struct *tty; /* NULL if no tty */
584 * Cumulative resource counters for dead threads in the group,
585 * and for reaped dead child processes forked by this group.
586 * Live threads maintain their own counters and add to these
587 * in __exit_signal, except for the group leader.
589 cputime_t utime, stime, cutime, cstime;
590 cputime_t gtime;
591 cputime_t cgtime;
592 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
593 cputime_t prev_utime, prev_stime;
594 #endif
595 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
596 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
597 unsigned long inblock, oublock, cinblock, coublock;
598 unsigned long maxrss, cmaxrss;
599 struct task_io_accounting ioac;
602 * Cumulative ns of schedule CPU time fo dead threads in the
603 * group, not including a zombie group leader, (This only differs
604 * from jiffies_to_ns(utime + stime) if sched_clock uses something
605 * other than jiffies.)
607 unsigned long long sum_sched_runtime;
610 * We don't bother to synchronize most readers of this at all,
611 * because there is no reader checking a limit that actually needs
612 * to get both rlim_cur and rlim_max atomically, and either one
613 * alone is a single word that can safely be read normally.
614 * getrlimit/setrlimit use task_lock(current->group_leader) to
615 * protect this instead of the siglock, because they really
616 * have no need to disable irqs.
618 struct rlimit rlim[RLIM_NLIMITS];
620 #ifdef CONFIG_BSD_PROCESS_ACCT
621 struct pacct_struct pacct; /* per-process accounting information */
622 #endif
623 #ifdef CONFIG_TASKSTATS
624 struct taskstats *stats;
625 #endif
626 #ifdef CONFIG_AUDIT
627 unsigned audit_tty;
628 struct tty_audit_buf *tty_audit_buf;
629 #endif
631 int oom_adj; /* OOM kill score adjustment (bit shift) */
634 /* Context switch must be unlocked if interrupts are to be enabled */
635 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
636 # define __ARCH_WANT_UNLOCKED_CTXSW
637 #endif
640 * Bits in flags field of signal_struct.
642 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
643 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
644 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
645 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
647 * Pending notifications to parent.
649 #define SIGNAL_CLD_STOPPED 0x00000010
650 #define SIGNAL_CLD_CONTINUED 0x00000020
651 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
653 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
655 /* If true, all threads except ->group_exit_task have pending SIGKILL */
656 static inline int signal_group_exit(const struct signal_struct *sig)
658 return (sig->flags & SIGNAL_GROUP_EXIT) ||
659 (sig->group_exit_task != NULL);
663 * Some day this will be a full-fledged user tracking system..
665 struct user_struct {
666 atomic_t __count; /* reference count */
667 atomic_t processes; /* How many processes does this user have? */
668 atomic_t files; /* How many open files does this user have? */
669 atomic_t sigpending; /* How many pending signals does this user have? */
670 #ifdef CONFIG_INOTIFY_USER
671 atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
673 #endif
674 #ifdef CONFIG_EPOLL
675 atomic_t epoll_watches; /* The number of file descriptors currently watched */
676 #endif
677 #ifdef CONFIG_POSIX_MQUEUE
678 /* protected by mq_lock */
679 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
680 #endif
681 unsigned long locked_shm; /* How many pages of mlocked shm ? */
683 #ifdef CONFIG_KEYS
684 struct key *uid_keyring; /* UID specific keyring */
685 struct key *session_keyring; /* UID's default session keyring */
686 #endif
688 /* Hash table maintenance information */
689 struct hlist_node uidhash_node;
690 uid_t uid;
691 struct user_namespace *user_ns;
693 #ifdef CONFIG_PERF_EVENTS
694 atomic_long_t locked_vm;
695 #endif
698 extern int uids_sysfs_init(void);
700 extern struct user_struct *find_user(uid_t);
702 extern struct user_struct root_user;
703 #define INIT_USER (&root_user)
706 struct backing_dev_info;
707 struct reclaim_state;
709 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
710 struct sched_info {
711 /* cumulative counters */
712 unsigned long pcount; /* # of times run on this cpu */
713 unsigned long long run_delay; /* time spent waiting on a runqueue */
715 /* timestamps */
716 unsigned long long last_arrival,/* when we last ran on a cpu */
717 last_queued; /* when we were last queued to run */
718 #ifdef CONFIG_SCHEDSTATS
719 /* BKL stats */
720 unsigned int bkl_count;
721 #endif
723 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
725 #ifdef CONFIG_TASK_DELAY_ACCT
726 struct task_delay_info {
727 spinlock_t lock;
728 unsigned int flags; /* Private per-task flags */
730 /* For each stat XXX, add following, aligned appropriately
732 * struct timespec XXX_start, XXX_end;
733 * u64 XXX_delay;
734 * u32 XXX_count;
736 * Atomicity of updates to XXX_delay, XXX_count protected by
737 * single lock above (split into XXX_lock if contention is an issue).
741 * XXX_count is incremented on every XXX operation, the delay
742 * associated with the operation is added to XXX_delay.
743 * XXX_delay contains the accumulated delay time in nanoseconds.
745 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
746 u64 blkio_delay; /* wait for sync block io completion */
747 u64 swapin_delay; /* wait for swapin block io completion */
748 u32 blkio_count; /* total count of the number of sync block */
749 /* io operations performed */
750 u32 swapin_count; /* total count of the number of swapin block */
751 /* io operations performed */
753 struct timespec freepages_start, freepages_end;
754 u64 freepages_delay; /* wait for memory reclaim */
755 u32 freepages_count; /* total count of memory reclaim */
757 #endif /* CONFIG_TASK_DELAY_ACCT */
759 static inline int sched_info_on(void)
761 #ifdef CONFIG_SCHEDSTATS
762 return 1;
763 #elif defined(CONFIG_TASK_DELAY_ACCT)
764 extern int delayacct_on;
765 return delayacct_on;
766 #else
767 return 0;
768 #endif
771 enum cpu_idle_type {
772 CPU_IDLE,
773 CPU_NOT_IDLE,
774 CPU_NEWLY_IDLE,
775 CPU_MAX_IDLE_TYPES
779 * sched-domains (multiprocessor balancing) declarations:
783 * Increase resolution of nice-level calculations:
785 #define SCHED_LOAD_SHIFT 10
786 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
788 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
790 #ifdef CONFIG_SMP
791 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
792 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
793 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
794 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
795 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
796 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
797 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
798 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
799 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
800 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
801 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
803 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
805 enum powersavings_balance_level {
806 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
807 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
808 * first for long running threads
810 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
811 * cpu package for power savings
813 MAX_POWERSAVINGS_BALANCE_LEVELS
816 extern int sched_mc_power_savings, sched_smt_power_savings;
818 static inline int sd_balance_for_mc_power(void)
820 if (sched_smt_power_savings)
821 return SD_POWERSAVINGS_BALANCE;
823 if (!sched_mc_power_savings)
824 return SD_PREFER_SIBLING;
826 return 0;
829 static inline int sd_balance_for_package_power(void)
831 if (sched_mc_power_savings | sched_smt_power_savings)
832 return SD_POWERSAVINGS_BALANCE;
834 return SD_PREFER_SIBLING;
838 * Optimise SD flags for power savings:
839 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
840 * Keep default SD flags if sched_{smt,mc}_power_saving=0
843 static inline int sd_power_saving_flags(void)
845 if (sched_mc_power_savings | sched_smt_power_savings)
846 return SD_BALANCE_NEWIDLE;
848 return 0;
851 struct sched_group {
852 struct sched_group *next; /* Must be a circular list */
855 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
856 * single CPU.
858 unsigned int cpu_power;
861 * The CPUs this group covers.
863 * NOTE: this field is variable length. (Allocated dynamically
864 * by attaching extra space to the end of the structure,
865 * depending on how many CPUs the kernel has booted up with)
867 * It is also be embedded into static data structures at build
868 * time. (See 'struct static_sched_group' in kernel/sched.c)
870 unsigned long cpumask[0];
873 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
875 return to_cpumask(sg->cpumask);
878 enum sched_domain_level {
879 SD_LV_NONE = 0,
880 SD_LV_SIBLING,
881 SD_LV_MC,
882 SD_LV_CPU,
883 SD_LV_NODE,
884 SD_LV_ALLNODES,
885 SD_LV_MAX
888 struct sched_domain_attr {
889 int relax_domain_level;
892 #define SD_ATTR_INIT (struct sched_domain_attr) { \
893 .relax_domain_level = -1, \
896 struct sched_domain {
897 /* These fields must be setup */
898 struct sched_domain *parent; /* top domain must be null terminated */
899 struct sched_domain *child; /* bottom domain must be null terminated */
900 struct sched_group *groups; /* the balancing groups of the domain */
901 unsigned long min_interval; /* Minimum balance interval ms */
902 unsigned long max_interval; /* Maximum balance interval ms */
903 unsigned int busy_factor; /* less balancing by factor if busy */
904 unsigned int imbalance_pct; /* No balance until over watermark */
905 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
906 unsigned int busy_idx;
907 unsigned int idle_idx;
908 unsigned int newidle_idx;
909 unsigned int wake_idx;
910 unsigned int forkexec_idx;
911 unsigned int smt_gain;
912 int flags; /* See SD_* */
913 enum sched_domain_level level;
915 /* Runtime fields. */
916 unsigned long last_balance; /* init to jiffies. units in jiffies */
917 unsigned int balance_interval; /* initialise to 1. units in ms. */
918 unsigned int nr_balance_failed; /* initialise to 0 */
920 u64 last_update;
922 #ifdef CONFIG_SCHEDSTATS
923 /* load_balance() stats */
924 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
933 /* Active load balancing */
934 unsigned int alb_count;
935 unsigned int alb_failed;
936 unsigned int alb_pushed;
938 /* SD_BALANCE_EXEC stats */
939 unsigned int sbe_count;
940 unsigned int sbe_balanced;
941 unsigned int sbe_pushed;
943 /* SD_BALANCE_FORK stats */
944 unsigned int sbf_count;
945 unsigned int sbf_balanced;
946 unsigned int sbf_pushed;
948 /* try_to_wake_up() stats */
949 unsigned int ttwu_wake_remote;
950 unsigned int ttwu_move_affine;
951 unsigned int ttwu_move_balance;
952 #endif
953 #ifdef CONFIG_SCHED_DEBUG
954 char *name;
955 #endif
957 unsigned int span_weight;
959 * Span of all CPUs in this domain.
961 * NOTE: this field is variable length. (Allocated dynamically
962 * by attaching extra space to the end of the structure,
963 * depending on how many CPUs the kernel has booted up with)
965 * It is also be embedded into static data structures at build
966 * time. (See 'struct static_sched_domain' in kernel/sched.c)
968 unsigned long span[0];
971 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
973 return to_cpumask(sd->span);
976 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
977 struct sched_domain_attr *dattr_new);
979 /* Allocate an array of sched domains, for partition_sched_domains(). */
980 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
981 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
983 /* Test a flag in parent sched domain */
984 static inline int test_sd_parent(struct sched_domain *sd, int flag)
986 if (sd->parent && (sd->parent->flags & flag))
987 return 1;
989 return 0;
992 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
993 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
995 #else /* CONFIG_SMP */
997 struct sched_domain_attr;
999 static inline void
1000 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1001 struct sched_domain_attr *dattr_new)
1004 #endif /* !CONFIG_SMP */
1007 struct io_context; /* See blkdev.h */
1010 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011 extern void prefetch_stack(struct task_struct *t);
1012 #else
1013 static inline void prefetch_stack(struct task_struct *t) { }
1014 #endif
1016 struct audit_context; /* See audit.c */
1017 struct mempolicy;
1018 struct pipe_inode_info;
1019 struct uts_namespace;
1021 struct rq;
1022 struct sched_domain;
1025 * wake flags
1027 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1028 #define WF_FORK 0x02 /* child wakeup after fork */
1030 #define ENQUEUE_WAKEUP 1
1031 #define ENQUEUE_WAKING 2
1032 #define ENQUEUE_HEAD 4
1034 #define DEQUEUE_SLEEP 1
1036 struct sched_class {
1037 const struct sched_class *next;
1039 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1040 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1041 void (*yield_task) (struct rq *rq);
1043 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1045 struct task_struct * (*pick_next_task) (struct rq *rq);
1046 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1048 #ifdef CONFIG_SMP
1049 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1050 int sd_flag, int flags);
1052 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1053 void (*post_schedule) (struct rq *this_rq);
1054 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1055 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1057 void (*set_cpus_allowed)(struct task_struct *p,
1058 const struct cpumask *newmask);
1060 void (*rq_online)(struct rq *rq);
1061 void (*rq_offline)(struct rq *rq);
1062 #endif
1064 void (*set_curr_task) (struct rq *rq);
1065 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1066 void (*task_fork) (struct task_struct *p);
1068 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1069 int running);
1070 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1071 int running);
1072 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1073 int oldprio, int running);
1075 unsigned int (*get_rr_interval) (struct rq *rq,
1076 struct task_struct *task);
1078 #ifdef CONFIG_FAIR_GROUP_SCHED
1079 void (*moved_group) (struct task_struct *p, int on_rq);
1080 #endif
1083 struct load_weight {
1084 unsigned long weight, inv_weight;
1087 #ifdef CONFIG_SCHEDSTATS
1088 struct sched_statistics {
1089 u64 wait_start;
1090 u64 wait_max;
1091 u64 wait_count;
1092 u64 wait_sum;
1093 u64 iowait_count;
1094 u64 iowait_sum;
1096 u64 sleep_start;
1097 u64 sleep_max;
1098 s64 sum_sleep_runtime;
1100 u64 block_start;
1101 u64 block_max;
1102 u64 exec_max;
1103 u64 slice_max;
1105 u64 nr_migrations_cold;
1106 u64 nr_failed_migrations_affine;
1107 u64 nr_failed_migrations_running;
1108 u64 nr_failed_migrations_hot;
1109 u64 nr_forced_migrations;
1111 u64 nr_wakeups;
1112 u64 nr_wakeups_sync;
1113 u64 nr_wakeups_migrate;
1114 u64 nr_wakeups_local;
1115 u64 nr_wakeups_remote;
1116 u64 nr_wakeups_affine;
1117 u64 nr_wakeups_affine_attempts;
1118 u64 nr_wakeups_passive;
1119 u64 nr_wakeups_idle;
1121 #endif
1123 struct sched_entity {
1124 struct load_weight load; /* for load-balancing */
1125 struct rb_node run_node;
1126 struct list_head group_node;
1127 unsigned int on_rq;
1129 u64 exec_start;
1130 u64 sum_exec_runtime;
1131 u64 vruntime;
1132 u64 prev_sum_exec_runtime;
1134 u64 nr_migrations;
1136 #ifdef CONFIG_SCHEDSTATS
1137 struct sched_statistics statistics;
1138 #endif
1140 #ifdef CONFIG_FAIR_GROUP_SCHED
1141 struct sched_entity *parent;
1142 /* rq on which this entity is (to be) queued: */
1143 struct cfs_rq *cfs_rq;
1144 /* rq "owned" by this entity/group: */
1145 struct cfs_rq *my_q;
1146 #endif
1149 struct sched_rt_entity {
1150 struct list_head run_list;
1151 unsigned long timeout;
1152 unsigned int time_slice;
1153 int nr_cpus_allowed;
1155 struct sched_rt_entity *back;
1156 #ifdef CONFIG_RT_GROUP_SCHED
1157 struct sched_rt_entity *parent;
1158 /* rq on which this entity is (to be) queued: */
1159 struct rt_rq *rt_rq;
1160 /* rq "owned" by this entity/group: */
1161 struct rt_rq *my_q;
1162 #endif
1165 struct rcu_node;
1167 struct task_struct {
1168 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1169 void *stack;
1170 atomic_t usage;
1171 unsigned int flags; /* per process flags, defined below */
1172 unsigned int ptrace;
1174 int lock_depth; /* BKL lock depth */
1176 #ifdef CONFIG_SMP
1177 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1178 int oncpu;
1179 #endif
1180 #endif
1182 int prio, static_prio, normal_prio;
1183 unsigned int rt_priority;
1184 const struct sched_class *sched_class;
1185 struct sched_entity se;
1186 struct sched_rt_entity rt;
1188 #ifdef CONFIG_PREEMPT_NOTIFIERS
1189 /* list of struct preempt_notifier: */
1190 struct hlist_head preempt_notifiers;
1191 #endif
1194 * fpu_counter contains the number of consecutive context switches
1195 * that the FPU is used. If this is over a threshold, the lazy fpu
1196 * saving becomes unlazy to save the trap. This is an unsigned char
1197 * so that after 256 times the counter wraps and the behavior turns
1198 * lazy again; this to deal with bursty apps that only use FPU for
1199 * a short time
1201 unsigned char fpu_counter;
1202 #ifdef CONFIG_BLK_DEV_IO_TRACE
1203 unsigned int btrace_seq;
1204 #endif
1206 unsigned int policy;
1207 cpumask_t cpus_allowed;
1209 #ifdef CONFIG_TREE_PREEMPT_RCU
1210 int rcu_read_lock_nesting;
1211 char rcu_read_unlock_special;
1212 struct rcu_node *rcu_blocked_node;
1213 struct list_head rcu_node_entry;
1214 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1216 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1217 struct sched_info sched_info;
1218 #endif
1220 struct list_head tasks;
1221 struct plist_node pushable_tasks;
1223 struct mm_struct *mm, *active_mm;
1224 #if defined(SPLIT_RSS_COUNTING)
1225 struct task_rss_stat rss_stat;
1226 #endif
1227 /* task state */
1228 int exit_state;
1229 int exit_code, exit_signal;
1230 int pdeath_signal; /* The signal sent when the parent dies */
1231 /* ??? */
1232 unsigned int personality;
1233 unsigned did_exec:1;
1234 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1235 * execve */
1236 unsigned in_iowait:1;
1239 /* Revert to default priority/policy when forking */
1240 unsigned sched_reset_on_fork:1;
1242 pid_t pid;
1243 pid_t tgid;
1245 #ifdef CONFIG_CC_STACKPROTECTOR
1246 /* Canary value for the -fstack-protector gcc feature */
1247 unsigned long stack_canary;
1248 #endif
1251 * pointers to (original) parent process, youngest child, younger sibling,
1252 * older sibling, respectively. (p->father can be replaced with
1253 * p->real_parent->pid)
1255 struct task_struct *real_parent; /* real parent process */
1256 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1258 * children/sibling forms the list of my natural children
1260 struct list_head children; /* list of my children */
1261 struct list_head sibling; /* linkage in my parent's children list */
1262 struct task_struct *group_leader; /* threadgroup leader */
1265 * ptraced is the list of tasks this task is using ptrace on.
1266 * This includes both natural children and PTRACE_ATTACH targets.
1267 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1269 struct list_head ptraced;
1270 struct list_head ptrace_entry;
1272 /* PID/PID hash table linkage. */
1273 struct pid_link pids[PIDTYPE_MAX];
1274 struct list_head thread_group;
1276 struct completion *vfork_done; /* for vfork() */
1277 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1278 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1280 cputime_t utime, stime, utimescaled, stimescaled;
1281 cputime_t gtime;
1282 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1283 cputime_t prev_utime, prev_stime;
1284 #endif
1285 unsigned long nvcsw, nivcsw; /* context switch counts */
1286 struct timespec start_time; /* monotonic time */
1287 struct timespec real_start_time; /* boot based time */
1288 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1289 unsigned long min_flt, maj_flt;
1291 struct task_cputime cputime_expires;
1292 struct list_head cpu_timers[3];
1294 /* process credentials */
1295 const struct cred *real_cred; /* objective and real subjective task
1296 * credentials (COW) */
1297 const struct cred *cred; /* effective (overridable) subjective task
1298 * credentials (COW) */
1299 struct mutex cred_guard_mutex; /* guard against foreign influences on
1300 * credential calculations
1301 * (notably. ptrace) */
1302 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1304 char comm[TASK_COMM_LEN]; /* executable name excluding path
1305 - access with [gs]et_task_comm (which lock
1306 it with task_lock())
1307 - initialized normally by setup_new_exec */
1308 /* file system info */
1309 int link_count, total_link_count;
1310 #ifdef CONFIG_SYSVIPC
1311 /* ipc stuff */
1312 struct sysv_sem sysvsem;
1313 #endif
1314 #ifdef CONFIG_DETECT_HUNG_TASK
1315 /* hung task detection */
1316 unsigned long last_switch_count;
1317 #endif
1318 /* CPU-specific state of this task */
1319 struct thread_struct thread;
1320 /* filesystem information */
1321 struct fs_struct *fs;
1322 /* open file information */
1323 struct files_struct *files;
1324 /* namespaces */
1325 struct nsproxy *nsproxy;
1326 /* signal handlers */
1327 struct signal_struct *signal;
1328 struct sighand_struct *sighand;
1330 sigset_t blocked, real_blocked;
1331 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1332 struct sigpending pending;
1334 unsigned long sas_ss_sp;
1335 size_t sas_ss_size;
1336 int (*notifier)(void *priv);
1337 void *notifier_data;
1338 sigset_t *notifier_mask;
1339 struct audit_context *audit_context;
1340 #ifdef CONFIG_AUDITSYSCALL
1341 uid_t loginuid;
1342 unsigned int sessionid;
1343 #endif
1344 seccomp_t seccomp;
1346 /* Thread group tracking */
1347 u32 parent_exec_id;
1348 u32 self_exec_id;
1349 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1350 * mempolicy */
1351 spinlock_t alloc_lock;
1353 #ifdef CONFIG_GENERIC_HARDIRQS
1354 /* IRQ handler threads */
1355 struct irqaction *irqaction;
1356 #endif
1358 /* Protection of the PI data structures: */
1359 raw_spinlock_t pi_lock;
1361 #ifdef CONFIG_RT_MUTEXES
1362 /* PI waiters blocked on a rt_mutex held by this task */
1363 struct plist_head pi_waiters;
1364 /* Deadlock detection and priority inheritance handling */
1365 struct rt_mutex_waiter *pi_blocked_on;
1366 #endif
1368 #ifdef CONFIG_DEBUG_MUTEXES
1369 /* mutex deadlock detection */
1370 struct mutex_waiter *blocked_on;
1371 #endif
1372 #ifdef CONFIG_TRACE_IRQFLAGS
1373 unsigned int irq_events;
1374 unsigned long hardirq_enable_ip;
1375 unsigned long hardirq_disable_ip;
1376 unsigned int hardirq_enable_event;
1377 unsigned int hardirq_disable_event;
1378 int hardirqs_enabled;
1379 int hardirq_context;
1380 unsigned long softirq_disable_ip;
1381 unsigned long softirq_enable_ip;
1382 unsigned int softirq_disable_event;
1383 unsigned int softirq_enable_event;
1384 int softirqs_enabled;
1385 int softirq_context;
1386 #endif
1387 #ifdef CONFIG_LOCKDEP
1388 # define MAX_LOCK_DEPTH 48UL
1389 u64 curr_chain_key;
1390 int lockdep_depth;
1391 unsigned int lockdep_recursion;
1392 struct held_lock held_locks[MAX_LOCK_DEPTH];
1393 gfp_t lockdep_reclaim_gfp;
1394 #endif
1396 /* journalling filesystem info */
1397 void *journal_info;
1399 /* stacked block device info */
1400 struct bio_list *bio_list;
1402 /* VM state */
1403 struct reclaim_state *reclaim_state;
1405 struct backing_dev_info *backing_dev_info;
1407 struct io_context *io_context;
1409 unsigned long ptrace_message;
1410 siginfo_t *last_siginfo; /* For ptrace use. */
1411 struct task_io_accounting ioac;
1412 #if defined(CONFIG_TASK_XACCT)
1413 u64 acct_rss_mem1; /* accumulated rss usage */
1414 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1415 cputime_t acct_timexpd; /* stime + utime since last update */
1416 #endif
1417 #ifdef CONFIG_CPUSETS
1418 nodemask_t mems_allowed; /* Protected by alloc_lock */
1419 int mems_allowed_change_disable;
1420 int cpuset_mem_spread_rotor;
1421 int cpuset_slab_spread_rotor;
1422 #endif
1423 #ifdef CONFIG_CGROUPS
1424 /* Control Group info protected by css_set_lock */
1425 struct css_set *cgroups;
1426 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1427 struct list_head cg_list;
1428 #endif
1429 #ifdef CONFIG_FUTEX
1430 struct robust_list_head __user *robust_list;
1431 #ifdef CONFIG_COMPAT
1432 struct compat_robust_list_head __user *compat_robust_list;
1433 #endif
1434 struct list_head pi_state_list;
1435 struct futex_pi_state *pi_state_cache;
1436 #endif
1437 #ifdef CONFIG_PERF_EVENTS
1438 struct perf_event_context *perf_event_ctxp;
1439 struct mutex perf_event_mutex;
1440 struct list_head perf_event_list;
1441 #endif
1442 #ifdef CONFIG_NUMA
1443 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1444 short il_next;
1445 #endif
1446 atomic_t fs_excl; /* holding fs exclusive resources */
1447 struct rcu_head rcu;
1450 * cache last used pipe for splice
1452 struct pipe_inode_info *splice_pipe;
1453 #ifdef CONFIG_TASK_DELAY_ACCT
1454 struct task_delay_info *delays;
1455 #endif
1456 #ifdef CONFIG_FAULT_INJECTION
1457 int make_it_fail;
1458 #endif
1459 struct prop_local_single dirties;
1460 #ifdef CONFIG_LATENCYTOP
1461 int latency_record_count;
1462 struct latency_record latency_record[LT_SAVECOUNT];
1463 #endif
1465 * time slack values; these are used to round up poll() and
1466 * select() etc timeout values. These are in nanoseconds.
1468 unsigned long timer_slack_ns;
1469 unsigned long default_timer_slack_ns;
1471 struct list_head *scm_work_list;
1472 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1473 /* Index of current stored address in ret_stack */
1474 int curr_ret_stack;
1475 /* Stack of return addresses for return function tracing */
1476 struct ftrace_ret_stack *ret_stack;
1477 /* time stamp for last schedule */
1478 unsigned long long ftrace_timestamp;
1480 * Number of functions that haven't been traced
1481 * because of depth overrun.
1483 atomic_t trace_overrun;
1484 /* Pause for the tracing */
1485 atomic_t tracing_graph_pause;
1486 #endif
1487 #ifdef CONFIG_TRACING
1488 /* state flags for use by tracers */
1489 unsigned long trace;
1490 /* bitmask of trace recursion */
1491 unsigned long trace_recursion;
1492 #endif /* CONFIG_TRACING */
1493 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1494 struct memcg_batch_info {
1495 int do_batch; /* incremented when batch uncharge started */
1496 struct mem_cgroup *memcg; /* target memcg of uncharge */
1497 unsigned long bytes; /* uncharged usage */
1498 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1499 } memcg_batch;
1500 #endif
1503 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1504 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1507 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1508 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1509 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1510 * values are inverted: lower p->prio value means higher priority.
1512 * The MAX_USER_RT_PRIO value allows the actual maximum
1513 * RT priority to be separate from the value exported to
1514 * user-space. This allows kernel threads to set their
1515 * priority to a value higher than any user task. Note:
1516 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1519 #define MAX_USER_RT_PRIO 100
1520 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1522 #define MAX_PRIO (MAX_RT_PRIO + 40)
1523 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1525 static inline int rt_prio(int prio)
1527 if (unlikely(prio < MAX_RT_PRIO))
1528 return 1;
1529 return 0;
1532 static inline int rt_task(struct task_struct *p)
1534 return rt_prio(p->prio);
1537 static inline struct pid *task_pid(struct task_struct *task)
1539 return task->pids[PIDTYPE_PID].pid;
1542 static inline struct pid *task_tgid(struct task_struct *task)
1544 return task->group_leader->pids[PIDTYPE_PID].pid;
1548 * Without tasklist or rcu lock it is not safe to dereference
1549 * the result of task_pgrp/task_session even if task == current,
1550 * we can race with another thread doing sys_setsid/sys_setpgid.
1552 static inline struct pid *task_pgrp(struct task_struct *task)
1554 return task->group_leader->pids[PIDTYPE_PGID].pid;
1557 static inline struct pid *task_session(struct task_struct *task)
1559 return task->group_leader->pids[PIDTYPE_SID].pid;
1562 struct pid_namespace;
1565 * the helpers to get the task's different pids as they are seen
1566 * from various namespaces
1568 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1569 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1570 * current.
1571 * task_xid_nr_ns() : id seen from the ns specified;
1573 * set_task_vxid() : assigns a virtual id to a task;
1575 * see also pid_nr() etc in include/linux/pid.h
1577 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1578 struct pid_namespace *ns);
1580 static inline pid_t task_pid_nr(struct task_struct *tsk)
1582 return tsk->pid;
1585 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1586 struct pid_namespace *ns)
1588 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1591 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1593 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1597 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1599 return tsk->tgid;
1602 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1604 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1606 return pid_vnr(task_tgid(tsk));
1610 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1611 struct pid_namespace *ns)
1613 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1616 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1618 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1622 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1623 struct pid_namespace *ns)
1625 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1628 static inline pid_t task_session_vnr(struct task_struct *tsk)
1630 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1633 /* obsolete, do not use */
1634 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1636 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1640 * pid_alive - check that a task structure is not stale
1641 * @p: Task structure to be checked.
1643 * Test if a process is not yet dead (at most zombie state)
1644 * If pid_alive fails, then pointers within the task structure
1645 * can be stale and must not be dereferenced.
1647 static inline int pid_alive(struct task_struct *p)
1649 return p->pids[PIDTYPE_PID].pid != NULL;
1653 * is_global_init - check if a task structure is init
1654 * @tsk: Task structure to be checked.
1656 * Check if a task structure is the first user space task the kernel created.
1658 static inline int is_global_init(struct task_struct *tsk)
1660 return tsk->pid == 1;
1664 * is_container_init:
1665 * check whether in the task is init in its own pid namespace.
1667 extern int is_container_init(struct task_struct *tsk);
1669 extern struct pid *cad_pid;
1671 extern void free_task(struct task_struct *tsk);
1672 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1674 extern void __put_task_struct(struct task_struct *t);
1676 static inline void put_task_struct(struct task_struct *t)
1678 if (atomic_dec_and_test(&t->usage))
1679 __put_task_struct(t);
1682 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1683 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1686 * Per process flags
1688 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1689 /* Not implemented yet, only for 486*/
1690 #define PF_STARTING 0x00000002 /* being created */
1691 #define PF_EXITING 0x00000004 /* getting shut down */
1692 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1693 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1694 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1695 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1696 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1697 #define PF_DUMPCORE 0x00000200 /* dumped core */
1698 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1699 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1700 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1701 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1702 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1703 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1704 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1705 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1706 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1707 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1708 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1709 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1710 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1711 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1712 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1713 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1714 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1715 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1716 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1717 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1718 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1719 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1722 * Only the _current_ task can read/write to tsk->flags, but other
1723 * tasks can access tsk->flags in readonly mode for example
1724 * with tsk_used_math (like during threaded core dumping).
1725 * There is however an exception to this rule during ptrace
1726 * or during fork: the ptracer task is allowed to write to the
1727 * child->flags of its traced child (same goes for fork, the parent
1728 * can write to the child->flags), because we're guaranteed the
1729 * child is not running and in turn not changing child->flags
1730 * at the same time the parent does it.
1732 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1733 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1734 #define clear_used_math() clear_stopped_child_used_math(current)
1735 #define set_used_math() set_stopped_child_used_math(current)
1736 #define conditional_stopped_child_used_math(condition, child) \
1737 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1738 #define conditional_used_math(condition) \
1739 conditional_stopped_child_used_math(condition, current)
1740 #define copy_to_stopped_child_used_math(child) \
1741 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1742 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1743 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1744 #define used_math() tsk_used_math(current)
1746 #ifdef CONFIG_TREE_PREEMPT_RCU
1748 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1749 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1751 static inline void rcu_copy_process(struct task_struct *p)
1753 p->rcu_read_lock_nesting = 0;
1754 p->rcu_read_unlock_special = 0;
1755 p->rcu_blocked_node = NULL;
1756 INIT_LIST_HEAD(&p->rcu_node_entry);
1759 #else
1761 static inline void rcu_copy_process(struct task_struct *p)
1765 #endif
1767 #ifdef CONFIG_SMP
1768 extern int set_cpus_allowed_ptr(struct task_struct *p,
1769 const struct cpumask *new_mask);
1770 #else
1771 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1772 const struct cpumask *new_mask)
1774 if (!cpumask_test_cpu(0, new_mask))
1775 return -EINVAL;
1776 return 0;
1778 #endif
1780 #ifndef CONFIG_CPUMASK_OFFSTACK
1781 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1783 return set_cpus_allowed_ptr(p, &new_mask);
1785 #endif
1788 * Architectures can set this to 1 if they have specified
1789 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1790 * but then during bootup it turns out that sched_clock()
1791 * is reliable after all:
1793 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1794 extern int sched_clock_stable;
1795 #endif
1797 /* ftrace calls sched_clock() directly */
1798 extern unsigned long long notrace sched_clock(void);
1800 extern void sched_clock_init(void);
1801 extern u64 sched_clock_cpu(int cpu);
1803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804 static inline void sched_clock_tick(void)
1808 static inline void sched_clock_idle_sleep_event(void)
1812 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1815 #else
1816 extern void sched_clock_tick(void);
1817 extern void sched_clock_idle_sleep_event(void);
1818 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1819 #endif
1822 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1823 * clock constructed from sched_clock():
1825 extern unsigned long long cpu_clock(int cpu);
1827 extern unsigned long long
1828 task_sched_runtime(struct task_struct *task);
1829 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1831 /* sched_exec is called by processes performing an exec */
1832 #ifdef CONFIG_SMP
1833 extern void sched_exec(void);
1834 #else
1835 #define sched_exec() {}
1836 #endif
1838 extern void sched_clock_idle_sleep_event(void);
1839 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1841 #ifdef CONFIG_HOTPLUG_CPU
1842 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1843 extern void idle_task_exit(void);
1844 #else
1845 static inline void idle_task_exit(void) {}
1846 #endif
1848 extern void sched_idle_next(void);
1850 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1851 extern void wake_up_idle_cpu(int cpu);
1852 #else
1853 static inline void wake_up_idle_cpu(int cpu) { }
1854 #endif
1856 extern unsigned int sysctl_sched_latency;
1857 extern unsigned int sysctl_sched_min_granularity;
1858 extern unsigned int sysctl_sched_wakeup_granularity;
1859 extern unsigned int sysctl_sched_shares_ratelimit;
1860 extern unsigned int sysctl_sched_shares_thresh;
1861 extern unsigned int sysctl_sched_child_runs_first;
1863 enum sched_tunable_scaling {
1864 SCHED_TUNABLESCALING_NONE,
1865 SCHED_TUNABLESCALING_LOG,
1866 SCHED_TUNABLESCALING_LINEAR,
1867 SCHED_TUNABLESCALING_END,
1869 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1871 #ifdef CONFIG_SCHED_DEBUG
1872 extern unsigned int sysctl_sched_migration_cost;
1873 extern unsigned int sysctl_sched_nr_migrate;
1874 extern unsigned int sysctl_sched_time_avg;
1875 extern unsigned int sysctl_timer_migration;
1877 int sched_proc_update_handler(struct ctl_table *table, int write,
1878 void __user *buffer, size_t *length,
1879 loff_t *ppos);
1880 #endif
1881 #ifdef CONFIG_SCHED_DEBUG
1882 static inline unsigned int get_sysctl_timer_migration(void)
1884 return sysctl_timer_migration;
1886 #else
1887 static inline unsigned int get_sysctl_timer_migration(void)
1889 return 1;
1891 #endif
1892 extern unsigned int sysctl_sched_rt_period;
1893 extern int sysctl_sched_rt_runtime;
1895 int sched_rt_handler(struct ctl_table *table, int write,
1896 void __user *buffer, size_t *lenp,
1897 loff_t *ppos);
1899 extern unsigned int sysctl_sched_compat_yield;
1901 #ifdef CONFIG_RT_MUTEXES
1902 extern int rt_mutex_getprio(struct task_struct *p);
1903 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1904 extern void rt_mutex_adjust_pi(struct task_struct *p);
1905 #else
1906 static inline int rt_mutex_getprio(struct task_struct *p)
1908 return p->normal_prio;
1910 # define rt_mutex_adjust_pi(p) do { } while (0)
1911 #endif
1913 extern void set_user_nice(struct task_struct *p, long nice);
1914 extern int task_prio(const struct task_struct *p);
1915 extern int task_nice(const struct task_struct *p);
1916 extern int can_nice(const struct task_struct *p, const int nice);
1917 extern int task_curr(const struct task_struct *p);
1918 extern int idle_cpu(int cpu);
1919 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1920 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1921 struct sched_param *);
1922 extern struct task_struct *idle_task(int cpu);
1923 extern struct task_struct *curr_task(int cpu);
1924 extern void set_curr_task(int cpu, struct task_struct *p);
1926 void yield(void);
1929 * The default (Linux) execution domain.
1931 extern struct exec_domain default_exec_domain;
1933 union thread_union {
1934 struct thread_info thread_info;
1935 unsigned long stack[THREAD_SIZE/sizeof(long)];
1938 #ifndef __HAVE_ARCH_KSTACK_END
1939 static inline int kstack_end(void *addr)
1941 /* Reliable end of stack detection:
1942 * Some APM bios versions misalign the stack
1944 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1946 #endif
1948 extern union thread_union init_thread_union;
1949 extern struct task_struct init_task;
1951 extern struct mm_struct init_mm;
1953 extern struct pid_namespace init_pid_ns;
1956 * find a task by one of its numerical ids
1958 * find_task_by_pid_ns():
1959 * finds a task by its pid in the specified namespace
1960 * find_task_by_vpid():
1961 * finds a task by its virtual pid
1963 * see also find_vpid() etc in include/linux/pid.h
1966 extern struct task_struct *find_task_by_vpid(pid_t nr);
1967 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1968 struct pid_namespace *ns);
1970 extern void __set_special_pids(struct pid *pid);
1972 /* per-UID process charging. */
1973 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1974 static inline struct user_struct *get_uid(struct user_struct *u)
1976 atomic_inc(&u->__count);
1977 return u;
1979 extern void free_uid(struct user_struct *);
1980 extern void release_uids(struct user_namespace *ns);
1982 #include <asm/current.h>
1984 extern void do_timer(unsigned long ticks);
1986 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1987 extern int wake_up_process(struct task_struct *tsk);
1988 extern void wake_up_new_task(struct task_struct *tsk,
1989 unsigned long clone_flags);
1990 #ifdef CONFIG_SMP
1991 extern void kick_process(struct task_struct *tsk);
1992 #else
1993 static inline void kick_process(struct task_struct *tsk) { }
1994 #endif
1995 extern void sched_fork(struct task_struct *p, int clone_flags);
1996 extern void sched_dead(struct task_struct *p);
1998 extern void proc_caches_init(void);
1999 extern void flush_signals(struct task_struct *);
2000 extern void __flush_signals(struct task_struct *);
2001 extern void ignore_signals(struct task_struct *);
2002 extern void flush_signal_handlers(struct task_struct *, int force_default);
2003 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2005 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2007 unsigned long flags;
2008 int ret;
2010 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2011 ret = dequeue_signal(tsk, mask, info);
2012 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2014 return ret;
2017 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2018 sigset_t *mask);
2019 extern void unblock_all_signals(void);
2020 extern void release_task(struct task_struct * p);
2021 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2022 extern int force_sigsegv(int, struct task_struct *);
2023 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2024 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2025 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2026 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2027 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2028 extern int kill_pid(struct pid *pid, int sig, int priv);
2029 extern int kill_proc_info(int, struct siginfo *, pid_t);
2030 extern int do_notify_parent(struct task_struct *, int);
2031 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2032 extern void force_sig(int, struct task_struct *);
2033 extern int send_sig(int, struct task_struct *, int);
2034 extern int zap_other_threads(struct task_struct *p);
2035 extern struct sigqueue *sigqueue_alloc(void);
2036 extern void sigqueue_free(struct sigqueue *);
2037 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2038 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2039 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2041 static inline int kill_cad_pid(int sig, int priv)
2043 return kill_pid(cad_pid, sig, priv);
2046 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2047 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2048 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2049 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2052 * True if we are on the alternate signal stack.
2054 static inline int on_sig_stack(unsigned long sp)
2056 #ifdef CONFIG_STACK_GROWSUP
2057 return sp >= current->sas_ss_sp &&
2058 sp - current->sas_ss_sp < current->sas_ss_size;
2059 #else
2060 return sp > current->sas_ss_sp &&
2061 sp - current->sas_ss_sp <= current->sas_ss_size;
2062 #endif
2065 static inline int sas_ss_flags(unsigned long sp)
2067 return (current->sas_ss_size == 0 ? SS_DISABLE
2068 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2072 * Routines for handling mm_structs
2074 extern struct mm_struct * mm_alloc(void);
2076 /* mmdrop drops the mm and the page tables */
2077 extern void __mmdrop(struct mm_struct *);
2078 static inline void mmdrop(struct mm_struct * mm)
2080 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2081 __mmdrop(mm);
2084 /* mmput gets rid of the mappings and all user-space */
2085 extern void mmput(struct mm_struct *);
2086 /* Grab a reference to a task's mm, if it is not already going away */
2087 extern struct mm_struct *get_task_mm(struct task_struct *task);
2088 /* Remove the current tasks stale references to the old mm_struct */
2089 extern void mm_release(struct task_struct *, struct mm_struct *);
2090 /* Allocate a new mm structure and copy contents from tsk->mm */
2091 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2093 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2094 struct task_struct *, struct pt_regs *);
2095 extern void flush_thread(void);
2096 extern void exit_thread(void);
2098 extern void exit_files(struct task_struct *);
2099 extern void __cleanup_sighand(struct sighand_struct *);
2101 extern void exit_itimers(struct signal_struct *);
2102 extern void flush_itimer_signals(void);
2104 extern NORET_TYPE void do_group_exit(int);
2106 extern void daemonize(const char *, ...);
2107 extern int allow_signal(int);
2108 extern int disallow_signal(int);
2110 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2111 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2112 struct task_struct *fork_idle(int);
2114 extern void set_task_comm(struct task_struct *tsk, char *from);
2115 extern char *get_task_comm(char *to, struct task_struct *tsk);
2117 #ifdef CONFIG_SMP
2118 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2119 #else
2120 static inline unsigned long wait_task_inactive(struct task_struct *p,
2121 long match_state)
2123 return 1;
2125 #endif
2127 #define next_task(p) \
2128 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2130 #define for_each_process(p) \
2131 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2133 extern bool current_is_single_threaded(void);
2136 * Careful: do_each_thread/while_each_thread is a double loop so
2137 * 'break' will not work as expected - use goto instead.
2139 #define do_each_thread(g, t) \
2140 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2142 #define while_each_thread(g, t) \
2143 while ((t = next_thread(t)) != g)
2145 static inline int get_nr_threads(struct task_struct *tsk)
2147 return tsk->signal->nr_threads;
2150 /* de_thread depends on thread_group_leader not being a pid based check */
2151 #define thread_group_leader(p) (p == p->group_leader)
2153 /* Do to the insanities of de_thread it is possible for a process
2154 * to have the pid of the thread group leader without actually being
2155 * the thread group leader. For iteration through the pids in proc
2156 * all we care about is that we have a task with the appropriate
2157 * pid, we don't actually care if we have the right task.
2159 static inline int has_group_leader_pid(struct task_struct *p)
2161 return p->pid == p->tgid;
2164 static inline
2165 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2167 return p1->tgid == p2->tgid;
2170 static inline struct task_struct *next_thread(const struct task_struct *p)
2172 return list_entry_rcu(p->thread_group.next,
2173 struct task_struct, thread_group);
2176 static inline int thread_group_empty(struct task_struct *p)
2178 return list_empty(&p->thread_group);
2181 #define delay_group_leader(p) \
2182 (thread_group_leader(p) && !thread_group_empty(p))
2184 static inline int task_detached(struct task_struct *p)
2186 return p->exit_signal == -1;
2190 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2191 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2192 * pins the final release of task.io_context. Also protects ->cpuset and
2193 * ->cgroup.subsys[].
2195 * Nests both inside and outside of read_lock(&tasklist_lock).
2196 * It must not be nested with write_lock_irq(&tasklist_lock),
2197 * neither inside nor outside.
2199 static inline void task_lock(struct task_struct *p)
2201 spin_lock(&p->alloc_lock);
2204 static inline void task_unlock(struct task_struct *p)
2206 spin_unlock(&p->alloc_lock);
2209 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2210 unsigned long *flags);
2212 static inline void unlock_task_sighand(struct task_struct *tsk,
2213 unsigned long *flags)
2215 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2218 #ifndef __HAVE_THREAD_FUNCTIONS
2220 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2221 #define task_stack_page(task) ((task)->stack)
2223 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2225 *task_thread_info(p) = *task_thread_info(org);
2226 task_thread_info(p)->task = p;
2229 static inline unsigned long *end_of_stack(struct task_struct *p)
2231 return (unsigned long *)(task_thread_info(p) + 1);
2234 #endif
2236 static inline int object_is_on_stack(void *obj)
2238 void *stack = task_stack_page(current);
2240 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2243 extern void thread_info_cache_init(void);
2245 #ifdef CONFIG_DEBUG_STACK_USAGE
2246 static inline unsigned long stack_not_used(struct task_struct *p)
2248 unsigned long *n = end_of_stack(p);
2250 do { /* Skip over canary */
2251 n++;
2252 } while (!*n);
2254 return (unsigned long)n - (unsigned long)end_of_stack(p);
2256 #endif
2258 /* set thread flags in other task's structures
2259 * - see asm/thread_info.h for TIF_xxxx flags available
2261 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2263 set_ti_thread_flag(task_thread_info(tsk), flag);
2266 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2268 clear_ti_thread_flag(task_thread_info(tsk), flag);
2271 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2273 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2276 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2278 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2281 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2283 return test_ti_thread_flag(task_thread_info(tsk), flag);
2286 static inline void set_tsk_need_resched(struct task_struct *tsk)
2288 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2291 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2293 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2296 static inline int test_tsk_need_resched(struct task_struct *tsk)
2298 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2301 static inline int restart_syscall(void)
2303 set_tsk_thread_flag(current, TIF_SIGPENDING);
2304 return -ERESTARTNOINTR;
2307 static inline int signal_pending(struct task_struct *p)
2309 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2312 static inline int __fatal_signal_pending(struct task_struct *p)
2314 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2317 static inline int fatal_signal_pending(struct task_struct *p)
2319 return signal_pending(p) && __fatal_signal_pending(p);
2322 static inline int signal_pending_state(long state, struct task_struct *p)
2324 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2325 return 0;
2326 if (!signal_pending(p))
2327 return 0;
2329 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2332 static inline int need_resched(void)
2334 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2338 * cond_resched() and cond_resched_lock(): latency reduction via
2339 * explicit rescheduling in places that are safe. The return
2340 * value indicates whether a reschedule was done in fact.
2341 * cond_resched_lock() will drop the spinlock before scheduling,
2342 * cond_resched_softirq() will enable bhs before scheduling.
2344 extern int _cond_resched(void);
2346 #define cond_resched() ({ \
2347 __might_sleep(__FILE__, __LINE__, 0); \
2348 _cond_resched(); \
2351 extern int __cond_resched_lock(spinlock_t *lock);
2353 #ifdef CONFIG_PREEMPT
2354 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2355 #else
2356 #define PREEMPT_LOCK_OFFSET 0
2357 #endif
2359 #define cond_resched_lock(lock) ({ \
2360 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2361 __cond_resched_lock(lock); \
2364 extern int __cond_resched_softirq(void);
2366 #define cond_resched_softirq() ({ \
2367 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2368 __cond_resched_softirq(); \
2372 * Does a critical section need to be broken due to another
2373 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2374 * but a general need for low latency)
2376 static inline int spin_needbreak(spinlock_t *lock)
2378 #ifdef CONFIG_PREEMPT
2379 return spin_is_contended(lock);
2380 #else
2381 return 0;
2382 #endif
2386 * Thread group CPU time accounting.
2388 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2389 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2391 static inline void thread_group_cputime_init(struct signal_struct *sig)
2393 spin_lock_init(&sig->cputimer.lock);
2397 * Reevaluate whether the task has signals pending delivery.
2398 * Wake the task if so.
2399 * This is required every time the blocked sigset_t changes.
2400 * callers must hold sighand->siglock.
2402 extern void recalc_sigpending_and_wake(struct task_struct *t);
2403 extern void recalc_sigpending(void);
2405 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2408 * Wrappers for p->thread_info->cpu access. No-op on UP.
2410 #ifdef CONFIG_SMP
2412 static inline unsigned int task_cpu(const struct task_struct *p)
2414 return task_thread_info(p)->cpu;
2417 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2419 #else
2421 static inline unsigned int task_cpu(const struct task_struct *p)
2423 return 0;
2426 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2430 #endif /* CONFIG_SMP */
2432 #ifdef CONFIG_TRACING
2433 extern void
2434 __trace_special(void *__tr, void *__data,
2435 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2436 #else
2437 static inline void
2438 __trace_special(void *__tr, void *__data,
2439 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2442 #endif
2444 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2445 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2447 extern void normalize_rt_tasks(void);
2449 #ifdef CONFIG_CGROUP_SCHED
2451 extern struct task_group init_task_group;
2453 extern struct task_group *sched_create_group(struct task_group *parent);
2454 extern void sched_destroy_group(struct task_group *tg);
2455 extern void sched_move_task(struct task_struct *tsk);
2456 #ifdef CONFIG_FAIR_GROUP_SCHED
2457 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2458 extern unsigned long sched_group_shares(struct task_group *tg);
2459 #endif
2460 #ifdef CONFIG_RT_GROUP_SCHED
2461 extern int sched_group_set_rt_runtime(struct task_group *tg,
2462 long rt_runtime_us);
2463 extern long sched_group_rt_runtime(struct task_group *tg);
2464 extern int sched_group_set_rt_period(struct task_group *tg,
2465 long rt_period_us);
2466 extern long sched_group_rt_period(struct task_group *tg);
2467 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2468 #endif
2469 #endif
2471 extern int task_can_switch_user(struct user_struct *up,
2472 struct task_struct *tsk);
2474 #ifdef CONFIG_TASK_XACCT
2475 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2477 tsk->ioac.rchar += amt;
2480 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2482 tsk->ioac.wchar += amt;
2485 static inline void inc_syscr(struct task_struct *tsk)
2487 tsk->ioac.syscr++;
2490 static inline void inc_syscw(struct task_struct *tsk)
2492 tsk->ioac.syscw++;
2494 #else
2495 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2499 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2503 static inline void inc_syscr(struct task_struct *tsk)
2507 static inline void inc_syscw(struct task_struct *tsk)
2510 #endif
2512 #ifndef TASK_SIZE_OF
2513 #define TASK_SIZE_OF(tsk) TASK_SIZE
2514 #endif
2517 * Call the function if the target task is executing on a CPU right now:
2519 extern void task_oncpu_function_call(struct task_struct *p,
2520 void (*func) (void *info), void *info);
2523 #ifdef CONFIG_MM_OWNER
2524 extern void mm_update_next_owner(struct mm_struct *mm);
2525 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2526 #else
2527 static inline void mm_update_next_owner(struct mm_struct *mm)
2531 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2534 #endif /* CONFIG_MM_OWNER */
2536 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2537 unsigned int limit)
2539 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2542 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2543 unsigned int limit)
2545 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2548 static inline unsigned long rlimit(unsigned int limit)
2550 return task_rlimit(current, limit);
2553 static inline unsigned long rlimit_max(unsigned int limit)
2555 return task_rlimit_max(current, limit);
2558 #endif /* __KERNEL__ */
2560 #endif