drm/i915: Do interrupible mutex lock first to avoid locking for unreference
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob34a07fc2051335f1ae09638389a278f6fe5474c7
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
115 i915_gem_check_is_wedged(struct drm_device *dev)
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
178 drm_i915_private_t *dev_priv = dev->dev_private;
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
189 dev_priv->mm.gtt_total = end - start;
191 return 0;
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
198 struct drm_i915_gem_init *args = data;
199 int ret;
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
205 return ret;
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
223 return 0;
228 * Creates a new mm object and returns a handle to it.
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
239 args->size = roundup(args->size, PAGE_SIZE);
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
258 args->handle = handle;
259 return 0;
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
268 char *vaddr;
269 int ret;
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr, KM_USER0);
275 return ret;
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
294 char *dst_vaddr, *src_vaddr;
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
301 kunmap(src_page);
302 kunmap(dst_page);
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
313 char *gpu_vaddr, *cpu_vaddr;
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
350 kunmap(cpu_page);
351 kunmap(gpu_page);
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
376 while (remain > 0) {
377 /* Operation in this page
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
399 return 0;
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
405 int ret;
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
420 ret = i915_gem_object_get_pages(obj, 0);
423 return ret;
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
450 remain = args->size;
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
486 while (remain > 0) {
487 /* Operation in this page
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
531 drm_free_large(user_pages);
533 return ret;
537 * Reads data from the object referenced by handle.
539 * On error, the contents of *data are undefined.
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
550 ret = i915_mutex_lock_interruptible(dev);
551 if (ret)
552 return ret;
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
559 obj_priv = to_intel_bo(obj);
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
563 ret = -EINVAL;
564 goto out;
567 if (args->size == 0)
568 goto out;
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
574 goto out;
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
600 out_put:
601 i915_gem_object_put_pages(obj);
602 out:
603 drm_gem_object_unreference(obj);
604 unlock:
605 mutex_unlock(&dev->struct_mutex);
606 return ret;
609 /* This is the fast write path which cannot handle
610 * page faults in the source data
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
619 char *vaddr_atomic;
620 unsigned long unwritten;
622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
625 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
626 return unwritten;
629 /* Here's the write path which can sleep for
630 * page faults
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
653 static inline int
654 fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
659 char *vaddr;
660 int ret;
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 kunmap_atomic(vaddr, KM_USER0);
666 return ret;
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t offset, page_base;
682 char __user *user_data;
683 int page_offset, page_length;
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
688 obj_priv = to_intel_bo(obj);
689 offset = obj_priv->gtt_offset + args->offset;
691 while (remain > 0) {
692 /* Operation in this page
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
711 return -EFAULT;
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
718 return 0;
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
742 int ret;
743 uint64_t data_ptr = args->data_ptr;
745 remain = args->size;
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 if (user_pages == NULL)
757 return -ENOMEM;
759 mutex_unlock(&dev->struct_mutex);
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
764 mutex_lock(&dev->struct_mutex);
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
772 goto out_unpin_pages;
774 obj_priv = to_intel_bo(obj);
775 offset = obj_priv->gtt_offset + args->offset;
777 while (remain > 0) {
778 /* Operation in this page
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
808 out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
811 drm_free_large(user_pages);
813 return ret;
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
834 obj_priv = to_intel_bo(obj);
835 offset = args->offset;
836 obj_priv->dirty = 1;
838 while (remain > 0) {
839 /* Operation in this page
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
851 if (fast_shmem_write(obj_priv->pages,
852 page_base, page_offset,
853 user_data, page_length))
854 return -EFAULT;
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
861 return 0;
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
887 int do_bit17_swizzling;
889 remain = args->size;
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 if (user_pages == NULL)
901 return -ENOMEM;
903 mutex_unlock(&dev->struct_mutex);
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
908 mutex_lock(&dev->struct_mutex);
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
911 goto out;
914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915 if (ret)
916 goto out;
918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
920 obj_priv = to_intel_bo(obj);
921 offset = args->offset;
922 obj_priv->dirty = 1;
924 while (remain > 0) {
925 /* Operation in this page
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
944 if (do_bit17_swizzling) {
945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
949 page_length,
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
964 out:
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
967 drm_free_large(user_pages);
969 return ret;
973 * Writes data to the object referenced by handle.
975 * On error, the contents of the buffer that were to be modified are undefined.
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
986 ret = i915_mutex_lock_interruptible(dev);
987 if (ret)
988 return ret;
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
995 obj_priv = to_intel_bo(obj);
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000 ret = -EINVAL;
1001 goto out;
1004 if (args->size == 0)
1005 goto out;
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
1011 goto out;
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1027 if (obj_priv->phys_obj)
1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030 obj_priv->gtt_space &&
1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1044 out_unpin:
1045 i915_gem_object_unpin(obj);
1046 } else {
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1061 out_put:
1062 i915_gem_object_put_pages(obj);
1065 out:
1066 drm_gem_object_unreference(obj);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
1083 struct drm_i915_gem_object *obj_priv;
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
1086 int ret;
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1091 /* Only handle setting domains to types used by the CPU. */
1092 if (write_domain & I915_GEM_GPU_DOMAINS)
1093 return -EINVAL;
1095 if (read_domains & I915_GEM_GPU_DOMAINS)
1096 return -EINVAL;
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 return ret;
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
1113 obj_priv = to_intel_bo(obj);
1115 intel_mark_busy(dev, obj);
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
1127 &dev_priv->mm.fence_list);
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1134 if (ret == -EINVAL)
1135 ret = 0;
1136 } else {
1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1144 drm_gem_object_unreference(obj);
1145 unlock:
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1151 * Called when user space has done writes to this buffer
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
1159 int ret = 0;
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1164 ret = i915_mutex_lock_interruptible(dev);
1165 if (ret)
1166 return ret;
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
1174 /* Pinned buffers may be scanout, so flush the cache */
1175 if (to_intel_bo(obj)->pin_count)
1176 i915_gem_object_flush_cpu_write_domain(obj);
1178 drm_gem_object_unreference(obj);
1179 unlock:
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1207 offset = args->offset;
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
1214 drm_gem_object_unreference_unlocked(obj);
1215 if (IS_ERR((void *)addr))
1216 return addr;
1218 args->addr_ptr = (uint64_t) addr;
1220 return 0;
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
1243 drm_i915_private_t *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 if (ret)
1259 goto unlock;
1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 if (ret)
1263 goto unlock;
1266 /* Need a new fence register? */
1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268 ret = i915_gem_object_get_fence_reg(obj, true);
1269 if (ret)
1270 goto unlock;
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282 mutex_unlock(&dev->struct_mutex);
1284 switch (ret) {
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
1291 default:
1292 return VM_FAULT_SIGBUS;
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1305 * This routine allocates and attaches a fake offset for @obj.
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_map_list *list;
1314 struct drm_local_map *map;
1315 int ret = 0;
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 if (!list->map)
1321 return -ENOMEM;
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333 ret = -ENOSPC;
1334 goto out_free_list;
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1344 list->hash.key = list->file_offset_node->start;
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1355 return 0;
1357 out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360 kfree(list->map);
1362 return ret;
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1369 * Preserve the reservation of the mmapping with the DRM core code, but
1370 * relinquish ownership of the pages back to the system.
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1382 struct drm_device *dev = obj->dev;
1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1393 struct drm_device *dev = obj->dev;
1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1406 if (list->map) {
1407 kfree(list->map);
1408 list->map = NULL;
1411 obj_priv->mmap_offset = 0;
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1424 struct drm_device *dev = obj->dev;
1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 int start, i;
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 return 4096;
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1439 if (INTEL_INFO(dev)->gen == 3)
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1444 for (i = start; i < obj->size; i <<= 1)
1447 return i;
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1469 struct drm_i915_gem_mmap_gtt *args = data;
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1486 obj_priv = to_intel_bo(obj);
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 ret = -EINVAL;
1491 goto out;
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1496 if (ret)
1497 goto out;
1500 args->offset = obj_priv->mmap_offset;
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1506 if (!obj_priv->agp_mem) {
1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 if (ret)
1509 goto out;
1512 out:
1513 drm_gem_object_unreference(obj);
1514 unlock:
1515 mutex_unlock(&dev->struct_mutex);
1516 return ret;
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1526 BUG_ON(obj_priv->pages_refcount == 0);
1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1535 if (obj_priv->madv == I915_MADV_DONTNEED)
1536 obj_priv->dirty = 0;
1538 for (i = 0; i < page_count; i++) {
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
1543 mark_page_accessed(obj_priv->pages[i]);
1545 page_cache_release(obj_priv->pages[i]);
1547 obj_priv->dirty = 0;
1549 drm_free_large(obj_priv->pages);
1550 obj_priv->pages = NULL;
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565 struct intel_ring_buffer *ring)
1567 struct drm_device *dev = obj->dev;
1568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1569 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1571 BUG_ON(ring == NULL);
1572 obj_priv->ring = ring;
1574 /* Add a reference if we're newly entering the active list. */
1575 if (!obj_priv->active) {
1576 drm_gem_object_reference(obj);
1577 obj_priv->active = 1;
1580 /* Move from whatever list we were on to the tail of execution. */
1581 list_move_tail(&obj_priv->list, &ring->active_list);
1582 obj_priv->last_rendering_seqno = seqno;
1585 static void
1586 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1588 struct drm_device *dev = obj->dev;
1589 drm_i915_private_t *dev_priv = dev->dev_private;
1590 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1592 BUG_ON(!obj_priv->active);
1593 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1594 obj_priv->last_rendering_seqno = 0;
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_gem_object *obj)
1601 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1602 struct inode *inode;
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*. Here we mirror the actions taken
1608 * when by shmem_delete_inode() to release the backing store.
1610 inode = obj->filp->f_path.dentry->d_inode;
1611 truncate_inode_pages(inode->i_mapping, 0);
1612 if (inode->i_op->truncate_range)
1613 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1615 obj_priv->madv = __I915_MADV_PURGED;
1618 static inline int
1619 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1621 return obj_priv->madv == I915_MADV_DONTNEED;
1624 static void
1625 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1627 struct drm_device *dev = obj->dev;
1628 drm_i915_private_t *dev_priv = dev->dev_private;
1629 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1631 if (obj_priv->pin_count != 0)
1632 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1633 else
1634 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1636 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1638 obj_priv->last_rendering_seqno = 0;
1639 obj_priv->ring = NULL;
1640 if (obj_priv->active) {
1641 obj_priv->active = 0;
1642 drm_gem_object_unreference(obj);
1644 WARN_ON(i915_verify_lists(dev));
1647 static void
1648 i915_gem_process_flushing_list(struct drm_device *dev,
1649 uint32_t flush_domains,
1650 struct intel_ring_buffer *ring)
1652 drm_i915_private_t *dev_priv = dev->dev_private;
1653 struct drm_i915_gem_object *obj_priv, *next;
1655 list_for_each_entry_safe(obj_priv, next,
1656 &dev_priv->mm.gpu_write_list,
1657 gpu_write_list) {
1658 struct drm_gem_object *obj = &obj_priv->base;
1660 if (obj->write_domain & flush_domains &&
1661 obj_priv->ring == ring) {
1662 uint32_t old_write_domain = obj->write_domain;
1664 obj->write_domain = 0;
1665 list_del_init(&obj_priv->gpu_write_list);
1666 i915_gem_object_move_to_active(obj, ring);
1668 /* update the fence lru list */
1669 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1670 struct drm_i915_fence_reg *reg =
1671 &dev_priv->fence_regs[obj_priv->fence_reg];
1672 list_move_tail(&reg->lru_list,
1673 &dev_priv->mm.fence_list);
1676 trace_i915_gem_object_change_domain(obj,
1677 obj->read_domains,
1678 old_write_domain);
1683 uint32_t
1684 i915_add_request(struct drm_device *dev,
1685 struct drm_file *file,
1686 struct drm_i915_gem_request *request,
1687 struct intel_ring_buffer *ring)
1689 drm_i915_private_t *dev_priv = dev->dev_private;
1690 struct drm_i915_file_private *file_priv = NULL;
1691 uint32_t seqno;
1692 int was_empty;
1694 if (file != NULL)
1695 file_priv = file->driver_priv;
1697 if (request == NULL) {
1698 request = kzalloc(sizeof(*request), GFP_KERNEL);
1699 if (request == NULL)
1700 return 0;
1703 seqno = ring->add_request(dev, ring, 0);
1704 ring->outstanding_lazy_request = false;
1706 request->seqno = seqno;
1707 request->ring = ring;
1708 request->emitted_jiffies = jiffies;
1709 was_empty = list_empty(&ring->request_list);
1710 list_add_tail(&request->list, &ring->request_list);
1712 if (file_priv) {
1713 spin_lock(&file_priv->mm.lock);
1714 request->file_priv = file_priv;
1715 list_add_tail(&request->client_list,
1716 &file_priv->mm.request_list);
1717 spin_unlock(&file_priv->mm.lock);
1720 if (!dev_priv->mm.suspended) {
1721 mod_timer(&dev_priv->hangcheck_timer,
1722 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1723 if (was_empty)
1724 queue_delayed_work(dev_priv->wq,
1725 &dev_priv->mm.retire_work, HZ);
1727 return seqno;
1731 * Command execution barrier
1733 * Ensures that all commands in the ring are finished
1734 * before signalling the CPU
1736 static void
1737 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1739 uint32_t flush_domains = 0;
1741 /* The sampler always gets flushed on i965 (sigh) */
1742 if (INTEL_INFO(dev)->gen >= 4)
1743 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1745 ring->flush(dev, ring,
1746 I915_GEM_DOMAIN_COMMAND, flush_domains);
1749 static inline void
1750 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1752 struct drm_i915_file_private *file_priv = request->file_priv;
1754 if (!file_priv)
1755 return;
1757 spin_lock(&file_priv->mm.lock);
1758 list_del(&request->client_list);
1759 request->file_priv = NULL;
1760 spin_unlock(&file_priv->mm.lock);
1763 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1764 struct intel_ring_buffer *ring)
1766 while (!list_empty(&ring->request_list)) {
1767 struct drm_i915_gem_request *request;
1769 request = list_first_entry(&ring->request_list,
1770 struct drm_i915_gem_request,
1771 list);
1773 list_del(&request->list);
1774 i915_gem_request_remove_from_client(request);
1775 kfree(request);
1778 while (!list_empty(&ring->active_list)) {
1779 struct drm_i915_gem_object *obj_priv;
1781 obj_priv = list_first_entry(&ring->active_list,
1782 struct drm_i915_gem_object,
1783 list);
1785 obj_priv->base.write_domain = 0;
1786 list_del_init(&obj_priv->gpu_write_list);
1787 i915_gem_object_move_to_inactive(&obj_priv->base);
1791 void i915_gem_reset(struct drm_device *dev)
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct drm_i915_gem_object *obj_priv;
1795 int i;
1797 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1798 if (HAS_BSD(dev))
1799 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1801 /* Remove anything from the flushing lists. The GPU cache is likely
1802 * to be lost on reset along with the data, so simply move the
1803 * lost bo to the inactive list.
1805 while (!list_empty(&dev_priv->mm.flushing_list)) {
1806 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1807 struct drm_i915_gem_object,
1808 list);
1810 obj_priv->base.write_domain = 0;
1811 list_del_init(&obj_priv->gpu_write_list);
1812 i915_gem_object_move_to_inactive(&obj_priv->base);
1815 /* Move everything out of the GPU domains to ensure we do any
1816 * necessary invalidation upon reuse.
1818 list_for_each_entry(obj_priv,
1819 &dev_priv->mm.inactive_list,
1820 list)
1822 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1825 /* The fence registers are invalidated so clear them out */
1826 for (i = 0; i < 16; i++) {
1827 struct drm_i915_fence_reg *reg;
1829 reg = &dev_priv->fence_regs[i];
1830 if (!reg->obj)
1831 continue;
1833 i915_gem_clear_fence_reg(reg->obj);
1838 * This function clears the request list as sequence numbers are passed.
1840 static void
1841 i915_gem_retire_requests_ring(struct drm_device *dev,
1842 struct intel_ring_buffer *ring)
1844 drm_i915_private_t *dev_priv = dev->dev_private;
1845 uint32_t seqno;
1847 if (!ring->status_page.page_addr ||
1848 list_empty(&ring->request_list))
1849 return;
1851 WARN_ON(i915_verify_lists(dev));
1853 seqno = ring->get_seqno(dev, ring);
1854 while (!list_empty(&ring->request_list)) {
1855 struct drm_i915_gem_request *request;
1857 request = list_first_entry(&ring->request_list,
1858 struct drm_i915_gem_request,
1859 list);
1861 if (!i915_seqno_passed(seqno, request->seqno))
1862 break;
1864 trace_i915_gem_request_retire(dev, request->seqno);
1866 list_del(&request->list);
1867 i915_gem_request_remove_from_client(request);
1868 kfree(request);
1871 /* Move any buffers on the active list that are no longer referenced
1872 * by the ringbuffer to the flushing/inactive lists as appropriate.
1874 while (!list_empty(&ring->active_list)) {
1875 struct drm_gem_object *obj;
1876 struct drm_i915_gem_object *obj_priv;
1878 obj_priv = list_first_entry(&ring->active_list,
1879 struct drm_i915_gem_object,
1880 list);
1882 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1883 break;
1885 obj = &obj_priv->base;
1886 if (obj->write_domain != 0)
1887 i915_gem_object_move_to_flushing(obj);
1888 else
1889 i915_gem_object_move_to_inactive(obj);
1892 if (unlikely (dev_priv->trace_irq_seqno &&
1893 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1894 ring->user_irq_put(dev, ring);
1895 dev_priv->trace_irq_seqno = 0;
1898 WARN_ON(i915_verify_lists(dev));
1901 void
1902 i915_gem_retire_requests(struct drm_device *dev)
1904 drm_i915_private_t *dev_priv = dev->dev_private;
1906 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1907 struct drm_i915_gem_object *obj_priv, *tmp;
1909 /* We must be careful that during unbind() we do not
1910 * accidentally infinitely recurse into retire requests.
1911 * Currently:
1912 * retire -> free -> unbind -> wait -> retire_ring
1914 list_for_each_entry_safe(obj_priv, tmp,
1915 &dev_priv->mm.deferred_free_list,
1916 list)
1917 i915_gem_free_object_tail(&obj_priv->base);
1920 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1921 if (HAS_BSD(dev))
1922 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1925 static void
1926 i915_gem_retire_work_handler(struct work_struct *work)
1928 drm_i915_private_t *dev_priv;
1929 struct drm_device *dev;
1931 dev_priv = container_of(work, drm_i915_private_t,
1932 mm.retire_work.work);
1933 dev = dev_priv->dev;
1935 /* Come back later if the device is busy... */
1936 if (!mutex_trylock(&dev->struct_mutex)) {
1937 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1938 return;
1941 i915_gem_retire_requests(dev);
1943 if (!dev_priv->mm.suspended &&
1944 (!list_empty(&dev_priv->render_ring.request_list) ||
1945 (HAS_BSD(dev) &&
1946 !list_empty(&dev_priv->bsd_ring.request_list))))
1947 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1948 mutex_unlock(&dev->struct_mutex);
1952 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1953 bool interruptible, struct intel_ring_buffer *ring)
1955 drm_i915_private_t *dev_priv = dev->dev_private;
1956 u32 ier;
1957 int ret = 0;
1959 BUG_ON(seqno == 0);
1961 if (atomic_read(&dev_priv->mm.wedged))
1962 return -EAGAIN;
1964 if (ring->outstanding_lazy_request) {
1965 seqno = i915_add_request(dev, NULL, NULL, ring);
1966 if (seqno == 0)
1967 return -ENOMEM;
1969 BUG_ON(seqno == dev_priv->next_seqno);
1971 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1972 if (HAS_PCH_SPLIT(dev))
1973 ier = I915_READ(DEIER) | I915_READ(GTIER);
1974 else
1975 ier = I915_READ(IER);
1976 if (!ier) {
1977 DRM_ERROR("something (likely vbetool) disabled "
1978 "interrupts, re-enabling\n");
1979 i915_driver_irq_preinstall(dev);
1980 i915_driver_irq_postinstall(dev);
1983 trace_i915_gem_request_wait_begin(dev, seqno);
1985 ring->waiting_gem_seqno = seqno;
1986 ring->user_irq_get(dev, ring);
1987 if (interruptible)
1988 ret = wait_event_interruptible(ring->irq_queue,
1989 i915_seqno_passed(
1990 ring->get_seqno(dev, ring), seqno)
1991 || atomic_read(&dev_priv->mm.wedged));
1992 else
1993 wait_event(ring->irq_queue,
1994 i915_seqno_passed(
1995 ring->get_seqno(dev, ring), seqno)
1996 || atomic_read(&dev_priv->mm.wedged));
1998 ring->user_irq_put(dev, ring);
1999 ring->waiting_gem_seqno = 0;
2001 trace_i915_gem_request_wait_end(dev, seqno);
2003 if (atomic_read(&dev_priv->mm.wedged))
2004 ret = -EAGAIN;
2006 if (ret && ret != -ERESTARTSYS)
2007 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2008 __func__, ret, seqno, ring->get_seqno(dev, ring),
2009 dev_priv->next_seqno);
2011 /* Directly dispatch request retiring. While we have the work queue
2012 * to handle this, the waiter on a request often wants an associated
2013 * buffer to have made it to the inactive list, and we would need
2014 * a separate wait queue to handle that.
2016 if (ret == 0)
2017 i915_gem_retire_requests_ring(dev, ring);
2019 return ret;
2023 * Waits for a sequence number to be signaled, and cleans up the
2024 * request and object lists appropriately for that event.
2026 static int
2027 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2028 struct intel_ring_buffer *ring)
2030 return i915_do_wait_request(dev, seqno, 1, ring);
2033 static void
2034 i915_gem_flush_ring(struct drm_device *dev,
2035 struct drm_file *file_priv,
2036 struct intel_ring_buffer *ring,
2037 uint32_t invalidate_domains,
2038 uint32_t flush_domains)
2040 ring->flush(dev, ring, invalidate_domains, flush_domains);
2041 i915_gem_process_flushing_list(dev, flush_domains, ring);
2044 static void
2045 i915_gem_flush(struct drm_device *dev,
2046 struct drm_file *file_priv,
2047 uint32_t invalidate_domains,
2048 uint32_t flush_domains,
2049 uint32_t flush_rings)
2051 drm_i915_private_t *dev_priv = dev->dev_private;
2053 if (flush_domains & I915_GEM_DOMAIN_CPU)
2054 drm_agp_chipset_flush(dev);
2056 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2057 if (flush_rings & RING_RENDER)
2058 i915_gem_flush_ring(dev, file_priv,
2059 &dev_priv->render_ring,
2060 invalidate_domains, flush_domains);
2061 if (flush_rings & RING_BSD)
2062 i915_gem_flush_ring(dev, file_priv,
2063 &dev_priv->bsd_ring,
2064 invalidate_domains, flush_domains);
2069 * Ensures that all rendering to the object has completed and the object is
2070 * safe to unbind from the GTT or access from the CPU.
2072 static int
2073 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2074 bool interruptible)
2076 struct drm_device *dev = obj->dev;
2077 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2078 int ret;
2080 /* This function only exists to support waiting for existing rendering,
2081 * not for emitting required flushes.
2083 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2085 /* If there is rendering queued on the buffer being evicted, wait for
2086 * it.
2088 if (obj_priv->active) {
2089 ret = i915_do_wait_request(dev,
2090 obj_priv->last_rendering_seqno,
2091 interruptible,
2092 obj_priv->ring);
2093 if (ret)
2094 return ret;
2097 return 0;
2101 * Unbinds an object from the GTT aperture.
2104 i915_gem_object_unbind(struct drm_gem_object *obj)
2106 struct drm_device *dev = obj->dev;
2107 struct drm_i915_private *dev_priv = dev->dev_private;
2108 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2109 int ret = 0;
2111 if (obj_priv->gtt_space == NULL)
2112 return 0;
2114 if (obj_priv->pin_count != 0) {
2115 DRM_ERROR("Attempting to unbind pinned buffer\n");
2116 return -EINVAL;
2119 /* blow away mappings if mapped through GTT */
2120 i915_gem_release_mmap(obj);
2122 /* Move the object to the CPU domain to ensure that
2123 * any possible CPU writes while it's not in the GTT
2124 * are flushed when we go to remap it. This will
2125 * also ensure that all pending GPU writes are finished
2126 * before we unbind.
2128 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2129 if (ret == -ERESTARTSYS)
2130 return ret;
2131 /* Continue on if we fail due to EIO, the GPU is hung so we
2132 * should be safe and we need to cleanup or else we might
2133 * cause memory corruption through use-after-free.
2135 if (ret) {
2136 i915_gem_clflush_object(obj);
2137 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2140 /* release the fence reg _after_ flushing */
2141 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2142 i915_gem_clear_fence_reg(obj);
2144 drm_unbind_agp(obj_priv->agp_mem);
2145 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2147 i915_gem_object_put_pages(obj);
2148 BUG_ON(obj_priv->pages_refcount);
2150 i915_gem_info_remove_gtt(dev_priv, obj->size);
2151 list_del_init(&obj_priv->list);
2153 drm_mm_put_block(obj_priv->gtt_space);
2154 obj_priv->gtt_space = NULL;
2156 if (i915_gem_object_is_purgeable(obj_priv))
2157 i915_gem_object_truncate(obj);
2159 trace_i915_gem_object_unbind(obj);
2161 return ret;
2164 static int i915_ring_idle(struct drm_device *dev,
2165 struct intel_ring_buffer *ring)
2167 i915_gem_flush_ring(dev, NULL, ring,
2168 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2169 return i915_wait_request(dev,
2170 i915_gem_next_request_seqno(dev, ring),
2171 ring);
2175 i915_gpu_idle(struct drm_device *dev)
2177 drm_i915_private_t *dev_priv = dev->dev_private;
2178 bool lists_empty;
2179 int ret;
2181 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2182 list_empty(&dev_priv->render_ring.active_list) &&
2183 (!HAS_BSD(dev) ||
2184 list_empty(&dev_priv->bsd_ring.active_list)));
2185 if (lists_empty)
2186 return 0;
2188 /* Flush everything onto the inactive list. */
2189 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2190 if (ret)
2191 return ret;
2193 if (HAS_BSD(dev)) {
2194 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2195 if (ret)
2196 return ret;
2199 return 0;
2202 static int
2203 i915_gem_object_get_pages(struct drm_gem_object *obj,
2204 gfp_t gfpmask)
2206 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2207 int page_count, i;
2208 struct address_space *mapping;
2209 struct inode *inode;
2210 struct page *page;
2212 BUG_ON(obj_priv->pages_refcount
2213 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2215 if (obj_priv->pages_refcount++ != 0)
2216 return 0;
2218 /* Get the list of pages out of our struct file. They'll be pinned
2219 * at this point until we release them.
2221 page_count = obj->size / PAGE_SIZE;
2222 BUG_ON(obj_priv->pages != NULL);
2223 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2224 if (obj_priv->pages == NULL) {
2225 obj_priv->pages_refcount--;
2226 return -ENOMEM;
2229 inode = obj->filp->f_path.dentry->d_inode;
2230 mapping = inode->i_mapping;
2231 for (i = 0; i < page_count; i++) {
2232 page = read_cache_page_gfp(mapping, i,
2233 GFP_HIGHUSER |
2234 __GFP_COLD |
2235 __GFP_RECLAIMABLE |
2236 gfpmask);
2237 if (IS_ERR(page))
2238 goto err_pages;
2240 obj_priv->pages[i] = page;
2243 if (obj_priv->tiling_mode != I915_TILING_NONE)
2244 i915_gem_object_do_bit_17_swizzle(obj);
2246 return 0;
2248 err_pages:
2249 while (i--)
2250 page_cache_release(obj_priv->pages[i]);
2252 drm_free_large(obj_priv->pages);
2253 obj_priv->pages = NULL;
2254 obj_priv->pages_refcount--;
2255 return PTR_ERR(page);
2258 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2260 struct drm_gem_object *obj = reg->obj;
2261 struct drm_device *dev = obj->dev;
2262 drm_i915_private_t *dev_priv = dev->dev_private;
2263 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2264 int regnum = obj_priv->fence_reg;
2265 uint64_t val;
2267 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2268 0xfffff000) << 32;
2269 val |= obj_priv->gtt_offset & 0xfffff000;
2270 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2271 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2273 if (obj_priv->tiling_mode == I915_TILING_Y)
2274 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2275 val |= I965_FENCE_REG_VALID;
2277 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2280 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2282 struct drm_gem_object *obj = reg->obj;
2283 struct drm_device *dev = obj->dev;
2284 drm_i915_private_t *dev_priv = dev->dev_private;
2285 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2286 int regnum = obj_priv->fence_reg;
2287 uint64_t val;
2289 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2290 0xfffff000) << 32;
2291 val |= obj_priv->gtt_offset & 0xfffff000;
2292 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2293 if (obj_priv->tiling_mode == I915_TILING_Y)
2294 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2295 val |= I965_FENCE_REG_VALID;
2297 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2300 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2302 struct drm_gem_object *obj = reg->obj;
2303 struct drm_device *dev = obj->dev;
2304 drm_i915_private_t *dev_priv = dev->dev_private;
2305 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2306 int regnum = obj_priv->fence_reg;
2307 int tile_width;
2308 uint32_t fence_reg, val;
2309 uint32_t pitch_val;
2311 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2312 (obj_priv->gtt_offset & (obj->size - 1))) {
2313 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2314 __func__, obj_priv->gtt_offset, obj->size);
2315 return;
2318 if (obj_priv->tiling_mode == I915_TILING_Y &&
2319 HAS_128_BYTE_Y_TILING(dev))
2320 tile_width = 128;
2321 else
2322 tile_width = 512;
2324 /* Note: pitch better be a power of two tile widths */
2325 pitch_val = obj_priv->stride / tile_width;
2326 pitch_val = ffs(pitch_val) - 1;
2328 if (obj_priv->tiling_mode == I915_TILING_Y &&
2329 HAS_128_BYTE_Y_TILING(dev))
2330 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2331 else
2332 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2334 val = obj_priv->gtt_offset;
2335 if (obj_priv->tiling_mode == I915_TILING_Y)
2336 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2337 val |= I915_FENCE_SIZE_BITS(obj->size);
2338 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2339 val |= I830_FENCE_REG_VALID;
2341 if (regnum < 8)
2342 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2343 else
2344 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2345 I915_WRITE(fence_reg, val);
2348 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2350 struct drm_gem_object *obj = reg->obj;
2351 struct drm_device *dev = obj->dev;
2352 drm_i915_private_t *dev_priv = dev->dev_private;
2353 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2354 int regnum = obj_priv->fence_reg;
2355 uint32_t val;
2356 uint32_t pitch_val;
2357 uint32_t fence_size_bits;
2359 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2360 (obj_priv->gtt_offset & (obj->size - 1))) {
2361 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2362 __func__, obj_priv->gtt_offset);
2363 return;
2366 pitch_val = obj_priv->stride / 128;
2367 pitch_val = ffs(pitch_val) - 1;
2368 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2370 val = obj_priv->gtt_offset;
2371 if (obj_priv->tiling_mode == I915_TILING_Y)
2372 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2373 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2374 WARN_ON(fence_size_bits & ~0x00000f00);
2375 val |= fence_size_bits;
2376 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2377 val |= I830_FENCE_REG_VALID;
2379 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2382 static int i915_find_fence_reg(struct drm_device *dev,
2383 bool interruptible)
2385 struct drm_i915_fence_reg *reg = NULL;
2386 struct drm_i915_gem_object *obj_priv = NULL;
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 struct drm_gem_object *obj = NULL;
2389 int i, avail, ret;
2391 /* First try to find a free reg */
2392 avail = 0;
2393 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2394 reg = &dev_priv->fence_regs[i];
2395 if (!reg->obj)
2396 return i;
2398 obj_priv = to_intel_bo(reg->obj);
2399 if (!obj_priv->pin_count)
2400 avail++;
2403 if (avail == 0)
2404 return -ENOSPC;
2406 /* None available, try to steal one or wait for a user to finish */
2407 i = I915_FENCE_REG_NONE;
2408 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2409 lru_list) {
2410 obj = reg->obj;
2411 obj_priv = to_intel_bo(obj);
2413 if (obj_priv->pin_count)
2414 continue;
2416 /* found one! */
2417 i = obj_priv->fence_reg;
2418 break;
2421 BUG_ON(i == I915_FENCE_REG_NONE);
2423 /* We only have a reference on obj from the active list. put_fence_reg
2424 * might drop that one, causing a use-after-free in it. So hold a
2425 * private reference to obj like the other callers of put_fence_reg
2426 * (set_tiling ioctl) do. */
2427 drm_gem_object_reference(obj);
2428 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2429 drm_gem_object_unreference(obj);
2430 if (ret != 0)
2431 return ret;
2433 return i;
2437 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2438 * @obj: object to map through a fence reg
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
2443 * This function walks the fence regs looking for a free one for @obj,
2444 * stealing one if it can't find any.
2446 * It then sets up the reg based on the object's properties: address, pitch
2447 * and tiling format.
2450 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2451 bool interruptible)
2453 struct drm_device *dev = obj->dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2456 struct drm_i915_fence_reg *reg = NULL;
2457 int ret;
2459 /* Just update our place in the LRU if our fence is getting used. */
2460 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2461 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2462 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2463 return 0;
2466 switch (obj_priv->tiling_mode) {
2467 case I915_TILING_NONE:
2468 WARN(1, "allocating a fence for non-tiled object?\n");
2469 break;
2470 case I915_TILING_X:
2471 if (!obj_priv->stride)
2472 return -EINVAL;
2473 WARN((obj_priv->stride & (512 - 1)),
2474 "object 0x%08x is X tiled but has non-512B pitch\n",
2475 obj_priv->gtt_offset);
2476 break;
2477 case I915_TILING_Y:
2478 if (!obj_priv->stride)
2479 return -EINVAL;
2480 WARN((obj_priv->stride & (128 - 1)),
2481 "object 0x%08x is Y tiled but has non-128B pitch\n",
2482 obj_priv->gtt_offset);
2483 break;
2486 ret = i915_find_fence_reg(dev, interruptible);
2487 if (ret < 0)
2488 return ret;
2490 obj_priv->fence_reg = ret;
2491 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2492 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2494 reg->obj = obj;
2496 switch (INTEL_INFO(dev)->gen) {
2497 case 6:
2498 sandybridge_write_fence_reg(reg);
2499 break;
2500 case 5:
2501 case 4:
2502 i965_write_fence_reg(reg);
2503 break;
2504 case 3:
2505 i915_write_fence_reg(reg);
2506 break;
2507 case 2:
2508 i830_write_fence_reg(reg);
2509 break;
2512 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2513 obj_priv->tiling_mode);
2515 return 0;
2519 * i915_gem_clear_fence_reg - clear out fence register info
2520 * @obj: object to clear
2522 * Zeroes out the fence register itself and clears out the associated
2523 * data structures in dev_priv and obj_priv.
2525 static void
2526 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2528 struct drm_device *dev = obj->dev;
2529 drm_i915_private_t *dev_priv = dev->dev_private;
2530 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2531 struct drm_i915_fence_reg *reg =
2532 &dev_priv->fence_regs[obj_priv->fence_reg];
2533 uint32_t fence_reg;
2535 switch (INTEL_INFO(dev)->gen) {
2536 case 6:
2537 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2538 (obj_priv->fence_reg * 8), 0);
2539 break;
2540 case 5:
2541 case 4:
2542 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2543 break;
2544 case 3:
2545 if (obj_priv->fence_reg >= 8)
2546 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2547 else
2548 case 2:
2549 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2551 I915_WRITE(fence_reg, 0);
2552 break;
2555 reg->obj = NULL;
2556 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2557 list_del_init(&reg->lru_list);
2561 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2562 * to the buffer to finish, and then resets the fence register.
2563 * @obj: tiled object holding a fence register.
2564 * @bool: whether the wait upon the fence is interruptible
2566 * Zeroes out the fence register itself and clears out the associated
2567 * data structures in dev_priv and obj_priv.
2570 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2571 bool interruptible)
2573 struct drm_device *dev = obj->dev;
2574 struct drm_i915_private *dev_priv = dev->dev_private;
2575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2576 struct drm_i915_fence_reg *reg;
2578 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2579 return 0;
2581 /* If we've changed tiling, GTT-mappings of the object
2582 * need to re-fault to ensure that the correct fence register
2583 * setup is in place.
2585 i915_gem_release_mmap(obj);
2587 /* On the i915, GPU access to tiled buffers is via a fence,
2588 * therefore we must wait for any outstanding access to complete
2589 * before clearing the fence.
2591 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2592 if (reg->gpu) {
2593 int ret;
2595 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2596 if (ret)
2597 return ret;
2599 ret = i915_gem_object_wait_rendering(obj, interruptible);
2600 if (ret)
2601 return ret;
2603 reg->gpu = false;
2606 i915_gem_object_flush_gtt_write_domain(obj);
2607 i915_gem_clear_fence_reg(obj);
2609 return 0;
2613 * Finds free space in the GTT aperture and binds the object there.
2615 static int
2616 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2618 struct drm_device *dev = obj->dev;
2619 drm_i915_private_t *dev_priv = dev->dev_private;
2620 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2621 struct drm_mm_node *free_space;
2622 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2623 int ret;
2625 if (obj_priv->madv != I915_MADV_WILLNEED) {
2626 DRM_ERROR("Attempting to bind a purgeable object\n");
2627 return -EINVAL;
2630 if (alignment == 0)
2631 alignment = i915_gem_get_gtt_alignment(obj);
2632 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2633 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2634 return -EINVAL;
2637 /* If the object is bigger than the entire aperture, reject it early
2638 * before evicting everything in a vain attempt to find space.
2640 if (obj->size > dev_priv->mm.gtt_total) {
2641 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2642 return -E2BIG;
2645 search_free:
2646 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2647 obj->size, alignment, 0);
2648 if (free_space != NULL) {
2649 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2650 alignment);
2651 if (obj_priv->gtt_space != NULL)
2652 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2654 if (obj_priv->gtt_space == NULL) {
2655 /* If the gtt is empty and we're still having trouble
2656 * fitting our object in, we're out of memory.
2658 ret = i915_gem_evict_something(dev, obj->size, alignment);
2659 if (ret)
2660 return ret;
2662 goto search_free;
2665 ret = i915_gem_object_get_pages(obj, gfpmask);
2666 if (ret) {
2667 drm_mm_put_block(obj_priv->gtt_space);
2668 obj_priv->gtt_space = NULL;
2670 if (ret == -ENOMEM) {
2671 /* first try to clear up some space from the GTT */
2672 ret = i915_gem_evict_something(dev, obj->size,
2673 alignment);
2674 if (ret) {
2675 /* now try to shrink everyone else */
2676 if (gfpmask) {
2677 gfpmask = 0;
2678 goto search_free;
2681 return ret;
2684 goto search_free;
2687 return ret;
2690 /* Create an AGP memory structure pointing at our pages, and bind it
2691 * into the GTT.
2693 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2694 obj_priv->pages,
2695 obj->size >> PAGE_SHIFT,
2696 obj_priv->gtt_offset,
2697 obj_priv->agp_type);
2698 if (obj_priv->agp_mem == NULL) {
2699 i915_gem_object_put_pages(obj);
2700 drm_mm_put_block(obj_priv->gtt_space);
2701 obj_priv->gtt_space = NULL;
2703 ret = i915_gem_evict_something(dev, obj->size, alignment);
2704 if (ret)
2705 return ret;
2707 goto search_free;
2710 /* keep track of bounds object by adding it to the inactive list */
2711 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2712 i915_gem_info_add_gtt(dev_priv, obj->size);
2714 /* Assert that the object is not currently in any GPU domain. As it
2715 * wasn't in the GTT, there shouldn't be any way it could have been in
2716 * a GPU cache
2718 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2719 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2721 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2723 return 0;
2726 void
2727 i915_gem_clflush_object(struct drm_gem_object *obj)
2729 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2731 /* If we don't have a page list set up, then we're not pinned
2732 * to GPU, and we can ignore the cache flush because it'll happen
2733 * again at bind time.
2735 if (obj_priv->pages == NULL)
2736 return;
2738 trace_i915_gem_object_clflush(obj);
2740 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2743 /** Flushes any GPU write domain for the object if it's dirty. */
2744 static int
2745 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2746 bool pipelined)
2748 struct drm_device *dev = obj->dev;
2749 uint32_t old_write_domain;
2751 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2752 return 0;
2754 /* Queue the GPU write cache flushing we need. */
2755 old_write_domain = obj->write_domain;
2756 i915_gem_flush_ring(dev, NULL,
2757 to_intel_bo(obj)->ring,
2758 0, obj->write_domain);
2759 BUG_ON(obj->write_domain);
2761 trace_i915_gem_object_change_domain(obj,
2762 obj->read_domains,
2763 old_write_domain);
2765 if (pipelined)
2766 return 0;
2768 return i915_gem_object_wait_rendering(obj, true);
2771 /** Flushes the GTT write domain for the object if it's dirty. */
2772 static void
2773 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2775 uint32_t old_write_domain;
2777 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2778 return;
2780 /* No actual flushing is required for the GTT write domain. Writes
2781 * to it immediately go to main memory as far as we know, so there's
2782 * no chipset flush. It also doesn't land in render cache.
2784 old_write_domain = obj->write_domain;
2785 obj->write_domain = 0;
2787 trace_i915_gem_object_change_domain(obj,
2788 obj->read_domains,
2789 old_write_domain);
2792 /** Flushes the CPU write domain for the object if it's dirty. */
2793 static void
2794 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2796 struct drm_device *dev = obj->dev;
2797 uint32_t old_write_domain;
2799 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2800 return;
2802 i915_gem_clflush_object(obj);
2803 drm_agp_chipset_flush(dev);
2804 old_write_domain = obj->write_domain;
2805 obj->write_domain = 0;
2807 trace_i915_gem_object_change_domain(obj,
2808 obj->read_domains,
2809 old_write_domain);
2813 * Moves a single object to the GTT read, and possibly write domain.
2815 * This function returns when the move is complete, including waiting on
2816 * flushes to occur.
2819 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2821 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2822 uint32_t old_write_domain, old_read_domains;
2823 int ret;
2825 /* Not valid to be called on unbound objects. */
2826 if (obj_priv->gtt_space == NULL)
2827 return -EINVAL;
2829 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2830 if (ret != 0)
2831 return ret;
2833 i915_gem_object_flush_cpu_write_domain(obj);
2835 if (write) {
2836 ret = i915_gem_object_wait_rendering(obj, true);
2837 if (ret)
2838 return ret;
2841 old_write_domain = obj->write_domain;
2842 old_read_domains = obj->read_domains;
2844 /* It should now be out of any other write domains, and we can update
2845 * the domain values for our changes.
2847 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2848 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2849 if (write) {
2850 obj->read_domains = I915_GEM_DOMAIN_GTT;
2851 obj->write_domain = I915_GEM_DOMAIN_GTT;
2852 obj_priv->dirty = 1;
2855 trace_i915_gem_object_change_domain(obj,
2856 old_read_domains,
2857 old_write_domain);
2859 return 0;
2863 * Prepare buffer for display plane. Use uninterruptible for possible flush
2864 * wait, as in modesetting process we're not supposed to be interrupted.
2867 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2868 bool pipelined)
2870 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2871 uint32_t old_read_domains;
2872 int ret;
2874 /* Not valid to be called on unbound objects. */
2875 if (obj_priv->gtt_space == NULL)
2876 return -EINVAL;
2878 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2879 if (ret)
2880 return ret;
2882 /* Currently, we are always called from an non-interruptible context. */
2883 if (!pipelined) {
2884 ret = i915_gem_object_wait_rendering(obj, false);
2885 if (ret)
2886 return ret;
2889 i915_gem_object_flush_cpu_write_domain(obj);
2891 old_read_domains = obj->read_domains;
2892 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2894 trace_i915_gem_object_change_domain(obj,
2895 old_read_domains,
2896 obj->write_domain);
2898 return 0;
2902 * Moves a single object to the CPU read, and possibly write domain.
2904 * This function returns when the move is complete, including waiting on
2905 * flushes to occur.
2907 static int
2908 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2910 uint32_t old_write_domain, old_read_domains;
2911 int ret;
2913 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2914 if (ret != 0)
2915 return ret;
2917 i915_gem_object_flush_gtt_write_domain(obj);
2919 /* If we have a partially-valid cache of the object in the CPU,
2920 * finish invalidating it and free the per-page flags.
2922 i915_gem_object_set_to_full_cpu_read_domain(obj);
2924 if (write) {
2925 ret = i915_gem_object_wait_rendering(obj, true);
2926 if (ret)
2927 return ret;
2930 old_write_domain = obj->write_domain;
2931 old_read_domains = obj->read_domains;
2933 /* Flush the CPU cache if it's still invalid. */
2934 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2935 i915_gem_clflush_object(obj);
2937 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2940 /* It should now be out of any other write domains, and we can update
2941 * the domain values for our changes.
2943 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2945 /* If we're writing through the CPU, then the GPU read domains will
2946 * need to be invalidated at next use.
2948 if (write) {
2949 obj->read_domains = I915_GEM_DOMAIN_CPU;
2950 obj->write_domain = I915_GEM_DOMAIN_CPU;
2953 trace_i915_gem_object_change_domain(obj,
2954 old_read_domains,
2955 old_write_domain);
2957 return 0;
2961 * Set the next domain for the specified object. This
2962 * may not actually perform the necessary flushing/invaliding though,
2963 * as that may want to be batched with other set_domain operations
2965 * This is (we hope) the only really tricky part of gem. The goal
2966 * is fairly simple -- track which caches hold bits of the object
2967 * and make sure they remain coherent. A few concrete examples may
2968 * help to explain how it works. For shorthand, we use the notation
2969 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2970 * a pair of read and write domain masks.
2972 * Case 1: the batch buffer
2974 * 1. Allocated
2975 * 2. Written by CPU
2976 * 3. Mapped to GTT
2977 * 4. Read by GPU
2978 * 5. Unmapped from GTT
2979 * 6. Freed
2981 * Let's take these a step at a time
2983 * 1. Allocated
2984 * Pages allocated from the kernel may still have
2985 * cache contents, so we set them to (CPU, CPU) always.
2986 * 2. Written by CPU (using pwrite)
2987 * The pwrite function calls set_domain (CPU, CPU) and
2988 * this function does nothing (as nothing changes)
2989 * 3. Mapped by GTT
2990 * This function asserts that the object is not
2991 * currently in any GPU-based read or write domains
2992 * 4. Read by GPU
2993 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2994 * As write_domain is zero, this function adds in the
2995 * current read domains (CPU+COMMAND, 0).
2996 * flush_domains is set to CPU.
2997 * invalidate_domains is set to COMMAND
2998 * clflush is run to get data out of the CPU caches
2999 * then i915_dev_set_domain calls i915_gem_flush to
3000 * emit an MI_FLUSH and drm_agp_chipset_flush
3001 * 5. Unmapped from GTT
3002 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3003 * flush_domains and invalidate_domains end up both zero
3004 * so no flushing/invalidating happens
3005 * 6. Freed
3006 * yay, done
3008 * Case 2: The shared render buffer
3010 * 1. Allocated
3011 * 2. Mapped to GTT
3012 * 3. Read/written by GPU
3013 * 4. set_domain to (CPU,CPU)
3014 * 5. Read/written by CPU
3015 * 6. Read/written by GPU
3017 * 1. Allocated
3018 * Same as last example, (CPU, CPU)
3019 * 2. Mapped to GTT
3020 * Nothing changes (assertions find that it is not in the GPU)
3021 * 3. Read/written by GPU
3022 * execbuffer calls set_domain (RENDER, RENDER)
3023 * flush_domains gets CPU
3024 * invalidate_domains gets GPU
3025 * clflush (obj)
3026 * MI_FLUSH and drm_agp_chipset_flush
3027 * 4. set_domain (CPU, CPU)
3028 * flush_domains gets GPU
3029 * invalidate_domains gets CPU
3030 * wait_rendering (obj) to make sure all drawing is complete.
3031 * This will include an MI_FLUSH to get the data from GPU
3032 * to memory
3033 * clflush (obj) to invalidate the CPU cache
3034 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3035 * 5. Read/written by CPU
3036 * cache lines are loaded and dirtied
3037 * 6. Read written by GPU
3038 * Same as last GPU access
3040 * Case 3: The constant buffer
3042 * 1. Allocated
3043 * 2. Written by CPU
3044 * 3. Read by GPU
3045 * 4. Updated (written) by CPU again
3046 * 5. Read by GPU
3048 * 1. Allocated
3049 * (CPU, CPU)
3050 * 2. Written by CPU
3051 * (CPU, CPU)
3052 * 3. Read by GPU
3053 * (CPU+RENDER, 0)
3054 * flush_domains = CPU
3055 * invalidate_domains = RENDER
3056 * clflush (obj)
3057 * MI_FLUSH
3058 * drm_agp_chipset_flush
3059 * 4. Updated (written) by CPU again
3060 * (CPU, CPU)
3061 * flush_domains = 0 (no previous write domain)
3062 * invalidate_domains = 0 (no new read domains)
3063 * 5. Read by GPU
3064 * (CPU+RENDER, 0)
3065 * flush_domains = CPU
3066 * invalidate_domains = RENDER
3067 * clflush (obj)
3068 * MI_FLUSH
3069 * drm_agp_chipset_flush
3071 static void
3072 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3074 struct drm_device *dev = obj->dev;
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3077 uint32_t invalidate_domains = 0;
3078 uint32_t flush_domains = 0;
3079 uint32_t old_read_domains;
3081 intel_mark_busy(dev, obj);
3084 * If the object isn't moving to a new write domain,
3085 * let the object stay in multiple read domains
3087 if (obj->pending_write_domain == 0)
3088 obj->pending_read_domains |= obj->read_domains;
3089 else
3090 obj_priv->dirty = 1;
3093 * Flush the current write domain if
3094 * the new read domains don't match. Invalidate
3095 * any read domains which differ from the old
3096 * write domain
3098 if (obj->write_domain &&
3099 obj->write_domain != obj->pending_read_domains) {
3100 flush_domains |= obj->write_domain;
3101 invalidate_domains |=
3102 obj->pending_read_domains & ~obj->write_domain;
3105 * Invalidate any read caches which may have
3106 * stale data. That is, any new read domains.
3108 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3109 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3110 i915_gem_clflush_object(obj);
3112 old_read_domains = obj->read_domains;
3114 /* The actual obj->write_domain will be updated with
3115 * pending_write_domain after we emit the accumulated flush for all
3116 * of our domain changes in execbuffers (which clears objects'
3117 * write_domains). So if we have a current write domain that we
3118 * aren't changing, set pending_write_domain to that.
3120 if (flush_domains == 0 && obj->pending_write_domain == 0)
3121 obj->pending_write_domain = obj->write_domain;
3122 obj->read_domains = obj->pending_read_domains;
3124 dev->invalidate_domains |= invalidate_domains;
3125 dev->flush_domains |= flush_domains;
3126 if (obj_priv->ring)
3127 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3129 trace_i915_gem_object_change_domain(obj,
3130 old_read_domains,
3131 obj->write_domain);
3135 * Moves the object from a partially CPU read to a full one.
3137 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3138 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3140 static void
3141 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3145 if (!obj_priv->page_cpu_valid)
3146 return;
3148 /* If we're partially in the CPU read domain, finish moving it in.
3150 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3151 int i;
3153 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3154 if (obj_priv->page_cpu_valid[i])
3155 continue;
3156 drm_clflush_pages(obj_priv->pages + i, 1);
3160 /* Free the page_cpu_valid mappings which are now stale, whether
3161 * or not we've got I915_GEM_DOMAIN_CPU.
3163 kfree(obj_priv->page_cpu_valid);
3164 obj_priv->page_cpu_valid = NULL;
3168 * Set the CPU read domain on a range of the object.
3170 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3171 * not entirely valid. The page_cpu_valid member of the object flags which
3172 * pages have been flushed, and will be respected by
3173 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3174 * of the whole object.
3176 * This function returns when the move is complete, including waiting on
3177 * flushes to occur.
3179 static int
3180 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3181 uint64_t offset, uint64_t size)
3183 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3184 uint32_t old_read_domains;
3185 int i, ret;
3187 if (offset == 0 && size == obj->size)
3188 return i915_gem_object_set_to_cpu_domain(obj, 0);
3190 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3191 if (ret != 0)
3192 return ret;
3193 i915_gem_object_flush_gtt_write_domain(obj);
3195 /* If we're already fully in the CPU read domain, we're done. */
3196 if (obj_priv->page_cpu_valid == NULL &&
3197 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3198 return 0;
3200 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3201 * newly adding I915_GEM_DOMAIN_CPU
3203 if (obj_priv->page_cpu_valid == NULL) {
3204 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3205 GFP_KERNEL);
3206 if (obj_priv->page_cpu_valid == NULL)
3207 return -ENOMEM;
3208 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3209 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3211 /* Flush the cache on any pages that are still invalid from the CPU's
3212 * perspective.
3214 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3215 i++) {
3216 if (obj_priv->page_cpu_valid[i])
3217 continue;
3219 drm_clflush_pages(obj_priv->pages + i, 1);
3221 obj_priv->page_cpu_valid[i] = 1;
3224 /* It should now be out of any other write domains, and we can update
3225 * the domain values for our changes.
3227 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3229 old_read_domains = obj->read_domains;
3230 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3232 trace_i915_gem_object_change_domain(obj,
3233 old_read_domains,
3234 obj->write_domain);
3236 return 0;
3240 * Pin an object to the GTT and evaluate the relocations landing in it.
3242 static int
3243 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3244 struct drm_file *file_priv,
3245 struct drm_i915_gem_exec_object2 *entry)
3247 struct drm_device *dev = obj->dev;
3248 drm_i915_private_t *dev_priv = dev->dev_private;
3249 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3250 struct drm_i915_gem_relocation_entry __user *user_relocs;
3251 int i, ret;
3252 bool need_fence;
3254 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3255 obj_priv->tiling_mode != I915_TILING_NONE;
3257 /* Check fence reg constraints and rebind if necessary */
3258 if (need_fence &&
3259 !i915_gem_object_fence_offset_ok(obj,
3260 obj_priv->tiling_mode)) {
3261 ret = i915_gem_object_unbind(obj);
3262 if (ret)
3263 return ret;
3266 /* Choose the GTT offset for our buffer and put it there. */
3267 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3268 if (ret)
3269 return ret;
3272 * Pre-965 chips need a fence register set up in order to
3273 * properly handle blits to/from tiled surfaces.
3275 if (need_fence) {
3276 ret = i915_gem_object_get_fence_reg(obj, true);
3277 if (ret != 0) {
3278 i915_gem_object_unpin(obj);
3279 return ret;
3282 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
3285 entry->offset = obj_priv->gtt_offset;
3287 /* Apply the relocations, using the GTT aperture to avoid cache
3288 * flushing requirements.
3290 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3291 for (i = 0; i < entry->relocation_count; i++) {
3292 struct drm_i915_gem_relocation_entry reloc;
3293 struct drm_gem_object *target_obj;
3294 struct drm_i915_gem_object *target_obj_priv;
3296 ret = __copy_from_user_inatomic(&reloc,
3297 user_relocs+i,
3298 sizeof(reloc));
3299 if (ret) {
3300 i915_gem_object_unpin(obj);
3301 return -EFAULT;
3304 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3305 reloc.target_handle);
3306 if (target_obj == NULL) {
3307 i915_gem_object_unpin(obj);
3308 return -ENOENT;
3310 target_obj_priv = to_intel_bo(target_obj);
3312 #if WATCH_RELOC
3313 DRM_INFO("%s: obj %p offset %08x target %d "
3314 "read %08x write %08x gtt %08x "
3315 "presumed %08x delta %08x\n",
3316 __func__,
3317 obj,
3318 (int) reloc.offset,
3319 (int) reloc.target_handle,
3320 (int) reloc.read_domains,
3321 (int) reloc.write_domain,
3322 (int) target_obj_priv->gtt_offset,
3323 (int) reloc.presumed_offset,
3324 reloc.delta);
3325 #endif
3327 /* The target buffer should have appeared before us in the
3328 * exec_object list, so it should have a GTT space bound by now.
3330 if (target_obj_priv->gtt_space == NULL) {
3331 DRM_ERROR("No GTT space found for object %d\n",
3332 reloc.target_handle);
3333 drm_gem_object_unreference(target_obj);
3334 i915_gem_object_unpin(obj);
3335 return -EINVAL;
3338 /* Validate that the target is in a valid r/w GPU domain */
3339 if (reloc.write_domain & (reloc.write_domain - 1)) {
3340 DRM_ERROR("reloc with multiple write domains: "
3341 "obj %p target %d offset %d "
3342 "read %08x write %08x",
3343 obj, reloc.target_handle,
3344 (int) reloc.offset,
3345 reloc.read_domains,
3346 reloc.write_domain);
3347 drm_gem_object_unreference(target_obj);
3348 i915_gem_object_unpin(obj);
3349 return -EINVAL;
3351 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3352 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3353 DRM_ERROR("reloc with read/write CPU domains: "
3354 "obj %p target %d offset %d "
3355 "read %08x write %08x",
3356 obj, reloc.target_handle,
3357 (int) reloc.offset,
3358 reloc.read_domains,
3359 reloc.write_domain);
3360 drm_gem_object_unreference(target_obj);
3361 i915_gem_object_unpin(obj);
3362 return -EINVAL;
3364 if (reloc.write_domain && target_obj->pending_write_domain &&
3365 reloc.write_domain != target_obj->pending_write_domain) {
3366 DRM_ERROR("Write domain conflict: "
3367 "obj %p target %d offset %d "
3368 "new %08x old %08x\n",
3369 obj, reloc.target_handle,
3370 (int) reloc.offset,
3371 reloc.write_domain,
3372 target_obj->pending_write_domain);
3373 drm_gem_object_unreference(target_obj);
3374 i915_gem_object_unpin(obj);
3375 return -EINVAL;
3378 target_obj->pending_read_domains |= reloc.read_domains;
3379 target_obj->pending_write_domain |= reloc.write_domain;
3381 /* If the relocation already has the right value in it, no
3382 * more work needs to be done.
3384 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3385 drm_gem_object_unreference(target_obj);
3386 continue;
3389 /* Check that the relocation address is valid... */
3390 if (reloc.offset > obj->size - 4) {
3391 DRM_ERROR("Relocation beyond object bounds: "
3392 "obj %p target %d offset %d size %d.\n",
3393 obj, reloc.target_handle,
3394 (int) reloc.offset, (int) obj->size);
3395 drm_gem_object_unreference(target_obj);
3396 i915_gem_object_unpin(obj);
3397 return -EINVAL;
3399 if (reloc.offset & 3) {
3400 DRM_ERROR("Relocation not 4-byte aligned: "
3401 "obj %p target %d offset %d.\n",
3402 obj, reloc.target_handle,
3403 (int) reloc.offset);
3404 drm_gem_object_unreference(target_obj);
3405 i915_gem_object_unpin(obj);
3406 return -EINVAL;
3409 /* and points to somewhere within the target object. */
3410 if (reloc.delta >= target_obj->size) {
3411 DRM_ERROR("Relocation beyond target object bounds: "
3412 "obj %p target %d delta %d size %d.\n",
3413 obj, reloc.target_handle,
3414 (int) reloc.delta, (int) target_obj->size);
3415 drm_gem_object_unreference(target_obj);
3416 i915_gem_object_unpin(obj);
3417 return -EINVAL;
3420 reloc.delta += target_obj_priv->gtt_offset;
3421 if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
3422 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3423 char *vaddr;
3425 vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3426 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3427 kunmap_atomic(vaddr, KM_USER0);
3428 } else {
3429 uint32_t __iomem *reloc_entry;
3430 void __iomem *reloc_page;
3431 int ret;
3433 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3434 if (ret) {
3435 drm_gem_object_unreference(target_obj);
3436 i915_gem_object_unpin(obj);
3437 return ret;
3440 /* Map the page containing the relocation we're going to perform. */
3441 reloc.offset += obj_priv->gtt_offset;
3442 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3443 reloc.offset & PAGE_MASK,
3444 KM_USER0);
3445 reloc_entry = (uint32_t __iomem *)
3446 (reloc_page + (reloc.offset & ~PAGE_MASK));
3447 iowrite32(reloc.delta, reloc_entry);
3448 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3451 drm_gem_object_unreference(target_obj);
3454 return 0;
3457 /* Throttle our rendering by waiting until the ring has completed our requests
3458 * emitted over 20 msec ago.
3460 * Note that if we were to use the current jiffies each time around the loop,
3461 * we wouldn't escape the function with any frames outstanding if the time to
3462 * render a frame was over 20ms.
3464 * This should get us reasonable parallelism between CPU and GPU but also
3465 * relatively low latency when blocking on a particular request to finish.
3467 static int
3468 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 struct drm_i915_file_private *file_priv = file->driver_priv;
3472 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3473 struct drm_i915_gem_request *request;
3474 struct intel_ring_buffer *ring = NULL;
3475 u32 seqno = 0;
3476 int ret;
3478 spin_lock(&file_priv->mm.lock);
3479 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3480 if (time_after_eq(request->emitted_jiffies, recent_enough))
3481 break;
3483 ring = request->ring;
3484 seqno = request->seqno;
3486 spin_unlock(&file_priv->mm.lock);
3488 if (seqno == 0)
3489 return 0;
3491 ret = 0;
3492 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3493 /* And wait for the seqno passing without holding any locks and
3494 * causing extra latency for others. This is safe as the irq
3495 * generation is designed to be run atomically and so is
3496 * lockless.
3498 ring->user_irq_get(dev, ring);
3499 ret = wait_event_interruptible(ring->irq_queue,
3500 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3501 || atomic_read(&dev_priv->mm.wedged));
3502 ring->user_irq_put(dev, ring);
3504 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3505 ret = -EIO;
3508 if (ret == 0)
3509 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3511 return ret;
3514 static int
3515 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3516 uint64_t exec_offset)
3518 uint32_t exec_start, exec_len;
3520 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3521 exec_len = (uint32_t) exec->batch_len;
3523 if ((exec_start | exec_len) & 0x7)
3524 return -EINVAL;
3526 if (!exec_start)
3527 return -EINVAL;
3529 return 0;
3532 static int
3533 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3534 int count)
3536 int i;
3538 for (i = 0; i < count; i++) {
3539 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3540 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3542 if (!access_ok(VERIFY_READ, ptr, length))
3543 return -EFAULT;
3545 if (fault_in_pages_readable(ptr, length))
3546 return -EFAULT;
3549 return 0;
3552 static int
3553 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3554 struct drm_file *file_priv,
3555 struct drm_i915_gem_execbuffer2 *args,
3556 struct drm_i915_gem_exec_object2 *exec_list)
3558 drm_i915_private_t *dev_priv = dev->dev_private;
3559 struct drm_gem_object **object_list = NULL;
3560 struct drm_gem_object *batch_obj;
3561 struct drm_i915_gem_object *obj_priv;
3562 struct drm_clip_rect *cliprects = NULL;
3563 struct drm_i915_gem_request *request = NULL;
3564 int ret, i, pinned = 0;
3565 uint64_t exec_offset;
3566 int pin_tries, flips;
3568 struct intel_ring_buffer *ring = NULL;
3570 ret = i915_gem_check_is_wedged(dev);
3571 if (ret)
3572 return ret;
3574 ret = validate_exec_list(exec_list, args->buffer_count);
3575 if (ret)
3576 return ret;
3578 #if WATCH_EXEC
3579 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3580 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3581 #endif
3582 if (args->flags & I915_EXEC_BSD) {
3583 if (!HAS_BSD(dev)) {
3584 DRM_ERROR("execbuf with wrong flag\n");
3585 return -EINVAL;
3587 ring = &dev_priv->bsd_ring;
3588 } else {
3589 ring = &dev_priv->render_ring;
3592 if (args->buffer_count < 1) {
3593 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3594 return -EINVAL;
3596 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3597 if (object_list == NULL) {
3598 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3599 args->buffer_count);
3600 ret = -ENOMEM;
3601 goto pre_mutex_err;
3604 if (args->num_cliprects != 0) {
3605 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3606 GFP_KERNEL);
3607 if (cliprects == NULL) {
3608 ret = -ENOMEM;
3609 goto pre_mutex_err;
3612 ret = copy_from_user(cliprects,
3613 (struct drm_clip_rect __user *)
3614 (uintptr_t) args->cliprects_ptr,
3615 sizeof(*cliprects) * args->num_cliprects);
3616 if (ret != 0) {
3617 DRM_ERROR("copy %d cliprects failed: %d\n",
3618 args->num_cliprects, ret);
3619 ret = -EFAULT;
3620 goto pre_mutex_err;
3624 request = kzalloc(sizeof(*request), GFP_KERNEL);
3625 if (request == NULL) {
3626 ret = -ENOMEM;
3627 goto pre_mutex_err;
3630 ret = i915_mutex_lock_interruptible(dev);
3631 if (ret)
3632 goto pre_mutex_err;
3634 if (dev_priv->mm.suspended) {
3635 mutex_unlock(&dev->struct_mutex);
3636 ret = -EBUSY;
3637 goto pre_mutex_err;
3640 /* Look up object handles */
3641 for (i = 0; i < args->buffer_count; i++) {
3642 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3643 exec_list[i].handle);
3644 if (object_list[i] == NULL) {
3645 DRM_ERROR("Invalid object handle %d at index %d\n",
3646 exec_list[i].handle, i);
3647 /* prevent error path from reading uninitialized data */
3648 args->buffer_count = i + 1;
3649 ret = -ENOENT;
3650 goto err;
3653 obj_priv = to_intel_bo(object_list[i]);
3654 if (obj_priv->in_execbuffer) {
3655 DRM_ERROR("Object %p appears more than once in object list\n",
3656 object_list[i]);
3657 /* prevent error path from reading uninitialized data */
3658 args->buffer_count = i + 1;
3659 ret = -EINVAL;
3660 goto err;
3662 obj_priv->in_execbuffer = true;
3665 /* Pin and relocate */
3666 for (pin_tries = 0; ; pin_tries++) {
3667 ret = 0;
3669 for (i = 0; i < args->buffer_count; i++) {
3670 object_list[i]->pending_read_domains = 0;
3671 object_list[i]->pending_write_domain = 0;
3672 ret = i915_gem_object_pin_and_relocate(object_list[i],
3673 file_priv,
3674 &exec_list[i]);
3675 if (ret)
3676 break;
3677 pinned = i + 1;
3679 /* success */
3680 if (ret == 0)
3681 break;
3683 /* error other than GTT full, or we've already tried again */
3684 if (ret != -ENOSPC || pin_tries >= 1) {
3685 if (ret != -ERESTARTSYS) {
3686 unsigned long long total_size = 0;
3687 int num_fences = 0;
3688 for (i = 0; i < args->buffer_count; i++) {
3689 obj_priv = to_intel_bo(object_list[i]);
3691 total_size += object_list[i]->size;
3692 num_fences +=
3693 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3694 obj_priv->tiling_mode != I915_TILING_NONE;
3696 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3697 pinned+1, args->buffer_count,
3698 total_size, num_fences,
3699 ret);
3700 DRM_ERROR("%u objects [%u pinned, %u GTT], "
3701 "%zu object bytes [%zu pinned], "
3702 "%zu /%zu gtt bytes\n",
3703 dev_priv->mm.object_count,
3704 dev_priv->mm.pin_count,
3705 dev_priv->mm.gtt_count,
3706 dev_priv->mm.object_memory,
3707 dev_priv->mm.pin_memory,
3708 dev_priv->mm.gtt_memory,
3709 dev_priv->mm.gtt_total);
3711 goto err;
3714 /* unpin all of our buffers */
3715 for (i = 0; i < pinned; i++)
3716 i915_gem_object_unpin(object_list[i]);
3717 pinned = 0;
3719 /* evict everyone we can from the aperture */
3720 ret = i915_gem_evict_everything(dev);
3721 if (ret && ret != -ENOSPC)
3722 goto err;
3725 /* Set the pending read domains for the batch buffer to COMMAND */
3726 batch_obj = object_list[args->buffer_count-1];
3727 if (batch_obj->pending_write_domain) {
3728 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3729 ret = -EINVAL;
3730 goto err;
3732 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3734 /* Sanity check the batch buffer, prior to moving objects */
3735 exec_offset = exec_list[args->buffer_count - 1].offset;
3736 ret = i915_gem_check_execbuffer (args, exec_offset);
3737 if (ret != 0) {
3738 DRM_ERROR("execbuf with invalid offset/length\n");
3739 goto err;
3742 /* Zero the global flush/invalidate flags. These
3743 * will be modified as new domains are computed
3744 * for each object
3746 dev->invalidate_domains = 0;
3747 dev->flush_domains = 0;
3748 dev_priv->mm.flush_rings = 0;
3750 for (i = 0; i < args->buffer_count; i++) {
3751 struct drm_gem_object *obj = object_list[i];
3753 /* Compute new gpu domains and update invalidate/flush */
3754 i915_gem_object_set_to_gpu_domain(obj);
3757 if (dev->invalidate_domains | dev->flush_domains) {
3758 #if WATCH_EXEC
3759 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3760 __func__,
3761 dev->invalidate_domains,
3762 dev->flush_domains);
3763 #endif
3764 i915_gem_flush(dev, file_priv,
3765 dev->invalidate_domains,
3766 dev->flush_domains,
3767 dev_priv->mm.flush_rings);
3770 for (i = 0; i < args->buffer_count; i++) {
3771 struct drm_gem_object *obj = object_list[i];
3772 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3773 uint32_t old_write_domain = obj->write_domain;
3775 obj->write_domain = obj->pending_write_domain;
3776 if (obj->write_domain)
3777 list_move_tail(&obj_priv->gpu_write_list,
3778 &dev_priv->mm.gpu_write_list);
3780 trace_i915_gem_object_change_domain(obj,
3781 obj->read_domains,
3782 old_write_domain);
3785 #if WATCH_COHERENCY
3786 for (i = 0; i < args->buffer_count; i++) {
3787 i915_gem_object_check_coherency(object_list[i],
3788 exec_list[i].handle);
3790 #endif
3792 #if WATCH_EXEC
3793 i915_gem_dump_object(batch_obj,
3794 args->batch_len,
3795 __func__,
3796 ~0);
3797 #endif
3799 /* Check for any pending flips. As we only maintain a flip queue depth
3800 * of 1, we can simply insert a WAIT for the next display flip prior
3801 * to executing the batch and avoid stalling the CPU.
3803 flips = 0;
3804 for (i = 0; i < args->buffer_count; i++) {
3805 if (object_list[i]->write_domain)
3806 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3808 if (flips) {
3809 int plane, flip_mask;
3811 for (plane = 0; flips >> plane; plane++) {
3812 if (((flips >> plane) & 1) == 0)
3813 continue;
3815 if (plane)
3816 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3817 else
3818 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3820 intel_ring_begin(dev, ring, 2);
3821 intel_ring_emit(dev, ring,
3822 MI_WAIT_FOR_EVENT | flip_mask);
3823 intel_ring_emit(dev, ring, MI_NOOP);
3824 intel_ring_advance(dev, ring);
3828 /* Exec the batchbuffer */
3829 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3830 cliprects, exec_offset);
3831 if (ret) {
3832 DRM_ERROR("dispatch failed %d\n", ret);
3833 goto err;
3837 * Ensure that the commands in the batch buffer are
3838 * finished before the interrupt fires
3840 i915_retire_commands(dev, ring);
3842 for (i = 0; i < args->buffer_count; i++) {
3843 struct drm_gem_object *obj = object_list[i];
3844 obj_priv = to_intel_bo(obj);
3846 i915_gem_object_move_to_active(obj, ring);
3849 i915_add_request(dev, file_priv, request, ring);
3850 request = NULL;
3852 err:
3853 for (i = 0; i < pinned; i++)
3854 i915_gem_object_unpin(object_list[i]);
3856 for (i = 0; i < args->buffer_count; i++) {
3857 if (object_list[i]) {
3858 obj_priv = to_intel_bo(object_list[i]);
3859 obj_priv->in_execbuffer = false;
3861 drm_gem_object_unreference(object_list[i]);
3864 mutex_unlock(&dev->struct_mutex);
3866 pre_mutex_err:
3867 drm_free_large(object_list);
3868 kfree(cliprects);
3869 kfree(request);
3871 return ret;
3875 * Legacy execbuffer just creates an exec2 list from the original exec object
3876 * list array and passes it to the real function.
3879 i915_gem_execbuffer(struct drm_device *dev, void *data,
3880 struct drm_file *file_priv)
3882 struct drm_i915_gem_execbuffer *args = data;
3883 struct drm_i915_gem_execbuffer2 exec2;
3884 struct drm_i915_gem_exec_object *exec_list = NULL;
3885 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3886 int ret, i;
3888 #if WATCH_EXEC
3889 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3890 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3891 #endif
3893 if (args->buffer_count < 1) {
3894 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3895 return -EINVAL;
3898 /* Copy in the exec list from userland */
3899 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3900 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3901 if (exec_list == NULL || exec2_list == NULL) {
3902 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3903 args->buffer_count);
3904 drm_free_large(exec_list);
3905 drm_free_large(exec2_list);
3906 return -ENOMEM;
3908 ret = copy_from_user(exec_list,
3909 (struct drm_i915_relocation_entry __user *)
3910 (uintptr_t) args->buffers_ptr,
3911 sizeof(*exec_list) * args->buffer_count);
3912 if (ret != 0) {
3913 DRM_ERROR("copy %d exec entries failed %d\n",
3914 args->buffer_count, ret);
3915 drm_free_large(exec_list);
3916 drm_free_large(exec2_list);
3917 return -EFAULT;
3920 for (i = 0; i < args->buffer_count; i++) {
3921 exec2_list[i].handle = exec_list[i].handle;
3922 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3923 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3924 exec2_list[i].alignment = exec_list[i].alignment;
3925 exec2_list[i].offset = exec_list[i].offset;
3926 if (INTEL_INFO(dev)->gen < 4)
3927 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3928 else
3929 exec2_list[i].flags = 0;
3932 exec2.buffers_ptr = args->buffers_ptr;
3933 exec2.buffer_count = args->buffer_count;
3934 exec2.batch_start_offset = args->batch_start_offset;
3935 exec2.batch_len = args->batch_len;
3936 exec2.DR1 = args->DR1;
3937 exec2.DR4 = args->DR4;
3938 exec2.num_cliprects = args->num_cliprects;
3939 exec2.cliprects_ptr = args->cliprects_ptr;
3940 exec2.flags = I915_EXEC_RENDER;
3942 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3943 if (!ret) {
3944 /* Copy the new buffer offsets back to the user's exec list. */
3945 for (i = 0; i < args->buffer_count; i++)
3946 exec_list[i].offset = exec2_list[i].offset;
3947 /* ... and back out to userspace */
3948 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3949 (uintptr_t) args->buffers_ptr,
3950 exec_list,
3951 sizeof(*exec_list) * args->buffer_count);
3952 if (ret) {
3953 ret = -EFAULT;
3954 DRM_ERROR("failed to copy %d exec entries "
3955 "back to user (%d)\n",
3956 args->buffer_count, ret);
3960 drm_free_large(exec_list);
3961 drm_free_large(exec2_list);
3962 return ret;
3966 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3967 struct drm_file *file_priv)
3969 struct drm_i915_gem_execbuffer2 *args = data;
3970 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3971 int ret;
3973 #if WATCH_EXEC
3974 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3975 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3976 #endif
3978 if (args->buffer_count < 1) {
3979 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3980 return -EINVAL;
3983 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3984 if (exec2_list == NULL) {
3985 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3986 args->buffer_count);
3987 return -ENOMEM;
3989 ret = copy_from_user(exec2_list,
3990 (struct drm_i915_relocation_entry __user *)
3991 (uintptr_t) args->buffers_ptr,
3992 sizeof(*exec2_list) * args->buffer_count);
3993 if (ret != 0) {
3994 DRM_ERROR("copy %d exec entries failed %d\n",
3995 args->buffer_count, ret);
3996 drm_free_large(exec2_list);
3997 return -EFAULT;
4000 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4001 if (!ret) {
4002 /* Copy the new buffer offsets back to the user's exec list. */
4003 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4004 (uintptr_t) args->buffers_ptr,
4005 exec2_list,
4006 sizeof(*exec2_list) * args->buffer_count);
4007 if (ret) {
4008 ret = -EFAULT;
4009 DRM_ERROR("failed to copy %d exec entries "
4010 "back to user (%d)\n",
4011 args->buffer_count, ret);
4015 drm_free_large(exec2_list);
4016 return ret;
4020 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4022 struct drm_device *dev = obj->dev;
4023 struct drm_i915_private *dev_priv = dev->dev_private;
4024 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4025 int ret;
4027 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4028 WARN_ON(i915_verify_lists(dev));
4030 if (obj_priv->gtt_space != NULL) {
4031 if (alignment == 0)
4032 alignment = i915_gem_get_gtt_alignment(obj);
4033 if (obj_priv->gtt_offset & (alignment - 1)) {
4034 WARN(obj_priv->pin_count,
4035 "bo is already pinned with incorrect alignment:"
4036 " offset=%x, req.alignment=%x\n",
4037 obj_priv->gtt_offset, alignment);
4038 ret = i915_gem_object_unbind(obj);
4039 if (ret)
4040 return ret;
4044 if (obj_priv->gtt_space == NULL) {
4045 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4046 if (ret)
4047 return ret;
4050 obj_priv->pin_count++;
4052 /* If the object is not active and not pending a flush,
4053 * remove it from the inactive list
4055 if (obj_priv->pin_count == 1) {
4056 i915_gem_info_add_pin(dev_priv, obj->size);
4057 if (!obj_priv->active)
4058 list_move_tail(&obj_priv->list,
4059 &dev_priv->mm.pinned_list);
4062 WARN_ON(i915_verify_lists(dev));
4063 return 0;
4066 void
4067 i915_gem_object_unpin(struct drm_gem_object *obj)
4069 struct drm_device *dev = obj->dev;
4070 drm_i915_private_t *dev_priv = dev->dev_private;
4071 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4073 WARN_ON(i915_verify_lists(dev));
4074 obj_priv->pin_count--;
4075 BUG_ON(obj_priv->pin_count < 0);
4076 BUG_ON(obj_priv->gtt_space == NULL);
4078 /* If the object is no longer pinned, and is
4079 * neither active nor being flushed, then stick it on
4080 * the inactive list
4082 if (obj_priv->pin_count == 0) {
4083 if (!obj_priv->active)
4084 list_move_tail(&obj_priv->list,
4085 &dev_priv->mm.inactive_list);
4086 i915_gem_info_remove_pin(dev_priv, obj->size);
4088 WARN_ON(i915_verify_lists(dev));
4092 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4093 struct drm_file *file_priv)
4095 struct drm_i915_gem_pin *args = data;
4096 struct drm_gem_object *obj;
4097 struct drm_i915_gem_object *obj_priv;
4098 int ret;
4100 ret = i915_mutex_lock_interruptible(dev);
4101 if (ret)
4102 return ret;
4104 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4105 if (obj == NULL) {
4106 ret = -ENOENT;
4107 goto unlock;
4109 obj_priv = to_intel_bo(obj);
4111 if (obj_priv->madv != I915_MADV_WILLNEED) {
4112 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4113 ret = -EINVAL;
4114 goto out;
4117 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4118 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4119 args->handle);
4120 ret = -EINVAL;
4121 goto out;
4124 obj_priv->user_pin_count++;
4125 obj_priv->pin_filp = file_priv;
4126 if (obj_priv->user_pin_count == 1) {
4127 ret = i915_gem_object_pin(obj, args->alignment);
4128 if (ret)
4129 goto out;
4132 /* XXX - flush the CPU caches for pinned objects
4133 * as the X server doesn't manage domains yet
4135 i915_gem_object_flush_cpu_write_domain(obj);
4136 args->offset = obj_priv->gtt_offset;
4137 out:
4138 drm_gem_object_unreference(obj);
4139 unlock:
4140 mutex_unlock(&dev->struct_mutex);
4141 return ret;
4145 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4146 struct drm_file *file_priv)
4148 struct drm_i915_gem_pin *args = data;
4149 struct drm_gem_object *obj;
4150 struct drm_i915_gem_object *obj_priv;
4151 int ret;
4153 ret = i915_mutex_lock_interruptible(dev);
4154 if (ret)
4155 return ret;
4157 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4158 if (obj == NULL) {
4159 ret = -ENOENT;
4160 goto unlock;
4162 obj_priv = to_intel_bo(obj);
4164 if (obj_priv->pin_filp != file_priv) {
4165 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4166 args->handle);
4167 ret = -EINVAL;
4168 goto out;
4170 obj_priv->user_pin_count--;
4171 if (obj_priv->user_pin_count == 0) {
4172 obj_priv->pin_filp = NULL;
4173 i915_gem_object_unpin(obj);
4176 out:
4177 drm_gem_object_unreference(obj);
4178 unlock:
4179 mutex_unlock(&dev->struct_mutex);
4180 return ret;
4184 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4185 struct drm_file *file_priv)
4187 struct drm_i915_gem_busy *args = data;
4188 struct drm_gem_object *obj;
4189 struct drm_i915_gem_object *obj_priv;
4190 int ret;
4192 ret = i915_mutex_lock_interruptible(dev);
4193 if (ret)
4194 return ret;
4196 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4197 if (obj == NULL) {
4198 ret = -ENOENT;
4199 goto unlock;
4201 obj_priv = to_intel_bo(obj);
4203 /* Count all active objects as busy, even if they are currently not used
4204 * by the gpu. Users of this interface expect objects to eventually
4205 * become non-busy without any further actions, therefore emit any
4206 * necessary flushes here.
4208 args->busy = obj_priv->active;
4209 if (args->busy) {
4210 /* Unconditionally flush objects, even when the gpu still uses this
4211 * object. Userspace calling this function indicates that it wants to
4212 * use this buffer rather sooner than later, so issuing the required
4213 * flush earlier is beneficial.
4215 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4216 i915_gem_flush_ring(dev, file_priv,
4217 obj_priv->ring,
4218 0, obj->write_domain);
4220 /* Update the active list for the hardware's current position.
4221 * Otherwise this only updates on a delayed timer or when irqs
4222 * are actually unmasked, and our working set ends up being
4223 * larger than required.
4225 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4227 args->busy = obj_priv->active;
4230 drm_gem_object_unreference(obj);
4231 unlock:
4232 mutex_unlock(&dev->struct_mutex);
4233 return ret;
4237 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4238 struct drm_file *file_priv)
4240 return i915_gem_ring_throttle(dev, file_priv);
4244 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4245 struct drm_file *file_priv)
4247 struct drm_i915_gem_madvise *args = data;
4248 struct drm_gem_object *obj;
4249 struct drm_i915_gem_object *obj_priv;
4250 int ret;
4252 switch (args->madv) {
4253 case I915_MADV_DONTNEED:
4254 case I915_MADV_WILLNEED:
4255 break;
4256 default:
4257 return -EINVAL;
4260 ret = i915_mutex_lock_interruptible(dev);
4261 if (ret)
4262 return ret;
4264 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4265 if (obj == NULL) {
4266 ret = -ENOENT;
4267 goto unlock;
4269 obj_priv = to_intel_bo(obj);
4271 if (obj_priv->pin_count) {
4272 ret = -EINVAL;
4273 goto out;
4276 if (obj_priv->madv != __I915_MADV_PURGED)
4277 obj_priv->madv = args->madv;
4279 /* if the object is no longer bound, discard its backing storage */
4280 if (i915_gem_object_is_purgeable(obj_priv) &&
4281 obj_priv->gtt_space == NULL)
4282 i915_gem_object_truncate(obj);
4284 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4286 out:
4287 drm_gem_object_unreference(obj);
4288 unlock:
4289 mutex_unlock(&dev->struct_mutex);
4290 return ret;
4293 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4294 size_t size)
4296 struct drm_i915_private *dev_priv = dev->dev_private;
4297 struct drm_i915_gem_object *obj;
4299 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4300 if (obj == NULL)
4301 return NULL;
4303 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4304 kfree(obj);
4305 return NULL;
4308 i915_gem_info_add_obj(dev_priv, size);
4310 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4311 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4313 obj->agp_type = AGP_USER_MEMORY;
4314 obj->base.driver_private = NULL;
4315 obj->fence_reg = I915_FENCE_REG_NONE;
4316 INIT_LIST_HEAD(&obj->list);
4317 INIT_LIST_HEAD(&obj->gpu_write_list);
4318 obj->madv = I915_MADV_WILLNEED;
4320 return &obj->base;
4323 int i915_gem_init_object(struct drm_gem_object *obj)
4325 BUG();
4327 return 0;
4330 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4332 struct drm_device *dev = obj->dev;
4333 drm_i915_private_t *dev_priv = dev->dev_private;
4334 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4335 int ret;
4337 ret = i915_gem_object_unbind(obj);
4338 if (ret == -ERESTARTSYS) {
4339 list_move(&obj_priv->list,
4340 &dev_priv->mm.deferred_free_list);
4341 return;
4344 if (obj_priv->mmap_offset)
4345 i915_gem_free_mmap_offset(obj);
4347 drm_gem_object_release(obj);
4348 i915_gem_info_remove_obj(dev_priv, obj->size);
4350 kfree(obj_priv->page_cpu_valid);
4351 kfree(obj_priv->bit_17);
4352 kfree(obj_priv);
4355 void i915_gem_free_object(struct drm_gem_object *obj)
4357 struct drm_device *dev = obj->dev;
4358 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4360 trace_i915_gem_object_destroy(obj);
4362 while (obj_priv->pin_count > 0)
4363 i915_gem_object_unpin(obj);
4365 if (obj_priv->phys_obj)
4366 i915_gem_detach_phys_object(dev, obj);
4368 i915_gem_free_object_tail(obj);
4372 i915_gem_idle(struct drm_device *dev)
4374 drm_i915_private_t *dev_priv = dev->dev_private;
4375 int ret;
4377 mutex_lock(&dev->struct_mutex);
4379 if (dev_priv->mm.suspended ||
4380 (dev_priv->render_ring.gem_object == NULL) ||
4381 (HAS_BSD(dev) &&
4382 dev_priv->bsd_ring.gem_object == NULL)) {
4383 mutex_unlock(&dev->struct_mutex);
4384 return 0;
4387 ret = i915_gpu_idle(dev);
4388 if (ret) {
4389 mutex_unlock(&dev->struct_mutex);
4390 return ret;
4393 /* Under UMS, be paranoid and evict. */
4394 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4395 ret = i915_gem_evict_inactive(dev);
4396 if (ret) {
4397 mutex_unlock(&dev->struct_mutex);
4398 return ret;
4402 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4403 * We need to replace this with a semaphore, or something.
4404 * And not confound mm.suspended!
4406 dev_priv->mm.suspended = 1;
4407 del_timer_sync(&dev_priv->hangcheck_timer);
4409 i915_kernel_lost_context(dev);
4410 i915_gem_cleanup_ringbuffer(dev);
4412 mutex_unlock(&dev->struct_mutex);
4414 /* Cancel the retire work handler, which should be idle now. */
4415 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4417 return 0;
4421 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4422 * over cache flushing.
4424 static int
4425 i915_gem_init_pipe_control(struct drm_device *dev)
4427 drm_i915_private_t *dev_priv = dev->dev_private;
4428 struct drm_gem_object *obj;
4429 struct drm_i915_gem_object *obj_priv;
4430 int ret;
4432 obj = i915_gem_alloc_object(dev, 4096);
4433 if (obj == NULL) {
4434 DRM_ERROR("Failed to allocate seqno page\n");
4435 ret = -ENOMEM;
4436 goto err;
4438 obj_priv = to_intel_bo(obj);
4439 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4441 ret = i915_gem_object_pin(obj, 4096);
4442 if (ret)
4443 goto err_unref;
4445 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4446 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4447 if (dev_priv->seqno_page == NULL)
4448 goto err_unpin;
4450 dev_priv->seqno_obj = obj;
4451 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4453 return 0;
4455 err_unpin:
4456 i915_gem_object_unpin(obj);
4457 err_unref:
4458 drm_gem_object_unreference(obj);
4459 err:
4460 return ret;
4464 static void
4465 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4467 drm_i915_private_t *dev_priv = dev->dev_private;
4468 struct drm_gem_object *obj;
4469 struct drm_i915_gem_object *obj_priv;
4471 obj = dev_priv->seqno_obj;
4472 obj_priv = to_intel_bo(obj);
4473 kunmap(obj_priv->pages[0]);
4474 i915_gem_object_unpin(obj);
4475 drm_gem_object_unreference(obj);
4476 dev_priv->seqno_obj = NULL;
4478 dev_priv->seqno_page = NULL;
4482 i915_gem_init_ringbuffer(struct drm_device *dev)
4484 drm_i915_private_t *dev_priv = dev->dev_private;
4485 int ret;
4487 if (HAS_PIPE_CONTROL(dev)) {
4488 ret = i915_gem_init_pipe_control(dev);
4489 if (ret)
4490 return ret;
4493 ret = intel_init_render_ring_buffer(dev);
4494 if (ret)
4495 goto cleanup_pipe_control;
4497 if (HAS_BSD(dev)) {
4498 ret = intel_init_bsd_ring_buffer(dev);
4499 if (ret)
4500 goto cleanup_render_ring;
4503 dev_priv->next_seqno = 1;
4505 return 0;
4507 cleanup_render_ring:
4508 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4509 cleanup_pipe_control:
4510 if (HAS_PIPE_CONTROL(dev))
4511 i915_gem_cleanup_pipe_control(dev);
4512 return ret;
4515 void
4516 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4518 drm_i915_private_t *dev_priv = dev->dev_private;
4520 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4521 if (HAS_BSD(dev))
4522 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4523 if (HAS_PIPE_CONTROL(dev))
4524 i915_gem_cleanup_pipe_control(dev);
4528 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4529 struct drm_file *file_priv)
4531 drm_i915_private_t *dev_priv = dev->dev_private;
4532 int ret;
4534 if (drm_core_check_feature(dev, DRIVER_MODESET))
4535 return 0;
4537 if (atomic_read(&dev_priv->mm.wedged)) {
4538 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4539 atomic_set(&dev_priv->mm.wedged, 0);
4542 mutex_lock(&dev->struct_mutex);
4543 dev_priv->mm.suspended = 0;
4545 ret = i915_gem_init_ringbuffer(dev);
4546 if (ret != 0) {
4547 mutex_unlock(&dev->struct_mutex);
4548 return ret;
4551 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4552 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4553 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4554 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4555 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4556 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4557 mutex_unlock(&dev->struct_mutex);
4559 ret = drm_irq_install(dev);
4560 if (ret)
4561 goto cleanup_ringbuffer;
4563 return 0;
4565 cleanup_ringbuffer:
4566 mutex_lock(&dev->struct_mutex);
4567 i915_gem_cleanup_ringbuffer(dev);
4568 dev_priv->mm.suspended = 1;
4569 mutex_unlock(&dev->struct_mutex);
4571 return ret;
4575 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4576 struct drm_file *file_priv)
4578 if (drm_core_check_feature(dev, DRIVER_MODESET))
4579 return 0;
4581 drm_irq_uninstall(dev);
4582 return i915_gem_idle(dev);
4585 void
4586 i915_gem_lastclose(struct drm_device *dev)
4588 int ret;
4590 if (drm_core_check_feature(dev, DRIVER_MODESET))
4591 return;
4593 ret = i915_gem_idle(dev);
4594 if (ret)
4595 DRM_ERROR("failed to idle hardware: %d\n", ret);
4598 void
4599 i915_gem_load(struct drm_device *dev)
4601 int i;
4602 drm_i915_private_t *dev_priv = dev->dev_private;
4604 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4605 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4606 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4607 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4608 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4609 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4610 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4611 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4612 if (HAS_BSD(dev)) {
4613 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4614 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4616 for (i = 0; i < 16; i++)
4617 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4618 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4619 i915_gem_retire_work_handler);
4620 init_completion(&dev_priv->error_completion);
4621 spin_lock(&shrink_list_lock);
4622 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4623 spin_unlock(&shrink_list_lock);
4625 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4626 if (IS_GEN3(dev)) {
4627 u32 tmp = I915_READ(MI_ARB_STATE);
4628 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4629 /* arb state is a masked write, so set bit + bit in mask */
4630 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4631 I915_WRITE(MI_ARB_STATE, tmp);
4635 /* Old X drivers will take 0-2 for front, back, depth buffers */
4636 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4637 dev_priv->fence_reg_start = 3;
4639 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4640 dev_priv->num_fence_regs = 16;
4641 else
4642 dev_priv->num_fence_regs = 8;
4644 /* Initialize fence registers to zero */
4645 switch (INTEL_INFO(dev)->gen) {
4646 case 6:
4647 for (i = 0; i < 16; i++)
4648 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4649 break;
4650 case 5:
4651 case 4:
4652 for (i = 0; i < 16; i++)
4653 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4654 break;
4655 case 3:
4656 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4657 for (i = 0; i < 8; i++)
4658 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4659 case 2:
4660 for (i = 0; i < 8; i++)
4661 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4662 break;
4664 i915_gem_detect_bit_6_swizzle(dev);
4665 init_waitqueue_head(&dev_priv->pending_flip_queue);
4669 * Create a physically contiguous memory object for this object
4670 * e.g. for cursor + overlay regs
4672 static int i915_gem_init_phys_object(struct drm_device *dev,
4673 int id, int size, int align)
4675 drm_i915_private_t *dev_priv = dev->dev_private;
4676 struct drm_i915_gem_phys_object *phys_obj;
4677 int ret;
4679 if (dev_priv->mm.phys_objs[id - 1] || !size)
4680 return 0;
4682 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4683 if (!phys_obj)
4684 return -ENOMEM;
4686 phys_obj->id = id;
4688 phys_obj->handle = drm_pci_alloc(dev, size, align);
4689 if (!phys_obj->handle) {
4690 ret = -ENOMEM;
4691 goto kfree_obj;
4693 #ifdef CONFIG_X86
4694 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4695 #endif
4697 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4699 return 0;
4700 kfree_obj:
4701 kfree(phys_obj);
4702 return ret;
4705 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4707 drm_i915_private_t *dev_priv = dev->dev_private;
4708 struct drm_i915_gem_phys_object *phys_obj;
4710 if (!dev_priv->mm.phys_objs[id - 1])
4711 return;
4713 phys_obj = dev_priv->mm.phys_objs[id - 1];
4714 if (phys_obj->cur_obj) {
4715 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4718 #ifdef CONFIG_X86
4719 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4720 #endif
4721 drm_pci_free(dev, phys_obj->handle);
4722 kfree(phys_obj);
4723 dev_priv->mm.phys_objs[id - 1] = NULL;
4726 void i915_gem_free_all_phys_object(struct drm_device *dev)
4728 int i;
4730 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4731 i915_gem_free_phys_object(dev, i);
4734 void i915_gem_detach_phys_object(struct drm_device *dev,
4735 struct drm_gem_object *obj)
4737 struct drm_i915_gem_object *obj_priv;
4738 int i;
4739 int ret;
4740 int page_count;
4742 obj_priv = to_intel_bo(obj);
4743 if (!obj_priv->phys_obj)
4744 return;
4746 ret = i915_gem_object_get_pages(obj, 0);
4747 if (ret)
4748 goto out;
4750 page_count = obj->size / PAGE_SIZE;
4752 for (i = 0; i < page_count; i++) {
4753 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4754 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4756 memcpy(dst, src, PAGE_SIZE);
4757 kunmap_atomic(dst, KM_USER0);
4759 drm_clflush_pages(obj_priv->pages, page_count);
4760 drm_agp_chipset_flush(dev);
4762 i915_gem_object_put_pages(obj);
4763 out:
4764 obj_priv->phys_obj->cur_obj = NULL;
4765 obj_priv->phys_obj = NULL;
4769 i915_gem_attach_phys_object(struct drm_device *dev,
4770 struct drm_gem_object *obj,
4771 int id,
4772 int align)
4774 drm_i915_private_t *dev_priv = dev->dev_private;
4775 struct drm_i915_gem_object *obj_priv;
4776 int ret = 0;
4777 int page_count;
4778 int i;
4780 if (id > I915_MAX_PHYS_OBJECT)
4781 return -EINVAL;
4783 obj_priv = to_intel_bo(obj);
4785 if (obj_priv->phys_obj) {
4786 if (obj_priv->phys_obj->id == id)
4787 return 0;
4788 i915_gem_detach_phys_object(dev, obj);
4791 /* create a new object */
4792 if (!dev_priv->mm.phys_objs[id - 1]) {
4793 ret = i915_gem_init_phys_object(dev, id,
4794 obj->size, align);
4795 if (ret) {
4796 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4797 goto out;
4801 /* bind to the object */
4802 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4803 obj_priv->phys_obj->cur_obj = obj;
4805 ret = i915_gem_object_get_pages(obj, 0);
4806 if (ret) {
4807 DRM_ERROR("failed to get page list\n");
4808 goto out;
4811 page_count = obj->size / PAGE_SIZE;
4813 for (i = 0; i < page_count; i++) {
4814 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4815 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4817 memcpy(dst, src, PAGE_SIZE);
4818 kunmap_atomic(src, KM_USER0);
4821 i915_gem_object_put_pages(obj);
4823 return 0;
4824 out:
4825 return ret;
4828 static int
4829 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4830 struct drm_i915_gem_pwrite *args,
4831 struct drm_file *file_priv)
4833 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4834 void *obj_addr;
4835 int ret;
4836 char __user *user_data;
4838 user_data = (char __user *) (uintptr_t) args->data_ptr;
4839 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4841 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4842 ret = copy_from_user(obj_addr, user_data, args->size);
4843 if (ret)
4844 return -EFAULT;
4846 drm_agp_chipset_flush(dev);
4847 return 0;
4850 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4852 struct drm_i915_file_private *file_priv = file->driver_priv;
4854 /* Clean up our request list when the client is going away, so that
4855 * later retire_requests won't dereference our soon-to-be-gone
4856 * file_priv.
4858 spin_lock(&file_priv->mm.lock);
4859 while (!list_empty(&file_priv->mm.request_list)) {
4860 struct drm_i915_gem_request *request;
4862 request = list_first_entry(&file_priv->mm.request_list,
4863 struct drm_i915_gem_request,
4864 client_list);
4865 list_del(&request->client_list);
4866 request->file_priv = NULL;
4868 spin_unlock(&file_priv->mm.lock);
4871 static int
4872 i915_gpu_is_active(struct drm_device *dev)
4874 drm_i915_private_t *dev_priv = dev->dev_private;
4875 int lists_empty;
4877 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4878 list_empty(&dev_priv->render_ring.active_list);
4879 if (HAS_BSD(dev))
4880 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4882 return !lists_empty;
4885 static int
4886 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4888 drm_i915_private_t *dev_priv, *next_dev;
4889 struct drm_i915_gem_object *obj_priv, *next_obj;
4890 int cnt = 0;
4891 int would_deadlock = 1;
4893 /* "fast-path" to count number of available objects */
4894 if (nr_to_scan == 0) {
4895 spin_lock(&shrink_list_lock);
4896 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4897 struct drm_device *dev = dev_priv->dev;
4899 if (mutex_trylock(&dev->struct_mutex)) {
4900 list_for_each_entry(obj_priv,
4901 &dev_priv->mm.inactive_list,
4902 list)
4903 cnt++;
4904 mutex_unlock(&dev->struct_mutex);
4907 spin_unlock(&shrink_list_lock);
4909 return (cnt / 100) * sysctl_vfs_cache_pressure;
4912 spin_lock(&shrink_list_lock);
4914 rescan:
4915 /* first scan for clean buffers */
4916 list_for_each_entry_safe(dev_priv, next_dev,
4917 &shrink_list, mm.shrink_list) {
4918 struct drm_device *dev = dev_priv->dev;
4920 if (! mutex_trylock(&dev->struct_mutex))
4921 continue;
4923 spin_unlock(&shrink_list_lock);
4924 i915_gem_retire_requests(dev);
4926 list_for_each_entry_safe(obj_priv, next_obj,
4927 &dev_priv->mm.inactive_list,
4928 list) {
4929 if (i915_gem_object_is_purgeable(obj_priv)) {
4930 i915_gem_object_unbind(&obj_priv->base);
4931 if (--nr_to_scan <= 0)
4932 break;
4936 spin_lock(&shrink_list_lock);
4937 mutex_unlock(&dev->struct_mutex);
4939 would_deadlock = 0;
4941 if (nr_to_scan <= 0)
4942 break;
4945 /* second pass, evict/count anything still on the inactive list */
4946 list_for_each_entry_safe(dev_priv, next_dev,
4947 &shrink_list, mm.shrink_list) {
4948 struct drm_device *dev = dev_priv->dev;
4950 if (! mutex_trylock(&dev->struct_mutex))
4951 continue;
4953 spin_unlock(&shrink_list_lock);
4955 list_for_each_entry_safe(obj_priv, next_obj,
4956 &dev_priv->mm.inactive_list,
4957 list) {
4958 if (nr_to_scan > 0) {
4959 i915_gem_object_unbind(&obj_priv->base);
4960 nr_to_scan--;
4961 } else
4962 cnt++;
4965 spin_lock(&shrink_list_lock);
4966 mutex_unlock(&dev->struct_mutex);
4968 would_deadlock = 0;
4971 if (nr_to_scan) {
4972 int active = 0;
4975 * We are desperate for pages, so as a last resort, wait
4976 * for the GPU to finish and discard whatever we can.
4977 * This has a dramatic impact to reduce the number of
4978 * OOM-killer events whilst running the GPU aggressively.
4980 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4981 struct drm_device *dev = dev_priv->dev;
4983 if (!mutex_trylock(&dev->struct_mutex))
4984 continue;
4986 spin_unlock(&shrink_list_lock);
4988 if (i915_gpu_is_active(dev)) {
4989 i915_gpu_idle(dev);
4990 active++;
4993 spin_lock(&shrink_list_lock);
4994 mutex_unlock(&dev->struct_mutex);
4997 if (active)
4998 goto rescan;
5001 spin_unlock(&shrink_list_lock);
5003 if (would_deadlock)
5004 return -1;
5005 else if (cnt > 0)
5006 return (cnt / 100) * sysctl_vfs_cache_pressure;
5007 else
5008 return 0;
5011 static struct shrinker shrinker = {
5012 .shrink = i915_gem_shrink,
5013 .seeks = DEFAULT_SEEKS,
5016 __init void
5017 i915_gem_shrinker_init(void)
5019 register_shrinker(&shrinker);
5022 __exit void
5023 i915_gem_shrinker_exit(void)
5025 unregister_shrinker(&shrinker);