2 * An rtc driver for the Dallas DS1511
4 * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp>
5 * Copyright (C) 2007 Andrew Sharp <andy.sharp@onstor.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Real time clock driver for the Dallas 1511 chip, which also
12 * contains a watchdog timer. There is a tiny amount of code that
13 * platform code could use to mess with the watchdog device a little
14 * bit, but not a full watchdog driver.
17 #include <linux/bcd.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/rtc.h>
23 #include <linux/platform_device.h>
26 #define DRV_VERSION "0.6"
39 DS1511_AM3_HOUR
= 0xa,
40 DS1511_AM4_DATE
= 0xb,
43 DS1511_CONTROL_A
= 0xe,
44 DS1511_CONTROL_B
= 0xf,
45 DS1511_RAMADDR_LSB
= 0x10,
49 #define DS1511_BLF1 0x80
50 #define DS1511_BLF2 0x40
51 #define DS1511_PRS 0x20
52 #define DS1511_PAB 0x10
53 #define DS1511_TDF 0x08
54 #define DS1511_KSF 0x04
55 #define DS1511_WDF 0x02
56 #define DS1511_IRQF 0x01
57 #define DS1511_TE 0x80
58 #define DS1511_CS 0x40
59 #define DS1511_BME 0x20
60 #define DS1511_TPE 0x10
61 #define DS1511_TIE 0x08
62 #define DS1511_KIE 0x04
63 #define DS1511_WDE 0x02
64 #define DS1511_WDS 0x01
65 #define DS1511_RAM_MAX 0xff
67 #define RTC_CMD DS1511_CONTROL_B
68 #define RTC_CMD1 DS1511_CONTROL_A
70 #define RTC_ALARM_SEC DS1511_AM1_SEC
71 #define RTC_ALARM_MIN DS1511_AM2_MIN
72 #define RTC_ALARM_HOUR DS1511_AM3_HOUR
73 #define RTC_ALARM_DATE DS1511_AM4_DATE
75 #define RTC_SEC DS1511_SEC
76 #define RTC_MIN DS1511_MIN
77 #define RTC_HOUR DS1511_HOUR
78 #define RTC_DOW DS1511_DOW
79 #define RTC_DOM DS1511_DOM
80 #define RTC_MON DS1511_MONTH
81 #define RTC_YEAR DS1511_YEAR
82 #define RTC_CENTURY DS1511_CENTURY
84 #define RTC_TIE DS1511_TIE
85 #define RTC_TE DS1511_TE
87 struct rtc_plat_data
{
88 struct rtc_device
*rtc
;
89 void __iomem
*ioaddr
; /* virtual base address */
90 unsigned long baseaddr
; /* physical base address */
91 int size
; /* amount of memory mapped */
100 static DEFINE_SPINLOCK(ds1511_lock
);
102 static __iomem
char *ds1511_base
;
103 static u32 reg_spacing
= 1;
106 rtc_write(uint8_t val
, uint32_t reg
)
108 writeb(val
, ds1511_base
+ (reg
* reg_spacing
));
112 rtc_write_alarm(uint8_t val
, enum ds1511reg reg
)
114 rtc_write((val
| 0x80), reg
);
117 static noinline
uint8_t
118 rtc_read(enum ds1511reg reg
)
120 return readb(ds1511_base
+ (reg
* reg_spacing
));
124 rtc_disable_update(void)
126 rtc_write((rtc_read(RTC_CMD
) & ~RTC_TE
), RTC_CMD
);
130 rtc_enable_update(void)
132 rtc_write((rtc_read(RTC_CMD
) | RTC_TE
), RTC_CMD
);
136 * #define DS1511_WDOG_RESET_SUPPORT
138 * Uncomment this if you want to use these routines in
139 * some platform code.
141 #ifdef DS1511_WDOG_RESET_SUPPORT
143 * just enough code to set the watchdog timer so that it
144 * will reboot the system
147 ds1511_wdog_set(unsigned long deciseconds
)
150 * the wdog timer can take 99.99 seconds
152 deciseconds
%= 10000;
154 * set the wdog values in the wdog registers
156 rtc_write(BIN2BCD(deciseconds
% 100), DS1511_WD_MSEC
);
157 rtc_write(BIN2BCD(deciseconds
/ 100), DS1511_WD_SEC
);
159 * set wdog enable and wdog 'steering' bit to issue a reset
161 rtc_write(DS1511_WDE
| DS1511_WDS
, RTC_CMD
);
165 ds1511_wdog_disable(void)
168 * clear wdog enable and wdog 'steering' bits
170 rtc_write(rtc_read(RTC_CMD
) & ~(DS1511_WDE
| DS1511_WDS
), RTC_CMD
);
172 * clear the wdog counter
174 rtc_write(0, DS1511_WD_MSEC
);
175 rtc_write(0, DS1511_WD_SEC
);
180 * set the rtc chip's idea of the time.
181 * stupidly, some callers call with year unmolested;
182 * and some call with year = year - 1900. thanks.
185 ds1511_rtc_set_time(struct device
*dev
, struct rtc_time
*rtc_tm
)
187 u8 mon
, day
, dow
, hrs
, min
, sec
, yrs
, cen
;
191 * won't have to change this for a while
193 if (rtc_tm
->tm_year
< 1900) {
194 rtc_tm
->tm_year
+= 1900;
197 if (rtc_tm
->tm_year
< 1970) {
200 yrs
= rtc_tm
->tm_year
% 100;
201 cen
= rtc_tm
->tm_year
/ 100;
202 mon
= rtc_tm
->tm_mon
+ 1; /* tm_mon starts at zero */
203 day
= rtc_tm
->tm_mday
;
204 dow
= rtc_tm
->tm_wday
& 0x7; /* automatic BCD */
205 hrs
= rtc_tm
->tm_hour
;
206 min
= rtc_tm
->tm_min
;
207 sec
= rtc_tm
->tm_sec
;
209 if ((mon
> 12) || (day
== 0)) {
213 if (day
> rtc_month_days(rtc_tm
->tm_mon
, rtc_tm
->tm_year
)) {
217 if ((hrs
>= 24) || (min
>= 60) || (sec
>= 60)) {
222 * each register is a different number of valid bits
224 sec
= BIN2BCD(sec
) & 0x7f;
225 min
= BIN2BCD(min
) & 0x7f;
226 hrs
= BIN2BCD(hrs
) & 0x3f;
227 day
= BIN2BCD(day
) & 0x3f;
228 mon
= BIN2BCD(mon
) & 0x1f;
229 yrs
= BIN2BCD(yrs
) & 0xff;
230 cen
= BIN2BCD(cen
) & 0xff;
232 spin_lock_irqsave(&ds1511_lock
, flags
);
233 rtc_disable_update();
234 rtc_write(cen
, RTC_CENTURY
);
235 rtc_write(yrs
, RTC_YEAR
);
236 rtc_write((rtc_read(RTC_MON
) & 0xe0) | mon
, RTC_MON
);
237 rtc_write(day
, RTC_DOM
);
238 rtc_write(hrs
, RTC_HOUR
);
239 rtc_write(min
, RTC_MIN
);
240 rtc_write(sec
, RTC_SEC
);
241 rtc_write(dow
, RTC_DOW
);
243 spin_unlock_irqrestore(&ds1511_lock
, flags
);
249 ds1511_rtc_read_time(struct device
*dev
, struct rtc_time
*rtc_tm
)
251 unsigned int century
;
254 spin_lock_irqsave(&ds1511_lock
, flags
);
255 rtc_disable_update();
257 rtc_tm
->tm_sec
= rtc_read(RTC_SEC
) & 0x7f;
258 rtc_tm
->tm_min
= rtc_read(RTC_MIN
) & 0x7f;
259 rtc_tm
->tm_hour
= rtc_read(RTC_HOUR
) & 0x3f;
260 rtc_tm
->tm_mday
= rtc_read(RTC_DOM
) & 0x3f;
261 rtc_tm
->tm_wday
= rtc_read(RTC_DOW
) & 0x7;
262 rtc_tm
->tm_mon
= rtc_read(RTC_MON
) & 0x1f;
263 rtc_tm
->tm_year
= rtc_read(RTC_YEAR
) & 0x7f;
264 century
= rtc_read(RTC_CENTURY
);
267 spin_unlock_irqrestore(&ds1511_lock
, flags
);
269 rtc_tm
->tm_sec
= BCD2BIN(rtc_tm
->tm_sec
);
270 rtc_tm
->tm_min
= BCD2BIN(rtc_tm
->tm_min
);
271 rtc_tm
->tm_hour
= BCD2BIN(rtc_tm
->tm_hour
);
272 rtc_tm
->tm_mday
= BCD2BIN(rtc_tm
->tm_mday
);
273 rtc_tm
->tm_wday
= BCD2BIN(rtc_tm
->tm_wday
);
274 rtc_tm
->tm_mon
= BCD2BIN(rtc_tm
->tm_mon
);
275 rtc_tm
->tm_year
= BCD2BIN(rtc_tm
->tm_year
);
276 century
= BCD2BIN(century
) * 100;
279 * Account for differences between how the RTC uses the values
280 * and how they are defined in a struct rtc_time;
282 century
+= rtc_tm
->tm_year
;
283 rtc_tm
->tm_year
= century
- 1900;
287 if (rtc_valid_tm(rtc_tm
) < 0) {
288 dev_err(dev
, "retrieved date/time is not valid.\n");
289 rtc_time_to_tm(0, rtc_tm
);
295 * write the alarm register settings
297 * we only have the use to interrupt every second, otherwise
298 * known as the update interrupt, or the interrupt if the whole
299 * date/hours/mins/secs matches. the ds1511 has many more
300 * permutations, but the kernel doesn't.
303 ds1511_rtc_update_alarm(struct rtc_plat_data
*pdata
)
307 spin_lock_irqsave(&pdata
->rtc
->irq_lock
, flags
);
308 rtc_write(pdata
->alrm_mday
< 0 || (pdata
->irqen
& RTC_UF
) ?
309 0x80 : BIN2BCD(pdata
->alrm_mday
) & 0x3f,
311 rtc_write(pdata
->alrm_hour
< 0 || (pdata
->irqen
& RTC_UF
) ?
312 0x80 : BIN2BCD(pdata
->alrm_hour
) & 0x3f,
314 rtc_write(pdata
->alrm_min
< 0 || (pdata
->irqen
& RTC_UF
) ?
315 0x80 : BIN2BCD(pdata
->alrm_min
) & 0x7f,
317 rtc_write(pdata
->alrm_sec
< 0 || (pdata
->irqen
& RTC_UF
) ?
318 0x80 : BIN2BCD(pdata
->alrm_sec
) & 0x7f,
320 rtc_write(rtc_read(RTC_CMD
) | (pdata
->irqen
? RTC_TIE
: 0), RTC_CMD
);
321 rtc_read(RTC_CMD1
); /* clear interrupts */
322 spin_unlock_irqrestore(&pdata
->rtc
->irq_lock
, flags
);
326 ds1511_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
328 struct platform_device
*pdev
= to_platform_device(dev
);
329 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
331 if (pdata
->irq
< 0) {
334 pdata
->alrm_mday
= alrm
->time
.tm_mday
;
335 pdata
->alrm_hour
= alrm
->time
.tm_hour
;
336 pdata
->alrm_min
= alrm
->time
.tm_min
;
337 pdata
->alrm_sec
= alrm
->time
.tm_sec
;
339 pdata
->irqen
|= RTC_AF
;
341 ds1511_rtc_update_alarm(pdata
);
346 ds1511_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
348 struct platform_device
*pdev
= to_platform_device(dev
);
349 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
351 if (pdata
->irq
< 0) {
354 alrm
->time
.tm_mday
= pdata
->alrm_mday
< 0 ? 0 : pdata
->alrm_mday
;
355 alrm
->time
.tm_hour
= pdata
->alrm_hour
< 0 ? 0 : pdata
->alrm_hour
;
356 alrm
->time
.tm_min
= pdata
->alrm_min
< 0 ? 0 : pdata
->alrm_min
;
357 alrm
->time
.tm_sec
= pdata
->alrm_sec
< 0 ? 0 : pdata
->alrm_sec
;
358 alrm
->enabled
= (pdata
->irqen
& RTC_AF
) ? 1 : 0;
363 ds1511_interrupt(int irq
, void *dev_id
)
365 struct platform_device
*pdev
= dev_id
;
366 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
367 unsigned long events
= RTC_IRQF
;
370 * read and clear interrupt
372 if (!(rtc_read(RTC_CMD1
) & DS1511_IRQF
)) {
375 if (rtc_read(RTC_ALARM_SEC
) & 0x80) {
380 rtc_update_irq(pdata
->rtc
, 1, events
);
385 ds1511_rtc_release(struct device
*dev
)
387 struct platform_device
*pdev
= to_platform_device(dev
);
388 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
390 if (pdata
->irq
>= 0) {
392 ds1511_rtc_update_alarm(pdata
);
397 ds1511_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
399 struct platform_device
*pdev
= to_platform_device(dev
);
400 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
402 if (pdata
->irq
< 0) {
403 return -ENOIOCTLCMD
; /* fall back into rtc-dev's emulation */
407 pdata
->irqen
&= ~RTC_AF
;
408 ds1511_rtc_update_alarm(pdata
);
411 pdata
->irqen
|= RTC_AF
;
412 ds1511_rtc_update_alarm(pdata
);
415 pdata
->irqen
&= ~RTC_UF
;
416 ds1511_rtc_update_alarm(pdata
);
419 pdata
->irqen
|= RTC_UF
;
420 ds1511_rtc_update_alarm(pdata
);
428 static const struct rtc_class_ops ds1511_rtc_ops
= {
429 .read_time
= ds1511_rtc_read_time
,
430 .set_time
= ds1511_rtc_set_time
,
431 .read_alarm
= ds1511_rtc_read_alarm
,
432 .set_alarm
= ds1511_rtc_set_alarm
,
433 .release
= ds1511_rtc_release
,
434 .ioctl
= ds1511_rtc_ioctl
,
438 ds1511_nvram_read(struct kobject
*kobj
, struct bin_attribute
*ba
,
439 char *buf
, loff_t pos
, size_t size
)
444 * if count is more than one, turn on "burst" mode
445 * turn it off when you're done
448 rtc_write((rtc_read(RTC_CMD
) | DS1511_BME
), RTC_CMD
);
450 if (pos
> DS1511_RAM_MAX
) {
451 pos
= DS1511_RAM_MAX
;
453 if (size
+ pos
> DS1511_RAM_MAX
+ 1) {
454 size
= DS1511_RAM_MAX
- pos
+ 1;
456 rtc_write(pos
, DS1511_RAMADDR_LSB
);
457 for (count
= 0; size
> 0; count
++, size
--) {
458 *buf
++ = rtc_read(DS1511_RAMDATA
);
461 rtc_write((rtc_read(RTC_CMD
) & ~DS1511_BME
), RTC_CMD
);
467 ds1511_nvram_write(struct kobject
*kobj
, struct bin_attribute
*bin_attr
,
468 char *buf
, loff_t pos
, size_t size
)
473 * if count is more than one, turn on "burst" mode
474 * turn it off when you're done
477 rtc_write((rtc_read(RTC_CMD
) | DS1511_BME
), RTC_CMD
);
479 if (pos
> DS1511_RAM_MAX
) {
480 pos
= DS1511_RAM_MAX
;
482 if (size
+ pos
> DS1511_RAM_MAX
+ 1) {
483 size
= DS1511_RAM_MAX
- pos
+ 1;
485 rtc_write(pos
, DS1511_RAMADDR_LSB
);
486 for (count
= 0; size
> 0; count
++, size
--) {
487 rtc_write(*buf
++, DS1511_RAMDATA
);
490 rtc_write((rtc_read(RTC_CMD
) & ~DS1511_BME
), RTC_CMD
);
495 static struct bin_attribute ds1511_nvram_attr
= {
498 .mode
= S_IRUGO
| S_IWUGO
,
499 .owner
= THIS_MODULE
,
501 .size
= DS1511_RAM_MAX
,
502 .read
= ds1511_nvram_read
,
503 .write
= ds1511_nvram_write
,
507 ds1511_rtc_probe(struct platform_device
*pdev
)
509 struct rtc_device
*rtc
;
510 struct resource
*res
;
511 struct rtc_plat_data
*pdata
= NULL
;
514 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
518 pdata
= kzalloc(sizeof(*pdata
), GFP_KERNEL
);
523 pdata
->size
= res
->end
- res
->start
+ 1;
524 if (!request_mem_region(res
->start
, pdata
->size
, pdev
->name
)) {
528 pdata
->baseaddr
= res
->start
;
529 pdata
->size
= pdata
->size
;
530 ds1511_base
= ioremap(pdata
->baseaddr
, pdata
->size
);
535 pdata
->ioaddr
= ds1511_base
;
536 pdata
->irq
= platform_get_irq(pdev
, 0);
539 * turn on the clock and the crystal, etc.
541 rtc_write(0, RTC_CMD
);
542 rtc_write(0, RTC_CMD1
);
544 * clear the wdog counter
546 rtc_write(0, DS1511_WD_MSEC
);
547 rtc_write(0, DS1511_WD_SEC
);
554 * check for a dying bat-tree
556 if (rtc_read(RTC_CMD1
) & DS1511_BLF1
) {
557 dev_warn(&pdev
->dev
, "voltage-low detected.\n");
561 * if the platform has an interrupt in mind for this device,
562 * then by all means, set it
564 if (pdata
->irq
>= 0) {
566 if (request_irq(pdata
->irq
, ds1511_interrupt
,
567 IRQF_DISABLED
| IRQF_SHARED
, pdev
->name
, pdev
) < 0) {
569 dev_warn(&pdev
->dev
, "interrupt not available.\n");
574 rtc
= rtc_device_register(pdev
->name
, &pdev
->dev
, &ds1511_rtc_ops
,
581 platform_set_drvdata(pdev
, pdata
);
582 ret
= sysfs_create_bin_file(&pdev
->dev
.kobj
, &ds1511_nvram_attr
);
589 rtc_device_unregister(pdata
->rtc
);
591 if (pdata
->irq
>= 0) {
592 free_irq(pdata
->irq
, pdev
);
595 iounmap(ds1511_base
);
598 if (pdata
->baseaddr
) {
599 release_mem_region(pdata
->baseaddr
, pdata
->size
);
607 ds1511_rtc_remove(struct platform_device
*pdev
)
609 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
611 sysfs_remove_bin_file(&pdev
->dev
.kobj
, &ds1511_nvram_attr
);
612 rtc_device_unregister(pdata
->rtc
);
614 if (pdata
->irq
>= 0) {
616 * disable the alarm interrupt
618 rtc_write(rtc_read(RTC_CMD
) & ~RTC_TIE
, RTC_CMD
);
620 free_irq(pdata
->irq
, pdev
);
622 iounmap(pdata
->ioaddr
);
624 release_mem_region(pdata
->baseaddr
, pdata
->size
);
629 static struct platform_driver ds1511_rtc_driver
= {
630 .probe
= ds1511_rtc_probe
,
631 .remove
= __devexit_p(ds1511_rtc_remove
),
634 .owner
= THIS_MODULE
,
639 ds1511_rtc_init(void)
641 return platform_driver_register(&ds1511_rtc_driver
);
645 ds1511_rtc_exit(void)
647 return platform_driver_unregister(&ds1511_rtc_driver
);
650 module_init(ds1511_rtc_init
);
651 module_exit(ds1511_rtc_exit
);
653 MODULE_AUTHOR("Andrew Sharp <andy.sharp@onstor.com>");
654 MODULE_DESCRIPTION("Dallas DS1511 RTC driver");
655 MODULE_LICENSE("GPL");
656 MODULE_VERSION(DRV_VERSION
);