rds: Fix reference counting on the for xmit_atomic and xmit_rdma
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / send.c
blob437f1e72609c612c7c140e95724556bd3edf8bde
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/list.h>
39 #include "rds.h"
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
43 * will kick our shin.
44 * Also, it seems fairer to not let one busy connection stall all the
45 * others.
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
49 * drained the queue).
51 static int send_batch_count = 64;
52 module_param(send_batch_count, int, 0444);
53 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
56 * Reset the send state. Caller must hold c_send_lock when calling here.
58 void rds_send_reset(struct rds_connection *conn)
60 struct rds_message *rm, *tmp;
61 unsigned long flags;
63 spin_lock_irqsave(&conn->c_send_lock, flags);
64 if (conn->c_xmit_rm) {
65 rm = conn->c_xmit_rm;
66 conn->c_xmit_rm = NULL;
67 /* Tell the user the RDMA op is no longer mapped by the
68 * transport. This isn't entirely true (it's flushed out
69 * independently) but as the connection is down, there's
70 * no ongoing RDMA to/from that memory */
71 rds_message_unmapped(rm);
72 spin_unlock_irqrestore(&conn->c_send_lock, flags);
74 rds_message_put(rm);
75 } else {
76 spin_unlock_irqrestore(&conn->c_send_lock, flags);
79 conn->c_xmit_sg = 0;
80 conn->c_xmit_hdr_off = 0;
81 conn->c_xmit_data_off = 0;
82 conn->c_xmit_atomic_sent = 0;
83 conn->c_xmit_rdma_sent = 0;
84 conn->c_xmit_data_sent = 0;
86 conn->c_map_queued = 0;
88 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
89 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
91 /* Mark messages as retransmissions, and move them to the send q */
92 spin_lock_irqsave(&conn->c_lock, flags);
93 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
94 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
95 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
97 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
98 spin_unlock_irqrestore(&conn->c_lock, flags);
102 * We're making the concious trade-off here to only send one message
103 * down the connection at a time.
104 * Pro:
105 * - tx queueing is a simple fifo list
106 * - reassembly is optional and easily done by transports per conn
107 * - no per flow rx lookup at all, straight to the socket
108 * - less per-frag memory and wire overhead
109 * Con:
110 * - queued acks can be delayed behind large messages
111 * Depends:
112 * - small message latency is higher behind queued large messages
113 * - large message latency isn't starved by intervening small sends
115 int rds_send_xmit(struct rds_connection *conn)
117 struct rds_message *rm;
118 unsigned long flags;
119 unsigned int tmp;
120 struct scatterlist *sg;
121 int ret = 0;
122 int gen = 0;
123 LIST_HEAD(to_be_dropped);
125 restart:
126 if (!rds_conn_up(conn))
127 goto out;
130 * sendmsg calls here after having queued its message on the send
131 * queue. We only have one task feeding the connection at a time. If
132 * another thread is already feeding the queue then we back off. This
133 * avoids blocking the caller and trading per-connection data between
134 * caches per message.
136 if (!spin_trylock_irqsave(&conn->c_send_lock, flags)) {
137 rds_stats_inc(s_send_lock_contention);
138 ret = -ENOMEM;
139 goto out;
141 atomic_inc(&conn->c_senders);
143 if (conn->c_trans->xmit_prepare)
144 conn->c_trans->xmit_prepare(conn);
146 gen = atomic_inc_return(&conn->c_send_generation);
149 * spin trying to push headers and data down the connection until
150 * the connection doesn't make forward progress.
152 while (1) {
154 rm = conn->c_xmit_rm;
157 * If between sending messages, we can send a pending congestion
158 * map update.
160 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
161 rm = rds_cong_update_alloc(conn);
162 if (IS_ERR(rm)) {
163 ret = PTR_ERR(rm);
164 break;
166 rm->data.op_active = 1;
168 conn->c_xmit_rm = rm;
172 * If not already working on one, grab the next message.
174 * c_xmit_rm holds a ref while we're sending this message down
175 * the connction. We can use this ref while holding the
176 * send_sem.. rds_send_reset() is serialized with it.
178 if (!rm) {
179 unsigned int len;
181 spin_lock(&conn->c_lock);
183 if (!list_empty(&conn->c_send_queue)) {
184 rm = list_entry(conn->c_send_queue.next,
185 struct rds_message,
186 m_conn_item);
187 rds_message_addref(rm);
190 * Move the message from the send queue to the retransmit
191 * list right away.
193 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
196 spin_unlock(&conn->c_lock);
198 if (!rm)
199 break;
201 /* Unfortunately, the way Infiniband deals with
202 * RDMA to a bad MR key is by moving the entire
203 * queue pair to error state. We cold possibly
204 * recover from that, but right now we drop the
205 * connection.
206 * Therefore, we never retransmit messages with RDMA ops.
208 if (rm->rdma.op_active &&
209 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
210 spin_lock(&conn->c_lock);
211 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
212 list_move(&rm->m_conn_item, &to_be_dropped);
213 spin_unlock(&conn->c_lock);
214 continue;
217 /* Require an ACK every once in a while */
218 len = ntohl(rm->m_inc.i_hdr.h_len);
219 if (conn->c_unacked_packets == 0 ||
220 conn->c_unacked_bytes < len) {
221 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
223 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
224 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
225 rds_stats_inc(s_send_ack_required);
226 } else {
227 conn->c_unacked_bytes -= len;
228 conn->c_unacked_packets--;
231 conn->c_xmit_rm = rm;
234 /* The transport either sends the whole rdma or none of it */
235 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
236 rm->m_final_op = &rm->rdma;
237 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
238 if (ret)
239 break;
240 conn->c_xmit_rdma_sent = 1;
242 /* The transport owns the mapped memory for now.
243 * You can't unmap it while it's on the send queue */
244 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
247 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
248 rm->m_final_op = &rm->atomic;
249 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
250 if (ret)
251 break;
252 conn->c_xmit_atomic_sent = 1;
254 /* The transport owns the mapped memory for now.
255 * You can't unmap it while it's on the send queue */
256 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
260 * A number of cases require an RDS header to be sent
261 * even if there is no data.
262 * We permit 0-byte sends; rds-ping depends on this.
263 * However, if there are exclusively attached silent ops,
264 * we skip the hdr/data send, to enable silent operation.
266 if (rm->data.op_nents == 0) {
267 int ops_present;
268 int all_ops_are_silent = 1;
270 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
271 if (rm->atomic.op_active && !rm->atomic.op_silent)
272 all_ops_are_silent = 0;
273 if (rm->rdma.op_active && !rm->rdma.op_silent)
274 all_ops_are_silent = 0;
276 if (ops_present && all_ops_are_silent
277 && !rm->m_rdma_cookie)
278 rm->data.op_active = 0;
281 if (rm->data.op_active && !conn->c_xmit_data_sent) {
282 rm->m_final_op = &rm->data;
283 ret = conn->c_trans->xmit(conn, rm,
284 conn->c_xmit_hdr_off,
285 conn->c_xmit_sg,
286 conn->c_xmit_data_off);
287 if (ret <= 0)
288 break;
290 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
291 tmp = min_t(int, ret,
292 sizeof(struct rds_header) -
293 conn->c_xmit_hdr_off);
294 conn->c_xmit_hdr_off += tmp;
295 ret -= tmp;
298 sg = &rm->data.op_sg[conn->c_xmit_sg];
299 while (ret) {
300 tmp = min_t(int, ret, sg->length -
301 conn->c_xmit_data_off);
302 conn->c_xmit_data_off += tmp;
303 ret -= tmp;
304 if (conn->c_xmit_data_off == sg->length) {
305 conn->c_xmit_data_off = 0;
306 sg++;
307 conn->c_xmit_sg++;
308 BUG_ON(ret != 0 &&
309 conn->c_xmit_sg == rm->data.op_nents);
313 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
314 (conn->c_xmit_sg == rm->data.op_nents))
315 conn->c_xmit_data_sent = 1;
319 * A rm will only take multiple times through this loop
320 * if there is a data op. Thus, if the data is sent (or there was
321 * none), then we're done with the rm.
323 if (!rm->data.op_active || conn->c_xmit_data_sent) {
324 conn->c_xmit_rm = NULL;
325 conn->c_xmit_sg = 0;
326 conn->c_xmit_hdr_off = 0;
327 conn->c_xmit_data_off = 0;
328 conn->c_xmit_rdma_sent = 0;
329 conn->c_xmit_atomic_sent = 0;
330 conn->c_xmit_data_sent = 0;
332 rds_message_put(rm);
336 if (conn->c_trans->xmit_complete)
337 conn->c_trans->xmit_complete(conn);
340 * We might be racing with another sender who queued a message but
341 * backed off on noticing that we held the c_send_lock. If we check
342 * for queued messages after dropping the sem then either we'll
343 * see the queued message or the queuer will get the sem. If we
344 * notice the queued message then we trigger an immediate retry.
346 * We need to be careful only to do this when we stopped processing
347 * the send queue because it was empty. It's the only way we
348 * stop processing the loop when the transport hasn't taken
349 * responsibility for forward progress.
351 spin_unlock_irqrestore(&conn->c_send_lock, flags);
353 /* Nuke any messages we decided not to retransmit. */
354 if (!list_empty(&to_be_dropped)) {
355 /* irqs on here, so we can put(), unlike above */
356 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
357 rds_message_put(rm);
358 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
361 atomic_dec(&conn->c_senders);
364 * Other senders will see we have c_send_lock and exit. We
365 * need to recheck the send queue and race again for c_send_lock
366 * to make sure messages don't just sit on the send queue, if
367 * somebody hasn't already beat us into the loop.
369 * If the transport cannot continue (i.e ret != 0), then it must
370 * call us when more room is available, such as from the tx
371 * completion handler.
373 if (ret == 0) {
374 smp_mb();
375 if (!list_empty(&conn->c_send_queue)) {
376 rds_stats_inc(s_send_lock_queue_raced);
377 if (gen == atomic_read(&conn->c_send_generation)) {
378 goto restart;
382 out:
383 return ret;
386 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
388 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
390 assert_spin_locked(&rs->rs_lock);
392 BUG_ON(rs->rs_snd_bytes < len);
393 rs->rs_snd_bytes -= len;
395 if (rs->rs_snd_bytes == 0)
396 rds_stats_inc(s_send_queue_empty);
399 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
400 is_acked_func is_acked)
402 if (is_acked)
403 return is_acked(rm, ack);
404 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
408 * Returns true if there are no messages on the send and retransmit queues
409 * which have a sequence number greater than or equal to the given sequence
410 * number.
412 int rds_send_acked_before(struct rds_connection *conn, u64 seq)
414 struct rds_message *rm, *tmp;
415 int ret = 1;
417 spin_lock(&conn->c_lock);
419 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
420 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
421 ret = 0;
422 break;
425 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
426 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
427 ret = 0;
428 break;
431 spin_unlock(&conn->c_lock);
433 return ret;
437 * This is pretty similar to what happens below in the ACK
438 * handling code - except that we call here as soon as we get
439 * the IB send completion on the RDMA op and the accompanying
440 * message.
442 void rds_rdma_send_complete(struct rds_message *rm, int status)
444 struct rds_sock *rs = NULL;
445 struct rm_rdma_op *ro;
446 struct rds_notifier *notifier;
447 unsigned long flags;
449 spin_lock_irqsave(&rm->m_rs_lock, flags);
451 ro = &rm->rdma;
452 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
453 ro->op_active && ro->op_notify && ro->op_notifier) {
454 notifier = ro->op_notifier;
455 rs = rm->m_rs;
456 sock_hold(rds_rs_to_sk(rs));
458 notifier->n_status = status;
459 spin_lock(&rs->rs_lock);
460 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
461 spin_unlock(&rs->rs_lock);
463 ro->op_notifier = NULL;
466 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
468 if (rs) {
469 rds_wake_sk_sleep(rs);
470 sock_put(rds_rs_to_sk(rs));
473 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
476 * Just like above, except looks at atomic op
478 void rds_atomic_send_complete(struct rds_message *rm, int status)
480 struct rds_sock *rs = NULL;
481 struct rm_atomic_op *ao;
482 struct rds_notifier *notifier;
483 unsigned long flags;
485 spin_lock_irqsave(&rm->m_rs_lock, flags);
487 ao = &rm->atomic;
488 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
489 && ao->op_active && ao->op_notify && ao->op_notifier) {
490 notifier = ao->op_notifier;
491 rs = rm->m_rs;
492 sock_hold(rds_rs_to_sk(rs));
494 notifier->n_status = status;
495 spin_lock(&rs->rs_lock);
496 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
497 spin_unlock(&rs->rs_lock);
499 ao->op_notifier = NULL;
502 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
504 if (rs) {
505 rds_wake_sk_sleep(rs);
506 sock_put(rds_rs_to_sk(rs));
509 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
512 * This is the same as rds_rdma_send_complete except we
513 * don't do any locking - we have all the ingredients (message,
514 * socket, socket lock) and can just move the notifier.
516 static inline void
517 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
519 struct rm_rdma_op *ro;
520 struct rm_atomic_op *ao;
522 ro = &rm->rdma;
523 if (ro->op_active && ro->op_notify && ro->op_notifier) {
524 ro->op_notifier->n_status = status;
525 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
526 ro->op_notifier = NULL;
529 ao = &rm->atomic;
530 if (ao->op_active && ao->op_notify && ao->op_notifier) {
531 ao->op_notifier->n_status = status;
532 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
533 ao->op_notifier = NULL;
536 /* No need to wake the app - caller does this */
540 * This is called from the IB send completion when we detect
541 * a RDMA operation that failed with remote access error.
542 * So speed is not an issue here.
544 struct rds_message *rds_send_get_message(struct rds_connection *conn,
545 struct rm_rdma_op *op)
547 struct rds_message *rm, *tmp, *found = NULL;
548 unsigned long flags;
550 spin_lock_irqsave(&conn->c_lock, flags);
552 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
553 if (&rm->rdma == op) {
554 atomic_inc(&rm->m_refcount);
555 found = rm;
556 goto out;
560 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
561 if (&rm->rdma == op) {
562 atomic_inc(&rm->m_refcount);
563 found = rm;
564 break;
568 out:
569 spin_unlock_irqrestore(&conn->c_lock, flags);
571 return found;
573 EXPORT_SYMBOL_GPL(rds_send_get_message);
576 * This removes messages from the socket's list if they're on it. The list
577 * argument must be private to the caller, we must be able to modify it
578 * without locks. The messages must have a reference held for their
579 * position on the list. This function will drop that reference after
580 * removing the messages from the 'messages' list regardless of if it found
581 * the messages on the socket list or not.
583 void rds_send_remove_from_sock(struct list_head *messages, int status)
585 unsigned long flags;
586 struct rds_sock *rs = NULL;
587 struct rds_message *rm;
589 while (!list_empty(messages)) {
590 int was_on_sock = 0;
592 rm = list_entry(messages->next, struct rds_message,
593 m_conn_item);
594 list_del_init(&rm->m_conn_item);
597 * If we see this flag cleared then we're *sure* that someone
598 * else beat us to removing it from the sock. If we race
599 * with their flag update we'll get the lock and then really
600 * see that the flag has been cleared.
602 * The message spinlock makes sure nobody clears rm->m_rs
603 * while we're messing with it. It does not prevent the
604 * message from being removed from the socket, though.
606 spin_lock_irqsave(&rm->m_rs_lock, flags);
607 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
608 goto unlock_and_drop;
610 if (rs != rm->m_rs) {
611 if (rs) {
612 rds_wake_sk_sleep(rs);
613 sock_put(rds_rs_to_sk(rs));
615 rs = rm->m_rs;
616 sock_hold(rds_rs_to_sk(rs));
618 spin_lock(&rs->rs_lock);
620 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
621 struct rm_rdma_op *ro = &rm->rdma;
622 struct rds_notifier *notifier;
624 list_del_init(&rm->m_sock_item);
625 rds_send_sndbuf_remove(rs, rm);
627 if (ro->op_active && ro->op_notifier &&
628 (ro->op_notify || (ro->op_recverr && status))) {
629 notifier = ro->op_notifier;
630 list_add_tail(&notifier->n_list,
631 &rs->rs_notify_queue);
632 if (!notifier->n_status)
633 notifier->n_status = status;
634 rm->rdma.op_notifier = NULL;
636 was_on_sock = 1;
637 rm->m_rs = NULL;
639 spin_unlock(&rs->rs_lock);
641 unlock_and_drop:
642 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
643 rds_message_put(rm);
644 if (was_on_sock)
645 rds_message_put(rm);
648 if (rs) {
649 rds_wake_sk_sleep(rs);
650 sock_put(rds_rs_to_sk(rs));
655 * Transports call here when they've determined that the receiver queued
656 * messages up to, and including, the given sequence number. Messages are
657 * moved to the retrans queue when rds_send_xmit picks them off the send
658 * queue. This means that in the TCP case, the message may not have been
659 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
660 * checks the RDS_MSG_HAS_ACK_SEQ bit.
662 * XXX It's not clear to me how this is safely serialized with socket
663 * destruction. Maybe it should bail if it sees SOCK_DEAD.
665 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
666 is_acked_func is_acked)
668 struct rds_message *rm, *tmp;
669 unsigned long flags;
670 LIST_HEAD(list);
672 spin_lock_irqsave(&conn->c_lock, flags);
674 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
675 if (!rds_send_is_acked(rm, ack, is_acked))
676 break;
678 list_move(&rm->m_conn_item, &list);
679 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
682 /* order flag updates with spin locks */
683 if (!list_empty(&list))
684 smp_mb__after_clear_bit();
686 spin_unlock_irqrestore(&conn->c_lock, flags);
688 /* now remove the messages from the sock list as needed */
689 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
691 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
693 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
695 struct rds_message *rm, *tmp;
696 struct rds_connection *conn;
697 unsigned long flags;
698 LIST_HEAD(list);
700 /* get all the messages we're dropping under the rs lock */
701 spin_lock_irqsave(&rs->rs_lock, flags);
703 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
704 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
705 dest->sin_port != rm->m_inc.i_hdr.h_dport))
706 continue;
708 list_move(&rm->m_sock_item, &list);
709 rds_send_sndbuf_remove(rs, rm);
710 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
713 /* order flag updates with the rs lock */
714 smp_mb__after_clear_bit();
716 spin_unlock_irqrestore(&rs->rs_lock, flags);
718 if (list_empty(&list))
719 return;
721 /* Remove the messages from the conn */
722 list_for_each_entry(rm, &list, m_sock_item) {
724 conn = rm->m_inc.i_conn;
726 spin_lock_irqsave(&conn->c_lock, flags);
728 * Maybe someone else beat us to removing rm from the conn.
729 * If we race with their flag update we'll get the lock and
730 * then really see that the flag has been cleared.
732 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
733 spin_unlock_irqrestore(&conn->c_lock, flags);
734 continue;
736 list_del_init(&rm->m_conn_item);
737 spin_unlock_irqrestore(&conn->c_lock, flags);
740 * Couldn't grab m_rs_lock in top loop (lock ordering),
741 * but we can now.
743 spin_lock_irqsave(&rm->m_rs_lock, flags);
745 spin_lock(&rs->rs_lock);
746 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
747 spin_unlock(&rs->rs_lock);
749 rm->m_rs = NULL;
750 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
752 rds_message_put(rm);
755 rds_wake_sk_sleep(rs);
757 while (!list_empty(&list)) {
758 rm = list_entry(list.next, struct rds_message, m_sock_item);
759 list_del_init(&rm->m_sock_item);
761 rds_message_wait(rm);
762 rds_message_put(rm);
767 * we only want this to fire once so we use the callers 'queued'. It's
768 * possible that another thread can race with us and remove the
769 * message from the flow with RDS_CANCEL_SENT_TO.
771 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
772 struct rds_message *rm, __be16 sport,
773 __be16 dport, int *queued)
775 unsigned long flags;
776 u32 len;
778 if (*queued)
779 goto out;
781 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
783 /* this is the only place which holds both the socket's rs_lock
784 * and the connection's c_lock */
785 spin_lock_irqsave(&rs->rs_lock, flags);
788 * If there is a little space in sndbuf, we don't queue anything,
789 * and userspace gets -EAGAIN. But poll() indicates there's send
790 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
791 * freed up by incoming acks. So we check the *old* value of
792 * rs_snd_bytes here to allow the last msg to exceed the buffer,
793 * and poll() now knows no more data can be sent.
795 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
796 rs->rs_snd_bytes += len;
798 /* let recv side know we are close to send space exhaustion.
799 * This is probably not the optimal way to do it, as this
800 * means we set the flag on *all* messages as soon as our
801 * throughput hits a certain threshold.
803 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
804 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
806 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
807 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
808 rds_message_addref(rm);
809 rm->m_rs = rs;
811 /* The code ordering is a little weird, but we're
812 trying to minimize the time we hold c_lock */
813 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
814 rm->m_inc.i_conn = conn;
815 rds_message_addref(rm);
817 spin_lock(&conn->c_lock);
818 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
819 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
820 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
821 spin_unlock(&conn->c_lock);
823 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
824 rm, len, rs, rs->rs_snd_bytes,
825 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
827 *queued = 1;
830 spin_unlock_irqrestore(&rs->rs_lock, flags);
831 out:
832 return *queued;
836 * rds_message is getting to be quite complicated, and we'd like to allocate
837 * it all in one go. This figures out how big it needs to be up front.
839 static int rds_rm_size(struct msghdr *msg, int data_len)
841 struct cmsghdr *cmsg;
842 int size = 0;
843 int cmsg_groups = 0;
844 int retval;
846 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
847 if (!CMSG_OK(msg, cmsg))
848 return -EINVAL;
850 if (cmsg->cmsg_level != SOL_RDS)
851 continue;
853 switch (cmsg->cmsg_type) {
854 case RDS_CMSG_RDMA_ARGS:
855 cmsg_groups |= 1;
856 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
857 if (retval < 0)
858 return retval;
859 size += retval;
861 break;
863 case RDS_CMSG_RDMA_DEST:
864 case RDS_CMSG_RDMA_MAP:
865 cmsg_groups |= 2;
866 /* these are valid but do no add any size */
867 break;
869 case RDS_CMSG_ATOMIC_CSWP:
870 case RDS_CMSG_ATOMIC_FADD:
871 cmsg_groups |= 1;
872 size += sizeof(struct scatterlist);
873 break;
875 default:
876 return -EINVAL;
881 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
883 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
884 if (cmsg_groups == 3)
885 return -EINVAL;
887 return size;
890 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
891 struct msghdr *msg, int *allocated_mr)
893 struct cmsghdr *cmsg;
894 int ret = 0;
896 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
897 if (!CMSG_OK(msg, cmsg))
898 return -EINVAL;
900 if (cmsg->cmsg_level != SOL_RDS)
901 continue;
903 /* As a side effect, RDMA_DEST and RDMA_MAP will set
904 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
906 switch (cmsg->cmsg_type) {
907 case RDS_CMSG_RDMA_ARGS:
908 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
909 break;
911 case RDS_CMSG_RDMA_DEST:
912 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
913 break;
915 case RDS_CMSG_RDMA_MAP:
916 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
917 if (!ret)
918 *allocated_mr = 1;
919 break;
920 case RDS_CMSG_ATOMIC_CSWP:
921 case RDS_CMSG_ATOMIC_FADD:
922 ret = rds_cmsg_atomic(rs, rm, cmsg);
923 break;
925 default:
926 return -EINVAL;
929 if (ret)
930 break;
933 return ret;
936 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
937 size_t payload_len)
939 struct sock *sk = sock->sk;
940 struct rds_sock *rs = rds_sk_to_rs(sk);
941 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
942 __be32 daddr;
943 __be16 dport;
944 struct rds_message *rm = NULL;
945 struct rds_connection *conn;
946 int ret = 0;
947 int queued = 0, allocated_mr = 0;
948 int nonblock = msg->msg_flags & MSG_DONTWAIT;
949 long timeo = sock_sndtimeo(sk, nonblock);
951 /* Mirror Linux UDP mirror of BSD error message compatibility */
952 /* XXX: Perhaps MSG_MORE someday */
953 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
954 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
955 ret = -EOPNOTSUPP;
956 goto out;
959 if (msg->msg_namelen) {
960 /* XXX fail non-unicast destination IPs? */
961 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
962 ret = -EINVAL;
963 goto out;
965 daddr = usin->sin_addr.s_addr;
966 dport = usin->sin_port;
967 } else {
968 /* We only care about consistency with ->connect() */
969 lock_sock(sk);
970 daddr = rs->rs_conn_addr;
971 dport = rs->rs_conn_port;
972 release_sock(sk);
975 /* racing with another thread binding seems ok here */
976 if (daddr == 0 || rs->rs_bound_addr == 0) {
977 ret = -ENOTCONN; /* XXX not a great errno */
978 goto out;
981 /* size of rm including all sgs */
982 ret = rds_rm_size(msg, payload_len);
983 if (ret < 0)
984 goto out;
986 rm = rds_message_alloc(ret, GFP_KERNEL);
987 if (!rm) {
988 ret = -ENOMEM;
989 goto out;
992 /* Attach data to the rm */
993 if (payload_len) {
994 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
995 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
996 if (ret)
997 goto out;
999 rm->data.op_active = 1;
1001 rm->m_daddr = daddr;
1003 /* rds_conn_create has a spinlock that runs with IRQ off.
1004 * Caching the conn in the socket helps a lot. */
1005 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1006 conn = rs->rs_conn;
1007 else {
1008 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
1009 rs->rs_transport,
1010 sock->sk->sk_allocation);
1011 if (IS_ERR(conn)) {
1012 ret = PTR_ERR(conn);
1013 goto out;
1015 rs->rs_conn = conn;
1018 /* Parse any control messages the user may have included. */
1019 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1020 if (ret)
1021 goto out;
1023 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1024 if (printk_ratelimit())
1025 printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1026 &rm->rdma, conn->c_trans->xmit_rdma);
1027 ret = -EOPNOTSUPP;
1028 goto out;
1031 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1032 if (printk_ratelimit())
1033 printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1034 &rm->atomic, conn->c_trans->xmit_atomic);
1035 ret = -EOPNOTSUPP;
1036 goto out;
1039 /* If the connection is down, trigger a connect. We may
1040 * have scheduled a delayed reconnect however - in this case
1041 * we should not interfere.
1043 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1044 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1045 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1047 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1048 if (ret) {
1049 rs->rs_seen_congestion = 1;
1050 goto out;
1053 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1054 dport, &queued)) {
1055 rds_stats_inc(s_send_queue_full);
1056 /* XXX make sure this is reasonable */
1057 if (payload_len > rds_sk_sndbuf(rs)) {
1058 ret = -EMSGSIZE;
1059 goto out;
1061 if (nonblock) {
1062 ret = -EAGAIN;
1063 goto out;
1066 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1067 rds_send_queue_rm(rs, conn, rm,
1068 rs->rs_bound_port,
1069 dport,
1070 &queued),
1071 timeo);
1072 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1073 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1074 continue;
1076 ret = timeo;
1077 if (ret == 0)
1078 ret = -ETIMEDOUT;
1079 goto out;
1083 * By now we've committed to the send. We reuse rds_send_worker()
1084 * to retry sends in the rds thread if the transport asks us to.
1086 rds_stats_inc(s_send_queued);
1088 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1089 rds_send_xmit(conn);
1091 rds_message_put(rm);
1092 return payload_len;
1094 out:
1095 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1096 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1097 * or in any other way, we need to destroy the MR again */
1098 if (allocated_mr)
1099 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1101 if (rm)
1102 rds_message_put(rm);
1103 return ret;
1107 * Reply to a ping packet.
1110 rds_send_pong(struct rds_connection *conn, __be16 dport)
1112 struct rds_message *rm;
1113 unsigned long flags;
1114 int ret = 0;
1116 rm = rds_message_alloc(0, GFP_ATOMIC);
1117 if (!rm) {
1118 ret = -ENOMEM;
1119 goto out;
1122 rm->m_daddr = conn->c_faddr;
1123 rm->data.op_active = 1;
1125 /* If the connection is down, trigger a connect. We may
1126 * have scheduled a delayed reconnect however - in this case
1127 * we should not interfere.
1129 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1130 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1131 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1133 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1134 if (ret)
1135 goto out;
1137 spin_lock_irqsave(&conn->c_lock, flags);
1138 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1139 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1140 rds_message_addref(rm);
1141 rm->m_inc.i_conn = conn;
1143 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1144 conn->c_next_tx_seq);
1145 conn->c_next_tx_seq++;
1146 spin_unlock_irqrestore(&conn->c_lock, flags);
1148 rds_stats_inc(s_send_queued);
1149 rds_stats_inc(s_send_pong);
1151 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1152 rds_send_xmit(conn);
1154 rds_message_put(rm);
1155 return 0;
1157 out:
1158 if (rm)
1159 rds_message_put(rm);
1160 return ret;