2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
58 * Array of node states.
60 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
61 [N_POSSIBLE
] = NODE_MASK_ALL
,
62 [N_ONLINE
] = { { [0] = 1UL } },
64 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
66 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
68 [N_CPU
] = { { [0] = 1UL } },
71 EXPORT_SYMBOL(node_states
);
73 unsigned long totalram_pages __read_mostly
;
74 unsigned long totalreserve_pages __read_mostly
;
75 int percpu_pagelist_fraction
;
76 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly
;
82 static void __free_pages_ok(struct page
*page
, unsigned int order
);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
96 #ifdef CONFIG_ZONE_DMA
99 #ifdef CONFIG_ZONE_DMA32
102 #ifdef CONFIG_HIGHMEM
108 EXPORT_SYMBOL(totalram_pages
);
110 static char * const zone_names
[MAX_NR_ZONES
] = {
111 #ifdef CONFIG_ZONE_DMA
114 #ifdef CONFIG_ZONE_DMA32
118 #ifdef CONFIG_HIGHMEM
124 int min_free_kbytes
= 1024;
126 static unsigned long __meminitdata nr_kernel_pages
;
127 static unsigned long __meminitdata nr_all_pages
;
128 static unsigned long __meminitdata dma_reserve
;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
151 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
152 static int __meminitdata nr_nodemap_entries
;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
155 static unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 int nr_online_nodes __read_mostly
= 1;
167 EXPORT_SYMBOL(nr_node_ids
);
168 EXPORT_SYMBOL(nr_online_nodes
);
171 int page_group_by_mobility_disabled __read_mostly
;
173 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
176 if (unlikely(page_group_by_mobility_disabled
))
177 migratetype
= MIGRATE_UNMOVABLE
;
179 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
180 PB_migrate
, PB_migrate_end
);
183 bool oom_killer_disabled __read_mostly
;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
190 unsigned long pfn
= page_to_pfn(page
);
193 seq
= zone_span_seqbegin(zone
);
194 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
196 else if (pfn
< zone
->zone_start_pfn
)
198 } while (zone_span_seqretry(zone
, seq
));
203 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
205 if (!pfn_valid_within(page_to_pfn(page
)))
207 if (zone
!= page_zone(page
))
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone
*zone
, struct page
*page
)
217 if (page_outside_zone_boundaries(zone
, page
))
219 if (!page_is_consistent(zone
, page
))
225 static inline int bad_range(struct zone
*zone
, struct page
*page
)
231 static void bad_page(struct page
*page
)
233 static unsigned long resume
;
234 static unsigned long nr_shown
;
235 static unsigned long nr_unshown
;
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page
)) {
239 __ClearPageBuddy(page
);
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
247 if (nr_shown
== 60) {
248 if (time_before(jiffies
, resume
)) {
254 "BUG: Bad page state: %lu messages suppressed\n",
261 resume
= jiffies
+ 60 * HZ
;
263 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
264 current
->comm
, page_to_pfn(page
));
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page
, (void *)page
->flags
, page_count(page
),
268 page_mapcount(page
), page
->mapping
, page
->index
);
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page
);
274 add_taint(TAINT_BAD_PAGE
);
278 * Higher-order pages are called "compound pages". They are structured thusly:
280 * The first PAGE_SIZE page is called the "head page".
282 * The remaining PAGE_SIZE pages are called "tail pages".
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
292 static void free_compound_page(struct page
*page
)
294 __free_pages_ok(page
, compound_order(page
));
297 void prep_compound_page(struct page
*page
, unsigned long order
)
300 int nr_pages
= 1 << order
;
302 set_compound_page_dtor(page
, free_compound_page
);
303 set_compound_order(page
, order
);
305 for (i
= 1; i
< nr_pages
; i
++) {
306 struct page
*p
= page
+ i
;
309 p
->first_page
= page
;
313 static int destroy_compound_page(struct page
*page
, unsigned long order
)
316 int nr_pages
= 1 << order
;
319 if (unlikely(compound_order(page
) != order
) ||
320 unlikely(!PageHead(page
))) {
325 __ClearPageHead(page
);
327 for (i
= 1; i
< nr_pages
; i
++) {
328 struct page
*p
= page
+ i
;
330 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
340 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
349 for (i
= 0; i
< (1 << order
); i
++)
350 clear_highpage(page
+ i
);
353 static inline void set_page_order(struct page
*page
, int order
)
355 set_page_private(page
, order
);
356 __SetPageBuddy(page
);
359 static inline void rmv_page_order(struct page
*page
)
361 __ClearPageBuddy(page
);
362 set_page_private(page
, 0);
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
372 * For example, if the starting buddy (buddy2) is #8 its order
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 static inline struct page
*
383 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
385 unsigned long buddy_idx
= page_idx
^ (1 << order
);
387 return page
+ (buddy_idx
- page_idx
);
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx
, unsigned int order
)
393 return (page_idx
& ~(1 << order
));
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 * For recording page's order, we use page_private(page).
409 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
412 if (!pfn_valid_within(page_to_pfn(buddy
)))
415 if (page_zone_id(page
) != page_zone_id(buddy
))
418 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
419 VM_BUG_ON(page_count(buddy
) != 0);
426 * Freeing function for a buddy system allocator.
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
449 static inline void __free_one_page(struct page
*page
,
450 struct zone
*zone
, unsigned int order
,
453 unsigned long page_idx
;
455 if (unlikely(PageCompound(page
)))
456 if (unlikely(destroy_compound_page(page
, order
)))
459 VM_BUG_ON(migratetype
== -1);
461 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
463 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
464 VM_BUG_ON(bad_range(zone
, page
));
466 while (order
< MAX_ORDER
-1) {
467 unsigned long combined_idx
;
470 buddy
= __page_find_buddy(page
, page_idx
, order
);
471 if (!page_is_buddy(page
, buddy
, order
))
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy
->lru
);
476 zone
->free_area
[order
].nr_free
--;
477 rmv_page_order(buddy
);
478 combined_idx
= __find_combined_index(page_idx
, order
);
479 page
= page
+ (combined_idx
- page_idx
);
480 page_idx
= combined_idx
;
483 set_page_order(page
, order
);
485 &zone
->free_area
[order
].free_list
[migratetype
]);
486 zone
->free_area
[order
].nr_free
++;
489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page
*page
)
497 __dec_zone_page_state(page
, NR_MLOCK
);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
501 static void free_page_mlock(struct page
*page
) { }
504 static inline int free_pages_check(struct page
*page
)
506 if (unlikely(page_mapcount(page
) |
507 (page
->mapping
!= NULL
) |
508 (atomic_read(&page
->_count
) != 0) |
509 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
513 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
514 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
519 * Frees a number of pages from the PCP lists
520 * Assumes all pages on list are in same zone, and of same order.
521 * count is the number of pages to free.
523 * If the zone was previously in an "all pages pinned" state then look to
524 * see if this freeing clears that state.
526 * And clear the zone's pages_scanned counter, to hold off the "all pages are
527 * pinned" detection logic.
529 static void free_pcppages_bulk(struct zone
*zone
, int count
,
530 struct per_cpu_pages
*pcp
)
535 spin_lock(&zone
->lock
);
536 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
537 zone
->pages_scanned
= 0;
539 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
542 struct list_head
*list
;
545 * Remove pages from lists in a round-robin fashion. A
546 * batch_free count is maintained that is incremented when an
547 * empty list is encountered. This is so more pages are freed
548 * off fuller lists instead of spinning excessively around empty
553 if (++migratetype
== MIGRATE_PCPTYPES
)
555 list
= &pcp
->lists
[migratetype
];
556 } while (list_empty(list
));
559 page
= list_entry(list
->prev
, struct page
, lru
);
560 /* must delete as __free_one_page list manipulates */
561 list_del(&page
->lru
);
562 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
563 __free_one_page(page
, zone
, 0, page_private(page
));
564 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
565 } while (--count
&& --batch_free
&& !list_empty(list
));
567 spin_unlock(&zone
->lock
);
570 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
573 spin_lock(&zone
->lock
);
574 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
575 zone
->pages_scanned
= 0;
577 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
578 __free_one_page(page
, zone
, order
, migratetype
);
579 spin_unlock(&zone
->lock
);
582 static void __free_pages_ok(struct page
*page
, unsigned int order
)
587 int wasMlocked
= __TestClearPageMlocked(page
);
589 kmemcheck_free_shadow(page
, order
);
591 for (i
= 0 ; i
< (1 << order
) ; ++i
)
592 bad
+= free_pages_check(page
+ i
);
596 if (!PageHighMem(page
)) {
597 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
598 debug_check_no_obj_freed(page_address(page
),
601 arch_free_page(page
, order
);
602 kernel_map_pages(page
, 1 << order
, 0);
604 local_irq_save(flags
);
605 if (unlikely(wasMlocked
))
606 free_page_mlock(page
);
607 __count_vm_events(PGFREE
, 1 << order
);
608 free_one_page(page_zone(page
), page
, order
,
609 get_pageblock_migratetype(page
));
610 local_irq_restore(flags
);
614 * permit the bootmem allocator to evade page validation on high-order frees
616 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
619 __ClearPageReserved(page
);
620 set_page_count(page
, 0);
621 set_page_refcounted(page
);
627 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
628 struct page
*p
= &page
[loop
];
630 if (loop
+ 1 < BITS_PER_LONG
)
632 __ClearPageReserved(p
);
633 set_page_count(p
, 0);
636 set_page_refcounted(page
);
637 __free_pages(page
, order
);
643 * The order of subdivision here is critical for the IO subsystem.
644 * Please do not alter this order without good reasons and regression
645 * testing. Specifically, as large blocks of memory are subdivided,
646 * the order in which smaller blocks are delivered depends on the order
647 * they're subdivided in this function. This is the primary factor
648 * influencing the order in which pages are delivered to the IO
649 * subsystem according to empirical testing, and this is also justified
650 * by considering the behavior of a buddy system containing a single
651 * large block of memory acted on by a series of small allocations.
652 * This behavior is a critical factor in sglist merging's success.
656 static inline void expand(struct zone
*zone
, struct page
*page
,
657 int low
, int high
, struct free_area
*area
,
660 unsigned long size
= 1 << high
;
666 VM_BUG_ON(bad_range(zone
, &page
[size
]));
667 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
669 set_page_order(&page
[size
], high
);
674 * This page is about to be returned from the page allocator
676 static inline int check_new_page(struct page
*page
)
678 if (unlikely(page_mapcount(page
) |
679 (page
->mapping
!= NULL
) |
680 (atomic_read(&page
->_count
) != 0) |
681 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
688 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
692 for (i
= 0; i
< (1 << order
); i
++) {
693 struct page
*p
= page
+ i
;
694 if (unlikely(check_new_page(p
)))
698 set_page_private(page
, 0);
699 set_page_refcounted(page
);
701 arch_alloc_page(page
, order
);
702 kernel_map_pages(page
, 1 << order
, 1);
704 if (gfp_flags
& __GFP_ZERO
)
705 prep_zero_page(page
, order
, gfp_flags
);
707 if (order
&& (gfp_flags
& __GFP_COMP
))
708 prep_compound_page(page
, order
);
714 * Go through the free lists for the given migratetype and remove
715 * the smallest available page from the freelists
718 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
721 unsigned int current_order
;
722 struct free_area
* area
;
725 /* Find a page of the appropriate size in the preferred list */
726 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
727 area
= &(zone
->free_area
[current_order
]);
728 if (list_empty(&area
->free_list
[migratetype
]))
731 page
= list_entry(area
->free_list
[migratetype
].next
,
733 list_del(&page
->lru
);
734 rmv_page_order(page
);
736 expand(zone
, page
, order
, current_order
, area
, migratetype
);
745 * This array describes the order lists are fallen back to when
746 * the free lists for the desirable migrate type are depleted
748 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
749 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
750 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
751 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
752 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
756 * Move the free pages in a range to the free lists of the requested type.
757 * Note that start_page and end_pages are not aligned on a pageblock
758 * boundary. If alignment is required, use move_freepages_block()
760 static int move_freepages(struct zone
*zone
,
761 struct page
*start_page
, struct page
*end_page
,
768 #ifndef CONFIG_HOLES_IN_ZONE
770 * page_zone is not safe to call in this context when
771 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
772 * anyway as we check zone boundaries in move_freepages_block().
773 * Remove at a later date when no bug reports exist related to
774 * grouping pages by mobility
776 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
779 for (page
= start_page
; page
<= end_page
;) {
780 /* Make sure we are not inadvertently changing nodes */
781 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
783 if (!pfn_valid_within(page_to_pfn(page
))) {
788 if (!PageBuddy(page
)) {
793 order
= page_order(page
);
794 list_del(&page
->lru
);
796 &zone
->free_area
[order
].free_list
[migratetype
]);
798 pages_moved
+= 1 << order
;
804 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
807 unsigned long start_pfn
, end_pfn
;
808 struct page
*start_page
, *end_page
;
810 start_pfn
= page_to_pfn(page
);
811 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
812 start_page
= pfn_to_page(start_pfn
);
813 end_page
= start_page
+ pageblock_nr_pages
- 1;
814 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
816 /* Do not cross zone boundaries */
817 if (start_pfn
< zone
->zone_start_pfn
)
819 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
822 return move_freepages(zone
, start_page
, end_page
, migratetype
);
825 static void change_pageblock_range(struct page
*pageblock_page
,
826 int start_order
, int migratetype
)
828 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
830 while (nr_pageblocks
--) {
831 set_pageblock_migratetype(pageblock_page
, migratetype
);
832 pageblock_page
+= pageblock_nr_pages
;
836 /* Remove an element from the buddy allocator from the fallback list */
837 static inline struct page
*
838 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
840 struct free_area
* area
;
845 /* Find the largest possible block of pages in the other list */
846 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
848 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
849 migratetype
= fallbacks
[start_migratetype
][i
];
851 /* MIGRATE_RESERVE handled later if necessary */
852 if (migratetype
== MIGRATE_RESERVE
)
855 area
= &(zone
->free_area
[current_order
]);
856 if (list_empty(&area
->free_list
[migratetype
]))
859 page
= list_entry(area
->free_list
[migratetype
].next
,
864 * If breaking a large block of pages, move all free
865 * pages to the preferred allocation list. If falling
866 * back for a reclaimable kernel allocation, be more
867 * agressive about taking ownership of free pages
869 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
870 start_migratetype
== MIGRATE_RECLAIMABLE
||
871 page_group_by_mobility_disabled
) {
873 pages
= move_freepages_block(zone
, page
,
876 /* Claim the whole block if over half of it is free */
877 if (pages
>= (1 << (pageblock_order
-1)) ||
878 page_group_by_mobility_disabled
)
879 set_pageblock_migratetype(page
,
882 migratetype
= start_migratetype
;
885 /* Remove the page from the freelists */
886 list_del(&page
->lru
);
887 rmv_page_order(page
);
889 /* Take ownership for orders >= pageblock_order */
890 if (current_order
>= pageblock_order
)
891 change_pageblock_range(page
, current_order
,
894 expand(zone
, page
, order
, current_order
, area
, migratetype
);
896 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
897 start_migratetype
, migratetype
);
907 * Do the hard work of removing an element from the buddy allocator.
908 * Call me with the zone->lock already held.
910 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
916 page
= __rmqueue_smallest(zone
, order
, migratetype
);
918 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
919 page
= __rmqueue_fallback(zone
, order
, migratetype
);
922 * Use MIGRATE_RESERVE rather than fail an allocation. goto
923 * is used because __rmqueue_smallest is an inline function
924 * and we want just one call site
927 migratetype
= MIGRATE_RESERVE
;
932 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
937 * Obtain a specified number of elements from the buddy allocator, all under
938 * a single hold of the lock, for efficiency. Add them to the supplied list.
939 * Returns the number of new pages which were placed at *list.
941 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
942 unsigned long count
, struct list_head
*list
,
943 int migratetype
, int cold
)
947 spin_lock(&zone
->lock
);
948 for (i
= 0; i
< count
; ++i
) {
949 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
950 if (unlikely(page
== NULL
))
954 * Split buddy pages returned by expand() are received here
955 * in physical page order. The page is added to the callers and
956 * list and the list head then moves forward. From the callers
957 * perspective, the linked list is ordered by page number in
958 * some conditions. This is useful for IO devices that can
959 * merge IO requests if the physical pages are ordered
962 if (likely(cold
== 0))
963 list_add(&page
->lru
, list
);
965 list_add_tail(&page
->lru
, list
);
966 set_page_private(page
, migratetype
);
969 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
970 spin_unlock(&zone
->lock
);
976 * Called from the vmstat counter updater to drain pagesets of this
977 * currently executing processor on remote nodes after they have
980 * Note that this function must be called with the thread pinned to
981 * a single processor.
983 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
988 local_irq_save(flags
);
989 if (pcp
->count
>= pcp
->batch
)
990 to_drain
= pcp
->batch
;
992 to_drain
= pcp
->count
;
993 free_pcppages_bulk(zone
, to_drain
, pcp
);
994 pcp
->count
-= to_drain
;
995 local_irq_restore(flags
);
1000 * Drain pages of the indicated processor.
1002 * The processor must either be the current processor and the
1003 * thread pinned to the current processor or a processor that
1006 static void drain_pages(unsigned int cpu
)
1008 unsigned long flags
;
1011 for_each_populated_zone(zone
) {
1012 struct per_cpu_pageset
*pset
;
1013 struct per_cpu_pages
*pcp
;
1015 pset
= zone_pcp(zone
, cpu
);
1018 local_irq_save(flags
);
1019 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1021 local_irq_restore(flags
);
1026 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1028 void drain_local_pages(void *arg
)
1030 drain_pages(smp_processor_id());
1034 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1036 void drain_all_pages(void)
1038 on_each_cpu(drain_local_pages
, NULL
, 1);
1041 #ifdef CONFIG_HIBERNATION
1043 void mark_free_pages(struct zone
*zone
)
1045 unsigned long pfn
, max_zone_pfn
;
1046 unsigned long flags
;
1048 struct list_head
*curr
;
1050 if (!zone
->spanned_pages
)
1053 spin_lock_irqsave(&zone
->lock
, flags
);
1055 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1056 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1057 if (pfn_valid(pfn
)) {
1058 struct page
*page
= pfn_to_page(pfn
);
1060 if (!swsusp_page_is_forbidden(page
))
1061 swsusp_unset_page_free(page
);
1064 for_each_migratetype_order(order
, t
) {
1065 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1068 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1069 for (i
= 0; i
< (1UL << order
); i
++)
1070 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1073 spin_unlock_irqrestore(&zone
->lock
, flags
);
1075 #endif /* CONFIG_PM */
1078 * Free a 0-order page
1080 static void free_hot_cold_page(struct page
*page
, int cold
)
1082 struct zone
*zone
= page_zone(page
);
1083 struct per_cpu_pages
*pcp
;
1084 unsigned long flags
;
1086 int wasMlocked
= __TestClearPageMlocked(page
);
1088 kmemcheck_free_shadow(page
, 0);
1091 page
->mapping
= NULL
;
1092 if (free_pages_check(page
))
1095 if (!PageHighMem(page
)) {
1096 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1097 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1099 arch_free_page(page
, 0);
1100 kernel_map_pages(page
, 1, 0);
1102 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1103 migratetype
= get_pageblock_migratetype(page
);
1104 set_page_private(page
, migratetype
);
1105 local_irq_save(flags
);
1106 if (unlikely(wasMlocked
))
1107 free_page_mlock(page
);
1108 __count_vm_event(PGFREE
);
1111 * We only track unmovable, reclaimable and movable on pcp lists.
1112 * Free ISOLATE pages back to the allocator because they are being
1113 * offlined but treat RESERVE as movable pages so we can get those
1114 * areas back if necessary. Otherwise, we may have to free
1115 * excessively into the page allocator
1117 if (migratetype
>= MIGRATE_PCPTYPES
) {
1118 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1119 free_one_page(zone
, page
, 0, migratetype
);
1122 migratetype
= MIGRATE_MOVABLE
;
1126 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1128 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1130 if (pcp
->count
>= pcp
->high
) {
1131 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1132 pcp
->count
-= pcp
->batch
;
1136 local_irq_restore(flags
);
1140 void free_hot_page(struct page
*page
)
1142 trace_mm_page_free_direct(page
, 0);
1143 free_hot_cold_page(page
, 0);
1147 * split_page takes a non-compound higher-order page, and splits it into
1148 * n (1<<order) sub-pages: page[0..n]
1149 * Each sub-page must be freed individually.
1151 * Note: this is probably too low level an operation for use in drivers.
1152 * Please consult with lkml before using this in your driver.
1154 void split_page(struct page
*page
, unsigned int order
)
1158 VM_BUG_ON(PageCompound(page
));
1159 VM_BUG_ON(!page_count(page
));
1161 #ifdef CONFIG_KMEMCHECK
1163 * Split shadow pages too, because free(page[0]) would
1164 * otherwise free the whole shadow.
1166 if (kmemcheck_page_is_tracked(page
))
1167 split_page(virt_to_page(page
[0].shadow
), order
);
1170 for (i
= 1; i
< (1 << order
); i
++)
1171 set_page_refcounted(page
+ i
);
1175 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1176 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1180 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1181 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1184 unsigned long flags
;
1186 int cold
= !!(gfp_flags
& __GFP_COLD
);
1191 if (likely(order
== 0)) {
1192 struct per_cpu_pages
*pcp
;
1193 struct list_head
*list
;
1195 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1196 list
= &pcp
->lists
[migratetype
];
1197 local_irq_save(flags
);
1198 if (list_empty(list
)) {
1199 pcp
->count
+= rmqueue_bulk(zone
, 0,
1202 if (unlikely(list_empty(list
)))
1207 page
= list_entry(list
->prev
, struct page
, lru
);
1209 page
= list_entry(list
->next
, struct page
, lru
);
1211 list_del(&page
->lru
);
1214 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1216 * __GFP_NOFAIL is not to be used in new code.
1218 * All __GFP_NOFAIL callers should be fixed so that they
1219 * properly detect and handle allocation failures.
1221 * We most definitely don't want callers attempting to
1222 * allocate greater than order-1 page units with
1225 WARN_ON_ONCE(order
> 1);
1227 spin_lock_irqsave(&zone
->lock
, flags
);
1228 page
= __rmqueue(zone
, order
, migratetype
);
1229 spin_unlock(&zone
->lock
);
1232 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1235 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1236 zone_statistics(preferred_zone
, zone
);
1237 local_irq_restore(flags
);
1240 VM_BUG_ON(bad_range(zone
, page
));
1241 if (prep_new_page(page
, order
, gfp_flags
))
1246 local_irq_restore(flags
);
1251 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1252 #define ALLOC_WMARK_MIN WMARK_MIN
1253 #define ALLOC_WMARK_LOW WMARK_LOW
1254 #define ALLOC_WMARK_HIGH WMARK_HIGH
1255 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1257 /* Mask to get the watermark bits */
1258 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1260 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1261 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1262 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1264 #ifdef CONFIG_FAIL_PAGE_ALLOC
1266 static struct fail_page_alloc_attr
{
1267 struct fault_attr attr
;
1269 u32 ignore_gfp_highmem
;
1270 u32 ignore_gfp_wait
;
1273 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275 struct dentry
*ignore_gfp_highmem_file
;
1276 struct dentry
*ignore_gfp_wait_file
;
1277 struct dentry
*min_order_file
;
1279 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1281 } fail_page_alloc
= {
1282 .attr
= FAULT_ATTR_INITIALIZER
,
1283 .ignore_gfp_wait
= 1,
1284 .ignore_gfp_highmem
= 1,
1288 static int __init
setup_fail_page_alloc(char *str
)
1290 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1292 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1294 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1296 if (order
< fail_page_alloc
.min_order
)
1298 if (gfp_mask
& __GFP_NOFAIL
)
1300 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1302 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1305 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1308 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1310 static int __init
fail_page_alloc_debugfs(void)
1312 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1316 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1320 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1322 fail_page_alloc
.ignore_gfp_wait_file
=
1323 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1324 &fail_page_alloc
.ignore_gfp_wait
);
1326 fail_page_alloc
.ignore_gfp_highmem_file
=
1327 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1328 &fail_page_alloc
.ignore_gfp_highmem
);
1329 fail_page_alloc
.min_order_file
=
1330 debugfs_create_u32("min-order", mode
, dir
,
1331 &fail_page_alloc
.min_order
);
1333 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1334 !fail_page_alloc
.ignore_gfp_highmem_file
||
1335 !fail_page_alloc
.min_order_file
) {
1337 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1338 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1339 debugfs_remove(fail_page_alloc
.min_order_file
);
1340 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1346 late_initcall(fail_page_alloc_debugfs
);
1348 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1350 #else /* CONFIG_FAIL_PAGE_ALLOC */
1352 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1357 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1360 * Return 1 if free pages are above 'mark'. This takes into account the order
1361 * of the allocation.
1363 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1364 int classzone_idx
, int alloc_flags
)
1366 /* free_pages my go negative - that's OK */
1368 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1371 if (alloc_flags
& ALLOC_HIGH
)
1373 if (alloc_flags
& ALLOC_HARDER
)
1376 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1378 for (o
= 0; o
< order
; o
++) {
1379 /* At the next order, this order's pages become unavailable */
1380 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1382 /* Require fewer higher order pages to be free */
1385 if (free_pages
<= min
)
1393 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1394 * skip over zones that are not allowed by the cpuset, or that have
1395 * been recently (in last second) found to be nearly full. See further
1396 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1397 * that have to skip over a lot of full or unallowed zones.
1399 * If the zonelist cache is present in the passed in zonelist, then
1400 * returns a pointer to the allowed node mask (either the current
1401 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1403 * If the zonelist cache is not available for this zonelist, does
1404 * nothing and returns NULL.
1406 * If the fullzones BITMAP in the zonelist cache is stale (more than
1407 * a second since last zap'd) then we zap it out (clear its bits.)
1409 * We hold off even calling zlc_setup, until after we've checked the
1410 * first zone in the zonelist, on the theory that most allocations will
1411 * be satisfied from that first zone, so best to examine that zone as
1412 * quickly as we can.
1414 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1416 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1417 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1419 zlc
= zonelist
->zlcache_ptr
;
1423 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1424 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1425 zlc
->last_full_zap
= jiffies
;
1428 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1429 &cpuset_current_mems_allowed
:
1430 &node_states
[N_HIGH_MEMORY
];
1431 return allowednodes
;
1435 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1436 * if it is worth looking at further for free memory:
1437 * 1) Check that the zone isn't thought to be full (doesn't have its
1438 * bit set in the zonelist_cache fullzones BITMAP).
1439 * 2) Check that the zones node (obtained from the zonelist_cache
1440 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1441 * Return true (non-zero) if zone is worth looking at further, or
1442 * else return false (zero) if it is not.
1444 * This check -ignores- the distinction between various watermarks,
1445 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1446 * found to be full for any variation of these watermarks, it will
1447 * be considered full for up to one second by all requests, unless
1448 * we are so low on memory on all allowed nodes that we are forced
1449 * into the second scan of the zonelist.
1451 * In the second scan we ignore this zonelist cache and exactly
1452 * apply the watermarks to all zones, even it is slower to do so.
1453 * We are low on memory in the second scan, and should leave no stone
1454 * unturned looking for a free page.
1456 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1457 nodemask_t
*allowednodes
)
1459 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1460 int i
; /* index of *z in zonelist zones */
1461 int n
; /* node that zone *z is on */
1463 zlc
= zonelist
->zlcache_ptr
;
1467 i
= z
- zonelist
->_zonerefs
;
1470 /* This zone is worth trying if it is allowed but not full */
1471 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1475 * Given 'z' scanning a zonelist, set the corresponding bit in
1476 * zlc->fullzones, so that subsequent attempts to allocate a page
1477 * from that zone don't waste time re-examining it.
1479 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1481 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1482 int i
; /* index of *z in zonelist zones */
1484 zlc
= zonelist
->zlcache_ptr
;
1488 i
= z
- zonelist
->_zonerefs
;
1490 set_bit(i
, zlc
->fullzones
);
1493 #else /* CONFIG_NUMA */
1495 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1500 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1501 nodemask_t
*allowednodes
)
1506 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1509 #endif /* CONFIG_NUMA */
1512 * get_page_from_freelist goes through the zonelist trying to allocate
1515 static struct page
*
1516 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1517 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1518 struct zone
*preferred_zone
, int migratetype
)
1521 struct page
*page
= NULL
;
1524 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1525 int zlc_active
= 0; /* set if using zonelist_cache */
1526 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1528 classzone_idx
= zone_idx(preferred_zone
);
1531 * Scan zonelist, looking for a zone with enough free.
1532 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1535 high_zoneidx
, nodemask
) {
1536 if (NUMA_BUILD
&& zlc_active
&&
1537 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1539 if ((alloc_flags
& ALLOC_CPUSET
) &&
1540 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1543 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1544 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1548 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1549 if (zone_watermark_ok(zone
, order
, mark
,
1550 classzone_idx
, alloc_flags
))
1553 if (zone_reclaim_mode
== 0)
1554 goto this_zone_full
;
1556 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1558 case ZONE_RECLAIM_NOSCAN
:
1561 case ZONE_RECLAIM_FULL
:
1562 /* scanned but unreclaimable */
1563 goto this_zone_full
;
1565 /* did we reclaim enough */
1566 if (!zone_watermark_ok(zone
, order
, mark
,
1567 classzone_idx
, alloc_flags
))
1568 goto this_zone_full
;
1573 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1574 gfp_mask
, migratetype
);
1579 zlc_mark_zone_full(zonelist
, z
);
1581 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1583 * we do zlc_setup after the first zone is tried but only
1584 * if there are multiple nodes make it worthwhile
1586 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1592 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1593 /* Disable zlc cache for second zonelist scan */
1601 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1602 unsigned long pages_reclaimed
)
1604 /* Do not loop if specifically requested */
1605 if (gfp_mask
& __GFP_NORETRY
)
1609 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1610 * means __GFP_NOFAIL, but that may not be true in other
1613 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1617 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1618 * specified, then we retry until we no longer reclaim any pages
1619 * (above), or we've reclaimed an order of pages at least as
1620 * large as the allocation's order. In both cases, if the
1621 * allocation still fails, we stop retrying.
1623 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1627 * Don't let big-order allocations loop unless the caller
1628 * explicitly requests that.
1630 if (gfp_mask
& __GFP_NOFAIL
)
1636 static inline struct page
*
1637 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1638 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1639 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1644 /* Acquire the OOM killer lock for the zones in zonelist */
1645 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1646 schedule_timeout_uninterruptible(1);
1651 * Go through the zonelist yet one more time, keep very high watermark
1652 * here, this is only to catch a parallel oom killing, we must fail if
1653 * we're still under heavy pressure.
1655 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1656 order
, zonelist
, high_zoneidx
,
1657 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1658 preferred_zone
, migratetype
);
1662 /* The OOM killer will not help higher order allocs */
1663 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_NOFAIL
))
1666 /* Exhausted what can be done so it's blamo time */
1667 out_of_memory(zonelist
, gfp_mask
, order
);
1670 clear_zonelist_oom(zonelist
, gfp_mask
);
1674 /* The really slow allocator path where we enter direct reclaim */
1675 static inline struct page
*
1676 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1677 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1678 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1679 int migratetype
, unsigned long *did_some_progress
)
1681 struct page
*page
= NULL
;
1682 struct reclaim_state reclaim_state
;
1683 struct task_struct
*p
= current
;
1687 /* We now go into synchronous reclaim */
1688 cpuset_memory_pressure_bump();
1689 p
->flags
|= PF_MEMALLOC
;
1690 lockdep_set_current_reclaim_state(gfp_mask
);
1691 reclaim_state
.reclaimed_slab
= 0;
1692 p
->reclaim_state
= &reclaim_state
;
1694 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1696 p
->reclaim_state
= NULL
;
1697 lockdep_clear_current_reclaim_state();
1698 p
->flags
&= ~PF_MEMALLOC
;
1705 if (likely(*did_some_progress
))
1706 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1707 zonelist
, high_zoneidx
,
1708 alloc_flags
, preferred_zone
,
1714 * This is called in the allocator slow-path if the allocation request is of
1715 * sufficient urgency to ignore watermarks and take other desperate measures
1717 static inline struct page
*
1718 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1719 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1720 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1726 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1727 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1728 preferred_zone
, migratetype
);
1730 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1731 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1732 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1738 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1739 enum zone_type high_zoneidx
)
1744 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1745 wakeup_kswapd(zone
, order
);
1749 gfp_to_alloc_flags(gfp_t gfp_mask
)
1751 struct task_struct
*p
= current
;
1752 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1753 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1755 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1756 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1759 * The caller may dip into page reserves a bit more if the caller
1760 * cannot run direct reclaim, or if the caller has realtime scheduling
1761 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1762 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1764 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1767 alloc_flags
|= ALLOC_HARDER
;
1769 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1770 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1772 alloc_flags
&= ~ALLOC_CPUSET
;
1773 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1774 alloc_flags
|= ALLOC_HARDER
;
1776 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1777 if (!in_interrupt() &&
1778 ((p
->flags
& PF_MEMALLOC
) ||
1779 unlikely(test_thread_flag(TIF_MEMDIE
))))
1780 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1786 static inline struct page
*
1787 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1788 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1789 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1792 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1793 struct page
*page
= NULL
;
1795 unsigned long pages_reclaimed
= 0;
1796 unsigned long did_some_progress
;
1797 struct task_struct
*p
= current
;
1800 * In the slowpath, we sanity check order to avoid ever trying to
1801 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1802 * be using allocators in order of preference for an area that is
1805 if (order
>= MAX_ORDER
) {
1806 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1811 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1812 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1813 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1814 * using a larger set of nodes after it has established that the
1815 * allowed per node queues are empty and that nodes are
1818 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1822 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1825 * OK, we're below the kswapd watermark and have kicked background
1826 * reclaim. Now things get more complex, so set up alloc_flags according
1827 * to how we want to proceed.
1829 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1831 /* This is the last chance, in general, before the goto nopage. */
1832 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1833 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1834 preferred_zone
, migratetype
);
1839 /* Allocate without watermarks if the context allows */
1840 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1841 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1842 zonelist
, high_zoneidx
, nodemask
,
1843 preferred_zone
, migratetype
);
1848 /* Atomic allocations - we can't balance anything */
1852 /* Avoid recursion of direct reclaim */
1853 if (p
->flags
& PF_MEMALLOC
)
1856 /* Avoid allocations with no watermarks from looping endlessly */
1857 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
1860 /* Try direct reclaim and then allocating */
1861 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1862 zonelist
, high_zoneidx
,
1864 alloc_flags
, preferred_zone
,
1865 migratetype
, &did_some_progress
);
1870 * If we failed to make any progress reclaiming, then we are
1871 * running out of options and have to consider going OOM
1873 if (!did_some_progress
) {
1874 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1875 if (oom_killer_disabled
)
1877 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1878 zonelist
, high_zoneidx
,
1879 nodemask
, preferred_zone
,
1885 * The OOM killer does not trigger for high-order
1886 * ~__GFP_NOFAIL allocations so if no progress is being
1887 * made, there are no other options and retrying is
1890 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1891 !(gfp_mask
& __GFP_NOFAIL
))
1898 /* Check if we should retry the allocation */
1899 pages_reclaimed
+= did_some_progress
;
1900 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1901 /* Wait for some write requests to complete then retry */
1902 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1907 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1908 printk(KERN_WARNING
"%s: page allocation failure."
1909 " order:%d, mode:0x%x\n",
1910 p
->comm
, order
, gfp_mask
);
1916 if (kmemcheck_enabled
)
1917 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1923 * This is the 'heart' of the zoned buddy allocator.
1926 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1927 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1929 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1930 struct zone
*preferred_zone
;
1932 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1934 gfp_mask
&= gfp_allowed_mask
;
1936 lockdep_trace_alloc(gfp_mask
);
1938 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1940 if (should_fail_alloc_page(gfp_mask
, order
))
1944 * Check the zones suitable for the gfp_mask contain at least one
1945 * valid zone. It's possible to have an empty zonelist as a result
1946 * of GFP_THISNODE and a memoryless node
1948 if (unlikely(!zonelist
->_zonerefs
->zone
))
1951 /* The preferred zone is used for statistics later */
1952 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1953 if (!preferred_zone
)
1956 /* First allocation attempt */
1957 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1958 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1959 preferred_zone
, migratetype
);
1960 if (unlikely(!page
))
1961 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1962 zonelist
, high_zoneidx
, nodemask
,
1963 preferred_zone
, migratetype
);
1965 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
1968 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1971 * Common helper functions.
1973 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1978 * __get_free_pages() returns a 32-bit address, which cannot represent
1981 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1983 page
= alloc_pages(gfp_mask
, order
);
1986 return (unsigned long) page_address(page
);
1988 EXPORT_SYMBOL(__get_free_pages
);
1990 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1992 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
1994 EXPORT_SYMBOL(get_zeroed_page
);
1996 void __pagevec_free(struct pagevec
*pvec
)
1998 int i
= pagevec_count(pvec
);
2001 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2002 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2006 void __free_pages(struct page
*page
, unsigned int order
)
2008 if (put_page_testzero(page
)) {
2009 trace_mm_page_free_direct(page
, order
);
2011 free_hot_page(page
);
2013 __free_pages_ok(page
, order
);
2017 EXPORT_SYMBOL(__free_pages
);
2019 void free_pages(unsigned long addr
, unsigned int order
)
2022 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2023 __free_pages(virt_to_page((void *)addr
), order
);
2027 EXPORT_SYMBOL(free_pages
);
2030 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2031 * @size: the number of bytes to allocate
2032 * @gfp_mask: GFP flags for the allocation
2034 * This function is similar to alloc_pages(), except that it allocates the
2035 * minimum number of pages to satisfy the request. alloc_pages() can only
2036 * allocate memory in power-of-two pages.
2038 * This function is also limited by MAX_ORDER.
2040 * Memory allocated by this function must be released by free_pages_exact().
2042 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2044 unsigned int order
= get_order(size
);
2047 addr
= __get_free_pages(gfp_mask
, order
);
2049 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2050 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2052 split_page(virt_to_page((void *)addr
), order
);
2053 while (used
< alloc_end
) {
2059 return (void *)addr
;
2061 EXPORT_SYMBOL(alloc_pages_exact
);
2064 * free_pages_exact - release memory allocated via alloc_pages_exact()
2065 * @virt: the value returned by alloc_pages_exact.
2066 * @size: size of allocation, same value as passed to alloc_pages_exact().
2068 * Release the memory allocated by a previous call to alloc_pages_exact.
2070 void free_pages_exact(void *virt
, size_t size
)
2072 unsigned long addr
= (unsigned long)virt
;
2073 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2075 while (addr
< end
) {
2080 EXPORT_SYMBOL(free_pages_exact
);
2082 static unsigned int nr_free_zone_pages(int offset
)
2087 /* Just pick one node, since fallback list is circular */
2088 unsigned int sum
= 0;
2090 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2092 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2093 unsigned long size
= zone
->present_pages
;
2094 unsigned long high
= high_wmark_pages(zone
);
2103 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2105 unsigned int nr_free_buffer_pages(void)
2107 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2109 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2112 * Amount of free RAM allocatable within all zones
2114 unsigned int nr_free_pagecache_pages(void)
2116 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2119 static inline void show_node(struct zone
*zone
)
2122 printk("Node %d ", zone_to_nid(zone
));
2125 void si_meminfo(struct sysinfo
*val
)
2127 val
->totalram
= totalram_pages
;
2129 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2130 val
->bufferram
= nr_blockdev_pages();
2131 val
->totalhigh
= totalhigh_pages
;
2132 val
->freehigh
= nr_free_highpages();
2133 val
->mem_unit
= PAGE_SIZE
;
2136 EXPORT_SYMBOL(si_meminfo
);
2139 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2141 pg_data_t
*pgdat
= NODE_DATA(nid
);
2143 val
->totalram
= pgdat
->node_present_pages
;
2144 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2145 #ifdef CONFIG_HIGHMEM
2146 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2147 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2153 val
->mem_unit
= PAGE_SIZE
;
2157 #define K(x) ((x) << (PAGE_SHIFT-10))
2160 * Show free area list (used inside shift_scroll-lock stuff)
2161 * We also calculate the percentage fragmentation. We do this by counting the
2162 * memory on each free list with the exception of the first item on the list.
2164 void show_free_areas(void)
2169 for_each_populated_zone(zone
) {
2171 printk("%s per-cpu:\n", zone
->name
);
2173 for_each_online_cpu(cpu
) {
2174 struct per_cpu_pageset
*pageset
;
2176 pageset
= zone_pcp(zone
, cpu
);
2178 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2179 cpu
, pageset
->pcp
.high
,
2180 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2184 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2185 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2187 " dirty:%lu writeback:%lu unstable:%lu\n"
2188 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2189 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2190 global_page_state(NR_ACTIVE_ANON
),
2191 global_page_state(NR_INACTIVE_ANON
),
2192 global_page_state(NR_ISOLATED_ANON
),
2193 global_page_state(NR_ACTIVE_FILE
),
2194 global_page_state(NR_INACTIVE_FILE
),
2195 global_page_state(NR_ISOLATED_FILE
),
2196 global_page_state(NR_UNEVICTABLE
),
2197 global_page_state(NR_FILE_DIRTY
),
2198 global_page_state(NR_WRITEBACK
),
2199 global_page_state(NR_UNSTABLE_NFS
),
2200 global_page_state(NR_FREE_PAGES
),
2201 global_page_state(NR_SLAB_RECLAIMABLE
),
2202 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2203 global_page_state(NR_FILE_MAPPED
),
2204 global_page_state(NR_SHMEM
),
2205 global_page_state(NR_PAGETABLE
),
2206 global_page_state(NR_BOUNCE
));
2208 for_each_populated_zone(zone
) {
2217 " active_anon:%lukB"
2218 " inactive_anon:%lukB"
2219 " active_file:%lukB"
2220 " inactive_file:%lukB"
2221 " unevictable:%lukB"
2222 " isolated(anon):%lukB"
2223 " isolated(file):%lukB"
2230 " slab_reclaimable:%lukB"
2231 " slab_unreclaimable:%lukB"
2232 " kernel_stack:%lukB"
2236 " writeback_tmp:%lukB"
2237 " pages_scanned:%lu"
2238 " all_unreclaimable? %s"
2241 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2242 K(min_wmark_pages(zone
)),
2243 K(low_wmark_pages(zone
)),
2244 K(high_wmark_pages(zone
)),
2245 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2246 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2247 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2248 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2249 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2250 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2251 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2252 K(zone
->present_pages
),
2253 K(zone_page_state(zone
, NR_MLOCK
)),
2254 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2255 K(zone_page_state(zone
, NR_WRITEBACK
)),
2256 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2257 K(zone_page_state(zone
, NR_SHMEM
)),
2258 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2259 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2260 zone_page_state(zone
, NR_KERNEL_STACK
) *
2262 K(zone_page_state(zone
, NR_PAGETABLE
)),
2263 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2264 K(zone_page_state(zone
, NR_BOUNCE
)),
2265 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2266 zone
->pages_scanned
,
2267 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2269 printk("lowmem_reserve[]:");
2270 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2271 printk(" %lu", zone
->lowmem_reserve
[i
]);
2275 for_each_populated_zone(zone
) {
2276 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2279 printk("%s: ", zone
->name
);
2281 spin_lock_irqsave(&zone
->lock
, flags
);
2282 for (order
= 0; order
< MAX_ORDER
; order
++) {
2283 nr
[order
] = zone
->free_area
[order
].nr_free
;
2284 total
+= nr
[order
] << order
;
2286 spin_unlock_irqrestore(&zone
->lock
, flags
);
2287 for (order
= 0; order
< MAX_ORDER
; order
++)
2288 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2289 printk("= %lukB\n", K(total
));
2292 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2294 show_swap_cache_info();
2297 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2299 zoneref
->zone
= zone
;
2300 zoneref
->zone_idx
= zone_idx(zone
);
2304 * Builds allocation fallback zone lists.
2306 * Add all populated zones of a node to the zonelist.
2308 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2309 int nr_zones
, enum zone_type zone_type
)
2313 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2318 zone
= pgdat
->node_zones
+ zone_type
;
2319 if (populated_zone(zone
)) {
2320 zoneref_set_zone(zone
,
2321 &zonelist
->_zonerefs
[nr_zones
++]);
2322 check_highest_zone(zone_type
);
2325 } while (zone_type
);
2332 * 0 = automatic detection of better ordering.
2333 * 1 = order by ([node] distance, -zonetype)
2334 * 2 = order by (-zonetype, [node] distance)
2336 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2337 * the same zonelist. So only NUMA can configure this param.
2339 #define ZONELIST_ORDER_DEFAULT 0
2340 #define ZONELIST_ORDER_NODE 1
2341 #define ZONELIST_ORDER_ZONE 2
2343 /* zonelist order in the kernel.
2344 * set_zonelist_order() will set this to NODE or ZONE.
2346 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2347 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2351 /* The value user specified ....changed by config */
2352 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2353 /* string for sysctl */
2354 #define NUMA_ZONELIST_ORDER_LEN 16
2355 char numa_zonelist_order
[16] = "default";
2358 * interface for configure zonelist ordering.
2359 * command line option "numa_zonelist_order"
2360 * = "[dD]efault - default, automatic configuration.
2361 * = "[nN]ode - order by node locality, then by zone within node
2362 * = "[zZ]one - order by zone, then by locality within zone
2365 static int __parse_numa_zonelist_order(char *s
)
2367 if (*s
== 'd' || *s
== 'D') {
2368 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2369 } else if (*s
== 'n' || *s
== 'N') {
2370 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2371 } else if (*s
== 'z' || *s
== 'Z') {
2372 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2375 "Ignoring invalid numa_zonelist_order value: "
2382 static __init
int setup_numa_zonelist_order(char *s
)
2385 return __parse_numa_zonelist_order(s
);
2388 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2391 * sysctl handler for numa_zonelist_order
2393 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2394 void __user
*buffer
, size_t *length
,
2397 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2401 strncpy(saved_string
, (char*)table
->data
,
2402 NUMA_ZONELIST_ORDER_LEN
);
2403 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2407 int oldval
= user_zonelist_order
;
2408 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2410 * bogus value. restore saved string
2412 strncpy((char*)table
->data
, saved_string
,
2413 NUMA_ZONELIST_ORDER_LEN
);
2414 user_zonelist_order
= oldval
;
2415 } else if (oldval
!= user_zonelist_order
)
2416 build_all_zonelists();
2422 #define MAX_NODE_LOAD (nr_online_nodes)
2423 static int node_load
[MAX_NUMNODES
];
2426 * find_next_best_node - find the next node that should appear in a given node's fallback list
2427 * @node: node whose fallback list we're appending
2428 * @used_node_mask: nodemask_t of already used nodes
2430 * We use a number of factors to determine which is the next node that should
2431 * appear on a given node's fallback list. The node should not have appeared
2432 * already in @node's fallback list, and it should be the next closest node
2433 * according to the distance array (which contains arbitrary distance values
2434 * from each node to each node in the system), and should also prefer nodes
2435 * with no CPUs, since presumably they'll have very little allocation pressure
2436 * on them otherwise.
2437 * It returns -1 if no node is found.
2439 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2442 int min_val
= INT_MAX
;
2444 const struct cpumask
*tmp
= cpumask_of_node(0);
2446 /* Use the local node if we haven't already */
2447 if (!node_isset(node
, *used_node_mask
)) {
2448 node_set(node
, *used_node_mask
);
2452 for_each_node_state(n
, N_HIGH_MEMORY
) {
2454 /* Don't want a node to appear more than once */
2455 if (node_isset(n
, *used_node_mask
))
2458 /* Use the distance array to find the distance */
2459 val
= node_distance(node
, n
);
2461 /* Penalize nodes under us ("prefer the next node") */
2464 /* Give preference to headless and unused nodes */
2465 tmp
= cpumask_of_node(n
);
2466 if (!cpumask_empty(tmp
))
2467 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2469 /* Slight preference for less loaded node */
2470 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2471 val
+= node_load
[n
];
2473 if (val
< min_val
) {
2480 node_set(best_node
, *used_node_mask
);
2487 * Build zonelists ordered by node and zones within node.
2488 * This results in maximum locality--normal zone overflows into local
2489 * DMA zone, if any--but risks exhausting DMA zone.
2491 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2494 struct zonelist
*zonelist
;
2496 zonelist
= &pgdat
->node_zonelists
[0];
2497 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2499 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2501 zonelist
->_zonerefs
[j
].zone
= NULL
;
2502 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2506 * Build gfp_thisnode zonelists
2508 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2511 struct zonelist
*zonelist
;
2513 zonelist
= &pgdat
->node_zonelists
[1];
2514 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2515 zonelist
->_zonerefs
[j
].zone
= NULL
;
2516 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2520 * Build zonelists ordered by zone and nodes within zones.
2521 * This results in conserving DMA zone[s] until all Normal memory is
2522 * exhausted, but results in overflowing to remote node while memory
2523 * may still exist in local DMA zone.
2525 static int node_order
[MAX_NUMNODES
];
2527 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2530 int zone_type
; /* needs to be signed */
2532 struct zonelist
*zonelist
;
2534 zonelist
= &pgdat
->node_zonelists
[0];
2536 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2537 for (j
= 0; j
< nr_nodes
; j
++) {
2538 node
= node_order
[j
];
2539 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2540 if (populated_zone(z
)) {
2542 &zonelist
->_zonerefs
[pos
++]);
2543 check_highest_zone(zone_type
);
2547 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2548 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2551 static int default_zonelist_order(void)
2554 unsigned long low_kmem_size
,total_size
;
2558 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2559 * If they are really small and used heavily, the system can fall
2560 * into OOM very easily.
2561 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2563 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2566 for_each_online_node(nid
) {
2567 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2568 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2569 if (populated_zone(z
)) {
2570 if (zone_type
< ZONE_NORMAL
)
2571 low_kmem_size
+= z
->present_pages
;
2572 total_size
+= z
->present_pages
;
2576 if (!low_kmem_size
|| /* there are no DMA area. */
2577 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2578 return ZONELIST_ORDER_NODE
;
2580 * look into each node's config.
2581 * If there is a node whose DMA/DMA32 memory is very big area on
2582 * local memory, NODE_ORDER may be suitable.
2584 average_size
= total_size
/
2585 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2586 for_each_online_node(nid
) {
2589 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2590 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2591 if (populated_zone(z
)) {
2592 if (zone_type
< ZONE_NORMAL
)
2593 low_kmem_size
+= z
->present_pages
;
2594 total_size
+= z
->present_pages
;
2597 if (low_kmem_size
&&
2598 total_size
> average_size
&& /* ignore small node */
2599 low_kmem_size
> total_size
* 70/100)
2600 return ZONELIST_ORDER_NODE
;
2602 return ZONELIST_ORDER_ZONE
;
2605 static void set_zonelist_order(void)
2607 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2608 current_zonelist_order
= default_zonelist_order();
2610 current_zonelist_order
= user_zonelist_order
;
2613 static void build_zonelists(pg_data_t
*pgdat
)
2617 nodemask_t used_mask
;
2618 int local_node
, prev_node
;
2619 struct zonelist
*zonelist
;
2620 int order
= current_zonelist_order
;
2622 /* initialize zonelists */
2623 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2624 zonelist
= pgdat
->node_zonelists
+ i
;
2625 zonelist
->_zonerefs
[0].zone
= NULL
;
2626 zonelist
->_zonerefs
[0].zone_idx
= 0;
2629 /* NUMA-aware ordering of nodes */
2630 local_node
= pgdat
->node_id
;
2631 load
= nr_online_nodes
;
2632 prev_node
= local_node
;
2633 nodes_clear(used_mask
);
2635 memset(node_order
, 0, sizeof(node_order
));
2638 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2639 int distance
= node_distance(local_node
, node
);
2642 * If another node is sufficiently far away then it is better
2643 * to reclaim pages in a zone before going off node.
2645 if (distance
> RECLAIM_DISTANCE
)
2646 zone_reclaim_mode
= 1;
2649 * We don't want to pressure a particular node.
2650 * So adding penalty to the first node in same
2651 * distance group to make it round-robin.
2653 if (distance
!= node_distance(local_node
, prev_node
))
2654 node_load
[node
] = load
;
2658 if (order
== ZONELIST_ORDER_NODE
)
2659 build_zonelists_in_node_order(pgdat
, node
);
2661 node_order
[j
++] = node
; /* remember order */
2664 if (order
== ZONELIST_ORDER_ZONE
) {
2665 /* calculate node order -- i.e., DMA last! */
2666 build_zonelists_in_zone_order(pgdat
, j
);
2669 build_thisnode_zonelists(pgdat
);
2672 /* Construct the zonelist performance cache - see further mmzone.h */
2673 static void build_zonelist_cache(pg_data_t
*pgdat
)
2675 struct zonelist
*zonelist
;
2676 struct zonelist_cache
*zlc
;
2679 zonelist
= &pgdat
->node_zonelists
[0];
2680 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2681 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2682 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2683 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2687 #else /* CONFIG_NUMA */
2689 static void set_zonelist_order(void)
2691 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2694 static void build_zonelists(pg_data_t
*pgdat
)
2696 int node
, local_node
;
2698 struct zonelist
*zonelist
;
2700 local_node
= pgdat
->node_id
;
2702 zonelist
= &pgdat
->node_zonelists
[0];
2703 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2706 * Now we build the zonelist so that it contains the zones
2707 * of all the other nodes.
2708 * We don't want to pressure a particular node, so when
2709 * building the zones for node N, we make sure that the
2710 * zones coming right after the local ones are those from
2711 * node N+1 (modulo N)
2713 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2714 if (!node_online(node
))
2716 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2719 for (node
= 0; node
< local_node
; node
++) {
2720 if (!node_online(node
))
2722 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2726 zonelist
->_zonerefs
[j
].zone
= NULL
;
2727 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2730 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2731 static void build_zonelist_cache(pg_data_t
*pgdat
)
2733 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2736 #endif /* CONFIG_NUMA */
2738 /* return values int ....just for stop_machine() */
2739 static int __build_all_zonelists(void *dummy
)
2744 memset(node_load
, 0, sizeof(node_load
));
2746 for_each_online_node(nid
) {
2747 pg_data_t
*pgdat
= NODE_DATA(nid
);
2749 build_zonelists(pgdat
);
2750 build_zonelist_cache(pgdat
);
2755 void build_all_zonelists(void)
2757 set_zonelist_order();
2759 if (system_state
== SYSTEM_BOOTING
) {
2760 __build_all_zonelists(NULL
);
2761 mminit_verify_zonelist();
2762 cpuset_init_current_mems_allowed();
2764 /* we have to stop all cpus to guarantee there is no user
2766 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2767 /* cpuset refresh routine should be here */
2769 vm_total_pages
= nr_free_pagecache_pages();
2771 * Disable grouping by mobility if the number of pages in the
2772 * system is too low to allow the mechanism to work. It would be
2773 * more accurate, but expensive to check per-zone. This check is
2774 * made on memory-hotadd so a system can start with mobility
2775 * disabled and enable it later
2777 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2778 page_group_by_mobility_disabled
= 1;
2780 page_group_by_mobility_disabled
= 0;
2782 printk("Built %i zonelists in %s order, mobility grouping %s. "
2783 "Total pages: %ld\n",
2785 zonelist_order_name
[current_zonelist_order
],
2786 page_group_by_mobility_disabled
? "off" : "on",
2789 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2794 * Helper functions to size the waitqueue hash table.
2795 * Essentially these want to choose hash table sizes sufficiently
2796 * large so that collisions trying to wait on pages are rare.
2797 * But in fact, the number of active page waitqueues on typical
2798 * systems is ridiculously low, less than 200. So this is even
2799 * conservative, even though it seems large.
2801 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2802 * waitqueues, i.e. the size of the waitq table given the number of pages.
2804 #define PAGES_PER_WAITQUEUE 256
2806 #ifndef CONFIG_MEMORY_HOTPLUG
2807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2809 unsigned long size
= 1;
2811 pages
/= PAGES_PER_WAITQUEUE
;
2813 while (size
< pages
)
2817 * Once we have dozens or even hundreds of threads sleeping
2818 * on IO we've got bigger problems than wait queue collision.
2819 * Limit the size of the wait table to a reasonable size.
2821 size
= min(size
, 4096UL);
2823 return max(size
, 4UL);
2827 * A zone's size might be changed by hot-add, so it is not possible to determine
2828 * a suitable size for its wait_table. So we use the maximum size now.
2830 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2832 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2833 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2834 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2836 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2837 * or more by the traditional way. (See above). It equals:
2839 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2840 * ia64(16K page size) : = ( 8G + 4M)byte.
2841 * powerpc (64K page size) : = (32G +16M)byte.
2843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2850 * This is an integer logarithm so that shifts can be used later
2851 * to extract the more random high bits from the multiplicative
2852 * hash function before the remainder is taken.
2854 static inline unsigned long wait_table_bits(unsigned long size
)
2859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2862 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2863 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2864 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2865 * higher will lead to a bigger reserve which will get freed as contiguous
2866 * blocks as reclaim kicks in
2868 static void setup_zone_migrate_reserve(struct zone
*zone
)
2870 unsigned long start_pfn
, pfn
, end_pfn
;
2872 unsigned long block_migratetype
;
2875 /* Get the start pfn, end pfn and the number of blocks to reserve */
2876 start_pfn
= zone
->zone_start_pfn
;
2877 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2878 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2882 * Reserve blocks are generally in place to help high-order atomic
2883 * allocations that are short-lived. A min_free_kbytes value that
2884 * would result in more than 2 reserve blocks for atomic allocations
2885 * is assumed to be in place to help anti-fragmentation for the
2886 * future allocation of hugepages at runtime.
2888 reserve
= min(2, reserve
);
2890 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2891 if (!pfn_valid(pfn
))
2893 page
= pfn_to_page(pfn
);
2895 /* Watch out for overlapping nodes */
2896 if (page_to_nid(page
) != zone_to_nid(zone
))
2899 /* Blocks with reserved pages will never free, skip them. */
2900 if (PageReserved(page
))
2903 block_migratetype
= get_pageblock_migratetype(page
);
2905 /* If this block is reserved, account for it */
2906 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2911 /* Suitable for reserving if this block is movable */
2912 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2913 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2914 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2920 * If the reserve is met and this is a previous reserved block,
2923 if (block_migratetype
== MIGRATE_RESERVE
) {
2924 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2925 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2931 * Initially all pages are reserved - free ones are freed
2932 * up by free_all_bootmem() once the early boot process is
2933 * done. Non-atomic initialization, single-pass.
2935 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2936 unsigned long start_pfn
, enum memmap_context context
)
2939 unsigned long end_pfn
= start_pfn
+ size
;
2943 if (highest_memmap_pfn
< end_pfn
- 1)
2944 highest_memmap_pfn
= end_pfn
- 1;
2946 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2947 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2949 * There can be holes in boot-time mem_map[]s
2950 * handed to this function. They do not
2951 * exist on hotplugged memory.
2953 if (context
== MEMMAP_EARLY
) {
2954 if (!early_pfn_valid(pfn
))
2956 if (!early_pfn_in_nid(pfn
, nid
))
2959 page
= pfn_to_page(pfn
);
2960 set_page_links(page
, zone
, nid
, pfn
);
2961 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2962 init_page_count(page
);
2963 reset_page_mapcount(page
);
2964 SetPageReserved(page
);
2966 * Mark the block movable so that blocks are reserved for
2967 * movable at startup. This will force kernel allocations
2968 * to reserve their blocks rather than leaking throughout
2969 * the address space during boot when many long-lived
2970 * kernel allocations are made. Later some blocks near
2971 * the start are marked MIGRATE_RESERVE by
2972 * setup_zone_migrate_reserve()
2974 * bitmap is created for zone's valid pfn range. but memmap
2975 * can be created for invalid pages (for alignment)
2976 * check here not to call set_pageblock_migratetype() against
2979 if ((z
->zone_start_pfn
<= pfn
)
2980 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2981 && !(pfn
& (pageblock_nr_pages
- 1)))
2982 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2984 INIT_LIST_HEAD(&page
->lru
);
2985 #ifdef WANT_PAGE_VIRTUAL
2986 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2987 if (!is_highmem_idx(zone
))
2988 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2993 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2996 for_each_migratetype_order(order
, t
) {
2997 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2998 zone
->free_area
[order
].nr_free
= 0;
3002 #ifndef __HAVE_ARCH_MEMMAP_INIT
3003 #define memmap_init(size, nid, zone, start_pfn) \
3004 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3007 static int zone_batchsize(struct zone
*zone
)
3013 * The per-cpu-pages pools are set to around 1000th of the
3014 * size of the zone. But no more than 1/2 of a meg.
3016 * OK, so we don't know how big the cache is. So guess.
3018 batch
= zone
->present_pages
/ 1024;
3019 if (batch
* PAGE_SIZE
> 512 * 1024)
3020 batch
= (512 * 1024) / PAGE_SIZE
;
3021 batch
/= 4; /* We effectively *= 4 below */
3026 * Clamp the batch to a 2^n - 1 value. Having a power
3027 * of 2 value was found to be more likely to have
3028 * suboptimal cache aliasing properties in some cases.
3030 * For example if 2 tasks are alternately allocating
3031 * batches of pages, one task can end up with a lot
3032 * of pages of one half of the possible page colors
3033 * and the other with pages of the other colors.
3035 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3040 /* The deferral and batching of frees should be suppressed under NOMMU
3043 * The problem is that NOMMU needs to be able to allocate large chunks
3044 * of contiguous memory as there's no hardware page translation to
3045 * assemble apparent contiguous memory from discontiguous pages.
3047 * Queueing large contiguous runs of pages for batching, however,
3048 * causes the pages to actually be freed in smaller chunks. As there
3049 * can be a significant delay between the individual batches being
3050 * recycled, this leads to the once large chunks of space being
3051 * fragmented and becoming unavailable for high-order allocations.
3057 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3059 struct per_cpu_pages
*pcp
;
3062 memset(p
, 0, sizeof(*p
));
3066 pcp
->high
= 6 * batch
;
3067 pcp
->batch
= max(1UL, 1 * batch
);
3068 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3069 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3073 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3074 * to the value high for the pageset p.
3077 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3080 struct per_cpu_pages
*pcp
;
3084 pcp
->batch
= max(1UL, high
/4);
3085 if ((high
/4) > (PAGE_SHIFT
* 8))
3086 pcp
->batch
= PAGE_SHIFT
* 8;
3092 * Boot pageset table. One per cpu which is going to be used for all
3093 * zones and all nodes. The parameters will be set in such a way
3094 * that an item put on a list will immediately be handed over to
3095 * the buddy list. This is safe since pageset manipulation is done
3096 * with interrupts disabled.
3098 * Some NUMA counter updates may also be caught by the boot pagesets.
3100 * The boot_pagesets must be kept even after bootup is complete for
3101 * unused processors and/or zones. They do play a role for bootstrapping
3102 * hotplugged processors.
3104 * zoneinfo_show() and maybe other functions do
3105 * not check if the processor is online before following the pageset pointer.
3106 * Other parts of the kernel may not check if the zone is available.
3108 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
3111 * Dynamically allocate memory for the
3112 * per cpu pageset array in struct zone.
3114 static int __cpuinit
process_zones(int cpu
)
3116 struct zone
*zone
, *dzone
;
3117 int node
= cpu_to_node(cpu
);
3119 node_set_state(node
, N_CPU
); /* this node has a cpu */
3121 for_each_populated_zone(zone
) {
3122 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
3124 if (!zone_pcp(zone
, cpu
))
3127 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
3129 if (percpu_pagelist_fraction
)
3130 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
3131 (zone
->present_pages
/ percpu_pagelist_fraction
));
3136 for_each_zone(dzone
) {
3137 if (!populated_zone(dzone
))
3141 kfree(zone_pcp(dzone
, cpu
));
3142 zone_pcp(dzone
, cpu
) = &boot_pageset
[cpu
];
3147 static inline void free_zone_pagesets(int cpu
)
3151 for_each_zone(zone
) {
3152 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
3154 /* Free per_cpu_pageset if it is slab allocated */
3155 if (pset
!= &boot_pageset
[cpu
])
3157 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3161 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
3162 unsigned long action
,
3165 int cpu
= (long)hcpu
;
3166 int ret
= NOTIFY_OK
;
3169 case CPU_UP_PREPARE
:
3170 case CPU_UP_PREPARE_FROZEN
:
3171 if (process_zones(cpu
))
3174 case CPU_UP_CANCELED
:
3175 case CPU_UP_CANCELED_FROZEN
:
3177 case CPU_DEAD_FROZEN
:
3178 free_zone_pagesets(cpu
);
3186 static struct notifier_block __cpuinitdata pageset_notifier
=
3187 { &pageset_cpuup_callback
, NULL
, 0 };
3189 void __init
setup_per_cpu_pageset(void)
3193 /* Initialize per_cpu_pageset for cpu 0.
3194 * A cpuup callback will do this for every cpu
3195 * as it comes online
3197 err
= process_zones(smp_processor_id());
3199 register_cpu_notifier(&pageset_notifier
);
3204 static noinline __init_refok
3205 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3208 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3212 * The per-page waitqueue mechanism uses hashed waitqueues
3215 zone
->wait_table_hash_nr_entries
=
3216 wait_table_hash_nr_entries(zone_size_pages
);
3217 zone
->wait_table_bits
=
3218 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3219 alloc_size
= zone
->wait_table_hash_nr_entries
3220 * sizeof(wait_queue_head_t
);
3222 if (!slab_is_available()) {
3223 zone
->wait_table
= (wait_queue_head_t
*)
3224 alloc_bootmem_node(pgdat
, alloc_size
);
3227 * This case means that a zone whose size was 0 gets new memory
3228 * via memory hot-add.
3229 * But it may be the case that a new node was hot-added. In
3230 * this case vmalloc() will not be able to use this new node's
3231 * memory - this wait_table must be initialized to use this new
3232 * node itself as well.
3233 * To use this new node's memory, further consideration will be
3236 zone
->wait_table
= vmalloc(alloc_size
);
3238 if (!zone
->wait_table
)
3241 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3242 init_waitqueue_head(zone
->wait_table
+ i
);
3247 static int __zone_pcp_update(void *data
)
3249 struct zone
*zone
= data
;
3251 unsigned long batch
= zone_batchsize(zone
), flags
;
3253 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3254 struct per_cpu_pageset
*pset
;
3255 struct per_cpu_pages
*pcp
;
3257 pset
= zone_pcp(zone
, cpu
);
3260 local_irq_save(flags
);
3261 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3262 setup_pageset(pset
, batch
);
3263 local_irq_restore(flags
);
3268 void zone_pcp_update(struct zone
*zone
)
3270 stop_machine(__zone_pcp_update
, zone
, NULL
);
3273 static __meminit
void zone_pcp_init(struct zone
*zone
)
3276 unsigned long batch
= zone_batchsize(zone
);
3278 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3280 /* Early boot. Slab allocator not functional yet */
3281 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3282 setup_pageset(&boot_pageset
[cpu
],0);
3284 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3287 if (zone
->present_pages
)
3288 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3289 zone
->name
, zone
->present_pages
, batch
);
3292 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3293 unsigned long zone_start_pfn
,
3295 enum memmap_context context
)
3297 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3299 ret
= zone_wait_table_init(zone
, size
);
3302 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3304 zone
->zone_start_pfn
= zone_start_pfn
;
3306 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3307 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3309 (unsigned long)zone_idx(zone
),
3310 zone_start_pfn
, (zone_start_pfn
+ size
));
3312 zone_init_free_lists(zone
);
3317 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3319 * Basic iterator support. Return the first range of PFNs for a node
3320 * Note: nid == MAX_NUMNODES returns first region regardless of node
3322 static int __meminit
first_active_region_index_in_nid(int nid
)
3326 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3327 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3334 * Basic iterator support. Return the next active range of PFNs for a node
3335 * Note: nid == MAX_NUMNODES returns next region regardless of node
3337 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3339 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3340 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3346 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3348 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3349 * Architectures may implement their own version but if add_active_range()
3350 * was used and there are no special requirements, this is a convenient
3353 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3357 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3358 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3359 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3361 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3362 return early_node_map
[i
].nid
;
3364 /* This is a memory hole */
3367 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3369 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3373 nid
= __early_pfn_to_nid(pfn
);
3376 /* just returns 0 */
3380 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3381 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3385 nid
= __early_pfn_to_nid(pfn
);
3386 if (nid
>= 0 && nid
!= node
)
3392 /* Basic iterator support to walk early_node_map[] */
3393 #define for_each_active_range_index_in_nid(i, nid) \
3394 for (i = first_active_region_index_in_nid(nid); i != -1; \
3395 i = next_active_region_index_in_nid(i, nid))
3398 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3399 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3400 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3402 * If an architecture guarantees that all ranges registered with
3403 * add_active_ranges() contain no holes and may be freed, this
3404 * this function may be used instead of calling free_bootmem() manually.
3406 void __init
free_bootmem_with_active_regions(int nid
,
3407 unsigned long max_low_pfn
)
3411 for_each_active_range_index_in_nid(i
, nid
) {
3412 unsigned long size_pages
= 0;
3413 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3415 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3418 if (end_pfn
> max_low_pfn
)
3419 end_pfn
= max_low_pfn
;
3421 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3422 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3423 PFN_PHYS(early_node_map
[i
].start_pfn
),
3424 size_pages
<< PAGE_SHIFT
);
3428 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3433 for_each_active_range_index_in_nid(i
, nid
) {
3434 ret
= work_fn(early_node_map
[i
].start_pfn
,
3435 early_node_map
[i
].end_pfn
, data
);
3441 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3442 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3444 * If an architecture guarantees that all ranges registered with
3445 * add_active_ranges() contain no holes and may be freed, this
3446 * function may be used instead of calling memory_present() manually.
3448 void __init
sparse_memory_present_with_active_regions(int nid
)
3452 for_each_active_range_index_in_nid(i
, nid
)
3453 memory_present(early_node_map
[i
].nid
,
3454 early_node_map
[i
].start_pfn
,
3455 early_node_map
[i
].end_pfn
);
3459 * get_pfn_range_for_nid - Return the start and end page frames for a node
3460 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3461 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3462 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3464 * It returns the start and end page frame of a node based on information
3465 * provided by an arch calling add_active_range(). If called for a node
3466 * with no available memory, a warning is printed and the start and end
3469 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3470 unsigned long *start_pfn
, unsigned long *end_pfn
)
3476 for_each_active_range_index_in_nid(i
, nid
) {
3477 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3478 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3481 if (*start_pfn
== -1UL)
3486 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3487 * assumption is made that zones within a node are ordered in monotonic
3488 * increasing memory addresses so that the "highest" populated zone is used
3490 static void __init
find_usable_zone_for_movable(void)
3493 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3494 if (zone_index
== ZONE_MOVABLE
)
3497 if (arch_zone_highest_possible_pfn
[zone_index
] >
3498 arch_zone_lowest_possible_pfn
[zone_index
])
3502 VM_BUG_ON(zone_index
== -1);
3503 movable_zone
= zone_index
;
3507 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3508 * because it is sized independant of architecture. Unlike the other zones,
3509 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3510 * in each node depending on the size of each node and how evenly kernelcore
3511 * is distributed. This helper function adjusts the zone ranges
3512 * provided by the architecture for a given node by using the end of the
3513 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3514 * zones within a node are in order of monotonic increases memory addresses
3516 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3517 unsigned long zone_type
,
3518 unsigned long node_start_pfn
,
3519 unsigned long node_end_pfn
,
3520 unsigned long *zone_start_pfn
,
3521 unsigned long *zone_end_pfn
)
3523 /* Only adjust if ZONE_MOVABLE is on this node */
3524 if (zone_movable_pfn
[nid
]) {
3525 /* Size ZONE_MOVABLE */
3526 if (zone_type
== ZONE_MOVABLE
) {
3527 *zone_start_pfn
= zone_movable_pfn
[nid
];
3528 *zone_end_pfn
= min(node_end_pfn
,
3529 arch_zone_highest_possible_pfn
[movable_zone
]);
3531 /* Adjust for ZONE_MOVABLE starting within this range */
3532 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3533 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3534 *zone_end_pfn
= zone_movable_pfn
[nid
];
3536 /* Check if this whole range is within ZONE_MOVABLE */
3537 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3538 *zone_start_pfn
= *zone_end_pfn
;
3543 * Return the number of pages a zone spans in a node, including holes
3544 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3546 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3547 unsigned long zone_type
,
3548 unsigned long *ignored
)
3550 unsigned long node_start_pfn
, node_end_pfn
;
3551 unsigned long zone_start_pfn
, zone_end_pfn
;
3553 /* Get the start and end of the node and zone */
3554 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3555 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3556 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3557 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3558 node_start_pfn
, node_end_pfn
,
3559 &zone_start_pfn
, &zone_end_pfn
);
3561 /* Check that this node has pages within the zone's required range */
3562 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3565 /* Move the zone boundaries inside the node if necessary */
3566 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3567 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3569 /* Return the spanned pages */
3570 return zone_end_pfn
- zone_start_pfn
;
3574 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3575 * then all holes in the requested range will be accounted for.
3577 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3578 unsigned long range_start_pfn
,
3579 unsigned long range_end_pfn
)
3582 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3583 unsigned long start_pfn
;
3585 /* Find the end_pfn of the first active range of pfns in the node */
3586 i
= first_active_region_index_in_nid(nid
);
3590 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3592 /* Account for ranges before physical memory on this node */
3593 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3594 hole_pages
= prev_end_pfn
- range_start_pfn
;
3596 /* Find all holes for the zone within the node */
3597 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3599 /* No need to continue if prev_end_pfn is outside the zone */
3600 if (prev_end_pfn
>= range_end_pfn
)
3603 /* Make sure the end of the zone is not within the hole */
3604 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3605 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3607 /* Update the hole size cound and move on */
3608 if (start_pfn
> range_start_pfn
) {
3609 BUG_ON(prev_end_pfn
> start_pfn
);
3610 hole_pages
+= start_pfn
- prev_end_pfn
;
3612 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3615 /* Account for ranges past physical memory on this node */
3616 if (range_end_pfn
> prev_end_pfn
)
3617 hole_pages
+= range_end_pfn
-
3618 max(range_start_pfn
, prev_end_pfn
);
3624 * absent_pages_in_range - Return number of page frames in holes within a range
3625 * @start_pfn: The start PFN to start searching for holes
3626 * @end_pfn: The end PFN to stop searching for holes
3628 * It returns the number of pages frames in memory holes within a range.
3630 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3631 unsigned long end_pfn
)
3633 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3636 /* Return the number of page frames in holes in a zone on a node */
3637 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3638 unsigned long zone_type
,
3639 unsigned long *ignored
)
3641 unsigned long node_start_pfn
, node_end_pfn
;
3642 unsigned long zone_start_pfn
, zone_end_pfn
;
3644 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3645 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3647 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3650 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3651 node_start_pfn
, node_end_pfn
,
3652 &zone_start_pfn
, &zone_end_pfn
);
3653 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3657 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3658 unsigned long zone_type
,
3659 unsigned long *zones_size
)
3661 return zones_size
[zone_type
];
3664 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3665 unsigned long zone_type
,
3666 unsigned long *zholes_size
)
3671 return zholes_size
[zone_type
];
3676 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3677 unsigned long *zones_size
, unsigned long *zholes_size
)
3679 unsigned long realtotalpages
, totalpages
= 0;
3682 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3683 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3685 pgdat
->node_spanned_pages
= totalpages
;
3687 realtotalpages
= totalpages
;
3688 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3690 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3692 pgdat
->node_present_pages
= realtotalpages
;
3693 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3697 #ifndef CONFIG_SPARSEMEM
3699 * Calculate the size of the zone->blockflags rounded to an unsigned long
3700 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3701 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3702 * round what is now in bits to nearest long in bits, then return it in
3705 static unsigned long __init
usemap_size(unsigned long zonesize
)
3707 unsigned long usemapsize
;
3709 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3710 usemapsize
= usemapsize
>> pageblock_order
;
3711 usemapsize
*= NR_PAGEBLOCK_BITS
;
3712 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3714 return usemapsize
/ 8;
3717 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3718 struct zone
*zone
, unsigned long zonesize
)
3720 unsigned long usemapsize
= usemap_size(zonesize
);
3721 zone
->pageblock_flags
= NULL
;
3723 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3726 static void inline setup_usemap(struct pglist_data
*pgdat
,
3727 struct zone
*zone
, unsigned long zonesize
) {}
3728 #endif /* CONFIG_SPARSEMEM */
3730 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3732 /* Return a sensible default order for the pageblock size. */
3733 static inline int pageblock_default_order(void)
3735 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3736 return HUGETLB_PAGE_ORDER
;
3741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3742 static inline void __init
set_pageblock_order(unsigned int order
)
3744 /* Check that pageblock_nr_pages has not already been setup */
3745 if (pageblock_order
)
3749 * Assume the largest contiguous order of interest is a huge page.
3750 * This value may be variable depending on boot parameters on IA64
3752 pageblock_order
= order
;
3754 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3757 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3758 * and pageblock_default_order() are unused as pageblock_order is set
3759 * at compile-time. See include/linux/pageblock-flags.h for the values of
3760 * pageblock_order based on the kernel config
3762 static inline int pageblock_default_order(unsigned int order
)
3766 #define set_pageblock_order(x) do {} while (0)
3768 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3771 * Set up the zone data structures:
3772 * - mark all pages reserved
3773 * - mark all memory queues empty
3774 * - clear the memory bitmaps
3776 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3777 unsigned long *zones_size
, unsigned long *zholes_size
)
3780 int nid
= pgdat
->node_id
;
3781 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3784 pgdat_resize_init(pgdat
);
3785 pgdat
->nr_zones
= 0;
3786 init_waitqueue_head(&pgdat
->kswapd_wait
);
3787 pgdat
->kswapd_max_order
= 0;
3788 pgdat_page_cgroup_init(pgdat
);
3790 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3791 struct zone
*zone
= pgdat
->node_zones
+ j
;
3792 unsigned long size
, realsize
, memmap_pages
;
3795 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3796 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3800 * Adjust realsize so that it accounts for how much memory
3801 * is used by this zone for memmap. This affects the watermark
3802 * and per-cpu initialisations
3805 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3806 if (realsize
>= memmap_pages
) {
3807 realsize
-= memmap_pages
;
3810 " %s zone: %lu pages used for memmap\n",
3811 zone_names
[j
], memmap_pages
);
3814 " %s zone: %lu pages exceeds realsize %lu\n",
3815 zone_names
[j
], memmap_pages
, realsize
);
3817 /* Account for reserved pages */
3818 if (j
== 0 && realsize
> dma_reserve
) {
3819 realsize
-= dma_reserve
;
3820 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3821 zone_names
[0], dma_reserve
);
3824 if (!is_highmem_idx(j
))
3825 nr_kernel_pages
+= realsize
;
3826 nr_all_pages
+= realsize
;
3828 zone
->spanned_pages
= size
;
3829 zone
->present_pages
= realsize
;
3832 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3834 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3836 zone
->name
= zone_names
[j
];
3837 spin_lock_init(&zone
->lock
);
3838 spin_lock_init(&zone
->lru_lock
);
3839 zone_seqlock_init(zone
);
3840 zone
->zone_pgdat
= pgdat
;
3842 zone
->prev_priority
= DEF_PRIORITY
;
3844 zone_pcp_init(zone
);
3846 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3847 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
3849 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3850 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3851 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3852 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3853 zap_zone_vm_stats(zone
);
3858 set_pageblock_order(pageblock_default_order());
3859 setup_usemap(pgdat
, zone
, size
);
3860 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3861 size
, MEMMAP_EARLY
);
3863 memmap_init(size
, nid
, j
, zone_start_pfn
);
3864 zone_start_pfn
+= size
;
3868 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3870 /* Skip empty nodes */
3871 if (!pgdat
->node_spanned_pages
)
3874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3875 /* ia64 gets its own node_mem_map, before this, without bootmem */
3876 if (!pgdat
->node_mem_map
) {
3877 unsigned long size
, start
, end
;
3881 * The zone's endpoints aren't required to be MAX_ORDER
3882 * aligned but the node_mem_map endpoints must be in order
3883 * for the buddy allocator to function correctly.
3885 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3886 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3887 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3888 size
= (end
- start
) * sizeof(struct page
);
3889 map
= alloc_remap(pgdat
->node_id
, size
);
3891 map
= alloc_bootmem_node(pgdat
, size
);
3892 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3894 #ifndef CONFIG_NEED_MULTIPLE_NODES
3896 * With no DISCONTIG, the global mem_map is just set as node 0's
3898 if (pgdat
== NODE_DATA(0)) {
3899 mem_map
= NODE_DATA(0)->node_mem_map
;
3900 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3901 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3902 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3903 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3909 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3910 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3912 pg_data_t
*pgdat
= NODE_DATA(nid
);
3914 pgdat
->node_id
= nid
;
3915 pgdat
->node_start_pfn
= node_start_pfn
;
3916 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3918 alloc_node_mem_map(pgdat
);
3919 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3920 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3921 nid
, (unsigned long)pgdat
,
3922 (unsigned long)pgdat
->node_mem_map
);
3925 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3928 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3930 #if MAX_NUMNODES > 1
3932 * Figure out the number of possible node ids.
3934 static void __init
setup_nr_node_ids(void)
3937 unsigned int highest
= 0;
3939 for_each_node_mask(node
, node_possible_map
)
3941 nr_node_ids
= highest
+ 1;
3944 static inline void setup_nr_node_ids(void)
3950 * add_active_range - Register a range of PFNs backed by physical memory
3951 * @nid: The node ID the range resides on
3952 * @start_pfn: The start PFN of the available physical memory
3953 * @end_pfn: The end PFN of the available physical memory
3955 * These ranges are stored in an early_node_map[] and later used by
3956 * free_area_init_nodes() to calculate zone sizes and holes. If the
3957 * range spans a memory hole, it is up to the architecture to ensure
3958 * the memory is not freed by the bootmem allocator. If possible
3959 * the range being registered will be merged with existing ranges.
3961 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3962 unsigned long end_pfn
)
3966 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3967 "Entering add_active_range(%d, %#lx, %#lx) "
3968 "%d entries of %d used\n",
3969 nid
, start_pfn
, end_pfn
,
3970 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3972 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3974 /* Merge with existing active regions if possible */
3975 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3976 if (early_node_map
[i
].nid
!= nid
)
3979 /* Skip if an existing region covers this new one */
3980 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3981 end_pfn
<= early_node_map
[i
].end_pfn
)
3984 /* Merge forward if suitable */
3985 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3986 end_pfn
> early_node_map
[i
].end_pfn
) {
3987 early_node_map
[i
].end_pfn
= end_pfn
;
3991 /* Merge backward if suitable */
3992 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3993 end_pfn
>= early_node_map
[i
].start_pfn
) {
3994 early_node_map
[i
].start_pfn
= start_pfn
;
3999 /* Check that early_node_map is large enough */
4000 if (i
>= MAX_ACTIVE_REGIONS
) {
4001 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4002 MAX_ACTIVE_REGIONS
);
4006 early_node_map
[i
].nid
= nid
;
4007 early_node_map
[i
].start_pfn
= start_pfn
;
4008 early_node_map
[i
].end_pfn
= end_pfn
;
4009 nr_nodemap_entries
= i
+ 1;
4013 * remove_active_range - Shrink an existing registered range of PFNs
4014 * @nid: The node id the range is on that should be shrunk
4015 * @start_pfn: The new PFN of the range
4016 * @end_pfn: The new PFN of the range
4018 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4019 * The map is kept near the end physical page range that has already been
4020 * registered. This function allows an arch to shrink an existing registered
4023 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4024 unsigned long end_pfn
)
4029 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4030 nid
, start_pfn
, end_pfn
);
4032 /* Find the old active region end and shrink */
4033 for_each_active_range_index_in_nid(i
, nid
) {
4034 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4035 early_node_map
[i
].end_pfn
<= end_pfn
) {
4037 early_node_map
[i
].start_pfn
= 0;
4038 early_node_map
[i
].end_pfn
= 0;
4042 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4043 early_node_map
[i
].end_pfn
> start_pfn
) {
4044 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4045 early_node_map
[i
].end_pfn
= start_pfn
;
4046 if (temp_end_pfn
> end_pfn
)
4047 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4050 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4051 early_node_map
[i
].end_pfn
> end_pfn
&&
4052 early_node_map
[i
].start_pfn
< end_pfn
) {
4053 early_node_map
[i
].start_pfn
= end_pfn
;
4061 /* remove the blank ones */
4062 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4063 if (early_node_map
[i
].nid
!= nid
)
4065 if (early_node_map
[i
].end_pfn
)
4067 /* we found it, get rid of it */
4068 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4069 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4070 sizeof(early_node_map
[j
]));
4071 j
= nr_nodemap_entries
- 1;
4072 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4073 nr_nodemap_entries
--;
4078 * remove_all_active_ranges - Remove all currently registered regions
4080 * During discovery, it may be found that a table like SRAT is invalid
4081 * and an alternative discovery method must be used. This function removes
4082 * all currently registered regions.
4084 void __init
remove_all_active_ranges(void)
4086 memset(early_node_map
, 0, sizeof(early_node_map
));
4087 nr_nodemap_entries
= 0;
4090 /* Compare two active node_active_regions */
4091 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4093 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4094 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4096 /* Done this way to avoid overflows */
4097 if (arange
->start_pfn
> brange
->start_pfn
)
4099 if (arange
->start_pfn
< brange
->start_pfn
)
4105 /* sort the node_map by start_pfn */
4106 static void __init
sort_node_map(void)
4108 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4109 sizeof(struct node_active_region
),
4110 cmp_node_active_region
, NULL
);
4113 /* Find the lowest pfn for a node */
4114 static unsigned long __init
find_min_pfn_for_node(int nid
)
4117 unsigned long min_pfn
= ULONG_MAX
;
4119 /* Assuming a sorted map, the first range found has the starting pfn */
4120 for_each_active_range_index_in_nid(i
, nid
)
4121 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4123 if (min_pfn
== ULONG_MAX
) {
4125 "Could not find start_pfn for node %d\n", nid
);
4133 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4135 * It returns the minimum PFN based on information provided via
4136 * add_active_range().
4138 unsigned long __init
find_min_pfn_with_active_regions(void)
4140 return find_min_pfn_for_node(MAX_NUMNODES
);
4144 * early_calculate_totalpages()
4145 * Sum pages in active regions for movable zone.
4146 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4148 static unsigned long __init
early_calculate_totalpages(void)
4151 unsigned long totalpages
= 0;
4153 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4154 unsigned long pages
= early_node_map
[i
].end_pfn
-
4155 early_node_map
[i
].start_pfn
;
4156 totalpages
+= pages
;
4158 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4164 * Find the PFN the Movable zone begins in each node. Kernel memory
4165 * is spread evenly between nodes as long as the nodes have enough
4166 * memory. When they don't, some nodes will have more kernelcore than
4169 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4172 unsigned long usable_startpfn
;
4173 unsigned long kernelcore_node
, kernelcore_remaining
;
4174 /* save the state before borrow the nodemask */
4175 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4176 unsigned long totalpages
= early_calculate_totalpages();
4177 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4180 * If movablecore was specified, calculate what size of
4181 * kernelcore that corresponds so that memory usable for
4182 * any allocation type is evenly spread. If both kernelcore
4183 * and movablecore are specified, then the value of kernelcore
4184 * will be used for required_kernelcore if it's greater than
4185 * what movablecore would have allowed.
4187 if (required_movablecore
) {
4188 unsigned long corepages
;
4191 * Round-up so that ZONE_MOVABLE is at least as large as what
4192 * was requested by the user
4194 required_movablecore
=
4195 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4196 corepages
= totalpages
- required_movablecore
;
4198 required_kernelcore
= max(required_kernelcore
, corepages
);
4201 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4202 if (!required_kernelcore
)
4205 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4206 find_usable_zone_for_movable();
4207 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4210 /* Spread kernelcore memory as evenly as possible throughout nodes */
4211 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4212 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4214 * Recalculate kernelcore_node if the division per node
4215 * now exceeds what is necessary to satisfy the requested
4216 * amount of memory for the kernel
4218 if (required_kernelcore
< kernelcore_node
)
4219 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4222 * As the map is walked, we track how much memory is usable
4223 * by the kernel using kernelcore_remaining. When it is
4224 * 0, the rest of the node is usable by ZONE_MOVABLE
4226 kernelcore_remaining
= kernelcore_node
;
4228 /* Go through each range of PFNs within this node */
4229 for_each_active_range_index_in_nid(i
, nid
) {
4230 unsigned long start_pfn
, end_pfn
;
4231 unsigned long size_pages
;
4233 start_pfn
= max(early_node_map
[i
].start_pfn
,
4234 zone_movable_pfn
[nid
]);
4235 end_pfn
= early_node_map
[i
].end_pfn
;
4236 if (start_pfn
>= end_pfn
)
4239 /* Account for what is only usable for kernelcore */
4240 if (start_pfn
< usable_startpfn
) {
4241 unsigned long kernel_pages
;
4242 kernel_pages
= min(end_pfn
, usable_startpfn
)
4245 kernelcore_remaining
-= min(kernel_pages
,
4246 kernelcore_remaining
);
4247 required_kernelcore
-= min(kernel_pages
,
4248 required_kernelcore
);
4250 /* Continue if range is now fully accounted */
4251 if (end_pfn
<= usable_startpfn
) {
4254 * Push zone_movable_pfn to the end so
4255 * that if we have to rebalance
4256 * kernelcore across nodes, we will
4257 * not double account here
4259 zone_movable_pfn
[nid
] = end_pfn
;
4262 start_pfn
= usable_startpfn
;
4266 * The usable PFN range for ZONE_MOVABLE is from
4267 * start_pfn->end_pfn. Calculate size_pages as the
4268 * number of pages used as kernelcore
4270 size_pages
= end_pfn
- start_pfn
;
4271 if (size_pages
> kernelcore_remaining
)
4272 size_pages
= kernelcore_remaining
;
4273 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4276 * Some kernelcore has been met, update counts and
4277 * break if the kernelcore for this node has been
4280 required_kernelcore
-= min(required_kernelcore
,
4282 kernelcore_remaining
-= size_pages
;
4283 if (!kernelcore_remaining
)
4289 * If there is still required_kernelcore, we do another pass with one
4290 * less node in the count. This will push zone_movable_pfn[nid] further
4291 * along on the nodes that still have memory until kernelcore is
4295 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4298 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4299 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4300 zone_movable_pfn
[nid
] =
4301 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4304 /* restore the node_state */
4305 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4308 /* Any regular memory on that node ? */
4309 static void check_for_regular_memory(pg_data_t
*pgdat
)
4311 #ifdef CONFIG_HIGHMEM
4312 enum zone_type zone_type
;
4314 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4315 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4316 if (zone
->present_pages
)
4317 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4323 * free_area_init_nodes - Initialise all pg_data_t and zone data
4324 * @max_zone_pfn: an array of max PFNs for each zone
4326 * This will call free_area_init_node() for each active node in the system.
4327 * Using the page ranges provided by add_active_range(), the size of each
4328 * zone in each node and their holes is calculated. If the maximum PFN
4329 * between two adjacent zones match, it is assumed that the zone is empty.
4330 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4331 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4332 * starts where the previous one ended. For example, ZONE_DMA32 starts
4333 * at arch_max_dma_pfn.
4335 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4340 /* Sort early_node_map as initialisation assumes it is sorted */
4343 /* Record where the zone boundaries are */
4344 memset(arch_zone_lowest_possible_pfn
, 0,
4345 sizeof(arch_zone_lowest_possible_pfn
));
4346 memset(arch_zone_highest_possible_pfn
, 0,
4347 sizeof(arch_zone_highest_possible_pfn
));
4348 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4349 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4350 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4351 if (i
== ZONE_MOVABLE
)
4353 arch_zone_lowest_possible_pfn
[i
] =
4354 arch_zone_highest_possible_pfn
[i
-1];
4355 arch_zone_highest_possible_pfn
[i
] =
4356 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4358 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4359 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4361 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4362 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4363 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4365 /* Print out the zone ranges */
4366 printk("Zone PFN ranges:\n");
4367 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4368 if (i
== ZONE_MOVABLE
)
4370 printk(" %-8s %0#10lx -> %0#10lx\n",
4372 arch_zone_lowest_possible_pfn
[i
],
4373 arch_zone_highest_possible_pfn
[i
]);
4376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4377 printk("Movable zone start PFN for each node\n");
4378 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4379 if (zone_movable_pfn
[i
])
4380 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4383 /* Print out the early_node_map[] */
4384 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4385 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4386 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4387 early_node_map
[i
].start_pfn
,
4388 early_node_map
[i
].end_pfn
);
4390 /* Initialise every node */
4391 mminit_verify_pageflags_layout();
4392 setup_nr_node_ids();
4393 for_each_online_node(nid
) {
4394 pg_data_t
*pgdat
= NODE_DATA(nid
);
4395 free_area_init_node(nid
, NULL
,
4396 find_min_pfn_for_node(nid
), NULL
);
4398 /* Any memory on that node */
4399 if (pgdat
->node_present_pages
)
4400 node_set_state(nid
, N_HIGH_MEMORY
);
4401 check_for_regular_memory(pgdat
);
4405 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4407 unsigned long long coremem
;
4411 coremem
= memparse(p
, &p
);
4412 *core
= coremem
>> PAGE_SHIFT
;
4414 /* Paranoid check that UL is enough for the coremem value */
4415 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4421 * kernelcore=size sets the amount of memory for use for allocations that
4422 * cannot be reclaimed or migrated.
4424 static int __init
cmdline_parse_kernelcore(char *p
)
4426 return cmdline_parse_core(p
, &required_kernelcore
);
4430 * movablecore=size sets the amount of memory for use for allocations that
4431 * can be reclaimed or migrated.
4433 static int __init
cmdline_parse_movablecore(char *p
)
4435 return cmdline_parse_core(p
, &required_movablecore
);
4438 early_param("kernelcore", cmdline_parse_kernelcore
);
4439 early_param("movablecore", cmdline_parse_movablecore
);
4441 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4444 * set_dma_reserve - set the specified number of pages reserved in the first zone
4445 * @new_dma_reserve: The number of pages to mark reserved
4447 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4448 * In the DMA zone, a significant percentage may be consumed by kernel image
4449 * and other unfreeable allocations which can skew the watermarks badly. This
4450 * function may optionally be used to account for unfreeable pages in the
4451 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4452 * smaller per-cpu batchsize.
4454 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4456 dma_reserve
= new_dma_reserve
;
4459 #ifndef CONFIG_NEED_MULTIPLE_NODES
4460 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4461 EXPORT_SYMBOL(contig_page_data
);
4464 void __init
free_area_init(unsigned long *zones_size
)
4466 free_area_init_node(0, zones_size
,
4467 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4470 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4471 unsigned long action
, void *hcpu
)
4473 int cpu
= (unsigned long)hcpu
;
4475 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4479 * Spill the event counters of the dead processor
4480 * into the current processors event counters.
4481 * This artificially elevates the count of the current
4484 vm_events_fold_cpu(cpu
);
4487 * Zero the differential counters of the dead processor
4488 * so that the vm statistics are consistent.
4490 * This is only okay since the processor is dead and cannot
4491 * race with what we are doing.
4493 refresh_cpu_vm_stats(cpu
);
4498 void __init
page_alloc_init(void)
4500 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4504 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4505 * or min_free_kbytes changes.
4507 static void calculate_totalreserve_pages(void)
4509 struct pglist_data
*pgdat
;
4510 unsigned long reserve_pages
= 0;
4511 enum zone_type i
, j
;
4513 for_each_online_pgdat(pgdat
) {
4514 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4515 struct zone
*zone
= pgdat
->node_zones
+ i
;
4516 unsigned long max
= 0;
4518 /* Find valid and maximum lowmem_reserve in the zone */
4519 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4520 if (zone
->lowmem_reserve
[j
] > max
)
4521 max
= zone
->lowmem_reserve
[j
];
4524 /* we treat the high watermark as reserved pages. */
4525 max
+= high_wmark_pages(zone
);
4527 if (max
> zone
->present_pages
)
4528 max
= zone
->present_pages
;
4529 reserve_pages
+= max
;
4532 totalreserve_pages
= reserve_pages
;
4536 * setup_per_zone_lowmem_reserve - called whenever
4537 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4538 * has a correct pages reserved value, so an adequate number of
4539 * pages are left in the zone after a successful __alloc_pages().
4541 static void setup_per_zone_lowmem_reserve(void)
4543 struct pglist_data
*pgdat
;
4544 enum zone_type j
, idx
;
4546 for_each_online_pgdat(pgdat
) {
4547 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4548 struct zone
*zone
= pgdat
->node_zones
+ j
;
4549 unsigned long present_pages
= zone
->present_pages
;
4551 zone
->lowmem_reserve
[j
] = 0;
4555 struct zone
*lower_zone
;
4559 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4560 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4562 lower_zone
= pgdat
->node_zones
+ idx
;
4563 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4564 sysctl_lowmem_reserve_ratio
[idx
];
4565 present_pages
+= lower_zone
->present_pages
;
4570 /* update totalreserve_pages */
4571 calculate_totalreserve_pages();
4575 * setup_per_zone_wmarks - called when min_free_kbytes changes
4576 * or when memory is hot-{added|removed}
4578 * Ensures that the watermark[min,low,high] values for each zone are set
4579 * correctly with respect to min_free_kbytes.
4581 void setup_per_zone_wmarks(void)
4583 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4584 unsigned long lowmem_pages
= 0;
4586 unsigned long flags
;
4588 /* Calculate total number of !ZONE_HIGHMEM pages */
4589 for_each_zone(zone
) {
4590 if (!is_highmem(zone
))
4591 lowmem_pages
+= zone
->present_pages
;
4594 for_each_zone(zone
) {
4597 spin_lock_irqsave(&zone
->lock
, flags
);
4598 tmp
= (u64
)pages_min
* zone
->present_pages
;
4599 do_div(tmp
, lowmem_pages
);
4600 if (is_highmem(zone
)) {
4602 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4603 * need highmem pages, so cap pages_min to a small
4606 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4607 * deltas controls asynch page reclaim, and so should
4608 * not be capped for highmem.
4612 min_pages
= zone
->present_pages
/ 1024;
4613 if (min_pages
< SWAP_CLUSTER_MAX
)
4614 min_pages
= SWAP_CLUSTER_MAX
;
4615 if (min_pages
> 128)
4617 zone
->watermark
[WMARK_MIN
] = min_pages
;
4620 * If it's a lowmem zone, reserve a number of pages
4621 * proportionate to the zone's size.
4623 zone
->watermark
[WMARK_MIN
] = tmp
;
4626 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4627 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4628 setup_zone_migrate_reserve(zone
);
4629 spin_unlock_irqrestore(&zone
->lock
, flags
);
4632 /* update totalreserve_pages */
4633 calculate_totalreserve_pages();
4637 * The inactive anon list should be small enough that the VM never has to
4638 * do too much work, but large enough that each inactive page has a chance
4639 * to be referenced again before it is swapped out.
4641 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4642 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4643 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4644 * the anonymous pages are kept on the inactive list.
4647 * memory ratio inactive anon
4648 * -------------------------------------
4657 void calculate_zone_inactive_ratio(struct zone
*zone
)
4659 unsigned int gb
, ratio
;
4661 /* Zone size in gigabytes */
4662 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4664 ratio
= int_sqrt(10 * gb
);
4668 zone
->inactive_ratio
= ratio
;
4671 static void __init
setup_per_zone_inactive_ratio(void)
4676 calculate_zone_inactive_ratio(zone
);
4680 * Initialise min_free_kbytes.
4682 * For small machines we want it small (128k min). For large machines
4683 * we want it large (64MB max). But it is not linear, because network
4684 * bandwidth does not increase linearly with machine size. We use
4686 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4687 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4703 static int __init
init_per_zone_wmark_min(void)
4705 unsigned long lowmem_kbytes
;
4707 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4709 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4710 if (min_free_kbytes
< 128)
4711 min_free_kbytes
= 128;
4712 if (min_free_kbytes
> 65536)
4713 min_free_kbytes
= 65536;
4714 setup_per_zone_wmarks();
4715 setup_per_zone_lowmem_reserve();
4716 setup_per_zone_inactive_ratio();
4719 module_init(init_per_zone_wmark_min
)
4722 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4723 * that we can call two helper functions whenever min_free_kbytes
4726 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4727 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4729 proc_dointvec(table
, write
, buffer
, length
, ppos
);
4731 setup_per_zone_wmarks();
4736 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4737 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4742 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4747 zone
->min_unmapped_pages
= (zone
->present_pages
*
4748 sysctl_min_unmapped_ratio
) / 100;
4752 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4753 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4758 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4763 zone
->min_slab_pages
= (zone
->present_pages
*
4764 sysctl_min_slab_ratio
) / 100;
4770 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4771 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4772 * whenever sysctl_lowmem_reserve_ratio changes.
4774 * The reserve ratio obviously has absolutely no relation with the
4775 * minimum watermarks. The lowmem reserve ratio can only make sense
4776 * if in function of the boot time zone sizes.
4778 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4779 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4781 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4782 setup_per_zone_lowmem_reserve();
4787 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4788 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4789 * can have before it gets flushed back to buddy allocator.
4792 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4793 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4799 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4800 if (!write
|| (ret
== -EINVAL
))
4802 for_each_populated_zone(zone
) {
4803 for_each_online_cpu(cpu
) {
4805 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4806 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4812 int hashdist
= HASHDIST_DEFAULT
;
4815 static int __init
set_hashdist(char *str
)
4819 hashdist
= simple_strtoul(str
, &str
, 0);
4822 __setup("hashdist=", set_hashdist
);
4826 * allocate a large system hash table from bootmem
4827 * - it is assumed that the hash table must contain an exact power-of-2
4828 * quantity of entries
4829 * - limit is the number of hash buckets, not the total allocation size
4831 void *__init
alloc_large_system_hash(const char *tablename
,
4832 unsigned long bucketsize
,
4833 unsigned long numentries
,
4836 unsigned int *_hash_shift
,
4837 unsigned int *_hash_mask
,
4838 unsigned long limit
)
4840 unsigned long long max
= limit
;
4841 unsigned long log2qty
, size
;
4844 /* allow the kernel cmdline to have a say */
4846 /* round applicable memory size up to nearest megabyte */
4847 numentries
= nr_kernel_pages
;
4848 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4849 numentries
>>= 20 - PAGE_SHIFT
;
4850 numentries
<<= 20 - PAGE_SHIFT
;
4852 /* limit to 1 bucket per 2^scale bytes of low memory */
4853 if (scale
> PAGE_SHIFT
)
4854 numentries
>>= (scale
- PAGE_SHIFT
);
4856 numentries
<<= (PAGE_SHIFT
- scale
);
4858 /* Make sure we've got at least a 0-order allocation.. */
4859 if (unlikely(flags
& HASH_SMALL
)) {
4860 /* Makes no sense without HASH_EARLY */
4861 WARN_ON(!(flags
& HASH_EARLY
));
4862 if (!(numentries
>> *_hash_shift
)) {
4863 numentries
= 1UL << *_hash_shift
;
4864 BUG_ON(!numentries
);
4866 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4867 numentries
= PAGE_SIZE
/ bucketsize
;
4869 numentries
= roundup_pow_of_two(numentries
);
4871 /* limit allocation size to 1/16 total memory by default */
4873 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4874 do_div(max
, bucketsize
);
4877 if (numentries
> max
)
4880 log2qty
= ilog2(numentries
);
4883 size
= bucketsize
<< log2qty
;
4884 if (flags
& HASH_EARLY
)
4885 table
= alloc_bootmem_nopanic(size
);
4887 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4890 * If bucketsize is not a power-of-two, we may free
4891 * some pages at the end of hash table which
4892 * alloc_pages_exact() automatically does
4894 if (get_order(size
) < MAX_ORDER
) {
4895 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4896 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4899 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4902 panic("Failed to allocate %s hash table\n", tablename
);
4904 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4907 ilog2(size
) - PAGE_SHIFT
,
4911 *_hash_shift
= log2qty
;
4913 *_hash_mask
= (1 << log2qty
) - 1;
4918 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4919 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4922 #ifdef CONFIG_SPARSEMEM
4923 return __pfn_to_section(pfn
)->pageblock_flags
;
4925 return zone
->pageblock_flags
;
4926 #endif /* CONFIG_SPARSEMEM */
4929 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4931 #ifdef CONFIG_SPARSEMEM
4932 pfn
&= (PAGES_PER_SECTION
-1);
4933 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4935 pfn
= pfn
- zone
->zone_start_pfn
;
4936 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4937 #endif /* CONFIG_SPARSEMEM */
4941 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4942 * @page: The page within the block of interest
4943 * @start_bitidx: The first bit of interest to retrieve
4944 * @end_bitidx: The last bit of interest
4945 * returns pageblock_bits flags
4947 unsigned long get_pageblock_flags_group(struct page
*page
,
4948 int start_bitidx
, int end_bitidx
)
4951 unsigned long *bitmap
;
4952 unsigned long pfn
, bitidx
;
4953 unsigned long flags
= 0;
4954 unsigned long value
= 1;
4956 zone
= page_zone(page
);
4957 pfn
= page_to_pfn(page
);
4958 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4959 bitidx
= pfn_to_bitidx(zone
, pfn
);
4961 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4962 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4969 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4970 * @page: The page within the block of interest
4971 * @start_bitidx: The first bit of interest
4972 * @end_bitidx: The last bit of interest
4973 * @flags: The flags to set
4975 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4976 int start_bitidx
, int end_bitidx
)
4979 unsigned long *bitmap
;
4980 unsigned long pfn
, bitidx
;
4981 unsigned long value
= 1;
4983 zone
= page_zone(page
);
4984 pfn
= page_to_pfn(page
);
4985 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4986 bitidx
= pfn_to_bitidx(zone
, pfn
);
4987 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4988 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4990 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4992 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4994 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4998 * This is designed as sub function...plz see page_isolation.c also.
4999 * set/clear page block's type to be ISOLATE.
5000 * page allocater never alloc memory from ISOLATE block.
5003 int set_migratetype_isolate(struct page
*page
)
5006 unsigned long flags
;
5010 zone
= page_zone(page
);
5011 zone_idx
= zone_idx(zone
);
5012 spin_lock_irqsave(&zone
->lock
, flags
);
5014 * In future, more migrate types will be able to be isolation target.
5016 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
&&
5017 zone_idx
!= ZONE_MOVABLE
)
5019 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5020 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5023 spin_unlock_irqrestore(&zone
->lock
, flags
);
5029 void unset_migratetype_isolate(struct page
*page
)
5032 unsigned long flags
;
5033 zone
= page_zone(page
);
5034 spin_lock_irqsave(&zone
->lock
, flags
);
5035 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5037 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5038 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5040 spin_unlock_irqrestore(&zone
->lock
, flags
);
5043 #ifdef CONFIG_MEMORY_HOTREMOVE
5045 * All pages in the range must be isolated before calling this.
5048 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5054 unsigned long flags
;
5055 /* find the first valid pfn */
5056 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5061 zone
= page_zone(pfn_to_page(pfn
));
5062 spin_lock_irqsave(&zone
->lock
, flags
);
5064 while (pfn
< end_pfn
) {
5065 if (!pfn_valid(pfn
)) {
5069 page
= pfn_to_page(pfn
);
5070 BUG_ON(page_count(page
));
5071 BUG_ON(!PageBuddy(page
));
5072 order
= page_order(page
);
5073 #ifdef CONFIG_DEBUG_VM
5074 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5075 pfn
, 1 << order
, end_pfn
);
5077 list_del(&page
->lru
);
5078 rmv_page_order(page
);
5079 zone
->free_area
[order
].nr_free
--;
5080 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5082 for (i
= 0; i
< (1 << order
); i
++)
5083 SetPageReserved((page
+i
));
5084 pfn
+= (1 << order
);
5086 spin_unlock_irqrestore(&zone
->lock
, flags
);