KVM: x86: Fix a possible backwards warp of kvmclock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blobd4d33f943d9918099c6174fc03ea9d199c2efb5e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
60 #define MAX_IO_MSRS 256
61 #define CR0_RESERVED_BITS \
62 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
63 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
64 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
65 #define CR4_RESERVED_BITS \
66 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
67 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
68 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
69 | X86_CR4_OSXSAVE \
70 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
72 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
74 #define KVM_MAX_MCE_BANKS 32
75 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
77 /* EFER defaults:
78 * - enable syscall per default because its emulated by KVM
79 * - enable LME and LMA per default on 64 bit KVM
81 #ifdef CONFIG_X86_64
82 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
83 #else
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
85 #endif
87 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
88 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
90 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
91 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
92 struct kvm_cpuid_entry2 __user *entries);
94 struct kvm_x86_ops *kvm_x86_ops;
95 EXPORT_SYMBOL_GPL(kvm_x86_ops);
97 int ignore_msrs = 0;
98 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
100 #define KVM_NR_SHARED_MSRS 16
102 struct kvm_shared_msrs_global {
103 int nr;
104 u32 msrs[KVM_NR_SHARED_MSRS];
107 struct kvm_shared_msrs {
108 struct user_return_notifier urn;
109 bool registered;
110 struct kvm_shared_msr_values {
111 u64 host;
112 u64 curr;
113 } values[KVM_NR_SHARED_MSRS];
116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
117 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
119 struct kvm_stats_debugfs_item debugfs_entries[] = {
120 { "pf_fixed", VCPU_STAT(pf_fixed) },
121 { "pf_guest", VCPU_STAT(pf_guest) },
122 { "tlb_flush", VCPU_STAT(tlb_flush) },
123 { "invlpg", VCPU_STAT(invlpg) },
124 { "exits", VCPU_STAT(exits) },
125 { "io_exits", VCPU_STAT(io_exits) },
126 { "mmio_exits", VCPU_STAT(mmio_exits) },
127 { "signal_exits", VCPU_STAT(signal_exits) },
128 { "irq_window", VCPU_STAT(irq_window_exits) },
129 { "nmi_window", VCPU_STAT(nmi_window_exits) },
130 { "halt_exits", VCPU_STAT(halt_exits) },
131 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
132 { "hypercalls", VCPU_STAT(hypercalls) },
133 { "request_irq", VCPU_STAT(request_irq_exits) },
134 { "irq_exits", VCPU_STAT(irq_exits) },
135 { "host_state_reload", VCPU_STAT(host_state_reload) },
136 { "efer_reload", VCPU_STAT(efer_reload) },
137 { "fpu_reload", VCPU_STAT(fpu_reload) },
138 { "insn_emulation", VCPU_STAT(insn_emulation) },
139 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
140 { "irq_injections", VCPU_STAT(irq_injections) },
141 { "nmi_injections", VCPU_STAT(nmi_injections) },
142 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
143 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
144 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
145 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
146 { "mmu_flooded", VM_STAT(mmu_flooded) },
147 { "mmu_recycled", VM_STAT(mmu_recycled) },
148 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
149 { "mmu_unsync", VM_STAT(mmu_unsync) },
150 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
151 { "largepages", VM_STAT(lpages) },
152 { NULL }
155 u64 __read_mostly host_xcr0;
157 static inline u32 bit(int bitno)
159 return 1 << (bitno & 31);
162 static void kvm_on_user_return(struct user_return_notifier *urn)
164 unsigned slot;
165 struct kvm_shared_msrs *locals
166 = container_of(urn, struct kvm_shared_msrs, urn);
167 struct kvm_shared_msr_values *values;
169 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
170 values = &locals->values[slot];
171 if (values->host != values->curr) {
172 wrmsrl(shared_msrs_global.msrs[slot], values->host);
173 values->curr = values->host;
176 locals->registered = false;
177 user_return_notifier_unregister(urn);
180 static void shared_msr_update(unsigned slot, u32 msr)
182 struct kvm_shared_msrs *smsr;
183 u64 value;
185 smsr = &__get_cpu_var(shared_msrs);
186 /* only read, and nobody should modify it at this time,
187 * so don't need lock */
188 if (slot >= shared_msrs_global.nr) {
189 printk(KERN_ERR "kvm: invalid MSR slot!");
190 return;
192 rdmsrl_safe(msr, &value);
193 smsr->values[slot].host = value;
194 smsr->values[slot].curr = value;
197 void kvm_define_shared_msr(unsigned slot, u32 msr)
199 if (slot >= shared_msrs_global.nr)
200 shared_msrs_global.nr = slot + 1;
201 shared_msrs_global.msrs[slot] = msr;
202 /* we need ensured the shared_msr_global have been updated */
203 smp_wmb();
205 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
207 static void kvm_shared_msr_cpu_online(void)
209 unsigned i;
211 for (i = 0; i < shared_msrs_global.nr; ++i)
212 shared_msr_update(i, shared_msrs_global.msrs[i]);
215 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
217 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
219 if (((value ^ smsr->values[slot].curr) & mask) == 0)
220 return;
221 smsr->values[slot].curr = value;
222 wrmsrl(shared_msrs_global.msrs[slot], value);
223 if (!smsr->registered) {
224 smsr->urn.on_user_return = kvm_on_user_return;
225 user_return_notifier_register(&smsr->urn);
226 smsr->registered = true;
229 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
231 static void drop_user_return_notifiers(void *ignore)
233 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
235 if (smsr->registered)
236 kvm_on_user_return(&smsr->urn);
239 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
241 if (irqchip_in_kernel(vcpu->kvm))
242 return vcpu->arch.apic_base;
243 else
244 return vcpu->arch.apic_base;
246 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
248 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
250 /* TODO: reserve bits check */
251 if (irqchip_in_kernel(vcpu->kvm))
252 kvm_lapic_set_base(vcpu, data);
253 else
254 vcpu->arch.apic_base = data;
256 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
258 #define EXCPT_BENIGN 0
259 #define EXCPT_CONTRIBUTORY 1
260 #define EXCPT_PF 2
262 static int exception_class(int vector)
264 switch (vector) {
265 case PF_VECTOR:
266 return EXCPT_PF;
267 case DE_VECTOR:
268 case TS_VECTOR:
269 case NP_VECTOR:
270 case SS_VECTOR:
271 case GP_VECTOR:
272 return EXCPT_CONTRIBUTORY;
273 default:
274 break;
276 return EXCPT_BENIGN;
279 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
280 unsigned nr, bool has_error, u32 error_code,
281 bool reinject)
283 u32 prev_nr;
284 int class1, class2;
286 if (!vcpu->arch.exception.pending) {
287 queue:
288 vcpu->arch.exception.pending = true;
289 vcpu->arch.exception.has_error_code = has_error;
290 vcpu->arch.exception.nr = nr;
291 vcpu->arch.exception.error_code = error_code;
292 vcpu->arch.exception.reinject = reinject;
293 return;
296 /* to check exception */
297 prev_nr = vcpu->arch.exception.nr;
298 if (prev_nr == DF_VECTOR) {
299 /* triple fault -> shutdown */
300 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
301 return;
303 class1 = exception_class(prev_nr);
304 class2 = exception_class(nr);
305 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
306 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
307 /* generate double fault per SDM Table 5-5 */
308 vcpu->arch.exception.pending = true;
309 vcpu->arch.exception.has_error_code = true;
310 vcpu->arch.exception.nr = DF_VECTOR;
311 vcpu->arch.exception.error_code = 0;
312 } else
313 /* replace previous exception with a new one in a hope
314 that instruction re-execution will regenerate lost
315 exception */
316 goto queue;
319 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
321 kvm_multiple_exception(vcpu, nr, false, 0, false);
323 EXPORT_SYMBOL_GPL(kvm_queue_exception);
325 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 kvm_multiple_exception(vcpu, nr, false, 0, true);
329 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
331 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
332 u32 error_code)
334 ++vcpu->stat.pf_guest;
335 vcpu->arch.cr2 = addr;
336 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
339 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
341 vcpu->arch.nmi_pending = 1;
343 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
345 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
347 kvm_multiple_exception(vcpu, nr, true, error_code, false);
349 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
351 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
353 kvm_multiple_exception(vcpu, nr, true, error_code, true);
355 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
358 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
359 * a #GP and return false.
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
363 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364 return true;
365 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366 return false;
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
371 * Load the pae pdptrs. Return true is they are all valid.
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
375 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377 int i;
378 int ret;
379 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
381 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382 offset * sizeof(u64), sizeof(pdpte));
383 if (ret < 0) {
384 ret = 0;
385 goto out;
387 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388 if (is_present_gpte(pdpte[i]) &&
389 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390 ret = 0;
391 goto out;
394 ret = 1;
396 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397 __set_bit(VCPU_EXREG_PDPTR,
398 (unsigned long *)&vcpu->arch.regs_avail);
399 __set_bit(VCPU_EXREG_PDPTR,
400 (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
403 return ret;
405 EXPORT_SYMBOL_GPL(load_pdptrs);
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
409 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410 bool changed = true;
411 int r;
413 if (is_long_mode(vcpu) || !is_pae(vcpu))
414 return false;
416 if (!test_bit(VCPU_EXREG_PDPTR,
417 (unsigned long *)&vcpu->arch.regs_avail))
418 return true;
420 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421 if (r < 0)
422 goto out;
423 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
426 return changed;
429 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
431 unsigned long old_cr0 = kvm_read_cr0(vcpu);
432 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
433 X86_CR0_CD | X86_CR0_NW;
435 cr0 |= X86_CR0_ET;
437 #ifdef CONFIG_X86_64
438 if (cr0 & 0xffffffff00000000UL)
439 return 1;
440 #endif
442 cr0 &= ~CR0_RESERVED_BITS;
444 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
445 return 1;
447 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
448 return 1;
450 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
451 #ifdef CONFIG_X86_64
452 if ((vcpu->arch.efer & EFER_LME)) {
453 int cs_db, cs_l;
455 if (!is_pae(vcpu))
456 return 1;
457 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
458 if (cs_l)
459 return 1;
460 } else
461 #endif
462 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
463 return 1;
466 kvm_x86_ops->set_cr0(vcpu, cr0);
468 if ((cr0 ^ old_cr0) & update_bits)
469 kvm_mmu_reset_context(vcpu);
470 return 0;
472 EXPORT_SYMBOL_GPL(kvm_set_cr0);
474 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
476 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
478 EXPORT_SYMBOL_GPL(kvm_lmsw);
480 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
482 u64 xcr0;
484 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
485 if (index != XCR_XFEATURE_ENABLED_MASK)
486 return 1;
487 xcr0 = xcr;
488 if (kvm_x86_ops->get_cpl(vcpu) != 0)
489 return 1;
490 if (!(xcr0 & XSTATE_FP))
491 return 1;
492 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
493 return 1;
494 if (xcr0 & ~host_xcr0)
495 return 1;
496 vcpu->arch.xcr0 = xcr0;
497 vcpu->guest_xcr0_loaded = 0;
498 return 0;
501 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
503 if (__kvm_set_xcr(vcpu, index, xcr)) {
504 kvm_inject_gp(vcpu, 0);
505 return 1;
507 return 0;
509 EXPORT_SYMBOL_GPL(kvm_set_xcr);
511 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
513 struct kvm_cpuid_entry2 *best;
515 best = kvm_find_cpuid_entry(vcpu, 1, 0);
516 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
519 static void update_cpuid(struct kvm_vcpu *vcpu)
521 struct kvm_cpuid_entry2 *best;
523 best = kvm_find_cpuid_entry(vcpu, 1, 0);
524 if (!best)
525 return;
527 /* Update OSXSAVE bit */
528 if (cpu_has_xsave && best->function == 0x1) {
529 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
530 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
531 best->ecx |= bit(X86_FEATURE_OSXSAVE);
535 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
537 unsigned long old_cr4 = kvm_read_cr4(vcpu);
538 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
540 if (cr4 & CR4_RESERVED_BITS)
541 return 1;
543 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
544 return 1;
546 if (is_long_mode(vcpu)) {
547 if (!(cr4 & X86_CR4_PAE))
548 return 1;
549 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
550 && ((cr4 ^ old_cr4) & pdptr_bits)
551 && !load_pdptrs(vcpu, vcpu->arch.cr3))
552 return 1;
554 if (cr4 & X86_CR4_VMXE)
555 return 1;
557 kvm_x86_ops->set_cr4(vcpu, cr4);
559 if ((cr4 ^ old_cr4) & pdptr_bits)
560 kvm_mmu_reset_context(vcpu);
562 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
563 update_cpuid(vcpu);
565 return 0;
567 EXPORT_SYMBOL_GPL(kvm_set_cr4);
569 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
571 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
572 kvm_mmu_sync_roots(vcpu);
573 kvm_mmu_flush_tlb(vcpu);
574 return 0;
577 if (is_long_mode(vcpu)) {
578 if (cr3 & CR3_L_MODE_RESERVED_BITS)
579 return 1;
580 } else {
581 if (is_pae(vcpu)) {
582 if (cr3 & CR3_PAE_RESERVED_BITS)
583 return 1;
584 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
585 return 1;
588 * We don't check reserved bits in nonpae mode, because
589 * this isn't enforced, and VMware depends on this.
594 * Does the new cr3 value map to physical memory? (Note, we
595 * catch an invalid cr3 even in real-mode, because it would
596 * cause trouble later on when we turn on paging anyway.)
598 * A real CPU would silently accept an invalid cr3 and would
599 * attempt to use it - with largely undefined (and often hard
600 * to debug) behavior on the guest side.
602 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
603 return 1;
604 vcpu->arch.cr3 = cr3;
605 vcpu->arch.mmu.new_cr3(vcpu);
606 return 0;
608 EXPORT_SYMBOL_GPL(kvm_set_cr3);
610 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
612 if (cr8 & CR8_RESERVED_BITS)
613 return 1;
614 if (irqchip_in_kernel(vcpu->kvm))
615 kvm_lapic_set_tpr(vcpu, cr8);
616 else
617 vcpu->arch.cr8 = cr8;
618 return 0;
621 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
623 if (__kvm_set_cr8(vcpu, cr8))
624 kvm_inject_gp(vcpu, 0);
626 EXPORT_SYMBOL_GPL(kvm_set_cr8);
628 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
630 if (irqchip_in_kernel(vcpu->kvm))
631 return kvm_lapic_get_cr8(vcpu);
632 else
633 return vcpu->arch.cr8;
635 EXPORT_SYMBOL_GPL(kvm_get_cr8);
637 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
639 switch (dr) {
640 case 0 ... 3:
641 vcpu->arch.db[dr] = val;
642 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
643 vcpu->arch.eff_db[dr] = val;
644 break;
645 case 4:
646 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
647 return 1; /* #UD */
648 /* fall through */
649 case 6:
650 if (val & 0xffffffff00000000ULL)
651 return -1; /* #GP */
652 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
653 break;
654 case 5:
655 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
656 return 1; /* #UD */
657 /* fall through */
658 default: /* 7 */
659 if (val & 0xffffffff00000000ULL)
660 return -1; /* #GP */
661 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
662 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
663 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
664 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
666 break;
669 return 0;
672 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
674 int res;
676 res = __kvm_set_dr(vcpu, dr, val);
677 if (res > 0)
678 kvm_queue_exception(vcpu, UD_VECTOR);
679 else if (res < 0)
680 kvm_inject_gp(vcpu, 0);
682 return res;
684 EXPORT_SYMBOL_GPL(kvm_set_dr);
686 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
688 switch (dr) {
689 case 0 ... 3:
690 *val = vcpu->arch.db[dr];
691 break;
692 case 4:
693 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
694 return 1;
695 /* fall through */
696 case 6:
697 *val = vcpu->arch.dr6;
698 break;
699 case 5:
700 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
701 return 1;
702 /* fall through */
703 default: /* 7 */
704 *val = vcpu->arch.dr7;
705 break;
708 return 0;
711 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
713 if (_kvm_get_dr(vcpu, dr, val)) {
714 kvm_queue_exception(vcpu, UD_VECTOR);
715 return 1;
717 return 0;
719 EXPORT_SYMBOL_GPL(kvm_get_dr);
722 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
723 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
725 * This list is modified at module load time to reflect the
726 * capabilities of the host cpu. This capabilities test skips MSRs that are
727 * kvm-specific. Those are put in the beginning of the list.
730 #define KVM_SAVE_MSRS_BEGIN 7
731 static u32 msrs_to_save[] = {
732 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
733 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
734 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
735 HV_X64_MSR_APIC_ASSIST_PAGE,
736 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
737 MSR_STAR,
738 #ifdef CONFIG_X86_64
739 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
740 #endif
741 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
744 static unsigned num_msrs_to_save;
746 static u32 emulated_msrs[] = {
747 MSR_IA32_MISC_ENABLE,
748 MSR_IA32_MCG_STATUS,
749 MSR_IA32_MCG_CTL,
752 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
754 u64 old_efer = vcpu->arch.efer;
756 if (efer & efer_reserved_bits)
757 return 1;
759 if (is_paging(vcpu)
760 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
761 return 1;
763 if (efer & EFER_FFXSR) {
764 struct kvm_cpuid_entry2 *feat;
766 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
767 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
768 return 1;
771 if (efer & EFER_SVME) {
772 struct kvm_cpuid_entry2 *feat;
774 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
775 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
776 return 1;
779 efer &= ~EFER_LMA;
780 efer |= vcpu->arch.efer & EFER_LMA;
782 kvm_x86_ops->set_efer(vcpu, efer);
784 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
785 kvm_mmu_reset_context(vcpu);
787 /* Update reserved bits */
788 if ((efer ^ old_efer) & EFER_NX)
789 kvm_mmu_reset_context(vcpu);
791 return 0;
794 void kvm_enable_efer_bits(u64 mask)
796 efer_reserved_bits &= ~mask;
798 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
802 * Writes msr value into into the appropriate "register".
803 * Returns 0 on success, non-0 otherwise.
804 * Assumes vcpu_load() was already called.
806 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
808 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
812 * Adapt set_msr() to msr_io()'s calling convention
814 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
816 return kvm_set_msr(vcpu, index, *data);
819 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
821 int version;
822 int r;
823 struct pvclock_wall_clock wc;
824 struct timespec boot;
826 if (!wall_clock)
827 return;
829 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
830 if (r)
831 return;
833 if (version & 1)
834 ++version; /* first time write, random junk */
836 ++version;
838 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
841 * The guest calculates current wall clock time by adding
842 * system time (updated by kvm_write_guest_time below) to the
843 * wall clock specified here. guest system time equals host
844 * system time for us, thus we must fill in host boot time here.
846 getboottime(&boot);
848 wc.sec = boot.tv_sec;
849 wc.nsec = boot.tv_nsec;
850 wc.version = version;
852 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
854 version++;
855 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
858 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
860 uint32_t quotient, remainder;
862 /* Don't try to replace with do_div(), this one calculates
863 * "(dividend << 32) / divisor" */
864 __asm__ ( "divl %4"
865 : "=a" (quotient), "=d" (remainder)
866 : "0" (0), "1" (dividend), "r" (divisor) );
867 return quotient;
870 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
872 uint64_t nsecs = 1000000000LL;
873 int32_t shift = 0;
874 uint64_t tps64;
875 uint32_t tps32;
877 tps64 = tsc_khz * 1000LL;
878 while (tps64 > nsecs*2) {
879 tps64 >>= 1;
880 shift--;
883 tps32 = (uint32_t)tps64;
884 while (tps32 <= (uint32_t)nsecs) {
885 tps32 <<= 1;
886 shift++;
889 hv_clock->tsc_shift = shift;
890 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
892 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
893 __func__, tsc_khz, hv_clock->tsc_shift,
894 hv_clock->tsc_to_system_mul);
897 static inline u64 get_kernel_ns(void)
899 struct timespec ts;
901 WARN_ON(preemptible());
902 ktime_get_ts(&ts);
903 monotonic_to_bootbased(&ts);
904 return timespec_to_ns(&ts);
907 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
909 static inline int kvm_tsc_changes_freq(void)
911 int cpu = get_cpu();
912 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
913 cpufreq_quick_get(cpu) != 0;
914 put_cpu();
915 return ret;
918 static inline u64 nsec_to_cycles(u64 nsec)
920 WARN_ON(preemptible());
921 if (kvm_tsc_changes_freq())
922 printk_once(KERN_WARNING
923 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
924 return (nsec * __get_cpu_var(cpu_tsc_khz)) / USEC_PER_SEC;
927 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
929 struct kvm *kvm = vcpu->kvm;
930 u64 offset, ns, elapsed;
931 unsigned long flags;
932 s64 sdiff;
934 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
935 offset = data - native_read_tsc();
936 ns = get_kernel_ns();
937 elapsed = ns - kvm->arch.last_tsc_nsec;
938 sdiff = data - kvm->arch.last_tsc_write;
939 if (sdiff < 0)
940 sdiff = -sdiff;
943 * Special case: close write to TSC within 5 seconds of
944 * another CPU is interpreted as an attempt to synchronize
945 * The 5 seconds is to accomodate host load / swapping as
946 * well as any reset of TSC during the boot process.
948 * In that case, for a reliable TSC, we can match TSC offsets,
949 * or make a best guest using elapsed value.
951 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
952 elapsed < 5ULL * NSEC_PER_SEC) {
953 if (!check_tsc_unstable()) {
954 offset = kvm->arch.last_tsc_offset;
955 pr_debug("kvm: matched tsc offset for %llu\n", data);
956 } else {
957 u64 delta = nsec_to_cycles(elapsed);
958 offset += delta;
959 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
961 ns = kvm->arch.last_tsc_nsec;
963 kvm->arch.last_tsc_nsec = ns;
964 kvm->arch.last_tsc_write = data;
965 kvm->arch.last_tsc_offset = offset;
966 kvm_x86_ops->write_tsc_offset(vcpu, offset);
967 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
969 /* Reset of TSC must disable overshoot protection below */
970 vcpu->arch.hv_clock.tsc_timestamp = 0;
972 EXPORT_SYMBOL_GPL(kvm_write_tsc);
974 static int kvm_write_guest_time(struct kvm_vcpu *v)
976 unsigned long flags;
977 struct kvm_vcpu_arch *vcpu = &v->arch;
978 void *shared_kaddr;
979 unsigned long this_tsc_khz;
980 s64 kernel_ns, max_kernel_ns;
981 u64 tsc_timestamp;
983 if ((!vcpu->time_page))
984 return 0;
986 /* Keep irq disabled to prevent changes to the clock */
987 local_irq_save(flags);
988 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
989 kernel_ns = get_kernel_ns();
990 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
991 local_irq_restore(flags);
993 if (unlikely(this_tsc_khz == 0)) {
994 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
995 return 1;
999 * Time as measured by the TSC may go backwards when resetting the base
1000 * tsc_timestamp. The reason for this is that the TSC resolution is
1001 * higher than the resolution of the other clock scales. Thus, many
1002 * possible measurments of the TSC correspond to one measurement of any
1003 * other clock, and so a spread of values is possible. This is not a
1004 * problem for the computation of the nanosecond clock; with TSC rates
1005 * around 1GHZ, there can only be a few cycles which correspond to one
1006 * nanosecond value, and any path through this code will inevitably
1007 * take longer than that. However, with the kernel_ns value itself,
1008 * the precision may be much lower, down to HZ granularity. If the
1009 * first sampling of TSC against kernel_ns ends in the low part of the
1010 * range, and the second in the high end of the range, we can get:
1012 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1014 * As the sampling errors potentially range in the thousands of cycles,
1015 * it is possible such a time value has already been observed by the
1016 * guest. To protect against this, we must compute the system time as
1017 * observed by the guest and ensure the new system time is greater.
1019 max_kernel_ns = 0;
1020 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1021 max_kernel_ns = vcpu->last_guest_tsc -
1022 vcpu->hv_clock.tsc_timestamp;
1023 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1024 vcpu->hv_clock.tsc_to_system_mul,
1025 vcpu->hv_clock.tsc_shift);
1026 max_kernel_ns += vcpu->last_kernel_ns;
1029 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1030 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1031 vcpu->hw_tsc_khz = this_tsc_khz;
1034 if (max_kernel_ns > kernel_ns)
1035 kernel_ns = max_kernel_ns;
1037 /* With all the info we got, fill in the values */
1038 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1039 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1040 vcpu->last_kernel_ns = kernel_ns;
1041 vcpu->hv_clock.flags = 0;
1044 * The interface expects us to write an even number signaling that the
1045 * update is finished. Since the guest won't see the intermediate
1046 * state, we just increase by 2 at the end.
1048 vcpu->hv_clock.version += 2;
1050 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1052 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1053 sizeof(vcpu->hv_clock));
1055 kunmap_atomic(shared_kaddr, KM_USER0);
1057 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1058 return 0;
1061 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1063 struct kvm_vcpu_arch *vcpu = &v->arch;
1065 if (!vcpu->time_page)
1066 return 0;
1067 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1068 return 1;
1071 static bool msr_mtrr_valid(unsigned msr)
1073 switch (msr) {
1074 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1075 case MSR_MTRRfix64K_00000:
1076 case MSR_MTRRfix16K_80000:
1077 case MSR_MTRRfix16K_A0000:
1078 case MSR_MTRRfix4K_C0000:
1079 case MSR_MTRRfix4K_C8000:
1080 case MSR_MTRRfix4K_D0000:
1081 case MSR_MTRRfix4K_D8000:
1082 case MSR_MTRRfix4K_E0000:
1083 case MSR_MTRRfix4K_E8000:
1084 case MSR_MTRRfix4K_F0000:
1085 case MSR_MTRRfix4K_F8000:
1086 case MSR_MTRRdefType:
1087 case MSR_IA32_CR_PAT:
1088 return true;
1089 case 0x2f8:
1090 return true;
1092 return false;
1095 static bool valid_pat_type(unsigned t)
1097 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1100 static bool valid_mtrr_type(unsigned t)
1102 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1105 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1107 int i;
1109 if (!msr_mtrr_valid(msr))
1110 return false;
1112 if (msr == MSR_IA32_CR_PAT) {
1113 for (i = 0; i < 8; i++)
1114 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1115 return false;
1116 return true;
1117 } else if (msr == MSR_MTRRdefType) {
1118 if (data & ~0xcff)
1119 return false;
1120 return valid_mtrr_type(data & 0xff);
1121 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1122 for (i = 0; i < 8 ; i++)
1123 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1124 return false;
1125 return true;
1128 /* variable MTRRs */
1129 return valid_mtrr_type(data & 0xff);
1132 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1134 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1136 if (!mtrr_valid(vcpu, msr, data))
1137 return 1;
1139 if (msr == MSR_MTRRdefType) {
1140 vcpu->arch.mtrr_state.def_type = data;
1141 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1142 } else if (msr == MSR_MTRRfix64K_00000)
1143 p[0] = data;
1144 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1145 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1146 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1147 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1148 else if (msr == MSR_IA32_CR_PAT)
1149 vcpu->arch.pat = data;
1150 else { /* Variable MTRRs */
1151 int idx, is_mtrr_mask;
1152 u64 *pt;
1154 idx = (msr - 0x200) / 2;
1155 is_mtrr_mask = msr - 0x200 - 2 * idx;
1156 if (!is_mtrr_mask)
1157 pt =
1158 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1159 else
1160 pt =
1161 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1162 *pt = data;
1165 kvm_mmu_reset_context(vcpu);
1166 return 0;
1169 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1171 u64 mcg_cap = vcpu->arch.mcg_cap;
1172 unsigned bank_num = mcg_cap & 0xff;
1174 switch (msr) {
1175 case MSR_IA32_MCG_STATUS:
1176 vcpu->arch.mcg_status = data;
1177 break;
1178 case MSR_IA32_MCG_CTL:
1179 if (!(mcg_cap & MCG_CTL_P))
1180 return 1;
1181 if (data != 0 && data != ~(u64)0)
1182 return -1;
1183 vcpu->arch.mcg_ctl = data;
1184 break;
1185 default:
1186 if (msr >= MSR_IA32_MC0_CTL &&
1187 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1188 u32 offset = msr - MSR_IA32_MC0_CTL;
1189 /* only 0 or all 1s can be written to IA32_MCi_CTL
1190 * some Linux kernels though clear bit 10 in bank 4 to
1191 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1192 * this to avoid an uncatched #GP in the guest
1194 if ((offset & 0x3) == 0 &&
1195 data != 0 && (data | (1 << 10)) != ~(u64)0)
1196 return -1;
1197 vcpu->arch.mce_banks[offset] = data;
1198 break;
1200 return 1;
1202 return 0;
1205 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1207 struct kvm *kvm = vcpu->kvm;
1208 int lm = is_long_mode(vcpu);
1209 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1210 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1211 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1212 : kvm->arch.xen_hvm_config.blob_size_32;
1213 u32 page_num = data & ~PAGE_MASK;
1214 u64 page_addr = data & PAGE_MASK;
1215 u8 *page;
1216 int r;
1218 r = -E2BIG;
1219 if (page_num >= blob_size)
1220 goto out;
1221 r = -ENOMEM;
1222 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1223 if (!page)
1224 goto out;
1225 r = -EFAULT;
1226 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1227 goto out_free;
1228 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1229 goto out_free;
1230 r = 0;
1231 out_free:
1232 kfree(page);
1233 out:
1234 return r;
1237 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1239 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1242 static bool kvm_hv_msr_partition_wide(u32 msr)
1244 bool r = false;
1245 switch (msr) {
1246 case HV_X64_MSR_GUEST_OS_ID:
1247 case HV_X64_MSR_HYPERCALL:
1248 r = true;
1249 break;
1252 return r;
1255 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1257 struct kvm *kvm = vcpu->kvm;
1259 switch (msr) {
1260 case HV_X64_MSR_GUEST_OS_ID:
1261 kvm->arch.hv_guest_os_id = data;
1262 /* setting guest os id to zero disables hypercall page */
1263 if (!kvm->arch.hv_guest_os_id)
1264 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1265 break;
1266 case HV_X64_MSR_HYPERCALL: {
1267 u64 gfn;
1268 unsigned long addr;
1269 u8 instructions[4];
1271 /* if guest os id is not set hypercall should remain disabled */
1272 if (!kvm->arch.hv_guest_os_id)
1273 break;
1274 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1275 kvm->arch.hv_hypercall = data;
1276 break;
1278 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1279 addr = gfn_to_hva(kvm, gfn);
1280 if (kvm_is_error_hva(addr))
1281 return 1;
1282 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1283 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1284 if (copy_to_user((void __user *)addr, instructions, 4))
1285 return 1;
1286 kvm->arch.hv_hypercall = data;
1287 break;
1289 default:
1290 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1291 "data 0x%llx\n", msr, data);
1292 return 1;
1294 return 0;
1297 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1299 switch (msr) {
1300 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1301 unsigned long addr;
1303 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1304 vcpu->arch.hv_vapic = data;
1305 break;
1307 addr = gfn_to_hva(vcpu->kvm, data >>
1308 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1309 if (kvm_is_error_hva(addr))
1310 return 1;
1311 if (clear_user((void __user *)addr, PAGE_SIZE))
1312 return 1;
1313 vcpu->arch.hv_vapic = data;
1314 break;
1316 case HV_X64_MSR_EOI:
1317 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1318 case HV_X64_MSR_ICR:
1319 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1320 case HV_X64_MSR_TPR:
1321 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1322 default:
1323 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1324 "data 0x%llx\n", msr, data);
1325 return 1;
1328 return 0;
1331 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1333 switch (msr) {
1334 case MSR_EFER:
1335 return set_efer(vcpu, data);
1336 case MSR_K7_HWCR:
1337 data &= ~(u64)0x40; /* ignore flush filter disable */
1338 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1339 if (data != 0) {
1340 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1341 data);
1342 return 1;
1344 break;
1345 case MSR_FAM10H_MMIO_CONF_BASE:
1346 if (data != 0) {
1347 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1348 "0x%llx\n", data);
1349 return 1;
1351 break;
1352 case MSR_AMD64_NB_CFG:
1353 break;
1354 case MSR_IA32_DEBUGCTLMSR:
1355 if (!data) {
1356 /* We support the non-activated case already */
1357 break;
1358 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1359 /* Values other than LBR and BTF are vendor-specific,
1360 thus reserved and should throw a #GP */
1361 return 1;
1363 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1364 __func__, data);
1365 break;
1366 case MSR_IA32_UCODE_REV:
1367 case MSR_IA32_UCODE_WRITE:
1368 case MSR_VM_HSAVE_PA:
1369 case MSR_AMD64_PATCH_LOADER:
1370 break;
1371 case 0x200 ... 0x2ff:
1372 return set_msr_mtrr(vcpu, msr, data);
1373 case MSR_IA32_APICBASE:
1374 kvm_set_apic_base(vcpu, data);
1375 break;
1376 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1377 return kvm_x2apic_msr_write(vcpu, msr, data);
1378 case MSR_IA32_MISC_ENABLE:
1379 vcpu->arch.ia32_misc_enable_msr = data;
1380 break;
1381 case MSR_KVM_WALL_CLOCK_NEW:
1382 case MSR_KVM_WALL_CLOCK:
1383 vcpu->kvm->arch.wall_clock = data;
1384 kvm_write_wall_clock(vcpu->kvm, data);
1385 break;
1386 case MSR_KVM_SYSTEM_TIME_NEW:
1387 case MSR_KVM_SYSTEM_TIME: {
1388 if (vcpu->arch.time_page) {
1389 kvm_release_page_dirty(vcpu->arch.time_page);
1390 vcpu->arch.time_page = NULL;
1393 vcpu->arch.time = data;
1395 /* we verify if the enable bit is set... */
1396 if (!(data & 1))
1397 break;
1399 /* ...but clean it before doing the actual write */
1400 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1402 vcpu->arch.time_page =
1403 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1405 if (is_error_page(vcpu->arch.time_page)) {
1406 kvm_release_page_clean(vcpu->arch.time_page);
1407 vcpu->arch.time_page = NULL;
1410 kvm_request_guest_time_update(vcpu);
1411 break;
1413 case MSR_IA32_MCG_CTL:
1414 case MSR_IA32_MCG_STATUS:
1415 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1416 return set_msr_mce(vcpu, msr, data);
1418 /* Performance counters are not protected by a CPUID bit,
1419 * so we should check all of them in the generic path for the sake of
1420 * cross vendor migration.
1421 * Writing a zero into the event select MSRs disables them,
1422 * which we perfectly emulate ;-). Any other value should be at least
1423 * reported, some guests depend on them.
1425 case MSR_P6_EVNTSEL0:
1426 case MSR_P6_EVNTSEL1:
1427 case MSR_K7_EVNTSEL0:
1428 case MSR_K7_EVNTSEL1:
1429 case MSR_K7_EVNTSEL2:
1430 case MSR_K7_EVNTSEL3:
1431 if (data != 0)
1432 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1433 "0x%x data 0x%llx\n", msr, data);
1434 break;
1435 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1436 * so we ignore writes to make it happy.
1438 case MSR_P6_PERFCTR0:
1439 case MSR_P6_PERFCTR1:
1440 case MSR_K7_PERFCTR0:
1441 case MSR_K7_PERFCTR1:
1442 case MSR_K7_PERFCTR2:
1443 case MSR_K7_PERFCTR3:
1444 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1445 "0x%x data 0x%llx\n", msr, data);
1446 break;
1447 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1448 if (kvm_hv_msr_partition_wide(msr)) {
1449 int r;
1450 mutex_lock(&vcpu->kvm->lock);
1451 r = set_msr_hyperv_pw(vcpu, msr, data);
1452 mutex_unlock(&vcpu->kvm->lock);
1453 return r;
1454 } else
1455 return set_msr_hyperv(vcpu, msr, data);
1456 break;
1457 default:
1458 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1459 return xen_hvm_config(vcpu, data);
1460 if (!ignore_msrs) {
1461 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1462 msr, data);
1463 return 1;
1464 } else {
1465 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1466 msr, data);
1467 break;
1470 return 0;
1472 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1476 * Reads an msr value (of 'msr_index') into 'pdata'.
1477 * Returns 0 on success, non-0 otherwise.
1478 * Assumes vcpu_load() was already called.
1480 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1482 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1485 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1487 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1489 if (!msr_mtrr_valid(msr))
1490 return 1;
1492 if (msr == MSR_MTRRdefType)
1493 *pdata = vcpu->arch.mtrr_state.def_type +
1494 (vcpu->arch.mtrr_state.enabled << 10);
1495 else if (msr == MSR_MTRRfix64K_00000)
1496 *pdata = p[0];
1497 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1498 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1499 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1500 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1501 else if (msr == MSR_IA32_CR_PAT)
1502 *pdata = vcpu->arch.pat;
1503 else { /* Variable MTRRs */
1504 int idx, is_mtrr_mask;
1505 u64 *pt;
1507 idx = (msr - 0x200) / 2;
1508 is_mtrr_mask = msr - 0x200 - 2 * idx;
1509 if (!is_mtrr_mask)
1510 pt =
1511 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1512 else
1513 pt =
1514 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1515 *pdata = *pt;
1518 return 0;
1521 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1523 u64 data;
1524 u64 mcg_cap = vcpu->arch.mcg_cap;
1525 unsigned bank_num = mcg_cap & 0xff;
1527 switch (msr) {
1528 case MSR_IA32_P5_MC_ADDR:
1529 case MSR_IA32_P5_MC_TYPE:
1530 data = 0;
1531 break;
1532 case MSR_IA32_MCG_CAP:
1533 data = vcpu->arch.mcg_cap;
1534 break;
1535 case MSR_IA32_MCG_CTL:
1536 if (!(mcg_cap & MCG_CTL_P))
1537 return 1;
1538 data = vcpu->arch.mcg_ctl;
1539 break;
1540 case MSR_IA32_MCG_STATUS:
1541 data = vcpu->arch.mcg_status;
1542 break;
1543 default:
1544 if (msr >= MSR_IA32_MC0_CTL &&
1545 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1546 u32 offset = msr - MSR_IA32_MC0_CTL;
1547 data = vcpu->arch.mce_banks[offset];
1548 break;
1550 return 1;
1552 *pdata = data;
1553 return 0;
1556 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1558 u64 data = 0;
1559 struct kvm *kvm = vcpu->kvm;
1561 switch (msr) {
1562 case HV_X64_MSR_GUEST_OS_ID:
1563 data = kvm->arch.hv_guest_os_id;
1564 break;
1565 case HV_X64_MSR_HYPERCALL:
1566 data = kvm->arch.hv_hypercall;
1567 break;
1568 default:
1569 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1570 return 1;
1573 *pdata = data;
1574 return 0;
1577 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1579 u64 data = 0;
1581 switch (msr) {
1582 case HV_X64_MSR_VP_INDEX: {
1583 int r;
1584 struct kvm_vcpu *v;
1585 kvm_for_each_vcpu(r, v, vcpu->kvm)
1586 if (v == vcpu)
1587 data = r;
1588 break;
1590 case HV_X64_MSR_EOI:
1591 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1592 case HV_X64_MSR_ICR:
1593 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1594 case HV_X64_MSR_TPR:
1595 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1596 default:
1597 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1598 return 1;
1600 *pdata = data;
1601 return 0;
1604 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1606 u64 data;
1608 switch (msr) {
1609 case MSR_IA32_PLATFORM_ID:
1610 case MSR_IA32_UCODE_REV:
1611 case MSR_IA32_EBL_CR_POWERON:
1612 case MSR_IA32_DEBUGCTLMSR:
1613 case MSR_IA32_LASTBRANCHFROMIP:
1614 case MSR_IA32_LASTBRANCHTOIP:
1615 case MSR_IA32_LASTINTFROMIP:
1616 case MSR_IA32_LASTINTTOIP:
1617 case MSR_K8_SYSCFG:
1618 case MSR_K7_HWCR:
1619 case MSR_VM_HSAVE_PA:
1620 case MSR_P6_PERFCTR0:
1621 case MSR_P6_PERFCTR1:
1622 case MSR_P6_EVNTSEL0:
1623 case MSR_P6_EVNTSEL1:
1624 case MSR_K7_EVNTSEL0:
1625 case MSR_K7_PERFCTR0:
1626 case MSR_K8_INT_PENDING_MSG:
1627 case MSR_AMD64_NB_CFG:
1628 case MSR_FAM10H_MMIO_CONF_BASE:
1629 data = 0;
1630 break;
1631 case MSR_MTRRcap:
1632 data = 0x500 | KVM_NR_VAR_MTRR;
1633 break;
1634 case 0x200 ... 0x2ff:
1635 return get_msr_mtrr(vcpu, msr, pdata);
1636 case 0xcd: /* fsb frequency */
1637 data = 3;
1638 break;
1639 case MSR_IA32_APICBASE:
1640 data = kvm_get_apic_base(vcpu);
1641 break;
1642 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1643 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1644 break;
1645 case MSR_IA32_MISC_ENABLE:
1646 data = vcpu->arch.ia32_misc_enable_msr;
1647 break;
1648 case MSR_IA32_PERF_STATUS:
1649 /* TSC increment by tick */
1650 data = 1000ULL;
1651 /* CPU multiplier */
1652 data |= (((uint64_t)4ULL) << 40);
1653 break;
1654 case MSR_EFER:
1655 data = vcpu->arch.efer;
1656 break;
1657 case MSR_KVM_WALL_CLOCK:
1658 case MSR_KVM_WALL_CLOCK_NEW:
1659 data = vcpu->kvm->arch.wall_clock;
1660 break;
1661 case MSR_KVM_SYSTEM_TIME:
1662 case MSR_KVM_SYSTEM_TIME_NEW:
1663 data = vcpu->arch.time;
1664 break;
1665 case MSR_IA32_P5_MC_ADDR:
1666 case MSR_IA32_P5_MC_TYPE:
1667 case MSR_IA32_MCG_CAP:
1668 case MSR_IA32_MCG_CTL:
1669 case MSR_IA32_MCG_STATUS:
1670 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1671 return get_msr_mce(vcpu, msr, pdata);
1672 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1673 if (kvm_hv_msr_partition_wide(msr)) {
1674 int r;
1675 mutex_lock(&vcpu->kvm->lock);
1676 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1677 mutex_unlock(&vcpu->kvm->lock);
1678 return r;
1679 } else
1680 return get_msr_hyperv(vcpu, msr, pdata);
1681 break;
1682 default:
1683 if (!ignore_msrs) {
1684 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1685 return 1;
1686 } else {
1687 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1688 data = 0;
1690 break;
1692 *pdata = data;
1693 return 0;
1695 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1698 * Read or write a bunch of msrs. All parameters are kernel addresses.
1700 * @return number of msrs set successfully.
1702 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1703 struct kvm_msr_entry *entries,
1704 int (*do_msr)(struct kvm_vcpu *vcpu,
1705 unsigned index, u64 *data))
1707 int i, idx;
1709 idx = srcu_read_lock(&vcpu->kvm->srcu);
1710 for (i = 0; i < msrs->nmsrs; ++i)
1711 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1712 break;
1713 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1715 return i;
1719 * Read or write a bunch of msrs. Parameters are user addresses.
1721 * @return number of msrs set successfully.
1723 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1724 int (*do_msr)(struct kvm_vcpu *vcpu,
1725 unsigned index, u64 *data),
1726 int writeback)
1728 struct kvm_msrs msrs;
1729 struct kvm_msr_entry *entries;
1730 int r, n;
1731 unsigned size;
1733 r = -EFAULT;
1734 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1735 goto out;
1737 r = -E2BIG;
1738 if (msrs.nmsrs >= MAX_IO_MSRS)
1739 goto out;
1741 r = -ENOMEM;
1742 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1743 entries = kmalloc(size, GFP_KERNEL);
1744 if (!entries)
1745 goto out;
1747 r = -EFAULT;
1748 if (copy_from_user(entries, user_msrs->entries, size))
1749 goto out_free;
1751 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1752 if (r < 0)
1753 goto out_free;
1755 r = -EFAULT;
1756 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1757 goto out_free;
1759 r = n;
1761 out_free:
1762 kfree(entries);
1763 out:
1764 return r;
1767 int kvm_dev_ioctl_check_extension(long ext)
1769 int r;
1771 switch (ext) {
1772 case KVM_CAP_IRQCHIP:
1773 case KVM_CAP_HLT:
1774 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1775 case KVM_CAP_SET_TSS_ADDR:
1776 case KVM_CAP_EXT_CPUID:
1777 case KVM_CAP_CLOCKSOURCE:
1778 case KVM_CAP_PIT:
1779 case KVM_CAP_NOP_IO_DELAY:
1780 case KVM_CAP_MP_STATE:
1781 case KVM_CAP_SYNC_MMU:
1782 case KVM_CAP_REINJECT_CONTROL:
1783 case KVM_CAP_IRQ_INJECT_STATUS:
1784 case KVM_CAP_ASSIGN_DEV_IRQ:
1785 case KVM_CAP_IRQFD:
1786 case KVM_CAP_IOEVENTFD:
1787 case KVM_CAP_PIT2:
1788 case KVM_CAP_PIT_STATE2:
1789 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1790 case KVM_CAP_XEN_HVM:
1791 case KVM_CAP_ADJUST_CLOCK:
1792 case KVM_CAP_VCPU_EVENTS:
1793 case KVM_CAP_HYPERV:
1794 case KVM_CAP_HYPERV_VAPIC:
1795 case KVM_CAP_HYPERV_SPIN:
1796 case KVM_CAP_PCI_SEGMENT:
1797 case KVM_CAP_DEBUGREGS:
1798 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1799 case KVM_CAP_XSAVE:
1800 r = 1;
1801 break;
1802 case KVM_CAP_COALESCED_MMIO:
1803 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1804 break;
1805 case KVM_CAP_VAPIC:
1806 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1807 break;
1808 case KVM_CAP_NR_VCPUS:
1809 r = KVM_MAX_VCPUS;
1810 break;
1811 case KVM_CAP_NR_MEMSLOTS:
1812 r = KVM_MEMORY_SLOTS;
1813 break;
1814 case KVM_CAP_PV_MMU: /* obsolete */
1815 r = 0;
1816 break;
1817 case KVM_CAP_IOMMU:
1818 r = iommu_found();
1819 break;
1820 case KVM_CAP_MCE:
1821 r = KVM_MAX_MCE_BANKS;
1822 break;
1823 case KVM_CAP_XCRS:
1824 r = cpu_has_xsave;
1825 break;
1826 default:
1827 r = 0;
1828 break;
1830 return r;
1834 long kvm_arch_dev_ioctl(struct file *filp,
1835 unsigned int ioctl, unsigned long arg)
1837 void __user *argp = (void __user *)arg;
1838 long r;
1840 switch (ioctl) {
1841 case KVM_GET_MSR_INDEX_LIST: {
1842 struct kvm_msr_list __user *user_msr_list = argp;
1843 struct kvm_msr_list msr_list;
1844 unsigned n;
1846 r = -EFAULT;
1847 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1848 goto out;
1849 n = msr_list.nmsrs;
1850 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1851 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1852 goto out;
1853 r = -E2BIG;
1854 if (n < msr_list.nmsrs)
1855 goto out;
1856 r = -EFAULT;
1857 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1858 num_msrs_to_save * sizeof(u32)))
1859 goto out;
1860 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1861 &emulated_msrs,
1862 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1863 goto out;
1864 r = 0;
1865 break;
1867 case KVM_GET_SUPPORTED_CPUID: {
1868 struct kvm_cpuid2 __user *cpuid_arg = argp;
1869 struct kvm_cpuid2 cpuid;
1871 r = -EFAULT;
1872 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1873 goto out;
1874 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1875 cpuid_arg->entries);
1876 if (r)
1877 goto out;
1879 r = -EFAULT;
1880 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1881 goto out;
1882 r = 0;
1883 break;
1885 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1886 u64 mce_cap;
1888 mce_cap = KVM_MCE_CAP_SUPPORTED;
1889 r = -EFAULT;
1890 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1891 goto out;
1892 r = 0;
1893 break;
1895 default:
1896 r = -EINVAL;
1898 out:
1899 return r;
1902 static void wbinvd_ipi(void *garbage)
1904 wbinvd();
1907 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1909 return vcpu->kvm->arch.iommu_domain &&
1910 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1913 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1915 /* Address WBINVD may be executed by guest */
1916 if (need_emulate_wbinvd(vcpu)) {
1917 if (kvm_x86_ops->has_wbinvd_exit())
1918 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1919 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1920 smp_call_function_single(vcpu->cpu,
1921 wbinvd_ipi, NULL, 1);
1924 kvm_x86_ops->vcpu_load(vcpu, cpu);
1925 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
1926 /* Make sure TSC doesn't go backwards */
1927 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
1928 native_read_tsc() - vcpu->arch.last_host_tsc;
1929 if (tsc_delta < 0)
1930 mark_tsc_unstable("KVM discovered backwards TSC");
1931 if (check_tsc_unstable())
1932 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
1933 kvm_migrate_timers(vcpu);
1934 vcpu->cpu = cpu;
1938 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1940 kvm_x86_ops->vcpu_put(vcpu);
1941 kvm_put_guest_fpu(vcpu);
1942 vcpu->arch.last_host_tsc = native_read_tsc();
1945 static int is_efer_nx(void)
1947 unsigned long long efer = 0;
1949 rdmsrl_safe(MSR_EFER, &efer);
1950 return efer & EFER_NX;
1953 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1955 int i;
1956 struct kvm_cpuid_entry2 *e, *entry;
1958 entry = NULL;
1959 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1960 e = &vcpu->arch.cpuid_entries[i];
1961 if (e->function == 0x80000001) {
1962 entry = e;
1963 break;
1966 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1967 entry->edx &= ~(1 << 20);
1968 printk(KERN_INFO "kvm: guest NX capability removed\n");
1972 /* when an old userspace process fills a new kernel module */
1973 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1974 struct kvm_cpuid *cpuid,
1975 struct kvm_cpuid_entry __user *entries)
1977 int r, i;
1978 struct kvm_cpuid_entry *cpuid_entries;
1980 r = -E2BIG;
1981 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1982 goto out;
1983 r = -ENOMEM;
1984 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1985 if (!cpuid_entries)
1986 goto out;
1987 r = -EFAULT;
1988 if (copy_from_user(cpuid_entries, entries,
1989 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1990 goto out_free;
1991 for (i = 0; i < cpuid->nent; i++) {
1992 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1993 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1994 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1995 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1996 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1997 vcpu->arch.cpuid_entries[i].index = 0;
1998 vcpu->arch.cpuid_entries[i].flags = 0;
1999 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2000 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2001 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2003 vcpu->arch.cpuid_nent = cpuid->nent;
2004 cpuid_fix_nx_cap(vcpu);
2005 r = 0;
2006 kvm_apic_set_version(vcpu);
2007 kvm_x86_ops->cpuid_update(vcpu);
2008 update_cpuid(vcpu);
2010 out_free:
2011 vfree(cpuid_entries);
2012 out:
2013 return r;
2016 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2017 struct kvm_cpuid2 *cpuid,
2018 struct kvm_cpuid_entry2 __user *entries)
2020 int r;
2022 r = -E2BIG;
2023 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2024 goto out;
2025 r = -EFAULT;
2026 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2027 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2028 goto out;
2029 vcpu->arch.cpuid_nent = cpuid->nent;
2030 kvm_apic_set_version(vcpu);
2031 kvm_x86_ops->cpuid_update(vcpu);
2032 update_cpuid(vcpu);
2033 return 0;
2035 out:
2036 return r;
2039 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2040 struct kvm_cpuid2 *cpuid,
2041 struct kvm_cpuid_entry2 __user *entries)
2043 int r;
2045 r = -E2BIG;
2046 if (cpuid->nent < vcpu->arch.cpuid_nent)
2047 goto out;
2048 r = -EFAULT;
2049 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2050 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2051 goto out;
2052 return 0;
2054 out:
2055 cpuid->nent = vcpu->arch.cpuid_nent;
2056 return r;
2059 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2060 u32 index)
2062 entry->function = function;
2063 entry->index = index;
2064 cpuid_count(entry->function, entry->index,
2065 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2066 entry->flags = 0;
2069 #define F(x) bit(X86_FEATURE_##x)
2071 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2072 u32 index, int *nent, int maxnent)
2074 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2075 #ifdef CONFIG_X86_64
2076 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2077 ? F(GBPAGES) : 0;
2078 unsigned f_lm = F(LM);
2079 #else
2080 unsigned f_gbpages = 0;
2081 unsigned f_lm = 0;
2082 #endif
2083 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2085 /* cpuid 1.edx */
2086 const u32 kvm_supported_word0_x86_features =
2087 F(FPU) | F(VME) | F(DE) | F(PSE) |
2088 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2089 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2090 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2091 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2092 0 /* Reserved, DS, ACPI */ | F(MMX) |
2093 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2094 0 /* HTT, TM, Reserved, PBE */;
2095 /* cpuid 0x80000001.edx */
2096 const u32 kvm_supported_word1_x86_features =
2097 F(FPU) | F(VME) | F(DE) | F(PSE) |
2098 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2099 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2100 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2101 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2102 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2103 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2104 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2105 /* cpuid 1.ecx */
2106 const u32 kvm_supported_word4_x86_features =
2107 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2108 0 /* DS-CPL, VMX, SMX, EST */ |
2109 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2110 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2111 0 /* Reserved, DCA */ | F(XMM4_1) |
2112 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2113 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2114 /* cpuid 0x80000001.ecx */
2115 const u32 kvm_supported_word6_x86_features =
2116 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
2117 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2118 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2119 0 /* SKINIT */ | 0 /* WDT */;
2121 /* all calls to cpuid_count() should be made on the same cpu */
2122 get_cpu();
2123 do_cpuid_1_ent(entry, function, index);
2124 ++*nent;
2126 switch (function) {
2127 case 0:
2128 entry->eax = min(entry->eax, (u32)0xd);
2129 break;
2130 case 1:
2131 entry->edx &= kvm_supported_word0_x86_features;
2132 entry->ecx &= kvm_supported_word4_x86_features;
2133 /* we support x2apic emulation even if host does not support
2134 * it since we emulate x2apic in software */
2135 entry->ecx |= F(X2APIC);
2136 break;
2137 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2138 * may return different values. This forces us to get_cpu() before
2139 * issuing the first command, and also to emulate this annoying behavior
2140 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2141 case 2: {
2142 int t, times = entry->eax & 0xff;
2144 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2145 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2146 for (t = 1; t < times && *nent < maxnent; ++t) {
2147 do_cpuid_1_ent(&entry[t], function, 0);
2148 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2149 ++*nent;
2151 break;
2153 /* function 4 and 0xb have additional index. */
2154 case 4: {
2155 int i, cache_type;
2157 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2158 /* read more entries until cache_type is zero */
2159 for (i = 1; *nent < maxnent; ++i) {
2160 cache_type = entry[i - 1].eax & 0x1f;
2161 if (!cache_type)
2162 break;
2163 do_cpuid_1_ent(&entry[i], function, i);
2164 entry[i].flags |=
2165 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2166 ++*nent;
2168 break;
2170 case 0xb: {
2171 int i, level_type;
2173 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2174 /* read more entries until level_type is zero */
2175 for (i = 1; *nent < maxnent; ++i) {
2176 level_type = entry[i - 1].ecx & 0xff00;
2177 if (!level_type)
2178 break;
2179 do_cpuid_1_ent(&entry[i], function, i);
2180 entry[i].flags |=
2181 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2182 ++*nent;
2184 break;
2186 case 0xd: {
2187 int i;
2189 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2190 for (i = 1; *nent < maxnent; ++i) {
2191 if (entry[i - 1].eax == 0 && i != 2)
2192 break;
2193 do_cpuid_1_ent(&entry[i], function, i);
2194 entry[i].flags |=
2195 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2196 ++*nent;
2198 break;
2200 case KVM_CPUID_SIGNATURE: {
2201 char signature[12] = "KVMKVMKVM\0\0";
2202 u32 *sigptr = (u32 *)signature;
2203 entry->eax = 0;
2204 entry->ebx = sigptr[0];
2205 entry->ecx = sigptr[1];
2206 entry->edx = sigptr[2];
2207 break;
2209 case KVM_CPUID_FEATURES:
2210 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2211 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2212 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2213 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2214 entry->ebx = 0;
2215 entry->ecx = 0;
2216 entry->edx = 0;
2217 break;
2218 case 0x80000000:
2219 entry->eax = min(entry->eax, 0x8000001a);
2220 break;
2221 case 0x80000001:
2222 entry->edx &= kvm_supported_word1_x86_features;
2223 entry->ecx &= kvm_supported_word6_x86_features;
2224 break;
2227 kvm_x86_ops->set_supported_cpuid(function, entry);
2229 put_cpu();
2232 #undef F
2234 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2235 struct kvm_cpuid_entry2 __user *entries)
2237 struct kvm_cpuid_entry2 *cpuid_entries;
2238 int limit, nent = 0, r = -E2BIG;
2239 u32 func;
2241 if (cpuid->nent < 1)
2242 goto out;
2243 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2244 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2245 r = -ENOMEM;
2246 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2247 if (!cpuid_entries)
2248 goto out;
2250 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2251 limit = cpuid_entries[0].eax;
2252 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2253 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2254 &nent, cpuid->nent);
2255 r = -E2BIG;
2256 if (nent >= cpuid->nent)
2257 goto out_free;
2259 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2260 limit = cpuid_entries[nent - 1].eax;
2261 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2262 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2263 &nent, cpuid->nent);
2267 r = -E2BIG;
2268 if (nent >= cpuid->nent)
2269 goto out_free;
2271 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2272 cpuid->nent);
2274 r = -E2BIG;
2275 if (nent >= cpuid->nent)
2276 goto out_free;
2278 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2279 cpuid->nent);
2281 r = -E2BIG;
2282 if (nent >= cpuid->nent)
2283 goto out_free;
2285 r = -EFAULT;
2286 if (copy_to_user(entries, cpuid_entries,
2287 nent * sizeof(struct kvm_cpuid_entry2)))
2288 goto out_free;
2289 cpuid->nent = nent;
2290 r = 0;
2292 out_free:
2293 vfree(cpuid_entries);
2294 out:
2295 return r;
2298 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2299 struct kvm_lapic_state *s)
2301 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2303 return 0;
2306 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2307 struct kvm_lapic_state *s)
2309 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2310 kvm_apic_post_state_restore(vcpu);
2311 update_cr8_intercept(vcpu);
2313 return 0;
2316 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2317 struct kvm_interrupt *irq)
2319 if (irq->irq < 0 || irq->irq >= 256)
2320 return -EINVAL;
2321 if (irqchip_in_kernel(vcpu->kvm))
2322 return -ENXIO;
2324 kvm_queue_interrupt(vcpu, irq->irq, false);
2326 return 0;
2329 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2331 kvm_inject_nmi(vcpu);
2333 return 0;
2336 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2337 struct kvm_tpr_access_ctl *tac)
2339 if (tac->flags)
2340 return -EINVAL;
2341 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2342 return 0;
2345 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2346 u64 mcg_cap)
2348 int r;
2349 unsigned bank_num = mcg_cap & 0xff, bank;
2351 r = -EINVAL;
2352 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2353 goto out;
2354 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2355 goto out;
2356 r = 0;
2357 vcpu->arch.mcg_cap = mcg_cap;
2358 /* Init IA32_MCG_CTL to all 1s */
2359 if (mcg_cap & MCG_CTL_P)
2360 vcpu->arch.mcg_ctl = ~(u64)0;
2361 /* Init IA32_MCi_CTL to all 1s */
2362 for (bank = 0; bank < bank_num; bank++)
2363 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2364 out:
2365 return r;
2368 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2369 struct kvm_x86_mce *mce)
2371 u64 mcg_cap = vcpu->arch.mcg_cap;
2372 unsigned bank_num = mcg_cap & 0xff;
2373 u64 *banks = vcpu->arch.mce_banks;
2375 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2376 return -EINVAL;
2378 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2379 * reporting is disabled
2381 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2382 vcpu->arch.mcg_ctl != ~(u64)0)
2383 return 0;
2384 banks += 4 * mce->bank;
2386 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2387 * reporting is disabled for the bank
2389 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2390 return 0;
2391 if (mce->status & MCI_STATUS_UC) {
2392 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2393 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2394 printk(KERN_DEBUG "kvm: set_mce: "
2395 "injects mce exception while "
2396 "previous one is in progress!\n");
2397 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2398 return 0;
2400 if (banks[1] & MCI_STATUS_VAL)
2401 mce->status |= MCI_STATUS_OVER;
2402 banks[2] = mce->addr;
2403 banks[3] = mce->misc;
2404 vcpu->arch.mcg_status = mce->mcg_status;
2405 banks[1] = mce->status;
2406 kvm_queue_exception(vcpu, MC_VECTOR);
2407 } else if (!(banks[1] & MCI_STATUS_VAL)
2408 || !(banks[1] & MCI_STATUS_UC)) {
2409 if (banks[1] & MCI_STATUS_VAL)
2410 mce->status |= MCI_STATUS_OVER;
2411 banks[2] = mce->addr;
2412 banks[3] = mce->misc;
2413 banks[1] = mce->status;
2414 } else
2415 banks[1] |= MCI_STATUS_OVER;
2416 return 0;
2419 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2420 struct kvm_vcpu_events *events)
2422 events->exception.injected =
2423 vcpu->arch.exception.pending &&
2424 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2425 events->exception.nr = vcpu->arch.exception.nr;
2426 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2427 events->exception.error_code = vcpu->arch.exception.error_code;
2429 events->interrupt.injected =
2430 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2431 events->interrupt.nr = vcpu->arch.interrupt.nr;
2432 events->interrupt.soft = 0;
2433 events->interrupt.shadow =
2434 kvm_x86_ops->get_interrupt_shadow(vcpu,
2435 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2437 events->nmi.injected = vcpu->arch.nmi_injected;
2438 events->nmi.pending = vcpu->arch.nmi_pending;
2439 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2441 events->sipi_vector = vcpu->arch.sipi_vector;
2443 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2444 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2445 | KVM_VCPUEVENT_VALID_SHADOW);
2448 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2449 struct kvm_vcpu_events *events)
2451 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2452 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2453 | KVM_VCPUEVENT_VALID_SHADOW))
2454 return -EINVAL;
2456 vcpu->arch.exception.pending = events->exception.injected;
2457 vcpu->arch.exception.nr = events->exception.nr;
2458 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2459 vcpu->arch.exception.error_code = events->exception.error_code;
2461 vcpu->arch.interrupt.pending = events->interrupt.injected;
2462 vcpu->arch.interrupt.nr = events->interrupt.nr;
2463 vcpu->arch.interrupt.soft = events->interrupt.soft;
2464 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2465 kvm_pic_clear_isr_ack(vcpu->kvm);
2466 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2467 kvm_x86_ops->set_interrupt_shadow(vcpu,
2468 events->interrupt.shadow);
2470 vcpu->arch.nmi_injected = events->nmi.injected;
2471 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2472 vcpu->arch.nmi_pending = events->nmi.pending;
2473 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2475 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2476 vcpu->arch.sipi_vector = events->sipi_vector;
2478 return 0;
2481 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2482 struct kvm_debugregs *dbgregs)
2484 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2485 dbgregs->dr6 = vcpu->arch.dr6;
2486 dbgregs->dr7 = vcpu->arch.dr7;
2487 dbgregs->flags = 0;
2490 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2491 struct kvm_debugregs *dbgregs)
2493 if (dbgregs->flags)
2494 return -EINVAL;
2496 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2497 vcpu->arch.dr6 = dbgregs->dr6;
2498 vcpu->arch.dr7 = dbgregs->dr7;
2500 return 0;
2503 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2504 struct kvm_xsave *guest_xsave)
2506 if (cpu_has_xsave)
2507 memcpy(guest_xsave->region,
2508 &vcpu->arch.guest_fpu.state->xsave,
2509 xstate_size);
2510 else {
2511 memcpy(guest_xsave->region,
2512 &vcpu->arch.guest_fpu.state->fxsave,
2513 sizeof(struct i387_fxsave_struct));
2514 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2515 XSTATE_FPSSE;
2519 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2520 struct kvm_xsave *guest_xsave)
2522 u64 xstate_bv =
2523 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2525 if (cpu_has_xsave)
2526 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2527 guest_xsave->region, xstate_size);
2528 else {
2529 if (xstate_bv & ~XSTATE_FPSSE)
2530 return -EINVAL;
2531 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2532 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2534 return 0;
2537 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2538 struct kvm_xcrs *guest_xcrs)
2540 if (!cpu_has_xsave) {
2541 guest_xcrs->nr_xcrs = 0;
2542 return;
2545 guest_xcrs->nr_xcrs = 1;
2546 guest_xcrs->flags = 0;
2547 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2548 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2551 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2552 struct kvm_xcrs *guest_xcrs)
2554 int i, r = 0;
2556 if (!cpu_has_xsave)
2557 return -EINVAL;
2559 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2560 return -EINVAL;
2562 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2563 /* Only support XCR0 currently */
2564 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2565 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2566 guest_xcrs->xcrs[0].value);
2567 break;
2569 if (r)
2570 r = -EINVAL;
2571 return r;
2574 long kvm_arch_vcpu_ioctl(struct file *filp,
2575 unsigned int ioctl, unsigned long arg)
2577 struct kvm_vcpu *vcpu = filp->private_data;
2578 void __user *argp = (void __user *)arg;
2579 int r;
2580 union {
2581 struct kvm_lapic_state *lapic;
2582 struct kvm_xsave *xsave;
2583 struct kvm_xcrs *xcrs;
2584 void *buffer;
2585 } u;
2587 u.buffer = NULL;
2588 switch (ioctl) {
2589 case KVM_GET_LAPIC: {
2590 r = -EINVAL;
2591 if (!vcpu->arch.apic)
2592 goto out;
2593 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2595 r = -ENOMEM;
2596 if (!u.lapic)
2597 goto out;
2598 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2599 if (r)
2600 goto out;
2601 r = -EFAULT;
2602 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2603 goto out;
2604 r = 0;
2605 break;
2607 case KVM_SET_LAPIC: {
2608 r = -EINVAL;
2609 if (!vcpu->arch.apic)
2610 goto out;
2611 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2612 r = -ENOMEM;
2613 if (!u.lapic)
2614 goto out;
2615 r = -EFAULT;
2616 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2617 goto out;
2618 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2619 if (r)
2620 goto out;
2621 r = 0;
2622 break;
2624 case KVM_INTERRUPT: {
2625 struct kvm_interrupt irq;
2627 r = -EFAULT;
2628 if (copy_from_user(&irq, argp, sizeof irq))
2629 goto out;
2630 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2631 if (r)
2632 goto out;
2633 r = 0;
2634 break;
2636 case KVM_NMI: {
2637 r = kvm_vcpu_ioctl_nmi(vcpu);
2638 if (r)
2639 goto out;
2640 r = 0;
2641 break;
2643 case KVM_SET_CPUID: {
2644 struct kvm_cpuid __user *cpuid_arg = argp;
2645 struct kvm_cpuid cpuid;
2647 r = -EFAULT;
2648 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2649 goto out;
2650 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2651 if (r)
2652 goto out;
2653 break;
2655 case KVM_SET_CPUID2: {
2656 struct kvm_cpuid2 __user *cpuid_arg = argp;
2657 struct kvm_cpuid2 cpuid;
2659 r = -EFAULT;
2660 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2661 goto out;
2662 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2663 cpuid_arg->entries);
2664 if (r)
2665 goto out;
2666 break;
2668 case KVM_GET_CPUID2: {
2669 struct kvm_cpuid2 __user *cpuid_arg = argp;
2670 struct kvm_cpuid2 cpuid;
2672 r = -EFAULT;
2673 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2674 goto out;
2675 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2676 cpuid_arg->entries);
2677 if (r)
2678 goto out;
2679 r = -EFAULT;
2680 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2681 goto out;
2682 r = 0;
2683 break;
2685 case KVM_GET_MSRS:
2686 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2687 break;
2688 case KVM_SET_MSRS:
2689 r = msr_io(vcpu, argp, do_set_msr, 0);
2690 break;
2691 case KVM_TPR_ACCESS_REPORTING: {
2692 struct kvm_tpr_access_ctl tac;
2694 r = -EFAULT;
2695 if (copy_from_user(&tac, argp, sizeof tac))
2696 goto out;
2697 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2698 if (r)
2699 goto out;
2700 r = -EFAULT;
2701 if (copy_to_user(argp, &tac, sizeof tac))
2702 goto out;
2703 r = 0;
2704 break;
2706 case KVM_SET_VAPIC_ADDR: {
2707 struct kvm_vapic_addr va;
2709 r = -EINVAL;
2710 if (!irqchip_in_kernel(vcpu->kvm))
2711 goto out;
2712 r = -EFAULT;
2713 if (copy_from_user(&va, argp, sizeof va))
2714 goto out;
2715 r = 0;
2716 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2717 break;
2719 case KVM_X86_SETUP_MCE: {
2720 u64 mcg_cap;
2722 r = -EFAULT;
2723 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2724 goto out;
2725 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2726 break;
2728 case KVM_X86_SET_MCE: {
2729 struct kvm_x86_mce mce;
2731 r = -EFAULT;
2732 if (copy_from_user(&mce, argp, sizeof mce))
2733 goto out;
2734 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2735 break;
2737 case KVM_GET_VCPU_EVENTS: {
2738 struct kvm_vcpu_events events;
2740 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2742 r = -EFAULT;
2743 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2744 break;
2745 r = 0;
2746 break;
2748 case KVM_SET_VCPU_EVENTS: {
2749 struct kvm_vcpu_events events;
2751 r = -EFAULT;
2752 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2753 break;
2755 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2756 break;
2758 case KVM_GET_DEBUGREGS: {
2759 struct kvm_debugregs dbgregs;
2761 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2763 r = -EFAULT;
2764 if (copy_to_user(argp, &dbgregs,
2765 sizeof(struct kvm_debugregs)))
2766 break;
2767 r = 0;
2768 break;
2770 case KVM_SET_DEBUGREGS: {
2771 struct kvm_debugregs dbgregs;
2773 r = -EFAULT;
2774 if (copy_from_user(&dbgregs, argp,
2775 sizeof(struct kvm_debugregs)))
2776 break;
2778 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2779 break;
2781 case KVM_GET_XSAVE: {
2782 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2783 r = -ENOMEM;
2784 if (!u.xsave)
2785 break;
2787 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2789 r = -EFAULT;
2790 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2791 break;
2792 r = 0;
2793 break;
2795 case KVM_SET_XSAVE: {
2796 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2797 r = -ENOMEM;
2798 if (!u.xsave)
2799 break;
2801 r = -EFAULT;
2802 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2803 break;
2805 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2806 break;
2808 case KVM_GET_XCRS: {
2809 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2810 r = -ENOMEM;
2811 if (!u.xcrs)
2812 break;
2814 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2816 r = -EFAULT;
2817 if (copy_to_user(argp, u.xcrs,
2818 sizeof(struct kvm_xcrs)))
2819 break;
2820 r = 0;
2821 break;
2823 case KVM_SET_XCRS: {
2824 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2825 r = -ENOMEM;
2826 if (!u.xcrs)
2827 break;
2829 r = -EFAULT;
2830 if (copy_from_user(u.xcrs, argp,
2831 sizeof(struct kvm_xcrs)))
2832 break;
2834 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2835 break;
2837 default:
2838 r = -EINVAL;
2840 out:
2841 kfree(u.buffer);
2842 return r;
2845 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2847 int ret;
2849 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2850 return -1;
2851 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2852 return ret;
2855 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2856 u64 ident_addr)
2858 kvm->arch.ept_identity_map_addr = ident_addr;
2859 return 0;
2862 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2863 u32 kvm_nr_mmu_pages)
2865 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2866 return -EINVAL;
2868 mutex_lock(&kvm->slots_lock);
2869 spin_lock(&kvm->mmu_lock);
2871 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2872 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2874 spin_unlock(&kvm->mmu_lock);
2875 mutex_unlock(&kvm->slots_lock);
2876 return 0;
2879 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2881 return kvm->arch.n_max_mmu_pages;
2884 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2886 int r;
2888 r = 0;
2889 switch (chip->chip_id) {
2890 case KVM_IRQCHIP_PIC_MASTER:
2891 memcpy(&chip->chip.pic,
2892 &pic_irqchip(kvm)->pics[0],
2893 sizeof(struct kvm_pic_state));
2894 break;
2895 case KVM_IRQCHIP_PIC_SLAVE:
2896 memcpy(&chip->chip.pic,
2897 &pic_irqchip(kvm)->pics[1],
2898 sizeof(struct kvm_pic_state));
2899 break;
2900 case KVM_IRQCHIP_IOAPIC:
2901 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2902 break;
2903 default:
2904 r = -EINVAL;
2905 break;
2907 return r;
2910 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2912 int r;
2914 r = 0;
2915 switch (chip->chip_id) {
2916 case KVM_IRQCHIP_PIC_MASTER:
2917 raw_spin_lock(&pic_irqchip(kvm)->lock);
2918 memcpy(&pic_irqchip(kvm)->pics[0],
2919 &chip->chip.pic,
2920 sizeof(struct kvm_pic_state));
2921 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2922 break;
2923 case KVM_IRQCHIP_PIC_SLAVE:
2924 raw_spin_lock(&pic_irqchip(kvm)->lock);
2925 memcpy(&pic_irqchip(kvm)->pics[1],
2926 &chip->chip.pic,
2927 sizeof(struct kvm_pic_state));
2928 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2929 break;
2930 case KVM_IRQCHIP_IOAPIC:
2931 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2932 break;
2933 default:
2934 r = -EINVAL;
2935 break;
2937 kvm_pic_update_irq(pic_irqchip(kvm));
2938 return r;
2941 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2943 int r = 0;
2945 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2946 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2947 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2948 return r;
2951 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2953 int r = 0;
2955 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2956 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2957 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2958 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2959 return r;
2962 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2964 int r = 0;
2966 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2967 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2968 sizeof(ps->channels));
2969 ps->flags = kvm->arch.vpit->pit_state.flags;
2970 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2971 return r;
2974 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2976 int r = 0, start = 0;
2977 u32 prev_legacy, cur_legacy;
2978 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2979 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2980 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2981 if (!prev_legacy && cur_legacy)
2982 start = 1;
2983 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2984 sizeof(kvm->arch.vpit->pit_state.channels));
2985 kvm->arch.vpit->pit_state.flags = ps->flags;
2986 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2987 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2988 return r;
2991 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2992 struct kvm_reinject_control *control)
2994 if (!kvm->arch.vpit)
2995 return -ENXIO;
2996 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2997 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2998 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2999 return 0;
3003 * Get (and clear) the dirty memory log for a memory slot.
3005 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3006 struct kvm_dirty_log *log)
3008 int r, i;
3009 struct kvm_memory_slot *memslot;
3010 unsigned long n;
3011 unsigned long is_dirty = 0;
3013 mutex_lock(&kvm->slots_lock);
3015 r = -EINVAL;
3016 if (log->slot >= KVM_MEMORY_SLOTS)
3017 goto out;
3019 memslot = &kvm->memslots->memslots[log->slot];
3020 r = -ENOENT;
3021 if (!memslot->dirty_bitmap)
3022 goto out;
3024 n = kvm_dirty_bitmap_bytes(memslot);
3026 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3027 is_dirty = memslot->dirty_bitmap[i];
3029 /* If nothing is dirty, don't bother messing with page tables. */
3030 if (is_dirty) {
3031 struct kvm_memslots *slots, *old_slots;
3032 unsigned long *dirty_bitmap;
3034 spin_lock(&kvm->mmu_lock);
3035 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3036 spin_unlock(&kvm->mmu_lock);
3038 r = -ENOMEM;
3039 dirty_bitmap = vmalloc(n);
3040 if (!dirty_bitmap)
3041 goto out;
3042 memset(dirty_bitmap, 0, n);
3044 r = -ENOMEM;
3045 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3046 if (!slots) {
3047 vfree(dirty_bitmap);
3048 goto out;
3050 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3051 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3053 old_slots = kvm->memslots;
3054 rcu_assign_pointer(kvm->memslots, slots);
3055 synchronize_srcu_expedited(&kvm->srcu);
3056 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3057 kfree(old_slots);
3059 r = -EFAULT;
3060 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3061 vfree(dirty_bitmap);
3062 goto out;
3064 vfree(dirty_bitmap);
3065 } else {
3066 r = -EFAULT;
3067 if (clear_user(log->dirty_bitmap, n))
3068 goto out;
3071 r = 0;
3072 out:
3073 mutex_unlock(&kvm->slots_lock);
3074 return r;
3077 long kvm_arch_vm_ioctl(struct file *filp,
3078 unsigned int ioctl, unsigned long arg)
3080 struct kvm *kvm = filp->private_data;
3081 void __user *argp = (void __user *)arg;
3082 int r = -ENOTTY;
3084 * This union makes it completely explicit to gcc-3.x
3085 * that these two variables' stack usage should be
3086 * combined, not added together.
3088 union {
3089 struct kvm_pit_state ps;
3090 struct kvm_pit_state2 ps2;
3091 struct kvm_pit_config pit_config;
3092 } u;
3094 switch (ioctl) {
3095 case KVM_SET_TSS_ADDR:
3096 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3097 if (r < 0)
3098 goto out;
3099 break;
3100 case KVM_SET_IDENTITY_MAP_ADDR: {
3101 u64 ident_addr;
3103 r = -EFAULT;
3104 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3105 goto out;
3106 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3107 if (r < 0)
3108 goto out;
3109 break;
3111 case KVM_SET_NR_MMU_PAGES:
3112 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3113 if (r)
3114 goto out;
3115 break;
3116 case KVM_GET_NR_MMU_PAGES:
3117 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3118 break;
3119 case KVM_CREATE_IRQCHIP: {
3120 struct kvm_pic *vpic;
3122 mutex_lock(&kvm->lock);
3123 r = -EEXIST;
3124 if (kvm->arch.vpic)
3125 goto create_irqchip_unlock;
3126 r = -ENOMEM;
3127 vpic = kvm_create_pic(kvm);
3128 if (vpic) {
3129 r = kvm_ioapic_init(kvm);
3130 if (r) {
3131 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3132 &vpic->dev);
3133 kfree(vpic);
3134 goto create_irqchip_unlock;
3136 } else
3137 goto create_irqchip_unlock;
3138 smp_wmb();
3139 kvm->arch.vpic = vpic;
3140 smp_wmb();
3141 r = kvm_setup_default_irq_routing(kvm);
3142 if (r) {
3143 mutex_lock(&kvm->irq_lock);
3144 kvm_ioapic_destroy(kvm);
3145 kvm_destroy_pic(kvm);
3146 mutex_unlock(&kvm->irq_lock);
3148 create_irqchip_unlock:
3149 mutex_unlock(&kvm->lock);
3150 break;
3152 case KVM_CREATE_PIT:
3153 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3154 goto create_pit;
3155 case KVM_CREATE_PIT2:
3156 r = -EFAULT;
3157 if (copy_from_user(&u.pit_config, argp,
3158 sizeof(struct kvm_pit_config)))
3159 goto out;
3160 create_pit:
3161 mutex_lock(&kvm->slots_lock);
3162 r = -EEXIST;
3163 if (kvm->arch.vpit)
3164 goto create_pit_unlock;
3165 r = -ENOMEM;
3166 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3167 if (kvm->arch.vpit)
3168 r = 0;
3169 create_pit_unlock:
3170 mutex_unlock(&kvm->slots_lock);
3171 break;
3172 case KVM_IRQ_LINE_STATUS:
3173 case KVM_IRQ_LINE: {
3174 struct kvm_irq_level irq_event;
3176 r = -EFAULT;
3177 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3178 goto out;
3179 r = -ENXIO;
3180 if (irqchip_in_kernel(kvm)) {
3181 __s32 status;
3182 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3183 irq_event.irq, irq_event.level);
3184 if (ioctl == KVM_IRQ_LINE_STATUS) {
3185 r = -EFAULT;
3186 irq_event.status = status;
3187 if (copy_to_user(argp, &irq_event,
3188 sizeof irq_event))
3189 goto out;
3191 r = 0;
3193 break;
3195 case KVM_GET_IRQCHIP: {
3196 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3197 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3199 r = -ENOMEM;
3200 if (!chip)
3201 goto out;
3202 r = -EFAULT;
3203 if (copy_from_user(chip, argp, sizeof *chip))
3204 goto get_irqchip_out;
3205 r = -ENXIO;
3206 if (!irqchip_in_kernel(kvm))
3207 goto get_irqchip_out;
3208 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3209 if (r)
3210 goto get_irqchip_out;
3211 r = -EFAULT;
3212 if (copy_to_user(argp, chip, sizeof *chip))
3213 goto get_irqchip_out;
3214 r = 0;
3215 get_irqchip_out:
3216 kfree(chip);
3217 if (r)
3218 goto out;
3219 break;
3221 case KVM_SET_IRQCHIP: {
3222 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3223 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3225 r = -ENOMEM;
3226 if (!chip)
3227 goto out;
3228 r = -EFAULT;
3229 if (copy_from_user(chip, argp, sizeof *chip))
3230 goto set_irqchip_out;
3231 r = -ENXIO;
3232 if (!irqchip_in_kernel(kvm))
3233 goto set_irqchip_out;
3234 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3235 if (r)
3236 goto set_irqchip_out;
3237 r = 0;
3238 set_irqchip_out:
3239 kfree(chip);
3240 if (r)
3241 goto out;
3242 break;
3244 case KVM_GET_PIT: {
3245 r = -EFAULT;
3246 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3247 goto out;
3248 r = -ENXIO;
3249 if (!kvm->arch.vpit)
3250 goto out;
3251 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3252 if (r)
3253 goto out;
3254 r = -EFAULT;
3255 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3256 goto out;
3257 r = 0;
3258 break;
3260 case KVM_SET_PIT: {
3261 r = -EFAULT;
3262 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3263 goto out;
3264 r = -ENXIO;
3265 if (!kvm->arch.vpit)
3266 goto out;
3267 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3268 if (r)
3269 goto out;
3270 r = 0;
3271 break;
3273 case KVM_GET_PIT2: {
3274 r = -ENXIO;
3275 if (!kvm->arch.vpit)
3276 goto out;
3277 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3278 if (r)
3279 goto out;
3280 r = -EFAULT;
3281 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3282 goto out;
3283 r = 0;
3284 break;
3286 case KVM_SET_PIT2: {
3287 r = -EFAULT;
3288 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3289 goto out;
3290 r = -ENXIO;
3291 if (!kvm->arch.vpit)
3292 goto out;
3293 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3294 if (r)
3295 goto out;
3296 r = 0;
3297 break;
3299 case KVM_REINJECT_CONTROL: {
3300 struct kvm_reinject_control control;
3301 r = -EFAULT;
3302 if (copy_from_user(&control, argp, sizeof(control)))
3303 goto out;
3304 r = kvm_vm_ioctl_reinject(kvm, &control);
3305 if (r)
3306 goto out;
3307 r = 0;
3308 break;
3310 case KVM_XEN_HVM_CONFIG: {
3311 r = -EFAULT;
3312 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3313 sizeof(struct kvm_xen_hvm_config)))
3314 goto out;
3315 r = -EINVAL;
3316 if (kvm->arch.xen_hvm_config.flags)
3317 goto out;
3318 r = 0;
3319 break;
3321 case KVM_SET_CLOCK: {
3322 struct kvm_clock_data user_ns;
3323 u64 now_ns;
3324 s64 delta;
3326 r = -EFAULT;
3327 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3328 goto out;
3330 r = -EINVAL;
3331 if (user_ns.flags)
3332 goto out;
3334 r = 0;
3335 now_ns = get_kernel_ns();
3336 delta = user_ns.clock - now_ns;
3337 kvm->arch.kvmclock_offset = delta;
3338 break;
3340 case KVM_GET_CLOCK: {
3341 struct kvm_clock_data user_ns;
3342 u64 now_ns;
3344 now_ns = get_kernel_ns();
3345 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3346 user_ns.flags = 0;
3348 r = -EFAULT;
3349 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3350 goto out;
3351 r = 0;
3352 break;
3355 default:
3358 out:
3359 return r;
3362 static void kvm_init_msr_list(void)
3364 u32 dummy[2];
3365 unsigned i, j;
3367 /* skip the first msrs in the list. KVM-specific */
3368 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3369 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3370 continue;
3371 if (j < i)
3372 msrs_to_save[j] = msrs_to_save[i];
3373 j++;
3375 num_msrs_to_save = j;
3378 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3379 const void *v)
3381 if (vcpu->arch.apic &&
3382 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3383 return 0;
3385 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3388 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3390 if (vcpu->arch.apic &&
3391 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3392 return 0;
3394 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3397 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3398 struct kvm_segment *var, int seg)
3400 kvm_x86_ops->set_segment(vcpu, var, seg);
3403 void kvm_get_segment(struct kvm_vcpu *vcpu,
3404 struct kvm_segment *var, int seg)
3406 kvm_x86_ops->get_segment(vcpu, var, seg);
3409 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3411 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3412 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3415 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3417 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3418 access |= PFERR_FETCH_MASK;
3419 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3422 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3424 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3425 access |= PFERR_WRITE_MASK;
3426 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3429 /* uses this to access any guest's mapped memory without checking CPL */
3430 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3432 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3435 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3436 struct kvm_vcpu *vcpu, u32 access,
3437 u32 *error)
3439 void *data = val;
3440 int r = X86EMUL_CONTINUE;
3442 while (bytes) {
3443 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3444 unsigned offset = addr & (PAGE_SIZE-1);
3445 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3446 int ret;
3448 if (gpa == UNMAPPED_GVA) {
3449 r = X86EMUL_PROPAGATE_FAULT;
3450 goto out;
3452 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3453 if (ret < 0) {
3454 r = X86EMUL_IO_NEEDED;
3455 goto out;
3458 bytes -= toread;
3459 data += toread;
3460 addr += toread;
3462 out:
3463 return r;
3466 /* used for instruction fetching */
3467 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3468 struct kvm_vcpu *vcpu, u32 *error)
3470 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3471 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3472 access | PFERR_FETCH_MASK, error);
3475 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3476 struct kvm_vcpu *vcpu, u32 *error)
3478 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3479 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3480 error);
3483 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3484 struct kvm_vcpu *vcpu, u32 *error)
3486 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3489 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3490 unsigned int bytes,
3491 struct kvm_vcpu *vcpu,
3492 u32 *error)
3494 void *data = val;
3495 int r = X86EMUL_CONTINUE;
3497 while (bytes) {
3498 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3499 PFERR_WRITE_MASK, error);
3500 unsigned offset = addr & (PAGE_SIZE-1);
3501 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3502 int ret;
3504 if (gpa == UNMAPPED_GVA) {
3505 r = X86EMUL_PROPAGATE_FAULT;
3506 goto out;
3508 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3509 if (ret < 0) {
3510 r = X86EMUL_IO_NEEDED;
3511 goto out;
3514 bytes -= towrite;
3515 data += towrite;
3516 addr += towrite;
3518 out:
3519 return r;
3522 static int emulator_read_emulated(unsigned long addr,
3523 void *val,
3524 unsigned int bytes,
3525 unsigned int *error_code,
3526 struct kvm_vcpu *vcpu)
3528 gpa_t gpa;
3530 if (vcpu->mmio_read_completed) {
3531 memcpy(val, vcpu->mmio_data, bytes);
3532 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3533 vcpu->mmio_phys_addr, *(u64 *)val);
3534 vcpu->mmio_read_completed = 0;
3535 return X86EMUL_CONTINUE;
3538 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3540 if (gpa == UNMAPPED_GVA)
3541 return X86EMUL_PROPAGATE_FAULT;
3543 /* For APIC access vmexit */
3544 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3545 goto mmio;
3547 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3548 == X86EMUL_CONTINUE)
3549 return X86EMUL_CONTINUE;
3551 mmio:
3553 * Is this MMIO handled locally?
3555 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3556 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3557 return X86EMUL_CONTINUE;
3560 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3562 vcpu->mmio_needed = 1;
3563 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3564 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3565 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3566 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3568 return X86EMUL_IO_NEEDED;
3571 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3572 const void *val, int bytes)
3574 int ret;
3576 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3577 if (ret < 0)
3578 return 0;
3579 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3580 return 1;
3583 static int emulator_write_emulated_onepage(unsigned long addr,
3584 const void *val,
3585 unsigned int bytes,
3586 unsigned int *error_code,
3587 struct kvm_vcpu *vcpu)
3589 gpa_t gpa;
3591 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3593 if (gpa == UNMAPPED_GVA)
3594 return X86EMUL_PROPAGATE_FAULT;
3596 /* For APIC access vmexit */
3597 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3598 goto mmio;
3600 if (emulator_write_phys(vcpu, gpa, val, bytes))
3601 return X86EMUL_CONTINUE;
3603 mmio:
3604 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3606 * Is this MMIO handled locally?
3608 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3609 return X86EMUL_CONTINUE;
3611 vcpu->mmio_needed = 1;
3612 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3613 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3614 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3615 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3616 memcpy(vcpu->run->mmio.data, val, bytes);
3618 return X86EMUL_CONTINUE;
3621 int emulator_write_emulated(unsigned long addr,
3622 const void *val,
3623 unsigned int bytes,
3624 unsigned int *error_code,
3625 struct kvm_vcpu *vcpu)
3627 /* Crossing a page boundary? */
3628 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3629 int rc, now;
3631 now = -addr & ~PAGE_MASK;
3632 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3633 vcpu);
3634 if (rc != X86EMUL_CONTINUE)
3635 return rc;
3636 addr += now;
3637 val += now;
3638 bytes -= now;
3640 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3641 vcpu);
3644 #define CMPXCHG_TYPE(t, ptr, old, new) \
3645 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3647 #ifdef CONFIG_X86_64
3648 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3649 #else
3650 # define CMPXCHG64(ptr, old, new) \
3651 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3652 #endif
3654 static int emulator_cmpxchg_emulated(unsigned long addr,
3655 const void *old,
3656 const void *new,
3657 unsigned int bytes,
3658 unsigned int *error_code,
3659 struct kvm_vcpu *vcpu)
3661 gpa_t gpa;
3662 struct page *page;
3663 char *kaddr;
3664 bool exchanged;
3666 /* guests cmpxchg8b have to be emulated atomically */
3667 if (bytes > 8 || (bytes & (bytes - 1)))
3668 goto emul_write;
3670 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3672 if (gpa == UNMAPPED_GVA ||
3673 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3674 goto emul_write;
3676 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3677 goto emul_write;
3679 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3680 if (is_error_page(page)) {
3681 kvm_release_page_clean(page);
3682 goto emul_write;
3685 kaddr = kmap_atomic(page, KM_USER0);
3686 kaddr += offset_in_page(gpa);
3687 switch (bytes) {
3688 case 1:
3689 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3690 break;
3691 case 2:
3692 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3693 break;
3694 case 4:
3695 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3696 break;
3697 case 8:
3698 exchanged = CMPXCHG64(kaddr, old, new);
3699 break;
3700 default:
3701 BUG();
3703 kunmap_atomic(kaddr, KM_USER0);
3704 kvm_release_page_dirty(page);
3706 if (!exchanged)
3707 return X86EMUL_CMPXCHG_FAILED;
3709 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3711 return X86EMUL_CONTINUE;
3713 emul_write:
3714 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3716 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3719 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3721 /* TODO: String I/O for in kernel device */
3722 int r;
3724 if (vcpu->arch.pio.in)
3725 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3726 vcpu->arch.pio.size, pd);
3727 else
3728 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3729 vcpu->arch.pio.port, vcpu->arch.pio.size,
3730 pd);
3731 return r;
3735 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3736 unsigned int count, struct kvm_vcpu *vcpu)
3738 if (vcpu->arch.pio.count)
3739 goto data_avail;
3741 trace_kvm_pio(1, port, size, 1);
3743 vcpu->arch.pio.port = port;
3744 vcpu->arch.pio.in = 1;
3745 vcpu->arch.pio.count = count;
3746 vcpu->arch.pio.size = size;
3748 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3749 data_avail:
3750 memcpy(val, vcpu->arch.pio_data, size * count);
3751 vcpu->arch.pio.count = 0;
3752 return 1;
3755 vcpu->run->exit_reason = KVM_EXIT_IO;
3756 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3757 vcpu->run->io.size = size;
3758 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3759 vcpu->run->io.count = count;
3760 vcpu->run->io.port = port;
3762 return 0;
3765 static int emulator_pio_out_emulated(int size, unsigned short port,
3766 const void *val, unsigned int count,
3767 struct kvm_vcpu *vcpu)
3769 trace_kvm_pio(0, port, size, 1);
3771 vcpu->arch.pio.port = port;
3772 vcpu->arch.pio.in = 0;
3773 vcpu->arch.pio.count = count;
3774 vcpu->arch.pio.size = size;
3776 memcpy(vcpu->arch.pio_data, val, size * count);
3778 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3779 vcpu->arch.pio.count = 0;
3780 return 1;
3783 vcpu->run->exit_reason = KVM_EXIT_IO;
3784 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3785 vcpu->run->io.size = size;
3786 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3787 vcpu->run->io.count = count;
3788 vcpu->run->io.port = port;
3790 return 0;
3793 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3795 return kvm_x86_ops->get_segment_base(vcpu, seg);
3798 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3800 kvm_mmu_invlpg(vcpu, address);
3801 return X86EMUL_CONTINUE;
3804 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3806 if (!need_emulate_wbinvd(vcpu))
3807 return X86EMUL_CONTINUE;
3809 if (kvm_x86_ops->has_wbinvd_exit()) {
3810 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3811 wbinvd_ipi, NULL, 1);
3812 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3814 wbinvd();
3815 return X86EMUL_CONTINUE;
3817 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3819 int emulate_clts(struct kvm_vcpu *vcpu)
3821 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3822 kvm_x86_ops->fpu_activate(vcpu);
3823 return X86EMUL_CONTINUE;
3826 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3828 return _kvm_get_dr(vcpu, dr, dest);
3831 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3834 return __kvm_set_dr(vcpu, dr, value);
3837 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3839 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3842 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3844 unsigned long value;
3846 switch (cr) {
3847 case 0:
3848 value = kvm_read_cr0(vcpu);
3849 break;
3850 case 2:
3851 value = vcpu->arch.cr2;
3852 break;
3853 case 3:
3854 value = vcpu->arch.cr3;
3855 break;
3856 case 4:
3857 value = kvm_read_cr4(vcpu);
3858 break;
3859 case 8:
3860 value = kvm_get_cr8(vcpu);
3861 break;
3862 default:
3863 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3864 return 0;
3867 return value;
3870 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3872 int res = 0;
3874 switch (cr) {
3875 case 0:
3876 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3877 break;
3878 case 2:
3879 vcpu->arch.cr2 = val;
3880 break;
3881 case 3:
3882 res = kvm_set_cr3(vcpu, val);
3883 break;
3884 case 4:
3885 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3886 break;
3887 case 8:
3888 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3889 break;
3890 default:
3891 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3892 res = -1;
3895 return res;
3898 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3900 return kvm_x86_ops->get_cpl(vcpu);
3903 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3905 kvm_x86_ops->get_gdt(vcpu, dt);
3908 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3910 kvm_x86_ops->get_idt(vcpu, dt);
3913 static unsigned long emulator_get_cached_segment_base(int seg,
3914 struct kvm_vcpu *vcpu)
3916 return get_segment_base(vcpu, seg);
3919 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3920 struct kvm_vcpu *vcpu)
3922 struct kvm_segment var;
3924 kvm_get_segment(vcpu, &var, seg);
3926 if (var.unusable)
3927 return false;
3929 if (var.g)
3930 var.limit >>= 12;
3931 set_desc_limit(desc, var.limit);
3932 set_desc_base(desc, (unsigned long)var.base);
3933 desc->type = var.type;
3934 desc->s = var.s;
3935 desc->dpl = var.dpl;
3936 desc->p = var.present;
3937 desc->avl = var.avl;
3938 desc->l = var.l;
3939 desc->d = var.db;
3940 desc->g = var.g;
3942 return true;
3945 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3946 struct kvm_vcpu *vcpu)
3948 struct kvm_segment var;
3950 /* needed to preserve selector */
3951 kvm_get_segment(vcpu, &var, seg);
3953 var.base = get_desc_base(desc);
3954 var.limit = get_desc_limit(desc);
3955 if (desc->g)
3956 var.limit = (var.limit << 12) | 0xfff;
3957 var.type = desc->type;
3958 var.present = desc->p;
3959 var.dpl = desc->dpl;
3960 var.db = desc->d;
3961 var.s = desc->s;
3962 var.l = desc->l;
3963 var.g = desc->g;
3964 var.avl = desc->avl;
3965 var.present = desc->p;
3966 var.unusable = !var.present;
3967 var.padding = 0;
3969 kvm_set_segment(vcpu, &var, seg);
3970 return;
3973 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3975 struct kvm_segment kvm_seg;
3977 kvm_get_segment(vcpu, &kvm_seg, seg);
3978 return kvm_seg.selector;
3981 static void emulator_set_segment_selector(u16 sel, int seg,
3982 struct kvm_vcpu *vcpu)
3984 struct kvm_segment kvm_seg;
3986 kvm_get_segment(vcpu, &kvm_seg, seg);
3987 kvm_seg.selector = sel;
3988 kvm_set_segment(vcpu, &kvm_seg, seg);
3991 static struct x86_emulate_ops emulate_ops = {
3992 .read_std = kvm_read_guest_virt_system,
3993 .write_std = kvm_write_guest_virt_system,
3994 .fetch = kvm_fetch_guest_virt,
3995 .read_emulated = emulator_read_emulated,
3996 .write_emulated = emulator_write_emulated,
3997 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3998 .pio_in_emulated = emulator_pio_in_emulated,
3999 .pio_out_emulated = emulator_pio_out_emulated,
4000 .get_cached_descriptor = emulator_get_cached_descriptor,
4001 .set_cached_descriptor = emulator_set_cached_descriptor,
4002 .get_segment_selector = emulator_get_segment_selector,
4003 .set_segment_selector = emulator_set_segment_selector,
4004 .get_cached_segment_base = emulator_get_cached_segment_base,
4005 .get_gdt = emulator_get_gdt,
4006 .get_idt = emulator_get_idt,
4007 .get_cr = emulator_get_cr,
4008 .set_cr = emulator_set_cr,
4009 .cpl = emulator_get_cpl,
4010 .get_dr = emulator_get_dr,
4011 .set_dr = emulator_set_dr,
4012 .set_msr = kvm_set_msr,
4013 .get_msr = kvm_get_msr,
4016 static void cache_all_regs(struct kvm_vcpu *vcpu)
4018 kvm_register_read(vcpu, VCPU_REGS_RAX);
4019 kvm_register_read(vcpu, VCPU_REGS_RSP);
4020 kvm_register_read(vcpu, VCPU_REGS_RIP);
4021 vcpu->arch.regs_dirty = ~0;
4024 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4026 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4028 * an sti; sti; sequence only disable interrupts for the first
4029 * instruction. So, if the last instruction, be it emulated or
4030 * not, left the system with the INT_STI flag enabled, it
4031 * means that the last instruction is an sti. We should not
4032 * leave the flag on in this case. The same goes for mov ss
4034 if (!(int_shadow & mask))
4035 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4038 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4040 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4041 if (ctxt->exception == PF_VECTOR)
4042 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
4043 else if (ctxt->error_code_valid)
4044 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4045 else
4046 kvm_queue_exception(vcpu, ctxt->exception);
4049 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4051 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4052 int cs_db, cs_l;
4054 cache_all_regs(vcpu);
4056 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4058 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4059 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4060 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4061 vcpu->arch.emulate_ctxt.mode =
4062 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4063 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4064 ? X86EMUL_MODE_VM86 : cs_l
4065 ? X86EMUL_MODE_PROT64 : cs_db
4066 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4067 memset(c, 0, sizeof(struct decode_cache));
4068 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4071 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4073 ++vcpu->stat.insn_emulation_fail;
4074 trace_kvm_emulate_insn_failed(vcpu);
4075 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4076 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4077 vcpu->run->internal.ndata = 0;
4078 kvm_queue_exception(vcpu, UD_VECTOR);
4079 return EMULATE_FAIL;
4082 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4084 gpa_t gpa;
4086 if (tdp_enabled)
4087 return false;
4090 * if emulation was due to access to shadowed page table
4091 * and it failed try to unshadow page and re-entetr the
4092 * guest to let CPU execute the instruction.
4094 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4095 return true;
4097 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4099 if (gpa == UNMAPPED_GVA)
4100 return true; /* let cpu generate fault */
4102 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4103 return true;
4105 return false;
4108 int emulate_instruction(struct kvm_vcpu *vcpu,
4109 unsigned long cr2,
4110 u16 error_code,
4111 int emulation_type)
4113 int r;
4114 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4116 kvm_clear_exception_queue(vcpu);
4117 vcpu->arch.mmio_fault_cr2 = cr2;
4119 * TODO: fix emulate.c to use guest_read/write_register
4120 * instead of direct ->regs accesses, can save hundred cycles
4121 * on Intel for instructions that don't read/change RSP, for
4122 * for example.
4124 cache_all_regs(vcpu);
4126 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4127 init_emulate_ctxt(vcpu);
4128 vcpu->arch.emulate_ctxt.interruptibility = 0;
4129 vcpu->arch.emulate_ctxt.exception = -1;
4130 vcpu->arch.emulate_ctxt.perm_ok = false;
4132 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4133 trace_kvm_emulate_insn_start(vcpu);
4135 /* Only allow emulation of specific instructions on #UD
4136 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4137 if (emulation_type & EMULTYPE_TRAP_UD) {
4138 if (!c->twobyte)
4139 return EMULATE_FAIL;
4140 switch (c->b) {
4141 case 0x01: /* VMMCALL */
4142 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4143 return EMULATE_FAIL;
4144 break;
4145 case 0x34: /* sysenter */
4146 case 0x35: /* sysexit */
4147 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4148 return EMULATE_FAIL;
4149 break;
4150 case 0x05: /* syscall */
4151 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4152 return EMULATE_FAIL;
4153 break;
4154 default:
4155 return EMULATE_FAIL;
4158 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4159 return EMULATE_FAIL;
4162 ++vcpu->stat.insn_emulation;
4163 if (r) {
4164 if (reexecute_instruction(vcpu, cr2))
4165 return EMULATE_DONE;
4166 if (emulation_type & EMULTYPE_SKIP)
4167 return EMULATE_FAIL;
4168 return handle_emulation_failure(vcpu);
4172 if (emulation_type & EMULTYPE_SKIP) {
4173 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4174 return EMULATE_DONE;
4177 /* this is needed for vmware backdor interface to work since it
4178 changes registers values during IO operation */
4179 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4181 restart:
4182 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4184 if (r) { /* emulation failed */
4185 if (reexecute_instruction(vcpu, cr2))
4186 return EMULATE_DONE;
4188 return handle_emulation_failure(vcpu);
4191 r = EMULATE_DONE;
4193 if (vcpu->arch.emulate_ctxt.exception >= 0)
4194 inject_emulated_exception(vcpu);
4195 else if (vcpu->arch.pio.count) {
4196 if (!vcpu->arch.pio.in)
4197 vcpu->arch.pio.count = 0;
4198 r = EMULATE_DO_MMIO;
4199 } else if (vcpu->mmio_needed) {
4200 if (vcpu->mmio_is_write)
4201 vcpu->mmio_needed = 0;
4202 r = EMULATE_DO_MMIO;
4203 } else if (vcpu->arch.emulate_ctxt.restart)
4204 goto restart;
4206 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4207 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4208 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4209 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4211 return r;
4213 EXPORT_SYMBOL_GPL(emulate_instruction);
4215 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4217 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4218 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4219 /* do not return to emulator after return from userspace */
4220 vcpu->arch.pio.count = 0;
4221 return ret;
4223 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4225 static void tsc_bad(void *info)
4227 __get_cpu_var(cpu_tsc_khz) = 0;
4230 static void tsc_khz_changed(void *data)
4232 struct cpufreq_freqs *freq = data;
4233 unsigned long khz = 0;
4235 if (data)
4236 khz = freq->new;
4237 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4238 khz = cpufreq_quick_get(raw_smp_processor_id());
4239 if (!khz)
4240 khz = tsc_khz;
4241 __get_cpu_var(cpu_tsc_khz) = khz;
4244 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4245 void *data)
4247 struct cpufreq_freqs *freq = data;
4248 struct kvm *kvm;
4249 struct kvm_vcpu *vcpu;
4250 int i, send_ipi = 0;
4253 * We allow guests to temporarily run on slowing clocks,
4254 * provided we notify them after, or to run on accelerating
4255 * clocks, provided we notify them before. Thus time never
4256 * goes backwards.
4258 * However, we have a problem. We can't atomically update
4259 * the frequency of a given CPU from this function; it is
4260 * merely a notifier, which can be called from any CPU.
4261 * Changing the TSC frequency at arbitrary points in time
4262 * requires a recomputation of local variables related to
4263 * the TSC for each VCPU. We must flag these local variables
4264 * to be updated and be sure the update takes place with the
4265 * new frequency before any guests proceed.
4267 * Unfortunately, the combination of hotplug CPU and frequency
4268 * change creates an intractable locking scenario; the order
4269 * of when these callouts happen is undefined with respect to
4270 * CPU hotplug, and they can race with each other. As such,
4271 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4272 * undefined; you can actually have a CPU frequency change take
4273 * place in between the computation of X and the setting of the
4274 * variable. To protect against this problem, all updates of
4275 * the per_cpu tsc_khz variable are done in an interrupt
4276 * protected IPI, and all callers wishing to update the value
4277 * must wait for a synchronous IPI to complete (which is trivial
4278 * if the caller is on the CPU already). This establishes the
4279 * necessary total order on variable updates.
4281 * Note that because a guest time update may take place
4282 * anytime after the setting of the VCPU's request bit, the
4283 * correct TSC value must be set before the request. However,
4284 * to ensure the update actually makes it to any guest which
4285 * starts running in hardware virtualization between the set
4286 * and the acquisition of the spinlock, we must also ping the
4287 * CPU after setting the request bit.
4291 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4292 return 0;
4293 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4294 return 0;
4296 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4298 spin_lock(&kvm_lock);
4299 list_for_each_entry(kvm, &vm_list, vm_list) {
4300 kvm_for_each_vcpu(i, vcpu, kvm) {
4301 if (vcpu->cpu != freq->cpu)
4302 continue;
4303 if (!kvm_request_guest_time_update(vcpu))
4304 continue;
4305 if (vcpu->cpu != smp_processor_id())
4306 send_ipi = 1;
4309 spin_unlock(&kvm_lock);
4311 if (freq->old < freq->new && send_ipi) {
4313 * We upscale the frequency. Must make the guest
4314 * doesn't see old kvmclock values while running with
4315 * the new frequency, otherwise we risk the guest sees
4316 * time go backwards.
4318 * In case we update the frequency for another cpu
4319 * (which might be in guest context) send an interrupt
4320 * to kick the cpu out of guest context. Next time
4321 * guest context is entered kvmclock will be updated,
4322 * so the guest will not see stale values.
4324 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4326 return 0;
4329 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4330 .notifier_call = kvmclock_cpufreq_notifier
4333 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4334 unsigned long action, void *hcpu)
4336 unsigned int cpu = (unsigned long)hcpu;
4338 switch (action) {
4339 case CPU_ONLINE:
4340 case CPU_DOWN_FAILED:
4341 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4342 break;
4343 case CPU_DOWN_PREPARE:
4344 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4345 break;
4347 return NOTIFY_OK;
4350 static struct notifier_block kvmclock_cpu_notifier_block = {
4351 .notifier_call = kvmclock_cpu_notifier,
4352 .priority = -INT_MAX
4355 static void kvm_timer_init(void)
4357 int cpu;
4359 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4360 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4361 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4362 CPUFREQ_TRANSITION_NOTIFIER);
4364 for_each_online_cpu(cpu)
4365 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4368 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4370 static int kvm_is_in_guest(void)
4372 return percpu_read(current_vcpu) != NULL;
4375 static int kvm_is_user_mode(void)
4377 int user_mode = 3;
4379 if (percpu_read(current_vcpu))
4380 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4382 return user_mode != 0;
4385 static unsigned long kvm_get_guest_ip(void)
4387 unsigned long ip = 0;
4389 if (percpu_read(current_vcpu))
4390 ip = kvm_rip_read(percpu_read(current_vcpu));
4392 return ip;
4395 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4396 .is_in_guest = kvm_is_in_guest,
4397 .is_user_mode = kvm_is_user_mode,
4398 .get_guest_ip = kvm_get_guest_ip,
4401 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4403 percpu_write(current_vcpu, vcpu);
4405 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4407 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4409 percpu_write(current_vcpu, NULL);
4411 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4413 int kvm_arch_init(void *opaque)
4415 int r;
4416 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4418 if (kvm_x86_ops) {
4419 printk(KERN_ERR "kvm: already loaded the other module\n");
4420 r = -EEXIST;
4421 goto out;
4424 if (!ops->cpu_has_kvm_support()) {
4425 printk(KERN_ERR "kvm: no hardware support\n");
4426 r = -EOPNOTSUPP;
4427 goto out;
4429 if (ops->disabled_by_bios()) {
4430 printk(KERN_ERR "kvm: disabled by bios\n");
4431 r = -EOPNOTSUPP;
4432 goto out;
4435 r = kvm_mmu_module_init();
4436 if (r)
4437 goto out;
4439 kvm_init_msr_list();
4441 kvm_x86_ops = ops;
4442 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4443 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4444 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4445 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4447 kvm_timer_init();
4449 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4451 if (cpu_has_xsave)
4452 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4454 return 0;
4456 out:
4457 return r;
4460 void kvm_arch_exit(void)
4462 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4464 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4465 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4466 CPUFREQ_TRANSITION_NOTIFIER);
4467 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4468 kvm_x86_ops = NULL;
4469 kvm_mmu_module_exit();
4472 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4474 ++vcpu->stat.halt_exits;
4475 if (irqchip_in_kernel(vcpu->kvm)) {
4476 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4477 return 1;
4478 } else {
4479 vcpu->run->exit_reason = KVM_EXIT_HLT;
4480 return 0;
4483 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4485 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4486 unsigned long a1)
4488 if (is_long_mode(vcpu))
4489 return a0;
4490 else
4491 return a0 | ((gpa_t)a1 << 32);
4494 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4496 u64 param, ingpa, outgpa, ret;
4497 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4498 bool fast, longmode;
4499 int cs_db, cs_l;
4502 * hypercall generates UD from non zero cpl and real mode
4503 * per HYPER-V spec
4505 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4506 kvm_queue_exception(vcpu, UD_VECTOR);
4507 return 0;
4510 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4511 longmode = is_long_mode(vcpu) && cs_l == 1;
4513 if (!longmode) {
4514 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4515 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4516 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4517 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4518 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4519 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4521 #ifdef CONFIG_X86_64
4522 else {
4523 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4524 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4525 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4527 #endif
4529 code = param & 0xffff;
4530 fast = (param >> 16) & 0x1;
4531 rep_cnt = (param >> 32) & 0xfff;
4532 rep_idx = (param >> 48) & 0xfff;
4534 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4536 switch (code) {
4537 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4538 kvm_vcpu_on_spin(vcpu);
4539 break;
4540 default:
4541 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4542 break;
4545 ret = res | (((u64)rep_done & 0xfff) << 32);
4546 if (longmode) {
4547 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4548 } else {
4549 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4550 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4553 return 1;
4556 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4558 unsigned long nr, a0, a1, a2, a3, ret;
4559 int r = 1;
4561 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4562 return kvm_hv_hypercall(vcpu);
4564 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4565 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4566 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4567 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4568 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4570 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4572 if (!is_long_mode(vcpu)) {
4573 nr &= 0xFFFFFFFF;
4574 a0 &= 0xFFFFFFFF;
4575 a1 &= 0xFFFFFFFF;
4576 a2 &= 0xFFFFFFFF;
4577 a3 &= 0xFFFFFFFF;
4580 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4581 ret = -KVM_EPERM;
4582 goto out;
4585 switch (nr) {
4586 case KVM_HC_VAPIC_POLL_IRQ:
4587 ret = 0;
4588 break;
4589 case KVM_HC_MMU_OP:
4590 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4591 break;
4592 default:
4593 ret = -KVM_ENOSYS;
4594 break;
4596 out:
4597 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4598 ++vcpu->stat.hypercalls;
4599 return r;
4601 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4603 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4605 char instruction[3];
4606 unsigned long rip = kvm_rip_read(vcpu);
4609 * Blow out the MMU to ensure that no other VCPU has an active mapping
4610 * to ensure that the updated hypercall appears atomically across all
4611 * VCPUs.
4613 kvm_mmu_zap_all(vcpu->kvm);
4615 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4617 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4620 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4622 struct desc_ptr dt = { limit, base };
4624 kvm_x86_ops->set_gdt(vcpu, &dt);
4627 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4629 struct desc_ptr dt = { limit, base };
4631 kvm_x86_ops->set_idt(vcpu, &dt);
4634 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4636 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4637 int j, nent = vcpu->arch.cpuid_nent;
4639 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4640 /* when no next entry is found, the current entry[i] is reselected */
4641 for (j = i + 1; ; j = (j + 1) % nent) {
4642 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4643 if (ej->function == e->function) {
4644 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4645 return j;
4648 return 0; /* silence gcc, even though control never reaches here */
4651 /* find an entry with matching function, matching index (if needed), and that
4652 * should be read next (if it's stateful) */
4653 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4654 u32 function, u32 index)
4656 if (e->function != function)
4657 return 0;
4658 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4659 return 0;
4660 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4661 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4662 return 0;
4663 return 1;
4666 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4667 u32 function, u32 index)
4669 int i;
4670 struct kvm_cpuid_entry2 *best = NULL;
4672 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4673 struct kvm_cpuid_entry2 *e;
4675 e = &vcpu->arch.cpuid_entries[i];
4676 if (is_matching_cpuid_entry(e, function, index)) {
4677 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4678 move_to_next_stateful_cpuid_entry(vcpu, i);
4679 best = e;
4680 break;
4683 * Both basic or both extended?
4685 if (((e->function ^ function) & 0x80000000) == 0)
4686 if (!best || e->function > best->function)
4687 best = e;
4689 return best;
4691 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4693 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4695 struct kvm_cpuid_entry2 *best;
4697 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4698 if (!best || best->eax < 0x80000008)
4699 goto not_found;
4700 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4701 if (best)
4702 return best->eax & 0xff;
4703 not_found:
4704 return 36;
4707 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4709 u32 function, index;
4710 struct kvm_cpuid_entry2 *best;
4712 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4713 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4714 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4715 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4716 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4717 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4718 best = kvm_find_cpuid_entry(vcpu, function, index);
4719 if (best) {
4720 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4721 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4722 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4723 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4725 kvm_x86_ops->skip_emulated_instruction(vcpu);
4726 trace_kvm_cpuid(function,
4727 kvm_register_read(vcpu, VCPU_REGS_RAX),
4728 kvm_register_read(vcpu, VCPU_REGS_RBX),
4729 kvm_register_read(vcpu, VCPU_REGS_RCX),
4730 kvm_register_read(vcpu, VCPU_REGS_RDX));
4732 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4735 * Check if userspace requested an interrupt window, and that the
4736 * interrupt window is open.
4738 * No need to exit to userspace if we already have an interrupt queued.
4740 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4742 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4743 vcpu->run->request_interrupt_window &&
4744 kvm_arch_interrupt_allowed(vcpu));
4747 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4749 struct kvm_run *kvm_run = vcpu->run;
4751 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4752 kvm_run->cr8 = kvm_get_cr8(vcpu);
4753 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4754 if (irqchip_in_kernel(vcpu->kvm))
4755 kvm_run->ready_for_interrupt_injection = 1;
4756 else
4757 kvm_run->ready_for_interrupt_injection =
4758 kvm_arch_interrupt_allowed(vcpu) &&
4759 !kvm_cpu_has_interrupt(vcpu) &&
4760 !kvm_event_needs_reinjection(vcpu);
4763 static void vapic_enter(struct kvm_vcpu *vcpu)
4765 struct kvm_lapic *apic = vcpu->arch.apic;
4766 struct page *page;
4768 if (!apic || !apic->vapic_addr)
4769 return;
4771 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4773 vcpu->arch.apic->vapic_page = page;
4776 static void vapic_exit(struct kvm_vcpu *vcpu)
4778 struct kvm_lapic *apic = vcpu->arch.apic;
4779 int idx;
4781 if (!apic || !apic->vapic_addr)
4782 return;
4784 idx = srcu_read_lock(&vcpu->kvm->srcu);
4785 kvm_release_page_dirty(apic->vapic_page);
4786 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4787 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4790 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4792 int max_irr, tpr;
4794 if (!kvm_x86_ops->update_cr8_intercept)
4795 return;
4797 if (!vcpu->arch.apic)
4798 return;
4800 if (!vcpu->arch.apic->vapic_addr)
4801 max_irr = kvm_lapic_find_highest_irr(vcpu);
4802 else
4803 max_irr = -1;
4805 if (max_irr != -1)
4806 max_irr >>= 4;
4808 tpr = kvm_lapic_get_cr8(vcpu);
4810 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4813 static void inject_pending_event(struct kvm_vcpu *vcpu)
4815 /* try to reinject previous events if any */
4816 if (vcpu->arch.exception.pending) {
4817 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4818 vcpu->arch.exception.has_error_code,
4819 vcpu->arch.exception.error_code);
4820 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4821 vcpu->arch.exception.has_error_code,
4822 vcpu->arch.exception.error_code,
4823 vcpu->arch.exception.reinject);
4824 return;
4827 if (vcpu->arch.nmi_injected) {
4828 kvm_x86_ops->set_nmi(vcpu);
4829 return;
4832 if (vcpu->arch.interrupt.pending) {
4833 kvm_x86_ops->set_irq(vcpu);
4834 return;
4837 /* try to inject new event if pending */
4838 if (vcpu->arch.nmi_pending) {
4839 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4840 vcpu->arch.nmi_pending = false;
4841 vcpu->arch.nmi_injected = true;
4842 kvm_x86_ops->set_nmi(vcpu);
4844 } else if (kvm_cpu_has_interrupt(vcpu)) {
4845 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4846 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4847 false);
4848 kvm_x86_ops->set_irq(vcpu);
4853 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4855 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4856 !vcpu->guest_xcr0_loaded) {
4857 /* kvm_set_xcr() also depends on this */
4858 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4859 vcpu->guest_xcr0_loaded = 1;
4863 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4865 if (vcpu->guest_xcr0_loaded) {
4866 if (vcpu->arch.xcr0 != host_xcr0)
4867 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4868 vcpu->guest_xcr0_loaded = 0;
4872 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4874 int r;
4875 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4876 vcpu->run->request_interrupt_window;
4878 if (vcpu->requests) {
4879 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4880 kvm_mmu_unload(vcpu);
4881 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4882 __kvm_migrate_timers(vcpu);
4883 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
4884 r = kvm_write_guest_time(vcpu);
4885 if (unlikely(r))
4886 goto out;
4888 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4889 kvm_mmu_sync_roots(vcpu);
4890 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4891 kvm_x86_ops->tlb_flush(vcpu);
4892 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4893 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4894 r = 0;
4895 goto out;
4897 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4898 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4899 r = 0;
4900 goto out;
4902 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4903 vcpu->fpu_active = 0;
4904 kvm_x86_ops->fpu_deactivate(vcpu);
4908 r = kvm_mmu_reload(vcpu);
4909 if (unlikely(r))
4910 goto out;
4912 preempt_disable();
4914 kvm_x86_ops->prepare_guest_switch(vcpu);
4915 if (vcpu->fpu_active)
4916 kvm_load_guest_fpu(vcpu);
4917 kvm_load_guest_xcr0(vcpu);
4919 atomic_set(&vcpu->guest_mode, 1);
4920 smp_wmb();
4922 local_irq_disable();
4924 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4925 || need_resched() || signal_pending(current)) {
4926 atomic_set(&vcpu->guest_mode, 0);
4927 smp_wmb();
4928 local_irq_enable();
4929 preempt_enable();
4930 r = 1;
4931 goto out;
4934 inject_pending_event(vcpu);
4936 /* enable NMI/IRQ window open exits if needed */
4937 if (vcpu->arch.nmi_pending)
4938 kvm_x86_ops->enable_nmi_window(vcpu);
4939 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4940 kvm_x86_ops->enable_irq_window(vcpu);
4942 if (kvm_lapic_enabled(vcpu)) {
4943 update_cr8_intercept(vcpu);
4944 kvm_lapic_sync_to_vapic(vcpu);
4947 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4949 kvm_guest_enter();
4951 if (unlikely(vcpu->arch.switch_db_regs)) {
4952 set_debugreg(0, 7);
4953 set_debugreg(vcpu->arch.eff_db[0], 0);
4954 set_debugreg(vcpu->arch.eff_db[1], 1);
4955 set_debugreg(vcpu->arch.eff_db[2], 2);
4956 set_debugreg(vcpu->arch.eff_db[3], 3);
4959 trace_kvm_entry(vcpu->vcpu_id);
4960 kvm_x86_ops->run(vcpu);
4963 * If the guest has used debug registers, at least dr7
4964 * will be disabled while returning to the host.
4965 * If we don't have active breakpoints in the host, we don't
4966 * care about the messed up debug address registers. But if
4967 * we have some of them active, restore the old state.
4969 if (hw_breakpoint_active())
4970 hw_breakpoint_restore();
4972 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
4974 atomic_set(&vcpu->guest_mode, 0);
4975 smp_wmb();
4976 local_irq_enable();
4978 ++vcpu->stat.exits;
4981 * We must have an instruction between local_irq_enable() and
4982 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4983 * the interrupt shadow. The stat.exits increment will do nicely.
4984 * But we need to prevent reordering, hence this barrier():
4986 barrier();
4988 kvm_guest_exit();
4990 preempt_enable();
4992 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4995 * Profile KVM exit RIPs:
4997 if (unlikely(prof_on == KVM_PROFILING)) {
4998 unsigned long rip = kvm_rip_read(vcpu);
4999 profile_hit(KVM_PROFILING, (void *)rip);
5003 kvm_lapic_sync_from_vapic(vcpu);
5005 r = kvm_x86_ops->handle_exit(vcpu);
5006 out:
5007 return r;
5011 static int __vcpu_run(struct kvm_vcpu *vcpu)
5013 int r;
5014 struct kvm *kvm = vcpu->kvm;
5016 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5017 pr_debug("vcpu %d received sipi with vector # %x\n",
5018 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5019 kvm_lapic_reset(vcpu);
5020 r = kvm_arch_vcpu_reset(vcpu);
5021 if (r)
5022 return r;
5023 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5026 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5027 vapic_enter(vcpu);
5029 r = 1;
5030 while (r > 0) {
5031 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5032 r = vcpu_enter_guest(vcpu);
5033 else {
5034 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5035 kvm_vcpu_block(vcpu);
5036 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5037 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5039 switch(vcpu->arch.mp_state) {
5040 case KVM_MP_STATE_HALTED:
5041 vcpu->arch.mp_state =
5042 KVM_MP_STATE_RUNNABLE;
5043 case KVM_MP_STATE_RUNNABLE:
5044 break;
5045 case KVM_MP_STATE_SIPI_RECEIVED:
5046 default:
5047 r = -EINTR;
5048 break;
5053 if (r <= 0)
5054 break;
5056 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5057 if (kvm_cpu_has_pending_timer(vcpu))
5058 kvm_inject_pending_timer_irqs(vcpu);
5060 if (dm_request_for_irq_injection(vcpu)) {
5061 r = -EINTR;
5062 vcpu->run->exit_reason = KVM_EXIT_INTR;
5063 ++vcpu->stat.request_irq_exits;
5065 if (signal_pending(current)) {
5066 r = -EINTR;
5067 vcpu->run->exit_reason = KVM_EXIT_INTR;
5068 ++vcpu->stat.signal_exits;
5070 if (need_resched()) {
5071 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5072 kvm_resched(vcpu);
5073 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5077 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5079 vapic_exit(vcpu);
5081 return r;
5084 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5086 int r;
5087 sigset_t sigsaved;
5089 if (vcpu->sigset_active)
5090 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5092 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5093 kvm_vcpu_block(vcpu);
5094 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5095 r = -EAGAIN;
5096 goto out;
5099 /* re-sync apic's tpr */
5100 if (!irqchip_in_kernel(vcpu->kvm))
5101 kvm_set_cr8(vcpu, kvm_run->cr8);
5103 if (vcpu->arch.pio.count || vcpu->mmio_needed ||
5104 vcpu->arch.emulate_ctxt.restart) {
5105 if (vcpu->mmio_needed) {
5106 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5107 vcpu->mmio_read_completed = 1;
5108 vcpu->mmio_needed = 0;
5110 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5111 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5112 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5113 if (r != EMULATE_DONE) {
5114 r = 0;
5115 goto out;
5118 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5119 kvm_register_write(vcpu, VCPU_REGS_RAX,
5120 kvm_run->hypercall.ret);
5122 r = __vcpu_run(vcpu);
5124 out:
5125 post_kvm_run_save(vcpu);
5126 if (vcpu->sigset_active)
5127 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5129 return r;
5132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5134 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5135 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5136 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5137 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5138 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5139 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5140 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5141 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5142 #ifdef CONFIG_X86_64
5143 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5144 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5145 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5146 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5147 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5148 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5149 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5150 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5151 #endif
5153 regs->rip = kvm_rip_read(vcpu);
5154 regs->rflags = kvm_get_rflags(vcpu);
5156 return 0;
5159 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5161 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5162 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5163 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5164 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5165 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5166 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5167 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5168 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5169 #ifdef CONFIG_X86_64
5170 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5171 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5172 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5173 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5174 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5175 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5176 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5177 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5178 #endif
5180 kvm_rip_write(vcpu, regs->rip);
5181 kvm_set_rflags(vcpu, regs->rflags);
5183 vcpu->arch.exception.pending = false;
5185 return 0;
5188 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5190 struct kvm_segment cs;
5192 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5193 *db = cs.db;
5194 *l = cs.l;
5196 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5198 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5199 struct kvm_sregs *sregs)
5201 struct desc_ptr dt;
5203 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5204 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5205 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5206 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5207 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5208 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5210 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5211 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5213 kvm_x86_ops->get_idt(vcpu, &dt);
5214 sregs->idt.limit = dt.size;
5215 sregs->idt.base = dt.address;
5216 kvm_x86_ops->get_gdt(vcpu, &dt);
5217 sregs->gdt.limit = dt.size;
5218 sregs->gdt.base = dt.address;
5220 sregs->cr0 = kvm_read_cr0(vcpu);
5221 sregs->cr2 = vcpu->arch.cr2;
5222 sregs->cr3 = vcpu->arch.cr3;
5223 sregs->cr4 = kvm_read_cr4(vcpu);
5224 sregs->cr8 = kvm_get_cr8(vcpu);
5225 sregs->efer = vcpu->arch.efer;
5226 sregs->apic_base = kvm_get_apic_base(vcpu);
5228 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5230 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5231 set_bit(vcpu->arch.interrupt.nr,
5232 (unsigned long *)sregs->interrupt_bitmap);
5234 return 0;
5237 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5238 struct kvm_mp_state *mp_state)
5240 mp_state->mp_state = vcpu->arch.mp_state;
5241 return 0;
5244 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5245 struct kvm_mp_state *mp_state)
5247 vcpu->arch.mp_state = mp_state->mp_state;
5248 return 0;
5251 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5252 bool has_error_code, u32 error_code)
5254 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5255 int ret;
5257 init_emulate_ctxt(vcpu);
5259 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5260 tss_selector, reason, has_error_code,
5261 error_code);
5263 if (ret)
5264 return EMULATE_FAIL;
5266 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5267 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5268 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5269 return EMULATE_DONE;
5271 EXPORT_SYMBOL_GPL(kvm_task_switch);
5273 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5274 struct kvm_sregs *sregs)
5276 int mmu_reset_needed = 0;
5277 int pending_vec, max_bits;
5278 struct desc_ptr dt;
5280 dt.size = sregs->idt.limit;
5281 dt.address = sregs->idt.base;
5282 kvm_x86_ops->set_idt(vcpu, &dt);
5283 dt.size = sregs->gdt.limit;
5284 dt.address = sregs->gdt.base;
5285 kvm_x86_ops->set_gdt(vcpu, &dt);
5287 vcpu->arch.cr2 = sregs->cr2;
5288 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5289 vcpu->arch.cr3 = sregs->cr3;
5291 kvm_set_cr8(vcpu, sregs->cr8);
5293 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5294 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5295 kvm_set_apic_base(vcpu, sregs->apic_base);
5297 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5298 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5299 vcpu->arch.cr0 = sregs->cr0;
5301 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5302 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5303 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5304 load_pdptrs(vcpu, vcpu->arch.cr3);
5305 mmu_reset_needed = 1;
5308 if (mmu_reset_needed)
5309 kvm_mmu_reset_context(vcpu);
5311 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5312 pending_vec = find_first_bit(
5313 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5314 if (pending_vec < max_bits) {
5315 kvm_queue_interrupt(vcpu, pending_vec, false);
5316 pr_debug("Set back pending irq %d\n", pending_vec);
5317 if (irqchip_in_kernel(vcpu->kvm))
5318 kvm_pic_clear_isr_ack(vcpu->kvm);
5321 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5322 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5323 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5324 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5325 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5326 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5328 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5329 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5331 update_cr8_intercept(vcpu);
5333 /* Older userspace won't unhalt the vcpu on reset. */
5334 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5335 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5336 !is_protmode(vcpu))
5337 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5339 return 0;
5342 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5343 struct kvm_guest_debug *dbg)
5345 unsigned long rflags;
5346 int i, r;
5348 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5349 r = -EBUSY;
5350 if (vcpu->arch.exception.pending)
5351 goto out;
5352 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5353 kvm_queue_exception(vcpu, DB_VECTOR);
5354 else
5355 kvm_queue_exception(vcpu, BP_VECTOR);
5359 * Read rflags as long as potentially injected trace flags are still
5360 * filtered out.
5362 rflags = kvm_get_rflags(vcpu);
5364 vcpu->guest_debug = dbg->control;
5365 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5366 vcpu->guest_debug = 0;
5368 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5369 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5370 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5371 vcpu->arch.switch_db_regs =
5372 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5373 } else {
5374 for (i = 0; i < KVM_NR_DB_REGS; i++)
5375 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5376 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5379 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5380 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5381 get_segment_base(vcpu, VCPU_SREG_CS);
5384 * Trigger an rflags update that will inject or remove the trace
5385 * flags.
5387 kvm_set_rflags(vcpu, rflags);
5389 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5391 r = 0;
5393 out:
5395 return r;
5399 * Translate a guest virtual address to a guest physical address.
5401 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5402 struct kvm_translation *tr)
5404 unsigned long vaddr = tr->linear_address;
5405 gpa_t gpa;
5406 int idx;
5408 idx = srcu_read_lock(&vcpu->kvm->srcu);
5409 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5410 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5411 tr->physical_address = gpa;
5412 tr->valid = gpa != UNMAPPED_GVA;
5413 tr->writeable = 1;
5414 tr->usermode = 0;
5416 return 0;
5419 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5421 struct i387_fxsave_struct *fxsave =
5422 &vcpu->arch.guest_fpu.state->fxsave;
5424 memcpy(fpu->fpr, fxsave->st_space, 128);
5425 fpu->fcw = fxsave->cwd;
5426 fpu->fsw = fxsave->swd;
5427 fpu->ftwx = fxsave->twd;
5428 fpu->last_opcode = fxsave->fop;
5429 fpu->last_ip = fxsave->rip;
5430 fpu->last_dp = fxsave->rdp;
5431 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5433 return 0;
5436 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5438 struct i387_fxsave_struct *fxsave =
5439 &vcpu->arch.guest_fpu.state->fxsave;
5441 memcpy(fxsave->st_space, fpu->fpr, 128);
5442 fxsave->cwd = fpu->fcw;
5443 fxsave->swd = fpu->fsw;
5444 fxsave->twd = fpu->ftwx;
5445 fxsave->fop = fpu->last_opcode;
5446 fxsave->rip = fpu->last_ip;
5447 fxsave->rdp = fpu->last_dp;
5448 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5450 return 0;
5453 int fx_init(struct kvm_vcpu *vcpu)
5455 int err;
5457 err = fpu_alloc(&vcpu->arch.guest_fpu);
5458 if (err)
5459 return err;
5461 fpu_finit(&vcpu->arch.guest_fpu);
5464 * Ensure guest xcr0 is valid for loading
5466 vcpu->arch.xcr0 = XSTATE_FP;
5468 vcpu->arch.cr0 |= X86_CR0_ET;
5470 return 0;
5472 EXPORT_SYMBOL_GPL(fx_init);
5474 static void fx_free(struct kvm_vcpu *vcpu)
5476 fpu_free(&vcpu->arch.guest_fpu);
5479 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5481 if (vcpu->guest_fpu_loaded)
5482 return;
5485 * Restore all possible states in the guest,
5486 * and assume host would use all available bits.
5487 * Guest xcr0 would be loaded later.
5489 kvm_put_guest_xcr0(vcpu);
5490 vcpu->guest_fpu_loaded = 1;
5491 unlazy_fpu(current);
5492 fpu_restore_checking(&vcpu->arch.guest_fpu);
5493 trace_kvm_fpu(1);
5496 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5498 kvm_put_guest_xcr0(vcpu);
5500 if (!vcpu->guest_fpu_loaded)
5501 return;
5503 vcpu->guest_fpu_loaded = 0;
5504 fpu_save_init(&vcpu->arch.guest_fpu);
5505 ++vcpu->stat.fpu_reload;
5506 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5507 trace_kvm_fpu(0);
5510 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5512 if (vcpu->arch.time_page) {
5513 kvm_release_page_dirty(vcpu->arch.time_page);
5514 vcpu->arch.time_page = NULL;
5517 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5518 fx_free(vcpu);
5519 kvm_x86_ops->vcpu_free(vcpu);
5522 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5523 unsigned int id)
5525 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5526 printk_once(KERN_WARNING
5527 "kvm: SMP vm created on host with unstable TSC; "
5528 "guest TSC will not be reliable\n");
5529 return kvm_x86_ops->vcpu_create(kvm, id);
5532 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5534 int r;
5536 vcpu->arch.mtrr_state.have_fixed = 1;
5537 vcpu_load(vcpu);
5538 r = kvm_arch_vcpu_reset(vcpu);
5539 if (r == 0)
5540 r = kvm_mmu_setup(vcpu);
5541 vcpu_put(vcpu);
5542 if (r < 0)
5543 goto free_vcpu;
5545 return 0;
5546 free_vcpu:
5547 kvm_x86_ops->vcpu_free(vcpu);
5548 return r;
5551 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5553 vcpu_load(vcpu);
5554 kvm_mmu_unload(vcpu);
5555 vcpu_put(vcpu);
5557 fx_free(vcpu);
5558 kvm_x86_ops->vcpu_free(vcpu);
5561 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5563 vcpu->arch.nmi_pending = false;
5564 vcpu->arch.nmi_injected = false;
5566 vcpu->arch.switch_db_regs = 0;
5567 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5568 vcpu->arch.dr6 = DR6_FIXED_1;
5569 vcpu->arch.dr7 = DR7_FIXED_1;
5571 return kvm_x86_ops->vcpu_reset(vcpu);
5574 int kvm_arch_hardware_enable(void *garbage)
5576 struct kvm *kvm;
5577 struct kvm_vcpu *vcpu;
5578 int i;
5580 kvm_shared_msr_cpu_online();
5581 list_for_each_entry(kvm, &vm_list, vm_list)
5582 kvm_for_each_vcpu(i, vcpu, kvm)
5583 if (vcpu->cpu == smp_processor_id())
5584 kvm_request_guest_time_update(vcpu);
5585 return kvm_x86_ops->hardware_enable(garbage);
5588 void kvm_arch_hardware_disable(void *garbage)
5590 kvm_x86_ops->hardware_disable(garbage);
5591 drop_user_return_notifiers(garbage);
5594 int kvm_arch_hardware_setup(void)
5596 return kvm_x86_ops->hardware_setup();
5599 void kvm_arch_hardware_unsetup(void)
5601 kvm_x86_ops->hardware_unsetup();
5604 void kvm_arch_check_processor_compat(void *rtn)
5606 kvm_x86_ops->check_processor_compatibility(rtn);
5609 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5611 struct page *page;
5612 struct kvm *kvm;
5613 int r;
5615 BUG_ON(vcpu->kvm == NULL);
5616 kvm = vcpu->kvm;
5618 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5619 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5620 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5621 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5622 else
5623 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5625 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5626 if (!page) {
5627 r = -ENOMEM;
5628 goto fail;
5630 vcpu->arch.pio_data = page_address(page);
5632 r = kvm_mmu_create(vcpu);
5633 if (r < 0)
5634 goto fail_free_pio_data;
5636 if (irqchip_in_kernel(kvm)) {
5637 r = kvm_create_lapic(vcpu);
5638 if (r < 0)
5639 goto fail_mmu_destroy;
5642 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5643 GFP_KERNEL);
5644 if (!vcpu->arch.mce_banks) {
5645 r = -ENOMEM;
5646 goto fail_free_lapic;
5648 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5650 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5651 goto fail_free_mce_banks;
5653 return 0;
5654 fail_free_mce_banks:
5655 kfree(vcpu->arch.mce_banks);
5656 fail_free_lapic:
5657 kvm_free_lapic(vcpu);
5658 fail_mmu_destroy:
5659 kvm_mmu_destroy(vcpu);
5660 fail_free_pio_data:
5661 free_page((unsigned long)vcpu->arch.pio_data);
5662 fail:
5663 return r;
5666 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5668 int idx;
5670 kfree(vcpu->arch.mce_banks);
5671 kvm_free_lapic(vcpu);
5672 idx = srcu_read_lock(&vcpu->kvm->srcu);
5673 kvm_mmu_destroy(vcpu);
5674 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5675 free_page((unsigned long)vcpu->arch.pio_data);
5678 struct kvm *kvm_arch_create_vm(void)
5680 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5682 if (!kvm)
5683 return ERR_PTR(-ENOMEM);
5685 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5686 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5688 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5689 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5691 spin_lock_init(&kvm->arch.tsc_write_lock);
5693 return kvm;
5696 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5698 vcpu_load(vcpu);
5699 kvm_mmu_unload(vcpu);
5700 vcpu_put(vcpu);
5703 static void kvm_free_vcpus(struct kvm *kvm)
5705 unsigned int i;
5706 struct kvm_vcpu *vcpu;
5709 * Unpin any mmu pages first.
5711 kvm_for_each_vcpu(i, vcpu, kvm)
5712 kvm_unload_vcpu_mmu(vcpu);
5713 kvm_for_each_vcpu(i, vcpu, kvm)
5714 kvm_arch_vcpu_free(vcpu);
5716 mutex_lock(&kvm->lock);
5717 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5718 kvm->vcpus[i] = NULL;
5720 atomic_set(&kvm->online_vcpus, 0);
5721 mutex_unlock(&kvm->lock);
5724 void kvm_arch_sync_events(struct kvm *kvm)
5726 kvm_free_all_assigned_devices(kvm);
5727 kvm_free_pit(kvm);
5730 void kvm_arch_destroy_vm(struct kvm *kvm)
5732 kvm_iommu_unmap_guest(kvm);
5733 kfree(kvm->arch.vpic);
5734 kfree(kvm->arch.vioapic);
5735 kvm_free_vcpus(kvm);
5736 kvm_free_physmem(kvm);
5737 if (kvm->arch.apic_access_page)
5738 put_page(kvm->arch.apic_access_page);
5739 if (kvm->arch.ept_identity_pagetable)
5740 put_page(kvm->arch.ept_identity_pagetable);
5741 cleanup_srcu_struct(&kvm->srcu);
5742 kfree(kvm);
5745 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5746 struct kvm_memory_slot *memslot,
5747 struct kvm_memory_slot old,
5748 struct kvm_userspace_memory_region *mem,
5749 int user_alloc)
5751 int npages = memslot->npages;
5752 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5754 /* Prevent internal slot pages from being moved by fork()/COW. */
5755 if (memslot->id >= KVM_MEMORY_SLOTS)
5756 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5758 /*To keep backward compatibility with older userspace,
5759 *x86 needs to hanlde !user_alloc case.
5761 if (!user_alloc) {
5762 if (npages && !old.rmap) {
5763 unsigned long userspace_addr;
5765 down_write(&current->mm->mmap_sem);
5766 userspace_addr = do_mmap(NULL, 0,
5767 npages * PAGE_SIZE,
5768 PROT_READ | PROT_WRITE,
5769 map_flags,
5771 up_write(&current->mm->mmap_sem);
5773 if (IS_ERR((void *)userspace_addr))
5774 return PTR_ERR((void *)userspace_addr);
5776 memslot->userspace_addr = userspace_addr;
5781 return 0;
5784 void kvm_arch_commit_memory_region(struct kvm *kvm,
5785 struct kvm_userspace_memory_region *mem,
5786 struct kvm_memory_slot old,
5787 int user_alloc)
5790 int npages = mem->memory_size >> PAGE_SHIFT;
5792 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5793 int ret;
5795 down_write(&current->mm->mmap_sem);
5796 ret = do_munmap(current->mm, old.userspace_addr,
5797 old.npages * PAGE_SIZE);
5798 up_write(&current->mm->mmap_sem);
5799 if (ret < 0)
5800 printk(KERN_WARNING
5801 "kvm_vm_ioctl_set_memory_region: "
5802 "failed to munmap memory\n");
5805 spin_lock(&kvm->mmu_lock);
5806 if (!kvm->arch.n_requested_mmu_pages) {
5807 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5808 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5811 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5812 spin_unlock(&kvm->mmu_lock);
5815 void kvm_arch_flush_shadow(struct kvm *kvm)
5817 kvm_mmu_zap_all(kvm);
5818 kvm_reload_remote_mmus(kvm);
5821 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5823 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5824 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5825 || vcpu->arch.nmi_pending ||
5826 (kvm_arch_interrupt_allowed(vcpu) &&
5827 kvm_cpu_has_interrupt(vcpu));
5830 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5832 int me;
5833 int cpu = vcpu->cpu;
5835 if (waitqueue_active(&vcpu->wq)) {
5836 wake_up_interruptible(&vcpu->wq);
5837 ++vcpu->stat.halt_wakeup;
5840 me = get_cpu();
5841 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5842 if (atomic_xchg(&vcpu->guest_mode, 0))
5843 smp_send_reschedule(cpu);
5844 put_cpu();
5847 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5849 return kvm_x86_ops->interrupt_allowed(vcpu);
5852 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5854 unsigned long current_rip = kvm_rip_read(vcpu) +
5855 get_segment_base(vcpu, VCPU_SREG_CS);
5857 return current_rip == linear_rip;
5859 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5861 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5863 unsigned long rflags;
5865 rflags = kvm_x86_ops->get_rflags(vcpu);
5866 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5867 rflags &= ~X86_EFLAGS_TF;
5868 return rflags;
5870 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5872 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5874 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5875 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5876 rflags |= X86_EFLAGS_TF;
5877 kvm_x86_ops->set_rflags(vcpu, rflags);
5879 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);