2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
27 * Addressing Terminology
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
34 * N - Number of bits in the node portion of a socket physical
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
56 * M - number of node offset bits (35 .. 40)
59 * Memory/UV-HUB Processor Socket Address Format:
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
70 * boot time. M & N values are set by the hardware/BIOS at boot.
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
80 * pppppppppplc0cch Nehalem-EX
81 * ppppppppplcc0cch Westmere-EX
85 * l = socket number on board
88 * s = bits that are in the SOCKET_ID CSR
90 * Note: Processor only supports 12 bits in the APICID register. The ACPI
91 * tables hold all 16 bits. Software needs to be aware of this.
93 * Unless otherwise specified, all references to APICID refer to
94 * the FULL value contained in ACPI tables, not the subset in the
95 * processor APICID register.
100 * Maximum number of bricks in all partitions and in all coherency domains.
101 * This is the total number of bricks accessible in the numalink fabric. It
102 * includes all C & M bricks. Routers are NOT included.
104 * This value is also the value of the maximum number of non-router NASIDs
105 * in the numalink fabric.
107 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
109 #define UV_MAX_NUMALINK_BLADES 16384
112 * Maximum number of C/Mbricks within a software SSI (hardware may support
115 #define UV_MAX_SSI_BLADES 256
118 * The largest possible NASID of a C or M brick (+ 2)
120 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
123 struct timer_list timer
;
124 unsigned long offset
;
126 unsigned long idle_on
;
127 unsigned long idle_off
;
129 unsigned char enabled
;
133 * The following defines attributes of the HUB chip. These attributes are
134 * frequently referenced and are kept in the per-cpu data areas of each cpu.
135 * They are kept together in a struct to minimize cache misses.
137 struct uv_hub_info_s
{
138 unsigned long global_mmr_base
;
139 unsigned long gpa_mask
;
140 unsigned int gnode_extra
;
141 unsigned long gnode_upper
;
142 unsigned long lowmem_remap_top
;
143 unsigned long lowmem_remap_base
;
144 unsigned short pnode
;
145 unsigned short pnode_mask
;
146 unsigned short coherency_domain_number
;
147 unsigned short numa_blade_id
;
148 unsigned char blade_processor_id
;
151 struct uv_scir_s scir
;
152 unsigned char apic_pnode_shift
;
155 DECLARE_PER_CPU(struct uv_hub_info_s
, __uv_hub_info
);
156 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
157 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
161 struct uvh_apicid_s
{
162 unsigned long local_apic_mask
: 24;
163 unsigned long local_apic_shift
: 5;
164 unsigned long unused1
: 3;
165 unsigned long pnode_mask
: 24;
166 unsigned long pnode_shift
: 5;
167 unsigned long unused2
: 3;
172 * Local & Global MMR space macros.
173 * Note: macros are intended to be used ONLY by inline functions
174 * in this file - not by other kernel code.
175 * n - NASID (full 15-bit global nasid)
176 * g - GNODE (full 15-bit global nasid, right shifted 1)
177 * p - PNODE (local part of nsids, right shifted 1)
179 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
180 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
181 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
183 #define UV_LOCAL_MMR_BASE 0xf4000000UL
184 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
185 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
186 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
187 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
189 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
191 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
192 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
194 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
196 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
197 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
199 #define UVH_APICID 0x002D0E00L
200 #define UV_APIC_PNODE_SHIFT 6
202 #define UV_APICID_HIBIT_MASK 0xffff0000
204 /* Local Bus from cpu's perspective */
205 #define LOCAL_BUS_BASE 0x1c00000
206 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
209 * System Controller Interface Reg
211 * Note there are NO leds on a UV system. This register is only
212 * used by the system controller to monitor system-wide operation.
213 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
214 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
217 * The window is located at top of ACPI MMR space
219 #define SCIR_WINDOW_COUNT 64
220 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
224 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
225 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
226 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
228 /* Loop through all installed blades */
229 #define for_each_possible_blade(bid) \
230 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
233 * Macros for converting between kernel virtual addresses, socket local physical
234 * addresses, and UV global physical addresses.
235 * Note: use the standard __pa() & __va() macros for converting
236 * between socket virtual and socket physical addresses.
239 /* socket phys RAM --> UV global physical address */
240 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
242 if (paddr
< uv_hub_info
->lowmem_remap_top
)
243 paddr
|= uv_hub_info
->lowmem_remap_base
;
244 return paddr
| uv_hub_info
->gnode_upper
;
248 /* socket virtual --> UV global physical address */
249 static inline unsigned long uv_gpa(void *v
)
251 return uv_soc_phys_ram_to_gpa(__pa(v
));
254 /* Top two bits indicate the requested address is in MMR space. */
256 uv_gpa_in_mmr_space(unsigned long gpa
)
258 return (gpa
>> 62) == 0x3UL
;
261 /* UV global physical address --> socket phys RAM */
262 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa
)
264 unsigned long paddr
= gpa
& uv_hub_info
->gpa_mask
;
265 unsigned long remap_base
= uv_hub_info
->lowmem_remap_base
;
266 unsigned long remap_top
= uv_hub_info
->lowmem_remap_top
;
268 if (paddr
>= remap_base
&& paddr
< remap_base
+ remap_top
)
275 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa
)
277 return gpa
>> uv_hub_info
->m_val
;
281 static inline int uv_gpa_to_pnode(unsigned long gpa
)
283 unsigned long n_mask
= (1UL << uv_hub_info
->n_val
) - 1;
285 return uv_gpa_to_gnode(gpa
) & n_mask
;
288 /* pnode, offset --> socket virtual */
289 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
291 return __va(((unsigned long)pnode
<< uv_hub_info
->m_val
) | offset
);
296 * Extract a PNODE from an APICID (full apicid, not processor subset)
298 static inline int uv_apicid_to_pnode(int apicid
)
300 return (apicid
>> uv_hub_info
->apic_pnode_shift
);
304 * Access global MMRs using the low memory MMR32 space. This region supports
305 * faster MMR access but not all MMRs are accessible in this space.
307 static inline unsigned long *uv_global_mmr32_address(int pnode
, unsigned long offset
)
309 return __va(UV_GLOBAL_MMR32_BASE
|
310 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
313 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
, unsigned long val
)
315 writeq(val
, uv_global_mmr32_address(pnode
, offset
));
318 static inline unsigned long uv_read_global_mmr32(int pnode
, unsigned long offset
)
320 return readq(uv_global_mmr32_address(pnode
, offset
));
324 * Access Global MMR space using the MMR space located at the top of physical
327 static inline volatile void __iomem
*uv_global_mmr64_address(int pnode
, unsigned long offset
)
329 return __va(UV_GLOBAL_MMR64_BASE
|
330 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
333 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
, unsigned long val
)
335 writeq(val
, uv_global_mmr64_address(pnode
, offset
));
338 static inline unsigned long uv_read_global_mmr64(int pnode
, unsigned long offset
)
340 return readq(uv_global_mmr64_address(pnode
, offset
));
344 * Global MMR space addresses when referenced by the GRU. (GRU does
345 * NOT use socket addressing).
347 static inline unsigned long uv_global_gru_mmr_address(int pnode
, unsigned long offset
)
349 return UV_GLOBAL_GRU_MMR_BASE
| offset
|
350 ((unsigned long)pnode
<< uv_hub_info
->m_val
);
353 static inline void uv_write_global_mmr8(int pnode
, unsigned long offset
, unsigned char val
)
355 writeb(val
, uv_global_mmr64_address(pnode
, offset
));
358 static inline unsigned char uv_read_global_mmr8(int pnode
, unsigned long offset
)
360 return readb(uv_global_mmr64_address(pnode
, offset
));
364 * Access hub local MMRs. Faster than using global space but only local MMRs
367 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
369 return __va(UV_LOCAL_MMR_BASE
| offset
);
372 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
374 return readq(uv_local_mmr_address(offset
));
377 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
379 writeq(val
, uv_local_mmr_address(offset
));
382 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
384 return readb(uv_local_mmr_address(offset
));
387 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
389 writeb(val
, uv_local_mmr_address(offset
));
393 * Structures and definitions for converting between cpu, node, pnode, and blade
396 struct uv_blade_info
{
397 unsigned short nr_possible_cpus
;
398 unsigned short nr_online_cpus
;
399 unsigned short pnode
;
402 unsigned long nmi_count
;
404 extern struct uv_blade_info
*uv_blade_info
;
405 extern short *uv_node_to_blade
;
406 extern short *uv_cpu_to_blade
;
407 extern short uv_possible_blades
;
409 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
410 static inline int uv_blade_processor_id(void)
412 return uv_hub_info
->blade_processor_id
;
415 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
416 static inline int uv_numa_blade_id(void)
418 return uv_hub_info
->numa_blade_id
;
421 /* Convert a cpu number to the the UV blade number */
422 static inline int uv_cpu_to_blade_id(int cpu
)
424 return uv_cpu_to_blade
[cpu
];
427 /* Convert linux node number to the UV blade number */
428 static inline int uv_node_to_blade_id(int nid
)
430 return uv_node_to_blade
[nid
];
433 /* Convert a blade id to the PNODE of the blade */
434 static inline int uv_blade_to_pnode(int bid
)
436 return uv_blade_info
[bid
].pnode
;
439 /* Nid of memory node on blade. -1 if no blade-local memory */
440 static inline int uv_blade_to_memory_nid(int bid
)
442 return uv_blade_info
[bid
].memory_nid
;
445 /* Determine the number of possible cpus on a blade */
446 static inline int uv_blade_nr_possible_cpus(int bid
)
448 return uv_blade_info
[bid
].nr_possible_cpus
;
451 /* Determine the number of online cpus on a blade */
452 static inline int uv_blade_nr_online_cpus(int bid
)
454 return uv_blade_info
[bid
].nr_online_cpus
;
457 /* Convert a cpu id to the PNODE of the blade containing the cpu */
458 static inline int uv_cpu_to_pnode(int cpu
)
460 return uv_blade_info
[uv_cpu_to_blade_id(cpu
)].pnode
;
463 /* Convert a linux node number to the PNODE of the blade */
464 static inline int uv_node_to_pnode(int nid
)
466 return uv_blade_info
[uv_node_to_blade_id(nid
)].pnode
;
469 /* Maximum possible number of blades */
470 static inline int uv_num_possible_blades(void)
472 return uv_possible_blades
;
475 /* Update SCIR state */
476 static inline void uv_set_scir_bits(unsigned char value
)
478 if (uv_hub_info
->scir
.state
!= value
) {
479 uv_hub_info
->scir
.state
= value
;
480 uv_write_local_mmr8(uv_hub_info
->scir
.offset
, value
);
484 static inline unsigned long uv_scir_offset(int apicid
)
486 return SCIR_LOCAL_MMR_BASE
| (apicid
& 0x3f);
489 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
491 if (uv_cpu_hub_info(cpu
)->scir
.state
!= value
) {
492 uv_write_global_mmr8(uv_cpu_to_pnode(cpu
),
493 uv_cpu_hub_info(cpu
)->scir
.offset
, value
);
494 uv_cpu_hub_info(cpu
)->scir
.state
= value
;
498 extern unsigned int uv_apicid_hibits
;
499 static unsigned long uv_hub_ipi_value(int apicid
, int vector
, int mode
)
501 apicid
|= uv_apicid_hibits
;
502 return (1UL << UVH_IPI_INT_SEND_SHFT
) |
503 ((apicid
) << UVH_IPI_INT_APIC_ID_SHFT
) |
504 (mode
<< UVH_IPI_INT_DELIVERY_MODE_SHFT
) |
505 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
508 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
511 unsigned long dmode
= dest_Fixed
;
513 if (vector
== NMI_VECTOR
)
516 val
= uv_hub_ipi_value(apicid
, vector
, dmode
);
517 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
521 * Get the minimum revision number of the hub chips within the partition.
522 * 1 - initial rev 1.0 silicon
523 * 2 - rev 2.0 production silicon
525 static inline int uv_get_min_hub_revision_id(void)
527 extern int uv_min_hub_revision_id
;
529 return uv_min_hub_revision_id
;
532 #endif /* CONFIG_X86_64 */
533 #endif /* _ASM_X86_UV_UV_HUB_H */