MIPS: RB532: Cleanup cpu-features-overrides
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob8fb88a906aaa21983bd5f61d913971788a4b9444
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 #ifdef CONFIG_SMP
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 #endif
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191 if (!overrun)
192 break;
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime >= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 ktime_t now;
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
245 spin_unlock(&rt_b->rt_runtime_lock);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
251 hrtimer_cancel(&rt_b->rt_period_timer);
253 #endif
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
265 struct cfs_rq;
267 static LIST_HEAD(task_groups);
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
291 struct rt_bandwidth rt_bandwidth;
292 #endif
294 struct rcu_head rcu;
295 struct list_head list;
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
307 user->tg->uid = user->uid;
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock);
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group.children);
342 #endif
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group;
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
373 struct task_group *tg;
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
402 #else
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
407 return 1;
409 #endif
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
414 return NULL;
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
424 u64 exec_clock;
425 u64 min_vruntime;
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
430 struct list_head tasks;
431 struct list_head *balance_iterator;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity *curr, *next, *last;
439 unsigned int nr_spread_over;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
455 #ifdef CONFIG_SMP
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
467 unsigned long h_load;
470 * this cpu's part of tg->shares
472 unsigned long shares;
475 * load.weight at the time we set shares
477 unsigned long rq_weight;
478 #endif
479 #endif
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
515 #ifdef CONFIG_SMP
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain;
555 #endif
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583 u64 nr_migrations_in;
585 struct cfs_rq cfs;
586 struct rt_rq rt;
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list;
594 #endif
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
602 unsigned long nr_uninterruptible;
604 struct task_struct *curr, *idle;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
608 u64 clock;
610 atomic_t nr_iowait;
612 #ifdef CONFIG_SMP
613 struct root_domain *rd;
614 struct sched_domain *sd;
616 unsigned char idle_at_tick;
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
620 /* cpu of this runqueue: */
621 int cpu;
622 int online;
624 unsigned long avg_load_per_task;
626 struct task_struct *migration_thread;
627 struct list_head migration_queue;
628 #endif
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
672 static inline int cpu_of(struct rq *rq)
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 inline void update_rq_clock(struct rq *rq)
698 rq->clock = sched_clock_cpu(cpu_of(rq));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
711 * runqueue_is_locked
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
735 enum {
736 #include "sched_features.h"
739 #undef SCHED_FEAT
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
748 #undef SCHED_FEAT
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
759 #undef SCHED_FEAT
761 static int sched_feat_show(struct seq_file *m, void *v)
763 int i;
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
770 seq_puts(m, "\n");
772 return 0;
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
784 if (cnt > 63)
785 cnt = 63;
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
790 buf[cnt] = 0;
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
809 if (!sched_feat_names[i])
810 return -EINVAL;
812 filp->f_pos += cnt;
814 return cnt;
817 static int sched_feat_open(struct inode *inode, struct file *filp)
819 return single_open(filp, sched_feat_show, NULL);
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
830 static __init int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
835 return 0;
837 late_initcall(sched_init_debug);
839 #endif
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
860 unsigned int sysctl_sched_shares_thresh = 4;
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
866 unsigned int sysctl_sched_rt_period = 1000000;
868 static __read_mostly int scheduler_running;
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
874 int sysctl_sched_rt_runtime = 950000;
876 static inline u64 global_rt_period(void)
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881 static inline u64 global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
896 static inline int task_current(struct rq *rq, struct task_struct *p)
898 return rq->curr == p;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 return task_current(rq, p);
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924 spin_unlock_irq(&rq->lock);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
939 #ifdef CONFIG_SMP
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
956 #ifdef CONFIG_SMP
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
995 struct rq *rq;
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1007 void task_rq_unlock_wait(struct task_struct *p)
1009 struct rq *rq = task_rq(p);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1018 spin_unlock(&rq->lock);
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1033 struct rq *rq;
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1039 return rq;
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq *rq)
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068 static void hrtick_clear(struct rq *rq)
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1089 return HRTIMER_NORESTART;
1092 #ifdef CONFIG_SMP
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg)
1098 struct rq *rq = arg;
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq *rq, u64 delay)
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1116 hrtimer_set_expires(timer, time);
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129 int cpu = (int)(long)hcpu;
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1142 return NOTIFY_DONE;
1145 static __init void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick, 0);
1149 #else
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq *rq, u64 delay)
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL_PINNED, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq *rq)
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1184 static inline void init_rq_hrtick(struct rq *rq)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1200 #ifdef CONFIG_SMP
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1206 static void resched_task(struct task_struct *p)
1208 int cpu;
1210 assert_spin_locked(&task_rq(p)->lock);
1212 if (test_tsk_need_resched(p))
1213 return;
1215 set_tsk_need_resched(p);
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1227 static void resched_cpu(int cpu)
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1238 #ifdef CONFIG_NO_HZ
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu)
1251 struct rq *rq = cpu_rq(cpu);
1253 if (cpu == smp_processor_id())
1254 return;
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq->curr != rq->idle)
1264 return;
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq->idle);
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1308 u64 tmp;
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1318 tmp = (u64)delta_exec * weight;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_add(&rq->load, load);
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447 update_load_sub(&rq->load, load);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1459 struct task_group *parent, *child;
1460 int ret;
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1473 continue;
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1486 return ret;
1489 static int tg_nop(struct task_group *tg, void *data)
1491 return 0;
1493 #endif
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1510 return rq->avg_load_per_task;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518 * Calculate and set the cpu's group shares.
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1524 unsigned long shares;
1525 unsigned long rq_weight;
1527 if (!tg->se[cpu])
1528 return;
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group *tg, void *data)
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1566 for_each_cpu(i, sched_domain_span(sd)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1590 return 0;
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group *tg, void *data)
1600 unsigned long load;
1601 long cpu = (long)data;
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 tg->cfs_rq[cpu]->h_load = load;
1613 return 0;
1616 static void update_shares(struct sched_domain *sd)
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1634 static void update_h_load(long cpu)
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1639 #else
1641 static inline void update_shares(struct sched_domain *sd)
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 #endif
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1669 return 1;
1672 #else
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1685 int ret = 0;
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 return ret;
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1712 return _double_lock_balance(this_rq, busiest);
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721 #endif
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1730 #endif
1732 static void calc_load_account_active(struct rq *this_rq);
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1746 static void inc_nr_running(struct rq *rq)
1748 rq->nr_running++;
1751 static void dec_nr_running(struct rq *rq)
1753 rq->nr_running--;
1756 static void set_load_weight(struct task_struct *p)
1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1765 * SCHED_IDLE tasks get minimal weight:
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1777 static void update_avg(u64 *avg, u64 sample)
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1;
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0;
1812 * __normal_prio - return the priority that is based on the static prio
1814 static inline int __normal_prio(struct task_struct *p)
1816 return p->static_prio;
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1826 static inline int normal_prio(struct task_struct *p)
1828 int prio;
1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1844 static int effective_prio(struct task_struct *p)
1846 p->normal_prio = normal_prio(p);
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1858 * activate_task - move a task to the runqueue.
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--;
1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq);
1870 * deactivate_task - remove a task from the runqueue.
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++;
1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq);
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1885 inline int task_curr(const struct task_struct *p)
1887 return cpu_curr(task_cpu(p)) == p;
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu;
1901 #endif
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1916 #ifdef CONFIG_SMP
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1921 return cpu_rq(cpu)->load.weight;
1925 * Is this task likely cache-hot:
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1930 s64 delta;
1933 * Buddy candidates are cache hot:
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1;
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1948 delta = now - p->se.exec_start;
1950 return delta < (s64)sysctl_sched_migration_cost;
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset;
1962 clock_offset = old_rq->clock - new_rq->clock;
1964 trace_sched_migrate_task(p, new_cpu);
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
1973 #endif
1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981 perf_counter_task_migration(p, new_cpu);
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
1986 __set_task_cpu(p, new_cpu);
1989 struct migration_req {
1990 struct list_head list;
1992 struct task_struct *task;
1993 int dest_cpu;
1995 struct completion done;
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2002 static int
2003 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2005 struct rq *rq = task_rq(p);
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2011 if (!p->se.on_rq && !task_running(rq, p)) {
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2016 init_completion(&req->done);
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
2021 return 1;
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2028 * @p must not be current.
2030 void wait_task_context_switch(struct task_struct *p)
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2051 if (likely(!running))
2052 break;
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2063 cpu_relax();
2068 * wait_task_inactive - wait for a thread to unschedule.
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2083 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2085 unsigned long flags;
2086 int running, on_rq;
2087 unsigned long ncsw;
2088 struct rq *rq;
2090 for (;;) {
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2097 rq = task_rq(p);
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
2113 cpu_relax();
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2121 rq = task_rq_lock(p, &flags);
2122 trace_sched_wait_task(rq, p);
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
2125 ncsw = 0;
2126 if (!match_state || p->state == match_state)
2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128 task_rq_unlock(rq, &flags);
2131 * If it changed from the expected state, bail out now.
2133 if (unlikely(!ncsw))
2134 break;
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2140 * Oops. Go back and try again..
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2166 break;
2169 return ncsw;
2172 /***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2185 void kick_process(struct task_struct *p)
2187 int cpu;
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2195 EXPORT_SYMBOL_GPL(kick_process);
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2204 static unsigned long source_load(int cpu, int type)
2206 struct rq *rq = cpu_rq(cpu);
2207 unsigned long total = weighted_cpuload(cpu);
2209 if (type == 0 || !sched_feat(LB_BIAS))
2210 return total;
2212 return min(rq->cpu_load[type-1], total);
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
2219 static unsigned long target_load(int cpu, int type)
2221 struct rq *rq = cpu_rq(cpu);
2222 unsigned long total = weighted_cpuload(cpu);
2224 if (type == 0 || !sched_feat(LB_BIAS))
2225 return total;
2227 return max(rq->cpu_load[type-1], total);
2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain.
2234 static struct sched_group *
2235 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2242 do {
2243 unsigned long load, avg_load;
2244 int local_group;
2245 int i;
2247 /* Skip over this group if it has no CPUs allowed */
2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed))
2250 continue;
2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group));
2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0;
2258 for_each_cpu(i, sched_group_cpus(group)) {
2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group)
2261 load = source_load(i, load_idx);
2262 else
2263 load = target_load(i, load_idx);
2265 avg_load += load;
2268 /* Adjust by relative CPU power of the group */
2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE);
2272 if (local_group) {
2273 this_load = avg_load;
2274 this = group;
2275 } else if (avg_load < min_load) {
2276 min_load = avg_load;
2277 idlest = group;
2279 } while (group = group->next, group != sd->groups);
2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL;
2283 return idlest;
2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2289 static int
2290 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1;
2294 int i;
2296 /* Traverse only the allowed CPUs */
2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2298 load = weighted_cpuload(i);
2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load;
2302 idlest = i;
2306 return idlest;
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC.
2314 * Balance, ie. select the least loaded group.
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2318 * preempt must be disabled.
2320 static int sched_balance_self(int cpu, int flag)
2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL;
2325 for_each_domain(cpu, tmp) {
2327 * If power savings logic is enabled for a domain, stop there.
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break;
2331 if (tmp->flags & flag)
2332 sd = tmp;
2335 if (sd)
2336 update_shares(sd);
2338 while (sd) {
2339 struct sched_group *group;
2340 int new_cpu, weight;
2342 if (!(sd->flags & flag)) {
2343 sd = sd->child;
2344 continue;
2347 group = find_idlest_group(sd, t, cpu);
2348 if (!group) {
2349 sd = sd->child;
2350 continue;
2353 new_cpu = find_idlest_cpu(group, t, cpu);
2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child;
2357 continue;
2360 /* Now try balancing at a lower domain level of new_cpu */
2361 cpu = new_cpu;
2362 weight = cpumask_weight(sched_domain_span(sd));
2363 sd = NULL;
2364 for_each_domain(cpu, tmp) {
2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2366 break;
2367 if (tmp->flags & flag)
2368 sd = tmp;
2370 /* while loop will break here if sd == NULL */
2373 return cpu;
2376 #endif /* CONFIG_SMP */
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2387 void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info)
2390 int cpu;
2392 preempt_disable();
2393 cpu = task_cpu(p);
2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable();
2399 /***
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2411 * returns failure only if the task is already active.
2413 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2415 int cpu, orig_cpu, this_cpu, success = 0;
2416 unsigned long flags;
2417 long old_state;
2418 struct rq *rq;
2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0;
2423 #ifdef CONFIG_SMP
2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2425 struct sched_domain *sd;
2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p);
2430 for_each_domain(this_cpu, sd) {
2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 update_shares(sd);
2433 break;
2437 #endif
2439 smp_wmb();
2440 rq = task_rq_lock(p, &flags);
2441 update_rq_clock(rq);
2442 old_state = p->state;
2443 if (!(old_state & state))
2444 goto out;
2446 if (p->se.on_rq)
2447 goto out_running;
2449 cpu = task_cpu(p);
2450 orig_cpu = cpu;
2451 this_cpu = smp_processor_id();
2453 #ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate;
2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu);
2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state;
2464 if (!(old_state & state))
2465 goto out;
2466 if (p->se.on_rq)
2467 goto out_running;
2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p);
2473 #ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local);
2477 else {
2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) {
2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break;
2486 #endif /* CONFIG_SCHEDSTATS */
2488 out_activate:
2489 #endif /* CONFIG_SMP */
2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote);
2499 activate_task(rq, p, 1);
2500 success = 1;
2503 * Only attribute actual wakeups done by this task.
2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime;
2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup;
2511 else
2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample);
2515 se->last_wakeup = se->sum_exec_runtime;
2518 out_running:
2519 trace_sched_wakeup(rq, p, success);
2520 check_preempt_curr(rq, p, sync);
2522 p->state = TASK_RUNNING;
2523 #ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p);
2526 #endif
2527 out:
2528 task_rq_unlock(rq, &flags);
2530 return success;
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running.
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2544 int wake_up_process(struct task_struct *p)
2546 return try_to_wake_up(p, TASK_ALL, 0);
2548 EXPORT_SYMBOL(wake_up_process);
2550 int wake_up_state(struct task_struct *p, unsigned int state)
2552 return try_to_wake_up(p, state, 0);
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
2559 * __sched_fork() is basic setup used by init_idle() too:
2561 static void __sched_fork(struct task_struct *p)
2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0;
2565 p->se.prev_sum_exec_runtime = 0;
2566 p->se.nr_migrations = 0;
2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0;
2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2572 #ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0;
2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0;
2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0;
2579 p->se.exec_max = 0;
2580 p->se.slice_max = 0;
2581 p->se.wait_max = 0;
2582 #endif
2584 INIT_LIST_HEAD(&p->rt.run_list);
2585 p->se.on_rq = 0;
2586 INIT_LIST_HEAD(&p->se.group_node);
2588 #ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590 #endif
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2598 p->state = TASK_RUNNING;
2602 * fork()/clone()-time setup:
2604 void sched_fork(struct task_struct *p, int clone_flags)
2606 int cpu = get_cpu();
2608 __sched_fork(p);
2610 #ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612 #endif
2613 set_task_cpu(p, cpu);
2616 * Make sure we do not leak PI boosting priority to the child:
2618 p->prio = current->normal_prio;
2619 if (!rt_prio(p->prio))
2620 p->sched_class = &fair_sched_class;
2622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2623 if (likely(sched_info_on()))
2624 memset(&p->sched_info, 0, sizeof(p->sched_info));
2625 #endif
2626 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2627 p->oncpu = 0;
2628 #endif
2629 #ifdef CONFIG_PREEMPT
2630 /* Want to start with kernel preemption disabled. */
2631 task_thread_info(p)->preempt_count = 1;
2632 #endif
2633 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2635 put_cpu();
2639 * wake_up_new_task - wake up a newly created task for the first time.
2641 * This function will do some initial scheduler statistics housekeeping
2642 * that must be done for every newly created context, then puts the task
2643 * on the runqueue and wakes it.
2645 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2647 unsigned long flags;
2648 struct rq *rq;
2650 rq = task_rq_lock(p, &flags);
2651 BUG_ON(p->state != TASK_RUNNING);
2652 update_rq_clock(rq);
2654 p->prio = effective_prio(p);
2656 if (!p->sched_class->task_new || !current->se.on_rq) {
2657 activate_task(rq, p, 0);
2658 } else {
2660 * Let the scheduling class do new task startup
2661 * management (if any):
2663 p->sched_class->task_new(rq, p);
2664 inc_nr_running(rq);
2666 trace_sched_wakeup_new(rq, p, 1);
2667 check_preempt_curr(rq, p, 0);
2668 #ifdef CONFIG_SMP
2669 if (p->sched_class->task_wake_up)
2670 p->sched_class->task_wake_up(rq, p);
2671 #endif
2672 task_rq_unlock(rq, &flags);
2675 #ifdef CONFIG_PREEMPT_NOTIFIERS
2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2679 * @notifier: notifier struct to register
2681 void preempt_notifier_register(struct preempt_notifier *notifier)
2683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2685 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2688 * preempt_notifier_unregister - no longer interested in preemption notifications
2689 * @notifier: notifier struct to unregister
2691 * This is safe to call from within a preemption notifier.
2693 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2695 hlist_del(&notifier->link);
2697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2699 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2701 struct preempt_notifier *notifier;
2702 struct hlist_node *node;
2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2708 static void
2709 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node;
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_out(notifier, next);
2719 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2721 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2725 static void
2726 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next)
2731 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch
2736 * @prev: the current task that is being switched out
2737 * @next: the task we are going to switch to.
2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context
2741 * switch.
2743 * prepare_task_switch sets up locking and calls architecture specific
2744 * hooks.
2746 static inline void
2747 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2748 struct task_struct *next)
2750 fire_sched_out_preempt_notifiers(prev, next);
2751 prepare_lock_switch(rq, next);
2752 prepare_arch_switch(next);
2756 * finish_task_switch - clean up after a task-switch
2757 * @rq: runqueue associated with task-switch
2758 * @prev: the thread we just switched away from.
2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions.
2765 * Note that we may have delayed dropping an mm in context_switch(). If
2766 * so, we finish that here outside of the runqueue lock. (Doing it
2767 * with the lock held can cause deadlocks; see schedule() for
2768 * details.)
2770 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2771 __releases(rq->lock)
2773 struct mm_struct *mm = rq->prev_mm;
2774 long prev_state;
2775 #ifdef CONFIG_SMP
2776 int post_schedule = 0;
2778 if (current->sched_class->needs_post_schedule)
2779 post_schedule = current->sched_class->needs_post_schedule(rq);
2780 #endif
2782 rq->prev_mm = NULL;
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2795 prev_state = prev->state;
2796 finish_arch_switch(prev);
2797 perf_counter_task_sched_in(current, cpu_of(rq));
2798 finish_lock_switch(rq, prev);
2799 #ifdef CONFIG_SMP
2800 if (post_schedule)
2801 current->sched_class->post_schedule(rq);
2802 #endif
2804 fire_sched_in_preempt_notifiers(current);
2805 if (mm)
2806 mmdrop(mm);
2807 if (unlikely(prev_state == TASK_DEAD)) {
2809 * Remove function-return probe instances associated with this
2810 * task and put them back on the free list.
2812 kprobe_flush_task(prev);
2813 put_task_struct(prev);
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2821 asmlinkage void schedule_tail(struct task_struct *prev)
2822 __releases(rq->lock)
2824 struct rq *rq = this_rq();
2826 finish_task_switch(rq, prev);
2827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */
2829 preempt_enable();
2830 #endif
2831 if (current->set_child_tid)
2832 put_user(task_pid_vnr(current), current->set_child_tid);
2836 * context_switch - switch to the new MM and the new
2837 * thread's register state.
2839 static inline void
2840 context_switch(struct rq *rq, struct task_struct *prev,
2841 struct task_struct *next)
2843 struct mm_struct *mm, *oldmm;
2845 prepare_task_switch(rq, prev, next);
2846 trace_sched_switch(rq, prev, next);
2847 mm = next->mm;
2848 oldmm = prev->active_mm;
2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into
2852 * one hypercall.
2854 arch_start_context_switch(prev);
2856 if (unlikely(!mm)) {
2857 next->active_mm = oldmm;
2858 atomic_inc(&oldmm->mm_count);
2859 enter_lazy_tlb(oldmm, next);
2860 } else
2861 switch_mm(oldmm, mm, next);
2863 if (unlikely(!prev->mm)) {
2864 prev->active_mm = NULL;
2865 rq->prev_mm = oldmm;
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875 #endif
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
2880 barrier();
2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid.
2886 finish_task_switch(this_rq(), prev);
2890 * nr_running, nr_uninterruptible and nr_context_switches:
2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup.
2896 unsigned long nr_running(void)
2898 unsigned long i, sum = 0;
2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running;
2903 return sum;
2906 unsigned long nr_uninterruptible(void)
2908 unsigned long i, sum = 0;
2910 for_each_possible_cpu(i)
2911 sum += cpu_rq(i)->nr_uninterruptible;
2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though:
2917 if (unlikely((long)sum < 0))
2918 sum = 0;
2920 return sum;
2923 unsigned long long nr_context_switches(void)
2925 int i;
2926 unsigned long long sum = 0;
2928 for_each_possible_cpu(i)
2929 sum += cpu_rq(i)->nr_switches;
2931 return sum;
2934 unsigned long nr_iowait(void)
2936 unsigned long i, sum = 0;
2938 for_each_possible_cpu(i)
2939 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2941 return sum;
2944 /* Variables and functions for calc_load */
2945 static atomic_long_t calc_load_tasks;
2946 static unsigned long calc_load_update;
2947 unsigned long avenrun[3];
2948 EXPORT_SYMBOL(avenrun);
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2956 * These values are estimates at best, so no need for locking.
2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
2965 static unsigned long
2966 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2977 void calc_global_load(void)
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
2982 if (time_before(jiffies, upd))
2983 return;
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2992 calc_load_update += LOAD_FREQ;
2996 * Either called from update_cpu_load() or from a cpu going idle
2998 static void calc_load_account_active(struct rq *this_rq)
3000 long nr_active, delta;
3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible;
3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks);
3013 * Externally visible per-cpu scheduler statistics:
3014 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3016 u64 cpu_nr_migrations(int cpu)
3018 return cpu_rq(cpu)->nr_migrations_in;
3022 * Update rq->cpu_load[] statistics. This function is usually called every
3023 * scheduler tick (TICK_NSEC).
3025 static void update_cpu_load(struct rq *this_rq)
3027 unsigned long this_load = this_rq->load.weight;
3028 int i, scale;
3030 this_rq->nr_load_updates++;
3032 /* Update our load: */
3033 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3034 unsigned long old_load, new_load;
3036 /* scale is effectively 1 << i now, and >> i divides by scale */
3038 old_load = this_rq->cpu_load[i];
3039 new_load = this_load;
3041 * Round up the averaging division if load is increasing. This
3042 * prevents us from getting stuck on 9 if the load is 10, for
3043 * example.
3045 if (new_load > old_load)
3046 new_load += scale-1;
3047 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3050 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3051 this_rq->calc_load_update += LOAD_FREQ;
3052 calc_load_account_active(this_rq);
3056 #ifdef CONFIG_SMP
3059 * double_rq_lock - safely lock two runqueues
3061 * Note this does not disable interrupts like task_rq_lock,
3062 * you need to do so manually before calling.
3064 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3065 __acquires(rq1->lock)
3066 __acquires(rq2->lock)
3068 BUG_ON(!irqs_disabled());
3069 if (rq1 == rq2) {
3070 spin_lock(&rq1->lock);
3071 __acquire(rq2->lock); /* Fake it out ;) */
3072 } else {
3073 if (rq1 < rq2) {
3074 spin_lock(&rq1->lock);
3075 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3076 } else {
3077 spin_lock(&rq2->lock);
3078 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3081 update_rq_clock(rq1);
3082 update_rq_clock(rq2);
3086 * double_rq_unlock - safely unlock two runqueues
3088 * Note this does not restore interrupts like task_rq_unlock,
3089 * you need to do so manually after calling.
3091 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3092 __releases(rq1->lock)
3093 __releases(rq2->lock)
3095 spin_unlock(&rq1->lock);
3096 if (rq1 != rq2)
3097 spin_unlock(&rq2->lock);
3098 else
3099 __release(rq2->lock);
3103 * If dest_cpu is allowed for this process, migrate the task to it.
3104 * This is accomplished by forcing the cpu_allowed mask to only
3105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3106 * the cpu_allowed mask is restored.
3108 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3110 struct migration_req req;
3111 unsigned long flags;
3112 struct rq *rq;
3114 rq = task_rq_lock(p, &flags);
3115 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3116 || unlikely(!cpu_active(dest_cpu)))
3117 goto out;
3119 /* force the process onto the specified CPU */
3120 if (migrate_task(p, dest_cpu, &req)) {
3121 /* Need to wait for migration thread (might exit: take ref). */
3122 struct task_struct *mt = rq->migration_thread;
3124 get_task_struct(mt);
3125 task_rq_unlock(rq, &flags);
3126 wake_up_process(mt);
3127 put_task_struct(mt);
3128 wait_for_completion(&req.done);
3130 return;
3132 out:
3133 task_rq_unlock(rq, &flags);
3137 * sched_exec - execve() is a valuable balancing opportunity, because at
3138 * this point the task has the smallest effective memory and cache footprint.
3140 void sched_exec(void)
3142 int new_cpu, this_cpu = get_cpu();
3143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3144 put_cpu();
3145 if (new_cpu != this_cpu)
3146 sched_migrate_task(current, new_cpu);
3150 * pull_task - move a task from a remote runqueue to the local runqueue.
3151 * Both runqueues must be locked.
3153 static void pull_task(struct rq *src_rq, struct task_struct *p,
3154 struct rq *this_rq, int this_cpu)
3156 deactivate_task(src_rq, p, 0);
3157 set_task_cpu(p, this_cpu);
3158 activate_task(this_rq, p, 0);
3160 * Note that idle threads have a prio of MAX_PRIO, for this test
3161 * to be always true for them.
3163 check_preempt_curr(this_rq, p, 0);
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3169 static
3170 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3171 struct sched_domain *sd, enum cpu_idle_type idle,
3172 int *all_pinned)
3174 int tsk_cache_hot = 0;
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3182 schedstat_inc(p, se.nr_failed_migrations_affine);
3183 return 0;
3185 *all_pinned = 0;
3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running);
3189 return 0;
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3198 tsk_cache_hot = task_hot(p, rq->clock, sd);
3199 if (!tsk_cache_hot ||
3200 sd->nr_balance_failed > sd->cache_nice_tries) {
3201 #ifdef CONFIG_SCHEDSTATS
3202 if (tsk_cache_hot) {
3203 schedstat_inc(sd, lb_hot_gained[idle]);
3204 schedstat_inc(p, se.nr_forced_migrations);
3206 #endif
3207 return 1;
3210 if (tsk_cache_hot) {
3211 schedstat_inc(p, se.nr_failed_migrations_hot);
3212 return 0;
3214 return 1;
3217 static unsigned long
3218 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 unsigned long max_load_move, struct sched_domain *sd,
3220 enum cpu_idle_type idle, int *all_pinned,
3221 int *this_best_prio, struct rq_iterator *iterator)
3223 int loops = 0, pulled = 0, pinned = 0;
3224 struct task_struct *p;
3225 long rem_load_move = max_load_move;
3227 if (max_load_move == 0)
3228 goto out;
3230 pinned = 1;
3233 * Start the load-balancing iterator:
3235 p = iterator->start(iterator->arg);
3236 next:
3237 if (!p || loops++ > sysctl_sched_nr_migrate)
3238 goto out;
3240 if ((p->se.load.weight >> 1) > rem_load_move ||
3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3242 p = iterator->next(iterator->arg);
3243 goto next;
3246 pull_task(busiest, p, this_rq, this_cpu);
3247 pulled++;
3248 rem_load_move -= p->se.load.weight;
3250 #ifdef CONFIG_PREEMPT
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical
3254 * section.
3256 if (idle == CPU_NEWLY_IDLE)
3257 goto out;
3258 #endif
3261 * We only want to steal up to the prescribed amount of weighted load.
3263 if (rem_load_move > 0) {
3264 if (p->prio < *this_best_prio)
3265 *this_best_prio = p->prio;
3266 p = iterator->next(iterator->arg);
3267 goto next;
3269 out:
3271 * Right now, this is one of only two places pull_task() is called,
3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task().
3275 schedstat_add(sd, lb_gained[idle], pulled);
3277 if (all_pinned)
3278 *all_pinned = pinned;
3280 return max_load_move - rem_load_move;
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise.
3288 * Called with both runqueues locked.
3290 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 unsigned long max_load_move,
3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *all_pinned)
3295 const struct sched_class *class = sched_class_highest;
3296 unsigned long total_load_moved = 0;
3297 int this_best_prio = this_rq->curr->prio;
3299 do {
3300 total_load_moved +=
3301 class->load_balance(this_rq, this_cpu, busiest,
3302 max_load_move - total_load_moved,
3303 sd, idle, all_pinned, &this_best_prio);
3304 class = class->next;
3306 #ifdef CONFIG_PREEMPT
3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section.
3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3313 break;
3314 #endif
3315 } while (class && max_load_move > total_load_moved);
3317 return total_load_moved > 0;
3320 static int
3321 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 struct rq_iterator *iterator)
3325 struct task_struct *p = iterator->start(iterator->arg);
3326 int pinned = 0;
3328 while (p) {
3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3330 pull_task(busiest, p, this_rq, this_cpu);
3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task().
3336 schedstat_inc(sd, lb_gained[idle]);
3338 return 1;
3340 p = iterator->next(iterator->arg);
3343 return 0;
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise.
3351 * Called with both runqueues locked.
3353 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle)
3356 const struct sched_class *class;
3358 for (class = sched_class_highest; class; class = class->next)
3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3360 return 1;
3362 return 0;
3364 /********** Helpers for find_busiest_group ************************/
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
3369 struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */
3376 /** Statistics of this group */
3377 unsigned long this_load;
3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running;
3381 /* Statistics of the busiest group */
3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running;
3386 int group_imb; /* Is there imbalance in this sd */
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */
3394 #endif
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3400 struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3413 static inline unsigned int group_first_cpu(struct sched_group *group)
3415 return cpumask_first(sched_group_cpus(group));
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3423 static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle)
3426 int load_idx;
3428 switch (idle) {
3429 case CPU_NOT_IDLE:
3430 load_idx = sd->busy_idx;
3431 break;
3433 case CPU_NEWLY_IDLE:
3434 load_idx = sd->newidle_idx;
3435 break;
3436 default:
3437 load_idx = sd->idle_idx;
3438 break;
3441 return load_idx;
3445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3454 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3458 * Busy processors will not participate in power savings
3459 * balance.
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0;
3463 else {
3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0;
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group.
3480 static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3484 if (!sds->power_savings_balance)
3485 return;
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0;
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running)
3502 return;
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3507 * for saving power
3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running;
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3523 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3524 return;
3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running;
3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3541 * Description:
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0.
3549 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance)
3552 if (!sds->power_savings_balance)
3553 return 0;
3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min)
3557 return 0;
3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min;
3562 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3563 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3564 group_first_cpu(sds->group_leader);
3567 return 1;
3570 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3571 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3572 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3574 return;
3577 static inline void update_sd_power_savings_stats(struct sched_group *group,
3578 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3580 return;
3583 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3584 int this_cpu, unsigned long *imbalance)
3586 return 0;
3588 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3592 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3593 * @group: sched_group whose statistics are to be updated.
3594 * @this_cpu: Cpu for which load balance is currently performed.
3595 * @idle: Idle status of this_cpu
3596 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3597 * @sd_idle: Idle status of the sched_domain containing group.
3598 * @local_group: Does group contain this_cpu.
3599 * @cpus: Set of cpus considered for load balancing.
3600 * @balance: Should we balance.
3601 * @sgs: variable to hold the statistics for this group.
3603 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3604 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3605 int local_group, const struct cpumask *cpus,
3606 int *balance, struct sg_lb_stats *sgs)
3608 unsigned long load, max_cpu_load, min_cpu_load;
3609 int i;
3610 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3611 unsigned long sum_avg_load_per_task;
3612 unsigned long avg_load_per_task;
3614 if (local_group)
3615 balance_cpu = group_first_cpu(group);
3617 /* Tally up the load of all CPUs in the group */
3618 sum_avg_load_per_task = avg_load_per_task = 0;
3619 max_cpu_load = 0;
3620 min_cpu_load = ~0UL;
3622 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3623 struct rq *rq = cpu_rq(i);
3625 if (*sd_idle && rq->nr_running)
3626 *sd_idle = 0;
3628 /* Bias balancing toward cpus of our domain */
3629 if (local_group) {
3630 if (idle_cpu(i) && !first_idle_cpu) {
3631 first_idle_cpu = 1;
3632 balance_cpu = i;
3635 load = target_load(i, load_idx);
3636 } else {
3637 load = source_load(i, load_idx);
3638 if (load > max_cpu_load)
3639 max_cpu_load = load;
3640 if (min_cpu_load > load)
3641 min_cpu_load = load;
3644 sgs->group_load += load;
3645 sgs->sum_nr_running += rq->nr_running;
3646 sgs->sum_weighted_load += weighted_cpuload(i);
3648 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3652 * First idle cpu or the first cpu(busiest) in this sched group
3653 * is eligible for doing load balancing at this and above
3654 * domains. In the newly idle case, we will allow all the cpu's
3655 * to do the newly idle load balance.
3657 if (idle != CPU_NEWLY_IDLE && local_group &&
3658 balance_cpu != this_cpu && balance) {
3659 *balance = 0;
3660 return;
3663 /* Adjust by relative CPU power of the group */
3664 sgs->avg_load = sg_div_cpu_power(group,
3665 sgs->group_load * SCHED_LOAD_SCALE);
3669 * Consider the group unbalanced when the imbalance is larger
3670 * than the average weight of two tasks.
3672 * APZ: with cgroup the avg task weight can vary wildly and
3673 * might not be a suitable number - should we keep a
3674 * normalized nr_running number somewhere that negates
3675 * the hierarchy?
3677 avg_load_per_task = sg_div_cpu_power(group,
3678 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3680 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3681 sgs->group_imb = 1;
3683 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3688 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3689 * @sd: sched_domain whose statistics are to be updated.
3690 * @this_cpu: Cpu for which load balance is currently performed.
3691 * @idle: Idle status of this_cpu
3692 * @sd_idle: Idle status of the sched_domain containing group.
3693 * @cpus: Set of cpus considered for load balancing.
3694 * @balance: Should we balance.
3695 * @sds: variable to hold the statistics for this sched_domain.
3697 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3698 enum cpu_idle_type idle, int *sd_idle,
3699 const struct cpumask *cpus, int *balance,
3700 struct sd_lb_stats *sds)
3702 struct sched_group *group = sd->groups;
3703 struct sg_lb_stats sgs;
3704 int load_idx;
3706 init_sd_power_savings_stats(sd, sds, idle);
3707 load_idx = get_sd_load_idx(sd, idle);
3709 do {
3710 int local_group;
3712 local_group = cpumask_test_cpu(this_cpu,
3713 sched_group_cpus(group));
3714 memset(&sgs, 0, sizeof(sgs));
3715 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3716 local_group, cpus, balance, &sgs);
3718 if (local_group && balance && !(*balance))
3719 return;
3721 sds->total_load += sgs.group_load;
3722 sds->total_pwr += group->__cpu_power;
3724 if (local_group) {
3725 sds->this_load = sgs.avg_load;
3726 sds->this = group;
3727 sds->this_nr_running = sgs.sum_nr_running;
3728 sds->this_load_per_task = sgs.sum_weighted_load;
3729 } else if (sgs.avg_load > sds->max_load &&
3730 (sgs.sum_nr_running > sgs.group_capacity ||
3731 sgs.group_imb)) {
3732 sds->max_load = sgs.avg_load;
3733 sds->busiest = group;
3734 sds->busiest_nr_running = sgs.sum_nr_running;
3735 sds->busiest_load_per_task = sgs.sum_weighted_load;
3736 sds->group_imb = sgs.group_imb;
3739 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3740 group = group->next;
3741 } while (group != sd->groups);
3746 * fix_small_imbalance - Calculate the minor imbalance that exists
3747 * amongst the groups of a sched_domain, during
3748 * load balancing.
3749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3750 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3751 * @imbalance: Variable to store the imbalance.
3753 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3754 int this_cpu, unsigned long *imbalance)
3756 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3757 unsigned int imbn = 2;
3759 if (sds->this_nr_running) {
3760 sds->this_load_per_task /= sds->this_nr_running;
3761 if (sds->busiest_load_per_task >
3762 sds->this_load_per_task)
3763 imbn = 1;
3764 } else
3765 sds->this_load_per_task =
3766 cpu_avg_load_per_task(this_cpu);
3768 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3769 sds->busiest_load_per_task * imbn) {
3770 *imbalance = sds->busiest_load_per_task;
3771 return;
3775 * OK, we don't have enough imbalance to justify moving tasks,
3776 * however we may be able to increase total CPU power used by
3777 * moving them.
3780 pwr_now += sds->busiest->__cpu_power *
3781 min(sds->busiest_load_per_task, sds->max_load);
3782 pwr_now += sds->this->__cpu_power *
3783 min(sds->this_load_per_task, sds->this_load);
3784 pwr_now /= SCHED_LOAD_SCALE;
3786 /* Amount of load we'd subtract */
3787 tmp = sg_div_cpu_power(sds->busiest,
3788 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3789 if (sds->max_load > tmp)
3790 pwr_move += sds->busiest->__cpu_power *
3791 min(sds->busiest_load_per_task, sds->max_load - tmp);
3793 /* Amount of load we'd add */
3794 if (sds->max_load * sds->busiest->__cpu_power <
3795 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3796 tmp = sg_div_cpu_power(sds->this,
3797 sds->max_load * sds->busiest->__cpu_power);
3798 else
3799 tmp = sg_div_cpu_power(sds->this,
3800 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3801 pwr_move += sds->this->__cpu_power *
3802 min(sds->this_load_per_task, sds->this_load + tmp);
3803 pwr_move /= SCHED_LOAD_SCALE;
3805 /* Move if we gain throughput */
3806 if (pwr_move > pwr_now)
3807 *imbalance = sds->busiest_load_per_task;
3811 * calculate_imbalance - Calculate the amount of imbalance present within the
3812 * groups of a given sched_domain during load balance.
3813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3814 * @this_cpu: Cpu for which currently load balance is being performed.
3815 * @imbalance: The variable to store the imbalance.
3817 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3818 unsigned long *imbalance)
3820 unsigned long max_pull;
3822 * In the presence of smp nice balancing, certain scenarios can have
3823 * max load less than avg load(as we skip the groups at or below
3824 * its cpu_power, while calculating max_load..)
3826 if (sds->max_load < sds->avg_load) {
3827 *imbalance = 0;
3828 return fix_small_imbalance(sds, this_cpu, imbalance);
3831 /* Don't want to pull so many tasks that a group would go idle */
3832 max_pull = min(sds->max_load - sds->avg_load,
3833 sds->max_load - sds->busiest_load_per_task);
3835 /* How much load to actually move to equalise the imbalance */
3836 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3837 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3838 / SCHED_LOAD_SCALE;
3841 * if *imbalance is less than the average load per runnable task
3842 * there is no gaurantee that any tasks will be moved so we'll have
3843 * a think about bumping its value to force at least one task to be
3844 * moved
3846 if (*imbalance < sds->busiest_load_per_task)
3847 return fix_small_imbalance(sds, this_cpu, imbalance);
3850 /******* find_busiest_group() helpers end here *********************/
3853 * find_busiest_group - Returns the busiest group within the sched_domain
3854 * if there is an imbalance. If there isn't an imbalance, and
3855 * the user has opted for power-savings, it returns a group whose
3856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3857 * such a group exists.
3859 * Also calculates the amount of weighted load which should be moved
3860 * to restore balance.
3862 * @sd: The sched_domain whose busiest group is to be returned.
3863 * @this_cpu: The cpu for which load balancing is currently being performed.
3864 * @imbalance: Variable which stores amount of weighted load which should
3865 * be moved to restore balance/put a group to idle.
3866 * @idle: The idle status of this_cpu.
3867 * @sd_idle: The idleness of sd
3868 * @cpus: The set of CPUs under consideration for load-balancing.
3869 * @balance: Pointer to a variable indicating if this_cpu
3870 * is the appropriate cpu to perform load balancing at this_level.
3872 * Returns: - the busiest group if imbalance exists.
3873 * - If no imbalance and user has opted for power-savings balance,
3874 * return the least loaded group whose CPUs can be
3875 * put to idle by rebalancing its tasks onto our group.
3877 static struct sched_group *
3878 find_busiest_group(struct sched_domain *sd, int this_cpu,
3879 unsigned long *imbalance, enum cpu_idle_type idle,
3880 int *sd_idle, const struct cpumask *cpus, int *balance)
3882 struct sd_lb_stats sds;
3884 memset(&sds, 0, sizeof(sds));
3887 * Compute the various statistics relavent for load balancing at
3888 * this level.
3890 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3891 balance, &sds);
3893 /* Cases where imbalance does not exist from POV of this_cpu */
3894 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3895 * at this level.
3896 * 2) There is no busy sibling group to pull from.
3897 * 3) This group is the busiest group.
3898 * 4) This group is more busy than the avg busieness at this
3899 * sched_domain.
3900 * 5) The imbalance is within the specified limit.
3901 * 6) Any rebalance would lead to ping-pong
3903 if (balance && !(*balance))
3904 goto ret;
3906 if (!sds.busiest || sds.busiest_nr_running == 0)
3907 goto out_balanced;
3909 if (sds.this_load >= sds.max_load)
3910 goto out_balanced;
3912 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3914 if (sds.this_load >= sds.avg_load)
3915 goto out_balanced;
3917 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3918 goto out_balanced;
3920 sds.busiest_load_per_task /= sds.busiest_nr_running;
3921 if (sds.group_imb)
3922 sds.busiest_load_per_task =
3923 min(sds.busiest_load_per_task, sds.avg_load);
3926 * We're trying to get all the cpus to the average_load, so we don't
3927 * want to push ourselves above the average load, nor do we wish to
3928 * reduce the max loaded cpu below the average load, as either of these
3929 * actions would just result in more rebalancing later, and ping-pong
3930 * tasks around. Thus we look for the minimum possible imbalance.
3931 * Negative imbalances (*we* are more loaded than anyone else) will
3932 * be counted as no imbalance for these purposes -- we can't fix that
3933 * by pulling tasks to us. Be careful of negative numbers as they'll
3934 * appear as very large values with unsigned longs.
3936 if (sds.max_load <= sds.busiest_load_per_task)
3937 goto out_balanced;
3939 /* Looks like there is an imbalance. Compute it */
3940 calculate_imbalance(&sds, this_cpu, imbalance);
3941 return sds.busiest;
3943 out_balanced:
3945 * There is no obvious imbalance. But check if we can do some balancing
3946 * to save power.
3948 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3949 return sds.busiest;
3950 ret:
3951 *imbalance = 0;
3952 return NULL;
3956 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3958 static struct rq *
3959 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3960 unsigned long imbalance, const struct cpumask *cpus)
3962 struct rq *busiest = NULL, *rq;
3963 unsigned long max_load = 0;
3964 int i;
3966 for_each_cpu(i, sched_group_cpus(group)) {
3967 unsigned long wl;
3969 if (!cpumask_test_cpu(i, cpus))
3970 continue;
3972 rq = cpu_rq(i);
3973 wl = weighted_cpuload(i);
3975 if (rq->nr_running == 1 && wl > imbalance)
3976 continue;
3978 if (wl > max_load) {
3979 max_load = wl;
3980 busiest = rq;
3984 return busiest;
3988 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3989 * so long as it is large enough.
3991 #define MAX_PINNED_INTERVAL 512
3993 /* Working cpumask for load_balance and load_balance_newidle. */
3994 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3997 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3998 * tasks if there is an imbalance.
4000 static int load_balance(int this_cpu, struct rq *this_rq,
4001 struct sched_domain *sd, enum cpu_idle_type idle,
4002 int *balance)
4004 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4005 struct sched_group *group;
4006 unsigned long imbalance;
4007 struct rq *busiest;
4008 unsigned long flags;
4009 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4011 cpumask_setall(cpus);
4014 * When power savings policy is enabled for the parent domain, idle
4015 * sibling can pick up load irrespective of busy siblings. In this case,
4016 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4017 * portraying it as CPU_NOT_IDLE.
4019 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4020 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4021 sd_idle = 1;
4023 schedstat_inc(sd, lb_count[idle]);
4025 redo:
4026 update_shares(sd);
4027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4028 cpus, balance);
4030 if (*balance == 0)
4031 goto out_balanced;
4033 if (!group) {
4034 schedstat_inc(sd, lb_nobusyg[idle]);
4035 goto out_balanced;
4038 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4039 if (!busiest) {
4040 schedstat_inc(sd, lb_nobusyq[idle]);
4041 goto out_balanced;
4044 BUG_ON(busiest == this_rq);
4046 schedstat_add(sd, lb_imbalance[idle], imbalance);
4048 ld_moved = 0;
4049 if (busiest->nr_running > 1) {
4051 * Attempt to move tasks. If find_busiest_group has found
4052 * an imbalance but busiest->nr_running <= 1, the group is
4053 * still unbalanced. ld_moved simply stays zero, so it is
4054 * correctly treated as an imbalance.
4056 local_irq_save(flags);
4057 double_rq_lock(this_rq, busiest);
4058 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4059 imbalance, sd, idle, &all_pinned);
4060 double_rq_unlock(this_rq, busiest);
4061 local_irq_restore(flags);
4064 * some other cpu did the load balance for us.
4066 if (ld_moved && this_cpu != smp_processor_id())
4067 resched_cpu(this_cpu);
4069 /* All tasks on this runqueue were pinned by CPU affinity */
4070 if (unlikely(all_pinned)) {
4071 cpumask_clear_cpu(cpu_of(busiest), cpus);
4072 if (!cpumask_empty(cpus))
4073 goto redo;
4074 goto out_balanced;
4078 if (!ld_moved) {
4079 schedstat_inc(sd, lb_failed[idle]);
4080 sd->nr_balance_failed++;
4082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4084 spin_lock_irqsave(&busiest->lock, flags);
4086 /* don't kick the migration_thread, if the curr
4087 * task on busiest cpu can't be moved to this_cpu
4089 if (!cpumask_test_cpu(this_cpu,
4090 &busiest->curr->cpus_allowed)) {
4091 spin_unlock_irqrestore(&busiest->lock, flags);
4092 all_pinned = 1;
4093 goto out_one_pinned;
4096 if (!busiest->active_balance) {
4097 busiest->active_balance = 1;
4098 busiest->push_cpu = this_cpu;
4099 active_balance = 1;
4101 spin_unlock_irqrestore(&busiest->lock, flags);
4102 if (active_balance)
4103 wake_up_process(busiest->migration_thread);
4106 * We've kicked active balancing, reset the failure
4107 * counter.
4109 sd->nr_balance_failed = sd->cache_nice_tries+1;
4111 } else
4112 sd->nr_balance_failed = 0;
4114 if (likely(!active_balance)) {
4115 /* We were unbalanced, so reset the balancing interval */
4116 sd->balance_interval = sd->min_interval;
4117 } else {
4119 * If we've begun active balancing, start to back off. This
4120 * case may not be covered by the all_pinned logic if there
4121 * is only 1 task on the busy runqueue (because we don't call
4122 * move_tasks).
4124 if (sd->balance_interval < sd->max_interval)
4125 sd->balance_interval *= 2;
4128 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4130 ld_moved = -1;
4132 goto out;
4134 out_balanced:
4135 schedstat_inc(sd, lb_balanced[idle]);
4137 sd->nr_balance_failed = 0;
4139 out_one_pinned:
4140 /* tune up the balancing interval */
4141 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4142 (sd->balance_interval < sd->max_interval))
4143 sd->balance_interval *= 2;
4145 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 ld_moved = -1;
4148 else
4149 ld_moved = 0;
4150 out:
4151 if (ld_moved)
4152 update_shares(sd);
4153 return ld_moved;
4157 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4158 * tasks if there is an imbalance.
4160 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4161 * this_rq is locked.
4163 static int
4164 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4166 struct sched_group *group;
4167 struct rq *busiest = NULL;
4168 unsigned long imbalance;
4169 int ld_moved = 0;
4170 int sd_idle = 0;
4171 int all_pinned = 0;
4172 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4174 cpumask_setall(cpus);
4177 * When power savings policy is enabled for the parent domain, idle
4178 * sibling can pick up load irrespective of busy siblings. In this case,
4179 * let the state of idle sibling percolate up as IDLE, instead of
4180 * portraying it as CPU_NOT_IDLE.
4182 if (sd->flags & SD_SHARE_CPUPOWER &&
4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4184 sd_idle = 1;
4186 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4187 redo:
4188 update_shares_locked(this_rq, sd);
4189 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4190 &sd_idle, cpus, NULL);
4191 if (!group) {
4192 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4193 goto out_balanced;
4196 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4197 if (!busiest) {
4198 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4199 goto out_balanced;
4202 BUG_ON(busiest == this_rq);
4204 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4206 ld_moved = 0;
4207 if (busiest->nr_running > 1) {
4208 /* Attempt to move tasks */
4209 double_lock_balance(this_rq, busiest);
4210 /* this_rq->clock is already updated */
4211 update_rq_clock(busiest);
4212 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4213 imbalance, sd, CPU_NEWLY_IDLE,
4214 &all_pinned);
4215 double_unlock_balance(this_rq, busiest);
4217 if (unlikely(all_pinned)) {
4218 cpumask_clear_cpu(cpu_of(busiest), cpus);
4219 if (!cpumask_empty(cpus))
4220 goto redo;
4224 if (!ld_moved) {
4225 int active_balance = 0;
4227 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4230 return -1;
4232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4233 return -1;
4235 if (sd->nr_balance_failed++ < 2)
4236 return -1;
4239 * The only task running in a non-idle cpu can be moved to this
4240 * cpu in an attempt to completely freeup the other CPU
4241 * package. The same method used to move task in load_balance()
4242 * have been extended for load_balance_newidle() to speedup
4243 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4245 * The package power saving logic comes from
4246 * find_busiest_group(). If there are no imbalance, then
4247 * f_b_g() will return NULL. However when sched_mc={1,2} then
4248 * f_b_g() will select a group from which a running task may be
4249 * pulled to this cpu in order to make the other package idle.
4250 * If there is no opportunity to make a package idle and if
4251 * there are no imbalance, then f_b_g() will return NULL and no
4252 * action will be taken in load_balance_newidle().
4254 * Under normal task pull operation due to imbalance, there
4255 * will be more than one task in the source run queue and
4256 * move_tasks() will succeed. ld_moved will be true and this
4257 * active balance code will not be triggered.
4260 /* Lock busiest in correct order while this_rq is held */
4261 double_lock_balance(this_rq, busiest);
4264 * don't kick the migration_thread, if the curr
4265 * task on busiest cpu can't be moved to this_cpu
4267 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4268 double_unlock_balance(this_rq, busiest);
4269 all_pinned = 1;
4270 return ld_moved;
4273 if (!busiest->active_balance) {
4274 busiest->active_balance = 1;
4275 busiest->push_cpu = this_cpu;
4276 active_balance = 1;
4279 double_unlock_balance(this_rq, busiest);
4281 * Should not call ttwu while holding a rq->lock
4283 spin_unlock(&this_rq->lock);
4284 if (active_balance)
4285 wake_up_process(busiest->migration_thread);
4286 spin_lock(&this_rq->lock);
4288 } else
4289 sd->nr_balance_failed = 0;
4291 update_shares_locked(this_rq, sd);
4292 return ld_moved;
4294 out_balanced:
4295 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4298 return -1;
4299 sd->nr_balance_failed = 0;
4301 return 0;
4305 * idle_balance is called by schedule() if this_cpu is about to become
4306 * idle. Attempts to pull tasks from other CPUs.
4308 static void idle_balance(int this_cpu, struct rq *this_rq)
4310 struct sched_domain *sd;
4311 int pulled_task = 0;
4312 unsigned long next_balance = jiffies + HZ;
4314 for_each_domain(this_cpu, sd) {
4315 unsigned long interval;
4317 if (!(sd->flags & SD_LOAD_BALANCE))
4318 continue;
4320 if (sd->flags & SD_BALANCE_NEWIDLE)
4321 /* If we've pulled tasks over stop searching: */
4322 pulled_task = load_balance_newidle(this_cpu, this_rq,
4323 sd);
4325 interval = msecs_to_jiffies(sd->balance_interval);
4326 if (time_after(next_balance, sd->last_balance + interval))
4327 next_balance = sd->last_balance + interval;
4328 if (pulled_task)
4329 break;
4331 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4333 * We are going idle. next_balance may be set based on
4334 * a busy processor. So reset next_balance.
4336 this_rq->next_balance = next_balance;
4341 * active_load_balance is run by migration threads. It pushes running tasks
4342 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4343 * running on each physical CPU where possible, and avoids physical /
4344 * logical imbalances.
4346 * Called with busiest_rq locked.
4348 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4350 int target_cpu = busiest_rq->push_cpu;
4351 struct sched_domain *sd;
4352 struct rq *target_rq;
4354 /* Is there any task to move? */
4355 if (busiest_rq->nr_running <= 1)
4356 return;
4358 target_rq = cpu_rq(target_cpu);
4361 * This condition is "impossible", if it occurs
4362 * we need to fix it. Originally reported by
4363 * Bjorn Helgaas on a 128-cpu setup.
4365 BUG_ON(busiest_rq == target_rq);
4367 /* move a task from busiest_rq to target_rq */
4368 double_lock_balance(busiest_rq, target_rq);
4369 update_rq_clock(busiest_rq);
4370 update_rq_clock(target_rq);
4372 /* Search for an sd spanning us and the target CPU. */
4373 for_each_domain(target_cpu, sd) {
4374 if ((sd->flags & SD_LOAD_BALANCE) &&
4375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4376 break;
4379 if (likely(sd)) {
4380 schedstat_inc(sd, alb_count);
4382 if (move_one_task(target_rq, target_cpu, busiest_rq,
4383 sd, CPU_IDLE))
4384 schedstat_inc(sd, alb_pushed);
4385 else
4386 schedstat_inc(sd, alb_failed);
4388 double_unlock_balance(busiest_rq, target_rq);
4391 #ifdef CONFIG_NO_HZ
4392 static struct {
4393 atomic_t load_balancer;
4394 cpumask_var_t cpu_mask;
4395 cpumask_var_t ilb_grp_nohz_mask;
4396 } nohz ____cacheline_aligned = {
4397 .load_balancer = ATOMIC_INIT(-1),
4400 int get_nohz_load_balancer(void)
4402 return atomic_read(&nohz.load_balancer);
4405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4407 * lowest_flag_domain - Return lowest sched_domain containing flag.
4408 * @cpu: The cpu whose lowest level of sched domain is to
4409 * be returned.
4410 * @flag: The flag to check for the lowest sched_domain
4411 * for the given cpu.
4413 * Returns the lowest sched_domain of a cpu which contains the given flag.
4415 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4417 struct sched_domain *sd;
4419 for_each_domain(cpu, sd)
4420 if (sd && (sd->flags & flag))
4421 break;
4423 return sd;
4427 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4428 * @cpu: The cpu whose domains we're iterating over.
4429 * @sd: variable holding the value of the power_savings_sd
4430 * for cpu.
4431 * @flag: The flag to filter the sched_domains to be iterated.
4433 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4434 * set, starting from the lowest sched_domain to the highest.
4436 #define for_each_flag_domain(cpu, sd, flag) \
4437 for (sd = lowest_flag_domain(cpu, flag); \
4438 (sd && (sd->flags & flag)); sd = sd->parent)
4441 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4442 * @ilb_group: group to be checked for semi-idleness
4444 * Returns: 1 if the group is semi-idle. 0 otherwise.
4446 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4447 * and atleast one non-idle CPU. This helper function checks if the given
4448 * sched_group is semi-idle or not.
4450 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4452 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4453 sched_group_cpus(ilb_group));
4456 * A sched_group is semi-idle when it has atleast one busy cpu
4457 * and atleast one idle cpu.
4459 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4460 return 0;
4462 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4463 return 0;
4465 return 1;
4468 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4469 * @cpu: The cpu which is nominating a new idle_load_balancer.
4471 * Returns: Returns the id of the idle load balancer if it exists,
4472 * Else, returns >= nr_cpu_ids.
4474 * This algorithm picks the idle load balancer such that it belongs to a
4475 * semi-idle powersavings sched_domain. The idea is to try and avoid
4476 * completely idle packages/cores just for the purpose of idle load balancing
4477 * when there are other idle cpu's which are better suited for that job.
4479 static int find_new_ilb(int cpu)
4481 struct sched_domain *sd;
4482 struct sched_group *ilb_group;
4485 * Have idle load balancer selection from semi-idle packages only
4486 * when power-aware load balancing is enabled
4488 if (!(sched_smt_power_savings || sched_mc_power_savings))
4489 goto out_done;
4492 * Optimize for the case when we have no idle CPUs or only one
4493 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4495 if (cpumask_weight(nohz.cpu_mask) < 2)
4496 goto out_done;
4498 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4499 ilb_group = sd->groups;
4501 do {
4502 if (is_semi_idle_group(ilb_group))
4503 return cpumask_first(nohz.ilb_grp_nohz_mask);
4505 ilb_group = ilb_group->next;
4507 } while (ilb_group != sd->groups);
4510 out_done:
4511 return cpumask_first(nohz.cpu_mask);
4513 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4514 static inline int find_new_ilb(int call_cpu)
4516 return cpumask_first(nohz.cpu_mask);
4518 #endif
4521 * This routine will try to nominate the ilb (idle load balancing)
4522 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4523 * load balancing on behalf of all those cpus. If all the cpus in the system
4524 * go into this tickless mode, then there will be no ilb owner (as there is
4525 * no need for one) and all the cpus will sleep till the next wakeup event
4526 * arrives...
4528 * For the ilb owner, tick is not stopped. And this tick will be used
4529 * for idle load balancing. ilb owner will still be part of
4530 * nohz.cpu_mask..
4532 * While stopping the tick, this cpu will become the ilb owner if there
4533 * is no other owner. And will be the owner till that cpu becomes busy
4534 * or if all cpus in the system stop their ticks at which point
4535 * there is no need for ilb owner.
4537 * When the ilb owner becomes busy, it nominates another owner, during the
4538 * next busy scheduler_tick()
4540 int select_nohz_load_balancer(int stop_tick)
4542 int cpu = smp_processor_id();
4544 if (stop_tick) {
4545 cpu_rq(cpu)->in_nohz_recently = 1;
4547 if (!cpu_active(cpu)) {
4548 if (atomic_read(&nohz.load_balancer) != cpu)
4549 return 0;
4552 * If we are going offline and still the leader,
4553 * give up!
4555 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4556 BUG();
4558 return 0;
4561 cpumask_set_cpu(cpu, nohz.cpu_mask);
4563 /* time for ilb owner also to sleep */
4564 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4565 if (atomic_read(&nohz.load_balancer) == cpu)
4566 atomic_set(&nohz.load_balancer, -1);
4567 return 0;
4570 if (atomic_read(&nohz.load_balancer) == -1) {
4571 /* make me the ilb owner */
4572 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4573 return 1;
4574 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4575 int new_ilb;
4577 if (!(sched_smt_power_savings ||
4578 sched_mc_power_savings))
4579 return 1;
4581 * Check to see if there is a more power-efficient
4582 * ilb.
4584 new_ilb = find_new_ilb(cpu);
4585 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4586 atomic_set(&nohz.load_balancer, -1);
4587 resched_cpu(new_ilb);
4588 return 0;
4590 return 1;
4592 } else {
4593 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4594 return 0;
4596 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4598 if (atomic_read(&nohz.load_balancer) == cpu)
4599 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4600 BUG();
4602 return 0;
4604 #endif
4606 static DEFINE_SPINLOCK(balancing);
4609 * It checks each scheduling domain to see if it is due to be balanced,
4610 * and initiates a balancing operation if so.
4612 * Balancing parameters are set up in arch_init_sched_domains.
4614 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4616 int balance = 1;
4617 struct rq *rq = cpu_rq(cpu);
4618 unsigned long interval;
4619 struct sched_domain *sd;
4620 /* Earliest time when we have to do rebalance again */
4621 unsigned long next_balance = jiffies + 60*HZ;
4622 int update_next_balance = 0;
4623 int need_serialize;
4625 for_each_domain(cpu, sd) {
4626 if (!(sd->flags & SD_LOAD_BALANCE))
4627 continue;
4629 interval = sd->balance_interval;
4630 if (idle != CPU_IDLE)
4631 interval *= sd->busy_factor;
4633 /* scale ms to jiffies */
4634 interval = msecs_to_jiffies(interval);
4635 if (unlikely(!interval))
4636 interval = 1;
4637 if (interval > HZ*NR_CPUS/10)
4638 interval = HZ*NR_CPUS/10;
4640 need_serialize = sd->flags & SD_SERIALIZE;
4642 if (need_serialize) {
4643 if (!spin_trylock(&balancing))
4644 goto out;
4647 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4648 if (load_balance(cpu, rq, sd, idle, &balance)) {
4650 * We've pulled tasks over so either we're no
4651 * longer idle, or one of our SMT siblings is
4652 * not idle.
4654 idle = CPU_NOT_IDLE;
4656 sd->last_balance = jiffies;
4658 if (need_serialize)
4659 spin_unlock(&balancing);
4660 out:
4661 if (time_after(next_balance, sd->last_balance + interval)) {
4662 next_balance = sd->last_balance + interval;
4663 update_next_balance = 1;
4667 * Stop the load balance at this level. There is another
4668 * CPU in our sched group which is doing load balancing more
4669 * actively.
4671 if (!balance)
4672 break;
4676 * next_balance will be updated only when there is a need.
4677 * When the cpu is attached to null domain for ex, it will not be
4678 * updated.
4680 if (likely(update_next_balance))
4681 rq->next_balance = next_balance;
4685 * run_rebalance_domains is triggered when needed from the scheduler tick.
4686 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4687 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4689 static void run_rebalance_domains(struct softirq_action *h)
4691 int this_cpu = smp_processor_id();
4692 struct rq *this_rq = cpu_rq(this_cpu);
4693 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4694 CPU_IDLE : CPU_NOT_IDLE;
4696 rebalance_domains(this_cpu, idle);
4698 #ifdef CONFIG_NO_HZ
4700 * If this cpu is the owner for idle load balancing, then do the
4701 * balancing on behalf of the other idle cpus whose ticks are
4702 * stopped.
4704 if (this_rq->idle_at_tick &&
4705 atomic_read(&nohz.load_balancer) == this_cpu) {
4706 struct rq *rq;
4707 int balance_cpu;
4709 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4710 if (balance_cpu == this_cpu)
4711 continue;
4714 * If this cpu gets work to do, stop the load balancing
4715 * work being done for other cpus. Next load
4716 * balancing owner will pick it up.
4718 if (need_resched())
4719 break;
4721 rebalance_domains(balance_cpu, CPU_IDLE);
4723 rq = cpu_rq(balance_cpu);
4724 if (time_after(this_rq->next_balance, rq->next_balance))
4725 this_rq->next_balance = rq->next_balance;
4728 #endif
4731 static inline int on_null_domain(int cpu)
4733 return !rcu_dereference(cpu_rq(cpu)->sd);
4737 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4739 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4740 * idle load balancing owner or decide to stop the periodic load balancing,
4741 * if the whole system is idle.
4743 static inline void trigger_load_balance(struct rq *rq, int cpu)
4745 #ifdef CONFIG_NO_HZ
4747 * If we were in the nohz mode recently and busy at the current
4748 * scheduler tick, then check if we need to nominate new idle
4749 * load balancer.
4751 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4752 rq->in_nohz_recently = 0;
4754 if (atomic_read(&nohz.load_balancer) == cpu) {
4755 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4756 atomic_set(&nohz.load_balancer, -1);
4759 if (atomic_read(&nohz.load_balancer) == -1) {
4760 int ilb = find_new_ilb(cpu);
4762 if (ilb < nr_cpu_ids)
4763 resched_cpu(ilb);
4768 * If this cpu is idle and doing idle load balancing for all the
4769 * cpus with ticks stopped, is it time for that to stop?
4771 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4772 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4773 resched_cpu(cpu);
4774 return;
4778 * If this cpu is idle and the idle load balancing is done by
4779 * someone else, then no need raise the SCHED_SOFTIRQ
4781 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4782 cpumask_test_cpu(cpu, nohz.cpu_mask))
4783 return;
4784 #endif
4785 /* Don't need to rebalance while attached to NULL domain */
4786 if (time_after_eq(jiffies, rq->next_balance) &&
4787 likely(!on_null_domain(cpu)))
4788 raise_softirq(SCHED_SOFTIRQ);
4791 #else /* CONFIG_SMP */
4794 * on UP we do not need to balance between CPUs:
4796 static inline void idle_balance(int cpu, struct rq *rq)
4800 #endif
4802 DEFINE_PER_CPU(struct kernel_stat, kstat);
4804 EXPORT_PER_CPU_SYMBOL(kstat);
4807 * Return any ns on the sched_clock that have not yet been accounted in
4808 * @p in case that task is currently running.
4810 * Called with task_rq_lock() held on @rq.
4812 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4814 u64 ns = 0;
4816 if (task_current(rq, p)) {
4817 update_rq_clock(rq);
4818 ns = rq->clock - p->se.exec_start;
4819 if ((s64)ns < 0)
4820 ns = 0;
4823 return ns;
4826 unsigned long long task_delta_exec(struct task_struct *p)
4828 unsigned long flags;
4829 struct rq *rq;
4830 u64 ns = 0;
4832 rq = task_rq_lock(p, &flags);
4833 ns = do_task_delta_exec(p, rq);
4834 task_rq_unlock(rq, &flags);
4836 return ns;
4840 * Return accounted runtime for the task.
4841 * In case the task is currently running, return the runtime plus current's
4842 * pending runtime that have not been accounted yet.
4844 unsigned long long task_sched_runtime(struct task_struct *p)
4846 unsigned long flags;
4847 struct rq *rq;
4848 u64 ns = 0;
4850 rq = task_rq_lock(p, &flags);
4851 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4852 task_rq_unlock(rq, &flags);
4854 return ns;
4858 * Return sum_exec_runtime for the thread group.
4859 * In case the task is currently running, return the sum plus current's
4860 * pending runtime that have not been accounted yet.
4862 * Note that the thread group might have other running tasks as well,
4863 * so the return value not includes other pending runtime that other
4864 * running tasks might have.
4866 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4868 struct task_cputime totals;
4869 unsigned long flags;
4870 struct rq *rq;
4871 u64 ns;
4873 rq = task_rq_lock(p, &flags);
4874 thread_group_cputime(p, &totals);
4875 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4876 task_rq_unlock(rq, &flags);
4878 return ns;
4882 * Account user cpu time to a process.
4883 * @p: the process that the cpu time gets accounted to
4884 * @cputime: the cpu time spent in user space since the last update
4885 * @cputime_scaled: cputime scaled by cpu frequency
4887 void account_user_time(struct task_struct *p, cputime_t cputime,
4888 cputime_t cputime_scaled)
4890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4891 cputime64_t tmp;
4893 /* Add user time to process. */
4894 p->utime = cputime_add(p->utime, cputime);
4895 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4896 account_group_user_time(p, cputime);
4898 /* Add user time to cpustat. */
4899 tmp = cputime_to_cputime64(cputime);
4900 if (TASK_NICE(p) > 0)
4901 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4902 else
4903 cpustat->user = cputime64_add(cpustat->user, tmp);
4905 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4906 /* Account for user time used */
4907 acct_update_integrals(p);
4911 * Account guest cpu time to a process.
4912 * @p: the process that the cpu time gets accounted to
4913 * @cputime: the cpu time spent in virtual machine since the last update
4914 * @cputime_scaled: cputime scaled by cpu frequency
4916 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4917 cputime_t cputime_scaled)
4919 cputime64_t tmp;
4920 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4922 tmp = cputime_to_cputime64(cputime);
4924 /* Add guest time to process. */
4925 p->utime = cputime_add(p->utime, cputime);
4926 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4927 account_group_user_time(p, cputime);
4928 p->gtime = cputime_add(p->gtime, cputime);
4930 /* Add guest time to cpustat. */
4931 cpustat->user = cputime64_add(cpustat->user, tmp);
4932 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4936 * Account system cpu time to a process.
4937 * @p: the process that the cpu time gets accounted to
4938 * @hardirq_offset: the offset to subtract from hardirq_count()
4939 * @cputime: the cpu time spent in kernel space since the last update
4940 * @cputime_scaled: cputime scaled by cpu frequency
4942 void account_system_time(struct task_struct *p, int hardirq_offset,
4943 cputime_t cputime, cputime_t cputime_scaled)
4945 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4946 cputime64_t tmp;
4948 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4949 account_guest_time(p, cputime, cputime_scaled);
4950 return;
4953 /* Add system time to process. */
4954 p->stime = cputime_add(p->stime, cputime);
4955 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4956 account_group_system_time(p, cputime);
4958 /* Add system time to cpustat. */
4959 tmp = cputime_to_cputime64(cputime);
4960 if (hardirq_count() - hardirq_offset)
4961 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4962 else if (softirq_count())
4963 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4964 else
4965 cpustat->system = cputime64_add(cpustat->system, tmp);
4967 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4969 /* Account for system time used */
4970 acct_update_integrals(p);
4974 * Account for involuntary wait time.
4975 * @steal: the cpu time spent in involuntary wait
4977 void account_steal_time(cputime_t cputime)
4979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4986 * Account for idle time.
4987 * @cputime: the cpu time spent in idle wait
4989 void account_idle_time(cputime_t cputime)
4991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4993 struct rq *rq = this_rq();
4995 if (atomic_read(&rq->nr_iowait) > 0)
4996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4997 else
4998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5001 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5004 * Account a single tick of cpu time.
5005 * @p: the process that the cpu time gets accounted to
5006 * @user_tick: indicates if the tick is a user or a system tick
5008 void account_process_tick(struct task_struct *p, int user_tick)
5010 cputime_t one_jiffy = jiffies_to_cputime(1);
5011 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5012 struct rq *rq = this_rq();
5014 if (user_tick)
5015 account_user_time(p, one_jiffy, one_jiffy_scaled);
5016 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5017 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5018 one_jiffy_scaled);
5019 else
5020 account_idle_time(one_jiffy);
5024 * Account multiple ticks of steal time.
5025 * @p: the process from which the cpu time has been stolen
5026 * @ticks: number of stolen ticks
5028 void account_steal_ticks(unsigned long ticks)
5030 account_steal_time(jiffies_to_cputime(ticks));
5034 * Account multiple ticks of idle time.
5035 * @ticks: number of stolen ticks
5037 void account_idle_ticks(unsigned long ticks)
5039 account_idle_time(jiffies_to_cputime(ticks));
5042 #endif
5045 * Use precise platform statistics if available:
5047 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5048 cputime_t task_utime(struct task_struct *p)
5050 return p->utime;
5053 cputime_t task_stime(struct task_struct *p)
5055 return p->stime;
5057 #else
5058 cputime_t task_utime(struct task_struct *p)
5060 clock_t utime = cputime_to_clock_t(p->utime),
5061 total = utime + cputime_to_clock_t(p->stime);
5062 u64 temp;
5065 * Use CFS's precise accounting:
5067 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5069 if (total) {
5070 temp *= utime;
5071 do_div(temp, total);
5073 utime = (clock_t)temp;
5075 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5076 return p->prev_utime;
5079 cputime_t task_stime(struct task_struct *p)
5081 clock_t stime;
5084 * Use CFS's precise accounting. (we subtract utime from
5085 * the total, to make sure the total observed by userspace
5086 * grows monotonically - apps rely on that):
5088 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5089 cputime_to_clock_t(task_utime(p));
5091 if (stime >= 0)
5092 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5094 return p->prev_stime;
5096 #endif
5098 inline cputime_t task_gtime(struct task_struct *p)
5100 return p->gtime;
5104 * This function gets called by the timer code, with HZ frequency.
5105 * We call it with interrupts disabled.
5107 * It also gets called by the fork code, when changing the parent's
5108 * timeslices.
5110 void scheduler_tick(void)
5112 int cpu = smp_processor_id();
5113 struct rq *rq = cpu_rq(cpu);
5114 struct task_struct *curr = rq->curr;
5116 sched_clock_tick();
5118 spin_lock(&rq->lock);
5119 update_rq_clock(rq);
5120 update_cpu_load(rq);
5121 curr->sched_class->task_tick(rq, curr, 0);
5122 spin_unlock(&rq->lock);
5124 perf_counter_task_tick(curr, cpu);
5126 #ifdef CONFIG_SMP
5127 rq->idle_at_tick = idle_cpu(cpu);
5128 trigger_load_balance(rq, cpu);
5129 #endif
5132 notrace unsigned long get_parent_ip(unsigned long addr)
5134 if (in_lock_functions(addr)) {
5135 addr = CALLER_ADDR2;
5136 if (in_lock_functions(addr))
5137 addr = CALLER_ADDR3;
5139 return addr;
5142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5143 defined(CONFIG_PREEMPT_TRACER))
5145 void __kprobes add_preempt_count(int val)
5147 #ifdef CONFIG_DEBUG_PREEMPT
5149 * Underflow?
5151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5152 return;
5153 #endif
5154 preempt_count() += val;
5155 #ifdef CONFIG_DEBUG_PREEMPT
5157 * Spinlock count overflowing soon?
5159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5160 PREEMPT_MASK - 10);
5161 #endif
5162 if (preempt_count() == val)
5163 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5165 EXPORT_SYMBOL(add_preempt_count);
5167 void __kprobes sub_preempt_count(int val)
5169 #ifdef CONFIG_DEBUG_PREEMPT
5171 * Underflow?
5173 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5174 return;
5176 * Is the spinlock portion underflowing?
5178 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5179 !(preempt_count() & PREEMPT_MASK)))
5180 return;
5181 #endif
5183 if (preempt_count() == val)
5184 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5185 preempt_count() -= val;
5187 EXPORT_SYMBOL(sub_preempt_count);
5189 #endif
5192 * Print scheduling while atomic bug:
5194 static noinline void __schedule_bug(struct task_struct *prev)
5196 struct pt_regs *regs = get_irq_regs();
5198 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5199 prev->comm, prev->pid, preempt_count());
5201 debug_show_held_locks(prev);
5202 print_modules();
5203 if (irqs_disabled())
5204 print_irqtrace_events(prev);
5206 if (regs)
5207 show_regs(regs);
5208 else
5209 dump_stack();
5213 * Various schedule()-time debugging checks and statistics:
5215 static inline void schedule_debug(struct task_struct *prev)
5218 * Test if we are atomic. Since do_exit() needs to call into
5219 * schedule() atomically, we ignore that path for now.
5220 * Otherwise, whine if we are scheduling when we should not be.
5222 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5223 __schedule_bug(prev);
5225 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5227 schedstat_inc(this_rq(), sched_count);
5228 #ifdef CONFIG_SCHEDSTATS
5229 if (unlikely(prev->lock_depth >= 0)) {
5230 schedstat_inc(this_rq(), bkl_count);
5231 schedstat_inc(prev, sched_info.bkl_count);
5233 #endif
5236 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5238 if (prev->state == TASK_RUNNING) {
5239 u64 runtime = prev->se.sum_exec_runtime;
5241 runtime -= prev->se.prev_sum_exec_runtime;
5242 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5245 * In order to avoid avg_overlap growing stale when we are
5246 * indeed overlapping and hence not getting put to sleep, grow
5247 * the avg_overlap on preemption.
5249 * We use the average preemption runtime because that
5250 * correlates to the amount of cache footprint a task can
5251 * build up.
5253 update_avg(&prev->se.avg_overlap, runtime);
5255 prev->sched_class->put_prev_task(rq, prev);
5259 * Pick up the highest-prio task:
5261 static inline struct task_struct *
5262 pick_next_task(struct rq *rq)
5264 const struct sched_class *class;
5265 struct task_struct *p;
5268 * Optimization: we know that if all tasks are in
5269 * the fair class we can call that function directly:
5271 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5272 p = fair_sched_class.pick_next_task(rq);
5273 if (likely(p))
5274 return p;
5277 class = sched_class_highest;
5278 for ( ; ; ) {
5279 p = class->pick_next_task(rq);
5280 if (p)
5281 return p;
5283 * Will never be NULL as the idle class always
5284 * returns a non-NULL p:
5286 class = class->next;
5291 * schedule() is the main scheduler function.
5293 asmlinkage void __sched schedule(void)
5295 struct task_struct *prev, *next;
5296 unsigned long *switch_count;
5297 struct rq *rq;
5298 int cpu;
5300 need_resched:
5301 preempt_disable();
5302 cpu = smp_processor_id();
5303 rq = cpu_rq(cpu);
5304 rcu_qsctr_inc(cpu);
5305 prev = rq->curr;
5306 switch_count = &prev->nivcsw;
5308 release_kernel_lock(prev);
5309 need_resched_nonpreemptible:
5311 schedule_debug(prev);
5313 if (sched_feat(HRTICK))
5314 hrtick_clear(rq);
5316 spin_lock_irq(&rq->lock);
5317 update_rq_clock(rq);
5318 clear_tsk_need_resched(prev);
5320 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5321 if (unlikely(signal_pending_state(prev->state, prev)))
5322 prev->state = TASK_RUNNING;
5323 else
5324 deactivate_task(rq, prev, 1);
5325 switch_count = &prev->nvcsw;
5328 #ifdef CONFIG_SMP
5329 if (prev->sched_class->pre_schedule)
5330 prev->sched_class->pre_schedule(rq, prev);
5331 #endif
5333 if (unlikely(!rq->nr_running))
5334 idle_balance(cpu, rq);
5336 put_prev_task(rq, prev);
5337 next = pick_next_task(rq);
5339 if (likely(prev != next)) {
5340 sched_info_switch(prev, next);
5341 perf_counter_task_sched_out(prev, next, cpu);
5343 rq->nr_switches++;
5344 rq->curr = next;
5345 ++*switch_count;
5347 context_switch(rq, prev, next); /* unlocks the rq */
5349 * the context switch might have flipped the stack from under
5350 * us, hence refresh the local variables.
5352 cpu = smp_processor_id();
5353 rq = cpu_rq(cpu);
5354 } else
5355 spin_unlock_irq(&rq->lock);
5357 if (unlikely(reacquire_kernel_lock(current) < 0))
5358 goto need_resched_nonpreemptible;
5360 preempt_enable_no_resched();
5361 if (need_resched())
5362 goto need_resched;
5364 EXPORT_SYMBOL(schedule);
5366 #ifdef CONFIG_SMP
5368 * Look out! "owner" is an entirely speculative pointer
5369 * access and not reliable.
5371 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5373 unsigned int cpu;
5374 struct rq *rq;
5376 if (!sched_feat(OWNER_SPIN))
5377 return 0;
5379 #ifdef CONFIG_DEBUG_PAGEALLOC
5381 * Need to access the cpu field knowing that
5382 * DEBUG_PAGEALLOC could have unmapped it if
5383 * the mutex owner just released it and exited.
5385 if (probe_kernel_address(&owner->cpu, cpu))
5386 goto out;
5387 #else
5388 cpu = owner->cpu;
5389 #endif
5392 * Even if the access succeeded (likely case),
5393 * the cpu field may no longer be valid.
5395 if (cpu >= nr_cpumask_bits)
5396 goto out;
5399 * We need to validate that we can do a
5400 * get_cpu() and that we have the percpu area.
5402 if (!cpu_online(cpu))
5403 goto out;
5405 rq = cpu_rq(cpu);
5407 for (;;) {
5409 * Owner changed, break to re-assess state.
5411 if (lock->owner != owner)
5412 break;
5415 * Is that owner really running on that cpu?
5417 if (task_thread_info(rq->curr) != owner || need_resched())
5418 return 0;
5420 cpu_relax();
5422 out:
5423 return 1;
5425 #endif
5427 #ifdef CONFIG_PREEMPT
5429 * this is the entry point to schedule() from in-kernel preemption
5430 * off of preempt_enable. Kernel preemptions off return from interrupt
5431 * occur there and call schedule directly.
5433 asmlinkage void __sched preempt_schedule(void)
5435 struct thread_info *ti = current_thread_info();
5438 * If there is a non-zero preempt_count or interrupts are disabled,
5439 * we do not want to preempt the current task. Just return..
5441 if (likely(ti->preempt_count || irqs_disabled()))
5442 return;
5444 do {
5445 add_preempt_count(PREEMPT_ACTIVE);
5446 schedule();
5447 sub_preempt_count(PREEMPT_ACTIVE);
5450 * Check again in case we missed a preemption opportunity
5451 * between schedule and now.
5453 barrier();
5454 } while (need_resched());
5456 EXPORT_SYMBOL(preempt_schedule);
5459 * this is the entry point to schedule() from kernel preemption
5460 * off of irq context.
5461 * Note, that this is called and return with irqs disabled. This will
5462 * protect us against recursive calling from irq.
5464 asmlinkage void __sched preempt_schedule_irq(void)
5466 struct thread_info *ti = current_thread_info();
5468 /* Catch callers which need to be fixed */
5469 BUG_ON(ti->preempt_count || !irqs_disabled());
5471 do {
5472 add_preempt_count(PREEMPT_ACTIVE);
5473 local_irq_enable();
5474 schedule();
5475 local_irq_disable();
5476 sub_preempt_count(PREEMPT_ACTIVE);
5479 * Check again in case we missed a preemption opportunity
5480 * between schedule and now.
5482 barrier();
5483 } while (need_resched());
5486 #endif /* CONFIG_PREEMPT */
5488 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5489 void *key)
5491 return try_to_wake_up(curr->private, mode, sync);
5493 EXPORT_SYMBOL(default_wake_function);
5496 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5497 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5498 * number) then we wake all the non-exclusive tasks and one exclusive task.
5500 * There are circumstances in which we can try to wake a task which has already
5501 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5502 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5504 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5505 int nr_exclusive, int sync, void *key)
5507 wait_queue_t *curr, *next;
5509 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5510 unsigned flags = curr->flags;
5512 if (curr->func(curr, mode, sync, key) &&
5513 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5514 break;
5519 * __wake_up - wake up threads blocked on a waitqueue.
5520 * @q: the waitqueue
5521 * @mode: which threads
5522 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5523 * @key: is directly passed to the wakeup function
5525 * It may be assumed that this function implies a write memory barrier before
5526 * changing the task state if and only if any tasks are woken up.
5528 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5529 int nr_exclusive, void *key)
5531 unsigned long flags;
5533 spin_lock_irqsave(&q->lock, flags);
5534 __wake_up_common(q, mode, nr_exclusive, 0, key);
5535 spin_unlock_irqrestore(&q->lock, flags);
5537 EXPORT_SYMBOL(__wake_up);
5540 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5542 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5544 __wake_up_common(q, mode, 1, 0, NULL);
5547 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5549 __wake_up_common(q, mode, 1, 0, key);
5553 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5554 * @q: the waitqueue
5555 * @mode: which threads
5556 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5557 * @key: opaque value to be passed to wakeup targets
5559 * The sync wakeup differs that the waker knows that it will schedule
5560 * away soon, so while the target thread will be woken up, it will not
5561 * be migrated to another CPU - ie. the two threads are 'synchronized'
5562 * with each other. This can prevent needless bouncing between CPUs.
5564 * On UP it can prevent extra preemption.
5566 * It may be assumed that this function implies a write memory barrier before
5567 * changing the task state if and only if any tasks are woken up.
5569 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5570 int nr_exclusive, void *key)
5572 unsigned long flags;
5573 int sync = 1;
5575 if (unlikely(!q))
5576 return;
5578 if (unlikely(!nr_exclusive))
5579 sync = 0;
5581 spin_lock_irqsave(&q->lock, flags);
5582 __wake_up_common(q, mode, nr_exclusive, sync, key);
5583 spin_unlock_irqrestore(&q->lock, flags);
5585 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5588 * __wake_up_sync - see __wake_up_sync_key()
5590 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5592 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5594 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5597 * complete: - signals a single thread waiting on this completion
5598 * @x: holds the state of this particular completion
5600 * This will wake up a single thread waiting on this completion. Threads will be
5601 * awakened in the same order in which they were queued.
5603 * See also complete_all(), wait_for_completion() and related routines.
5605 * It may be assumed that this function implies a write memory barrier before
5606 * changing the task state if and only if any tasks are woken up.
5608 void complete(struct completion *x)
5610 unsigned long flags;
5612 spin_lock_irqsave(&x->wait.lock, flags);
5613 x->done++;
5614 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5615 spin_unlock_irqrestore(&x->wait.lock, flags);
5617 EXPORT_SYMBOL(complete);
5620 * complete_all: - signals all threads waiting on this completion
5621 * @x: holds the state of this particular completion
5623 * This will wake up all threads waiting on this particular completion event.
5625 * It may be assumed that this function implies a write memory barrier before
5626 * changing the task state if and only if any tasks are woken up.
5628 void complete_all(struct completion *x)
5630 unsigned long flags;
5632 spin_lock_irqsave(&x->wait.lock, flags);
5633 x->done += UINT_MAX/2;
5634 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5635 spin_unlock_irqrestore(&x->wait.lock, flags);
5637 EXPORT_SYMBOL(complete_all);
5639 static inline long __sched
5640 do_wait_for_common(struct completion *x, long timeout, int state)
5642 if (!x->done) {
5643 DECLARE_WAITQUEUE(wait, current);
5645 wait.flags |= WQ_FLAG_EXCLUSIVE;
5646 __add_wait_queue_tail(&x->wait, &wait);
5647 do {
5648 if (signal_pending_state(state, current)) {
5649 timeout = -ERESTARTSYS;
5650 break;
5652 __set_current_state(state);
5653 spin_unlock_irq(&x->wait.lock);
5654 timeout = schedule_timeout(timeout);
5655 spin_lock_irq(&x->wait.lock);
5656 } while (!x->done && timeout);
5657 __remove_wait_queue(&x->wait, &wait);
5658 if (!x->done)
5659 return timeout;
5661 x->done--;
5662 return timeout ?: 1;
5665 static long __sched
5666 wait_for_common(struct completion *x, long timeout, int state)
5668 might_sleep();
5670 spin_lock_irq(&x->wait.lock);
5671 timeout = do_wait_for_common(x, timeout, state);
5672 spin_unlock_irq(&x->wait.lock);
5673 return timeout;
5677 * wait_for_completion: - waits for completion of a task
5678 * @x: holds the state of this particular completion
5680 * This waits to be signaled for completion of a specific task. It is NOT
5681 * interruptible and there is no timeout.
5683 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5684 * and interrupt capability. Also see complete().
5686 void __sched wait_for_completion(struct completion *x)
5688 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5690 EXPORT_SYMBOL(wait_for_completion);
5693 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5694 * @x: holds the state of this particular completion
5695 * @timeout: timeout value in jiffies
5697 * This waits for either a completion of a specific task to be signaled or for a
5698 * specified timeout to expire. The timeout is in jiffies. It is not
5699 * interruptible.
5701 unsigned long __sched
5702 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5704 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5706 EXPORT_SYMBOL(wait_for_completion_timeout);
5709 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5710 * @x: holds the state of this particular completion
5712 * This waits for completion of a specific task to be signaled. It is
5713 * interruptible.
5715 int __sched wait_for_completion_interruptible(struct completion *x)
5717 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5718 if (t == -ERESTARTSYS)
5719 return t;
5720 return 0;
5722 EXPORT_SYMBOL(wait_for_completion_interruptible);
5725 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5726 * @x: holds the state of this particular completion
5727 * @timeout: timeout value in jiffies
5729 * This waits for either a completion of a specific task to be signaled or for a
5730 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5732 unsigned long __sched
5733 wait_for_completion_interruptible_timeout(struct completion *x,
5734 unsigned long timeout)
5736 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5738 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5741 * wait_for_completion_killable: - waits for completion of a task (killable)
5742 * @x: holds the state of this particular completion
5744 * This waits to be signaled for completion of a specific task. It can be
5745 * interrupted by a kill signal.
5747 int __sched wait_for_completion_killable(struct completion *x)
5749 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5750 if (t == -ERESTARTSYS)
5751 return t;
5752 return 0;
5754 EXPORT_SYMBOL(wait_for_completion_killable);
5757 * try_wait_for_completion - try to decrement a completion without blocking
5758 * @x: completion structure
5760 * Returns: 0 if a decrement cannot be done without blocking
5761 * 1 if a decrement succeeded.
5763 * If a completion is being used as a counting completion,
5764 * attempt to decrement the counter without blocking. This
5765 * enables us to avoid waiting if the resource the completion
5766 * is protecting is not available.
5768 bool try_wait_for_completion(struct completion *x)
5770 int ret = 1;
5772 spin_lock_irq(&x->wait.lock);
5773 if (!x->done)
5774 ret = 0;
5775 else
5776 x->done--;
5777 spin_unlock_irq(&x->wait.lock);
5778 return ret;
5780 EXPORT_SYMBOL(try_wait_for_completion);
5783 * completion_done - Test to see if a completion has any waiters
5784 * @x: completion structure
5786 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5787 * 1 if there are no waiters.
5790 bool completion_done(struct completion *x)
5792 int ret = 1;
5794 spin_lock_irq(&x->wait.lock);
5795 if (!x->done)
5796 ret = 0;
5797 spin_unlock_irq(&x->wait.lock);
5798 return ret;
5800 EXPORT_SYMBOL(completion_done);
5802 static long __sched
5803 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5805 unsigned long flags;
5806 wait_queue_t wait;
5808 init_waitqueue_entry(&wait, current);
5810 __set_current_state(state);
5812 spin_lock_irqsave(&q->lock, flags);
5813 __add_wait_queue(q, &wait);
5814 spin_unlock(&q->lock);
5815 timeout = schedule_timeout(timeout);
5816 spin_lock_irq(&q->lock);
5817 __remove_wait_queue(q, &wait);
5818 spin_unlock_irqrestore(&q->lock, flags);
5820 return timeout;
5823 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5825 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5827 EXPORT_SYMBOL(interruptible_sleep_on);
5829 long __sched
5830 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5832 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5834 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5836 void __sched sleep_on(wait_queue_head_t *q)
5838 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5840 EXPORT_SYMBOL(sleep_on);
5842 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5844 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5846 EXPORT_SYMBOL(sleep_on_timeout);
5848 #ifdef CONFIG_RT_MUTEXES
5851 * rt_mutex_setprio - set the current priority of a task
5852 * @p: task
5853 * @prio: prio value (kernel-internal form)
5855 * This function changes the 'effective' priority of a task. It does
5856 * not touch ->normal_prio like __setscheduler().
5858 * Used by the rt_mutex code to implement priority inheritance logic.
5860 void rt_mutex_setprio(struct task_struct *p, int prio)
5862 unsigned long flags;
5863 int oldprio, on_rq, running;
5864 struct rq *rq;
5865 const struct sched_class *prev_class = p->sched_class;
5867 BUG_ON(prio < 0 || prio > MAX_PRIO);
5869 rq = task_rq_lock(p, &flags);
5870 update_rq_clock(rq);
5872 oldprio = p->prio;
5873 on_rq = p->se.on_rq;
5874 running = task_current(rq, p);
5875 if (on_rq)
5876 dequeue_task(rq, p, 0);
5877 if (running)
5878 p->sched_class->put_prev_task(rq, p);
5880 if (rt_prio(prio))
5881 p->sched_class = &rt_sched_class;
5882 else
5883 p->sched_class = &fair_sched_class;
5885 p->prio = prio;
5887 if (running)
5888 p->sched_class->set_curr_task(rq);
5889 if (on_rq) {
5890 enqueue_task(rq, p, 0);
5892 check_class_changed(rq, p, prev_class, oldprio, running);
5894 task_rq_unlock(rq, &flags);
5897 #endif
5899 void set_user_nice(struct task_struct *p, long nice)
5901 int old_prio, delta, on_rq;
5902 unsigned long flags;
5903 struct rq *rq;
5905 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5906 return;
5908 * We have to be careful, if called from sys_setpriority(),
5909 * the task might be in the middle of scheduling on another CPU.
5911 rq = task_rq_lock(p, &flags);
5912 update_rq_clock(rq);
5914 * The RT priorities are set via sched_setscheduler(), but we still
5915 * allow the 'normal' nice value to be set - but as expected
5916 * it wont have any effect on scheduling until the task is
5917 * SCHED_FIFO/SCHED_RR:
5919 if (task_has_rt_policy(p)) {
5920 p->static_prio = NICE_TO_PRIO(nice);
5921 goto out_unlock;
5923 on_rq = p->se.on_rq;
5924 if (on_rq)
5925 dequeue_task(rq, p, 0);
5927 p->static_prio = NICE_TO_PRIO(nice);
5928 set_load_weight(p);
5929 old_prio = p->prio;
5930 p->prio = effective_prio(p);
5931 delta = p->prio - old_prio;
5933 if (on_rq) {
5934 enqueue_task(rq, p, 0);
5936 * If the task increased its priority or is running and
5937 * lowered its priority, then reschedule its CPU:
5939 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5940 resched_task(rq->curr);
5942 out_unlock:
5943 task_rq_unlock(rq, &flags);
5945 EXPORT_SYMBOL(set_user_nice);
5948 * can_nice - check if a task can reduce its nice value
5949 * @p: task
5950 * @nice: nice value
5952 int can_nice(const struct task_struct *p, const int nice)
5954 /* convert nice value [19,-20] to rlimit style value [1,40] */
5955 int nice_rlim = 20 - nice;
5957 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5958 capable(CAP_SYS_NICE));
5961 #ifdef __ARCH_WANT_SYS_NICE
5964 * sys_nice - change the priority of the current process.
5965 * @increment: priority increment
5967 * sys_setpriority is a more generic, but much slower function that
5968 * does similar things.
5970 SYSCALL_DEFINE1(nice, int, increment)
5972 long nice, retval;
5975 * Setpriority might change our priority at the same moment.
5976 * We don't have to worry. Conceptually one call occurs first
5977 * and we have a single winner.
5979 if (increment < -40)
5980 increment = -40;
5981 if (increment > 40)
5982 increment = 40;
5984 nice = TASK_NICE(current) + increment;
5985 if (nice < -20)
5986 nice = -20;
5987 if (nice > 19)
5988 nice = 19;
5990 if (increment < 0 && !can_nice(current, nice))
5991 return -EPERM;
5993 retval = security_task_setnice(current, nice);
5994 if (retval)
5995 return retval;
5997 set_user_nice(current, nice);
5998 return 0;
6001 #endif
6004 * task_prio - return the priority value of a given task.
6005 * @p: the task in question.
6007 * This is the priority value as seen by users in /proc.
6008 * RT tasks are offset by -200. Normal tasks are centered
6009 * around 0, value goes from -16 to +15.
6011 int task_prio(const struct task_struct *p)
6013 return p->prio - MAX_RT_PRIO;
6017 * task_nice - return the nice value of a given task.
6018 * @p: the task in question.
6020 int task_nice(const struct task_struct *p)
6022 return TASK_NICE(p);
6024 EXPORT_SYMBOL(task_nice);
6027 * idle_cpu - is a given cpu idle currently?
6028 * @cpu: the processor in question.
6030 int idle_cpu(int cpu)
6032 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6036 * idle_task - return the idle task for a given cpu.
6037 * @cpu: the processor in question.
6039 struct task_struct *idle_task(int cpu)
6041 return cpu_rq(cpu)->idle;
6045 * find_process_by_pid - find a process with a matching PID value.
6046 * @pid: the pid in question.
6048 static struct task_struct *find_process_by_pid(pid_t pid)
6050 return pid ? find_task_by_vpid(pid) : current;
6053 /* Actually do priority change: must hold rq lock. */
6054 static void
6055 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6057 BUG_ON(p->se.on_rq);
6059 p->policy = policy;
6060 switch (p->policy) {
6061 case SCHED_NORMAL:
6062 case SCHED_BATCH:
6063 case SCHED_IDLE:
6064 p->sched_class = &fair_sched_class;
6065 break;
6066 case SCHED_FIFO:
6067 case SCHED_RR:
6068 p->sched_class = &rt_sched_class;
6069 break;
6072 p->rt_priority = prio;
6073 p->normal_prio = normal_prio(p);
6074 /* we are holding p->pi_lock already */
6075 p->prio = rt_mutex_getprio(p);
6076 set_load_weight(p);
6080 * check the target process has a UID that matches the current process's
6082 static bool check_same_owner(struct task_struct *p)
6084 const struct cred *cred = current_cred(), *pcred;
6085 bool match;
6087 rcu_read_lock();
6088 pcred = __task_cred(p);
6089 match = (cred->euid == pcred->euid ||
6090 cred->euid == pcred->uid);
6091 rcu_read_unlock();
6092 return match;
6095 static int __sched_setscheduler(struct task_struct *p, int policy,
6096 struct sched_param *param, bool user)
6098 int retval, oldprio, oldpolicy = -1, on_rq, running;
6099 unsigned long flags;
6100 const struct sched_class *prev_class = p->sched_class;
6101 struct rq *rq;
6103 /* may grab non-irq protected spin_locks */
6104 BUG_ON(in_interrupt());
6105 recheck:
6106 /* double check policy once rq lock held */
6107 if (policy < 0)
6108 policy = oldpolicy = p->policy;
6109 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6110 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6111 policy != SCHED_IDLE)
6112 return -EINVAL;
6114 * Valid priorities for SCHED_FIFO and SCHED_RR are
6115 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6116 * SCHED_BATCH and SCHED_IDLE is 0.
6118 if (param->sched_priority < 0 ||
6119 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6120 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6121 return -EINVAL;
6122 if (rt_policy(policy) != (param->sched_priority != 0))
6123 return -EINVAL;
6126 * Allow unprivileged RT tasks to decrease priority:
6128 if (user && !capable(CAP_SYS_NICE)) {
6129 if (rt_policy(policy)) {
6130 unsigned long rlim_rtprio;
6132 if (!lock_task_sighand(p, &flags))
6133 return -ESRCH;
6134 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6135 unlock_task_sighand(p, &flags);
6137 /* can't set/change the rt policy */
6138 if (policy != p->policy && !rlim_rtprio)
6139 return -EPERM;
6141 /* can't increase priority */
6142 if (param->sched_priority > p->rt_priority &&
6143 param->sched_priority > rlim_rtprio)
6144 return -EPERM;
6147 * Like positive nice levels, dont allow tasks to
6148 * move out of SCHED_IDLE either:
6150 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6151 return -EPERM;
6153 /* can't change other user's priorities */
6154 if (!check_same_owner(p))
6155 return -EPERM;
6158 if (user) {
6159 #ifdef CONFIG_RT_GROUP_SCHED
6161 * Do not allow realtime tasks into groups that have no runtime
6162 * assigned.
6164 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6165 task_group(p)->rt_bandwidth.rt_runtime == 0)
6166 return -EPERM;
6167 #endif
6169 retval = security_task_setscheduler(p, policy, param);
6170 if (retval)
6171 return retval;
6175 * make sure no PI-waiters arrive (or leave) while we are
6176 * changing the priority of the task:
6178 spin_lock_irqsave(&p->pi_lock, flags);
6180 * To be able to change p->policy safely, the apropriate
6181 * runqueue lock must be held.
6183 rq = __task_rq_lock(p);
6184 /* recheck policy now with rq lock held */
6185 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6186 policy = oldpolicy = -1;
6187 __task_rq_unlock(rq);
6188 spin_unlock_irqrestore(&p->pi_lock, flags);
6189 goto recheck;
6191 update_rq_clock(rq);
6192 on_rq = p->se.on_rq;
6193 running = task_current(rq, p);
6194 if (on_rq)
6195 deactivate_task(rq, p, 0);
6196 if (running)
6197 p->sched_class->put_prev_task(rq, p);
6199 oldprio = p->prio;
6200 __setscheduler(rq, p, policy, param->sched_priority);
6202 if (running)
6203 p->sched_class->set_curr_task(rq);
6204 if (on_rq) {
6205 activate_task(rq, p, 0);
6207 check_class_changed(rq, p, prev_class, oldprio, running);
6209 __task_rq_unlock(rq);
6210 spin_unlock_irqrestore(&p->pi_lock, flags);
6212 rt_mutex_adjust_pi(p);
6214 return 0;
6218 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6219 * @p: the task in question.
6220 * @policy: new policy.
6221 * @param: structure containing the new RT priority.
6223 * NOTE that the task may be already dead.
6225 int sched_setscheduler(struct task_struct *p, int policy,
6226 struct sched_param *param)
6228 return __sched_setscheduler(p, policy, param, true);
6230 EXPORT_SYMBOL_GPL(sched_setscheduler);
6233 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6234 * @p: the task in question.
6235 * @policy: new policy.
6236 * @param: structure containing the new RT priority.
6238 * Just like sched_setscheduler, only don't bother checking if the
6239 * current context has permission. For example, this is needed in
6240 * stop_machine(): we create temporary high priority worker threads,
6241 * but our caller might not have that capability.
6243 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6244 struct sched_param *param)
6246 return __sched_setscheduler(p, policy, param, false);
6249 static int
6250 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6252 struct sched_param lparam;
6253 struct task_struct *p;
6254 int retval;
6256 if (!param || pid < 0)
6257 return -EINVAL;
6258 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6259 return -EFAULT;
6261 rcu_read_lock();
6262 retval = -ESRCH;
6263 p = find_process_by_pid(pid);
6264 if (p != NULL)
6265 retval = sched_setscheduler(p, policy, &lparam);
6266 rcu_read_unlock();
6268 return retval;
6272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6273 * @pid: the pid in question.
6274 * @policy: new policy.
6275 * @param: structure containing the new RT priority.
6277 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6278 struct sched_param __user *, param)
6280 /* negative values for policy are not valid */
6281 if (policy < 0)
6282 return -EINVAL;
6284 return do_sched_setscheduler(pid, policy, param);
6288 * sys_sched_setparam - set/change the RT priority of a thread
6289 * @pid: the pid in question.
6290 * @param: structure containing the new RT priority.
6292 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6294 return do_sched_setscheduler(pid, -1, param);
6298 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6299 * @pid: the pid in question.
6301 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6303 struct task_struct *p;
6304 int retval;
6306 if (pid < 0)
6307 return -EINVAL;
6309 retval = -ESRCH;
6310 read_lock(&tasklist_lock);
6311 p = find_process_by_pid(pid);
6312 if (p) {
6313 retval = security_task_getscheduler(p);
6314 if (!retval)
6315 retval = p->policy;
6317 read_unlock(&tasklist_lock);
6318 return retval;
6322 * sys_sched_getscheduler - get the RT priority of a thread
6323 * @pid: the pid in question.
6324 * @param: structure containing the RT priority.
6326 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6328 struct sched_param lp;
6329 struct task_struct *p;
6330 int retval;
6332 if (!param || pid < 0)
6333 return -EINVAL;
6335 read_lock(&tasklist_lock);
6336 p = find_process_by_pid(pid);
6337 retval = -ESRCH;
6338 if (!p)
6339 goto out_unlock;
6341 retval = security_task_getscheduler(p);
6342 if (retval)
6343 goto out_unlock;
6345 lp.sched_priority = p->rt_priority;
6346 read_unlock(&tasklist_lock);
6349 * This one might sleep, we cannot do it with a spinlock held ...
6351 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6353 return retval;
6355 out_unlock:
6356 read_unlock(&tasklist_lock);
6357 return retval;
6360 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6362 cpumask_var_t cpus_allowed, new_mask;
6363 struct task_struct *p;
6364 int retval;
6366 get_online_cpus();
6367 read_lock(&tasklist_lock);
6369 p = find_process_by_pid(pid);
6370 if (!p) {
6371 read_unlock(&tasklist_lock);
6372 put_online_cpus();
6373 return -ESRCH;
6377 * It is not safe to call set_cpus_allowed with the
6378 * tasklist_lock held. We will bump the task_struct's
6379 * usage count and then drop tasklist_lock.
6381 get_task_struct(p);
6382 read_unlock(&tasklist_lock);
6384 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6385 retval = -ENOMEM;
6386 goto out_put_task;
6388 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6389 retval = -ENOMEM;
6390 goto out_free_cpus_allowed;
6392 retval = -EPERM;
6393 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6394 goto out_unlock;
6396 retval = security_task_setscheduler(p, 0, NULL);
6397 if (retval)
6398 goto out_unlock;
6400 cpuset_cpus_allowed(p, cpus_allowed);
6401 cpumask_and(new_mask, in_mask, cpus_allowed);
6402 again:
6403 retval = set_cpus_allowed_ptr(p, new_mask);
6405 if (!retval) {
6406 cpuset_cpus_allowed(p, cpus_allowed);
6407 if (!cpumask_subset(new_mask, cpus_allowed)) {
6409 * We must have raced with a concurrent cpuset
6410 * update. Just reset the cpus_allowed to the
6411 * cpuset's cpus_allowed
6413 cpumask_copy(new_mask, cpus_allowed);
6414 goto again;
6417 out_unlock:
6418 free_cpumask_var(new_mask);
6419 out_free_cpus_allowed:
6420 free_cpumask_var(cpus_allowed);
6421 out_put_task:
6422 put_task_struct(p);
6423 put_online_cpus();
6424 return retval;
6427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6428 struct cpumask *new_mask)
6430 if (len < cpumask_size())
6431 cpumask_clear(new_mask);
6432 else if (len > cpumask_size())
6433 len = cpumask_size();
6435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6439 * sys_sched_setaffinity - set the cpu affinity of a process
6440 * @pid: pid of the process
6441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6442 * @user_mask_ptr: user-space pointer to the new cpu mask
6444 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6445 unsigned long __user *, user_mask_ptr)
6447 cpumask_var_t new_mask;
6448 int retval;
6450 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6451 return -ENOMEM;
6453 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6454 if (retval == 0)
6455 retval = sched_setaffinity(pid, new_mask);
6456 free_cpumask_var(new_mask);
6457 return retval;
6460 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6462 struct task_struct *p;
6463 int retval;
6465 get_online_cpus();
6466 read_lock(&tasklist_lock);
6468 retval = -ESRCH;
6469 p = find_process_by_pid(pid);
6470 if (!p)
6471 goto out_unlock;
6473 retval = security_task_getscheduler(p);
6474 if (retval)
6475 goto out_unlock;
6477 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6479 out_unlock:
6480 read_unlock(&tasklist_lock);
6481 put_online_cpus();
6483 return retval;
6487 * sys_sched_getaffinity - get the cpu affinity of a process
6488 * @pid: pid of the process
6489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6490 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6492 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6493 unsigned long __user *, user_mask_ptr)
6495 int ret;
6496 cpumask_var_t mask;
6498 if (len < cpumask_size())
6499 return -EINVAL;
6501 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6502 return -ENOMEM;
6504 ret = sched_getaffinity(pid, mask);
6505 if (ret == 0) {
6506 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6507 ret = -EFAULT;
6508 else
6509 ret = cpumask_size();
6511 free_cpumask_var(mask);
6513 return ret;
6517 * sys_sched_yield - yield the current processor to other threads.
6519 * This function yields the current CPU to other tasks. If there are no
6520 * other threads running on this CPU then this function will return.
6522 SYSCALL_DEFINE0(sched_yield)
6524 struct rq *rq = this_rq_lock();
6526 schedstat_inc(rq, yld_count);
6527 current->sched_class->yield_task(rq);
6530 * Since we are going to call schedule() anyway, there's
6531 * no need to preempt or enable interrupts:
6533 __release(rq->lock);
6534 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6535 _raw_spin_unlock(&rq->lock);
6536 preempt_enable_no_resched();
6538 schedule();
6540 return 0;
6543 static void __cond_resched(void)
6545 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6546 __might_sleep(__FILE__, __LINE__);
6547 #endif
6549 * The BKS might be reacquired before we have dropped
6550 * PREEMPT_ACTIVE, which could trigger a second
6551 * cond_resched() call.
6553 do {
6554 add_preempt_count(PREEMPT_ACTIVE);
6555 schedule();
6556 sub_preempt_count(PREEMPT_ACTIVE);
6557 } while (need_resched());
6560 int __sched _cond_resched(void)
6562 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6563 system_state == SYSTEM_RUNNING) {
6564 __cond_resched();
6565 return 1;
6567 return 0;
6569 EXPORT_SYMBOL(_cond_resched);
6572 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6573 * call schedule, and on return reacquire the lock.
6575 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6576 * operations here to prevent schedule() from being called twice (once via
6577 * spin_unlock(), once by hand).
6579 int cond_resched_lock(spinlock_t *lock)
6581 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6582 int ret = 0;
6584 if (spin_needbreak(lock) || resched) {
6585 spin_unlock(lock);
6586 if (resched && need_resched())
6587 __cond_resched();
6588 else
6589 cpu_relax();
6590 ret = 1;
6591 spin_lock(lock);
6593 return ret;
6595 EXPORT_SYMBOL(cond_resched_lock);
6597 int __sched cond_resched_softirq(void)
6599 BUG_ON(!in_softirq());
6601 if (need_resched() && system_state == SYSTEM_RUNNING) {
6602 local_bh_enable();
6603 __cond_resched();
6604 local_bh_disable();
6605 return 1;
6607 return 0;
6609 EXPORT_SYMBOL(cond_resched_softirq);
6612 * yield - yield the current processor to other threads.
6614 * This is a shortcut for kernel-space yielding - it marks the
6615 * thread runnable and calls sys_sched_yield().
6617 void __sched yield(void)
6619 set_current_state(TASK_RUNNING);
6620 sys_sched_yield();
6622 EXPORT_SYMBOL(yield);
6625 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6626 * that process accounting knows that this is a task in IO wait state.
6628 * But don't do that if it is a deliberate, throttling IO wait (this task
6629 * has set its backing_dev_info: the queue against which it should throttle)
6631 void __sched io_schedule(void)
6633 struct rq *rq = &__raw_get_cpu_var(runqueues);
6635 delayacct_blkio_start();
6636 atomic_inc(&rq->nr_iowait);
6637 schedule();
6638 atomic_dec(&rq->nr_iowait);
6639 delayacct_blkio_end();
6641 EXPORT_SYMBOL(io_schedule);
6643 long __sched io_schedule_timeout(long timeout)
6645 struct rq *rq = &__raw_get_cpu_var(runqueues);
6646 long ret;
6648 delayacct_blkio_start();
6649 atomic_inc(&rq->nr_iowait);
6650 ret = schedule_timeout(timeout);
6651 atomic_dec(&rq->nr_iowait);
6652 delayacct_blkio_end();
6653 return ret;
6657 * sys_sched_get_priority_max - return maximum RT priority.
6658 * @policy: scheduling class.
6660 * this syscall returns the maximum rt_priority that can be used
6661 * by a given scheduling class.
6663 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6665 int ret = -EINVAL;
6667 switch (policy) {
6668 case SCHED_FIFO:
6669 case SCHED_RR:
6670 ret = MAX_USER_RT_PRIO-1;
6671 break;
6672 case SCHED_NORMAL:
6673 case SCHED_BATCH:
6674 case SCHED_IDLE:
6675 ret = 0;
6676 break;
6678 return ret;
6682 * sys_sched_get_priority_min - return minimum RT priority.
6683 * @policy: scheduling class.
6685 * this syscall returns the minimum rt_priority that can be used
6686 * by a given scheduling class.
6688 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6690 int ret = -EINVAL;
6692 switch (policy) {
6693 case SCHED_FIFO:
6694 case SCHED_RR:
6695 ret = 1;
6696 break;
6697 case SCHED_NORMAL:
6698 case SCHED_BATCH:
6699 case SCHED_IDLE:
6700 ret = 0;
6702 return ret;
6706 * sys_sched_rr_get_interval - return the default timeslice of a process.
6707 * @pid: pid of the process.
6708 * @interval: userspace pointer to the timeslice value.
6710 * this syscall writes the default timeslice value of a given process
6711 * into the user-space timespec buffer. A value of '0' means infinity.
6713 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6714 struct timespec __user *, interval)
6716 struct task_struct *p;
6717 unsigned int time_slice;
6718 int retval;
6719 struct timespec t;
6721 if (pid < 0)
6722 return -EINVAL;
6724 retval = -ESRCH;
6725 read_lock(&tasklist_lock);
6726 p = find_process_by_pid(pid);
6727 if (!p)
6728 goto out_unlock;
6730 retval = security_task_getscheduler(p);
6731 if (retval)
6732 goto out_unlock;
6735 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6736 * tasks that are on an otherwise idle runqueue:
6738 time_slice = 0;
6739 if (p->policy == SCHED_RR) {
6740 time_slice = DEF_TIMESLICE;
6741 } else if (p->policy != SCHED_FIFO) {
6742 struct sched_entity *se = &p->se;
6743 unsigned long flags;
6744 struct rq *rq;
6746 rq = task_rq_lock(p, &flags);
6747 if (rq->cfs.load.weight)
6748 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6749 task_rq_unlock(rq, &flags);
6751 read_unlock(&tasklist_lock);
6752 jiffies_to_timespec(time_slice, &t);
6753 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6754 return retval;
6756 out_unlock:
6757 read_unlock(&tasklist_lock);
6758 return retval;
6761 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6763 void sched_show_task(struct task_struct *p)
6765 unsigned long free = 0;
6766 unsigned state;
6768 state = p->state ? __ffs(p->state) + 1 : 0;
6769 printk(KERN_INFO "%-13.13s %c", p->comm,
6770 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6771 #if BITS_PER_LONG == 32
6772 if (state == TASK_RUNNING)
6773 printk(KERN_CONT " running ");
6774 else
6775 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6776 #else
6777 if (state == TASK_RUNNING)
6778 printk(KERN_CONT " running task ");
6779 else
6780 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6781 #endif
6782 #ifdef CONFIG_DEBUG_STACK_USAGE
6783 free = stack_not_used(p);
6784 #endif
6785 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6786 task_pid_nr(p), task_pid_nr(p->real_parent),
6787 (unsigned long)task_thread_info(p)->flags);
6789 show_stack(p, NULL);
6792 void show_state_filter(unsigned long state_filter)
6794 struct task_struct *g, *p;
6796 #if BITS_PER_LONG == 32
6797 printk(KERN_INFO
6798 " task PC stack pid father\n");
6799 #else
6800 printk(KERN_INFO
6801 " task PC stack pid father\n");
6802 #endif
6803 read_lock(&tasklist_lock);
6804 do_each_thread(g, p) {
6806 * reset the NMI-timeout, listing all files on a slow
6807 * console might take alot of time:
6809 touch_nmi_watchdog();
6810 if (!state_filter || (p->state & state_filter))
6811 sched_show_task(p);
6812 } while_each_thread(g, p);
6814 touch_all_softlockup_watchdogs();
6816 #ifdef CONFIG_SCHED_DEBUG
6817 sysrq_sched_debug_show();
6818 #endif
6819 read_unlock(&tasklist_lock);
6821 * Only show locks if all tasks are dumped:
6823 if (state_filter == -1)
6824 debug_show_all_locks();
6827 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6829 idle->sched_class = &idle_sched_class;
6833 * init_idle - set up an idle thread for a given CPU
6834 * @idle: task in question
6835 * @cpu: cpu the idle task belongs to
6837 * NOTE: this function does not set the idle thread's NEED_RESCHED
6838 * flag, to make booting more robust.
6840 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6842 struct rq *rq = cpu_rq(cpu);
6843 unsigned long flags;
6845 spin_lock_irqsave(&rq->lock, flags);
6847 __sched_fork(idle);
6848 idle->se.exec_start = sched_clock();
6850 idle->prio = idle->normal_prio = MAX_PRIO;
6851 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6852 __set_task_cpu(idle, cpu);
6854 rq->curr = rq->idle = idle;
6855 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6856 idle->oncpu = 1;
6857 #endif
6858 spin_unlock_irqrestore(&rq->lock, flags);
6860 /* Set the preempt count _outside_ the spinlocks! */
6861 #if defined(CONFIG_PREEMPT)
6862 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6863 #else
6864 task_thread_info(idle)->preempt_count = 0;
6865 #endif
6867 * The idle tasks have their own, simple scheduling class:
6869 idle->sched_class = &idle_sched_class;
6870 ftrace_graph_init_task(idle);
6874 * In a system that switches off the HZ timer nohz_cpu_mask
6875 * indicates which cpus entered this state. This is used
6876 * in the rcu update to wait only for active cpus. For system
6877 * which do not switch off the HZ timer nohz_cpu_mask should
6878 * always be CPU_BITS_NONE.
6880 cpumask_var_t nohz_cpu_mask;
6883 * Increase the granularity value when there are more CPUs,
6884 * because with more CPUs the 'effective latency' as visible
6885 * to users decreases. But the relationship is not linear,
6886 * so pick a second-best guess by going with the log2 of the
6887 * number of CPUs.
6889 * This idea comes from the SD scheduler of Con Kolivas:
6891 static inline void sched_init_granularity(void)
6893 unsigned int factor = 1 + ilog2(num_online_cpus());
6894 const unsigned long limit = 200000000;
6896 sysctl_sched_min_granularity *= factor;
6897 if (sysctl_sched_min_granularity > limit)
6898 sysctl_sched_min_granularity = limit;
6900 sysctl_sched_latency *= factor;
6901 if (sysctl_sched_latency > limit)
6902 sysctl_sched_latency = limit;
6904 sysctl_sched_wakeup_granularity *= factor;
6906 sysctl_sched_shares_ratelimit *= factor;
6909 #ifdef CONFIG_SMP
6911 * This is how migration works:
6913 * 1) we queue a struct migration_req structure in the source CPU's
6914 * runqueue and wake up that CPU's migration thread.
6915 * 2) we down() the locked semaphore => thread blocks.
6916 * 3) migration thread wakes up (implicitly it forces the migrated
6917 * thread off the CPU)
6918 * 4) it gets the migration request and checks whether the migrated
6919 * task is still in the wrong runqueue.
6920 * 5) if it's in the wrong runqueue then the migration thread removes
6921 * it and puts it into the right queue.
6922 * 6) migration thread up()s the semaphore.
6923 * 7) we wake up and the migration is done.
6927 * Change a given task's CPU affinity. Migrate the thread to a
6928 * proper CPU and schedule it away if the CPU it's executing on
6929 * is removed from the allowed bitmask.
6931 * NOTE: the caller must have a valid reference to the task, the
6932 * task must not exit() & deallocate itself prematurely. The
6933 * call is not atomic; no spinlocks may be held.
6935 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6937 struct migration_req req;
6938 unsigned long flags;
6939 struct rq *rq;
6940 int ret = 0;
6942 rq = task_rq_lock(p, &flags);
6943 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6944 ret = -EINVAL;
6945 goto out;
6948 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6949 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6950 ret = -EINVAL;
6951 goto out;
6954 if (p->sched_class->set_cpus_allowed)
6955 p->sched_class->set_cpus_allowed(p, new_mask);
6956 else {
6957 cpumask_copy(&p->cpus_allowed, new_mask);
6958 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6961 /* Can the task run on the task's current CPU? If so, we're done */
6962 if (cpumask_test_cpu(task_cpu(p), new_mask))
6963 goto out;
6965 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6966 /* Need help from migration thread: drop lock and wait. */
6967 task_rq_unlock(rq, &flags);
6968 wake_up_process(rq->migration_thread);
6969 wait_for_completion(&req.done);
6970 tlb_migrate_finish(p->mm);
6971 return 0;
6973 out:
6974 task_rq_unlock(rq, &flags);
6976 return ret;
6978 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6981 * Move (not current) task off this cpu, onto dest cpu. We're doing
6982 * this because either it can't run here any more (set_cpus_allowed()
6983 * away from this CPU, or CPU going down), or because we're
6984 * attempting to rebalance this task on exec (sched_exec).
6986 * So we race with normal scheduler movements, but that's OK, as long
6987 * as the task is no longer on this CPU.
6989 * Returns non-zero if task was successfully migrated.
6991 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6993 struct rq *rq_dest, *rq_src;
6994 int ret = 0, on_rq;
6996 if (unlikely(!cpu_active(dest_cpu)))
6997 return ret;
6999 rq_src = cpu_rq(src_cpu);
7000 rq_dest = cpu_rq(dest_cpu);
7002 double_rq_lock(rq_src, rq_dest);
7003 /* Already moved. */
7004 if (task_cpu(p) != src_cpu)
7005 goto done;
7006 /* Affinity changed (again). */
7007 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7008 goto fail;
7010 on_rq = p->se.on_rq;
7011 if (on_rq)
7012 deactivate_task(rq_src, p, 0);
7014 set_task_cpu(p, dest_cpu);
7015 if (on_rq) {
7016 activate_task(rq_dest, p, 0);
7017 check_preempt_curr(rq_dest, p, 0);
7019 done:
7020 ret = 1;
7021 fail:
7022 double_rq_unlock(rq_src, rq_dest);
7023 return ret;
7027 * migration_thread - this is a highprio system thread that performs
7028 * thread migration by bumping thread off CPU then 'pushing' onto
7029 * another runqueue.
7031 static int migration_thread(void *data)
7033 int cpu = (long)data;
7034 struct rq *rq;
7036 rq = cpu_rq(cpu);
7037 BUG_ON(rq->migration_thread != current);
7039 set_current_state(TASK_INTERRUPTIBLE);
7040 while (!kthread_should_stop()) {
7041 struct migration_req *req;
7042 struct list_head *head;
7044 spin_lock_irq(&rq->lock);
7046 if (cpu_is_offline(cpu)) {
7047 spin_unlock_irq(&rq->lock);
7048 goto wait_to_die;
7051 if (rq->active_balance) {
7052 active_load_balance(rq, cpu);
7053 rq->active_balance = 0;
7056 head = &rq->migration_queue;
7058 if (list_empty(head)) {
7059 spin_unlock_irq(&rq->lock);
7060 schedule();
7061 set_current_state(TASK_INTERRUPTIBLE);
7062 continue;
7064 req = list_entry(head->next, struct migration_req, list);
7065 list_del_init(head->next);
7067 spin_unlock(&rq->lock);
7068 __migrate_task(req->task, cpu, req->dest_cpu);
7069 local_irq_enable();
7071 complete(&req->done);
7073 __set_current_state(TASK_RUNNING);
7074 return 0;
7076 wait_to_die:
7077 /* Wait for kthread_stop */
7078 set_current_state(TASK_INTERRUPTIBLE);
7079 while (!kthread_should_stop()) {
7080 schedule();
7081 set_current_state(TASK_INTERRUPTIBLE);
7083 __set_current_state(TASK_RUNNING);
7084 return 0;
7087 #ifdef CONFIG_HOTPLUG_CPU
7089 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7091 int ret;
7093 local_irq_disable();
7094 ret = __migrate_task(p, src_cpu, dest_cpu);
7095 local_irq_enable();
7096 return ret;
7100 * Figure out where task on dead CPU should go, use force if necessary.
7102 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7104 int dest_cpu;
7105 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7107 again:
7108 /* Look for allowed, online CPU in same node. */
7109 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7110 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7111 goto move;
7113 /* Any allowed, online CPU? */
7114 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7115 if (dest_cpu < nr_cpu_ids)
7116 goto move;
7118 /* No more Mr. Nice Guy. */
7119 if (dest_cpu >= nr_cpu_ids) {
7120 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7121 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7124 * Don't tell them about moving exiting tasks or
7125 * kernel threads (both mm NULL), since they never
7126 * leave kernel.
7128 if (p->mm && printk_ratelimit()) {
7129 printk(KERN_INFO "process %d (%s) no "
7130 "longer affine to cpu%d\n",
7131 task_pid_nr(p), p->comm, dead_cpu);
7135 move:
7136 /* It can have affinity changed while we were choosing. */
7137 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7138 goto again;
7142 * While a dead CPU has no uninterruptible tasks queued at this point,
7143 * it might still have a nonzero ->nr_uninterruptible counter, because
7144 * for performance reasons the counter is not stricly tracking tasks to
7145 * their home CPUs. So we just add the counter to another CPU's counter,
7146 * to keep the global sum constant after CPU-down:
7148 static void migrate_nr_uninterruptible(struct rq *rq_src)
7150 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7151 unsigned long flags;
7153 local_irq_save(flags);
7154 double_rq_lock(rq_src, rq_dest);
7155 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7156 rq_src->nr_uninterruptible = 0;
7157 double_rq_unlock(rq_src, rq_dest);
7158 local_irq_restore(flags);
7161 /* Run through task list and migrate tasks from the dead cpu. */
7162 static void migrate_live_tasks(int src_cpu)
7164 struct task_struct *p, *t;
7166 read_lock(&tasklist_lock);
7168 do_each_thread(t, p) {
7169 if (p == current)
7170 continue;
7172 if (task_cpu(p) == src_cpu)
7173 move_task_off_dead_cpu(src_cpu, p);
7174 } while_each_thread(t, p);
7176 read_unlock(&tasklist_lock);
7180 * Schedules idle task to be the next runnable task on current CPU.
7181 * It does so by boosting its priority to highest possible.
7182 * Used by CPU offline code.
7184 void sched_idle_next(void)
7186 int this_cpu = smp_processor_id();
7187 struct rq *rq = cpu_rq(this_cpu);
7188 struct task_struct *p = rq->idle;
7189 unsigned long flags;
7191 /* cpu has to be offline */
7192 BUG_ON(cpu_online(this_cpu));
7195 * Strictly not necessary since rest of the CPUs are stopped by now
7196 * and interrupts disabled on the current cpu.
7198 spin_lock_irqsave(&rq->lock, flags);
7200 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7202 update_rq_clock(rq);
7203 activate_task(rq, p, 0);
7205 spin_unlock_irqrestore(&rq->lock, flags);
7209 * Ensures that the idle task is using init_mm right before its cpu goes
7210 * offline.
7212 void idle_task_exit(void)
7214 struct mm_struct *mm = current->active_mm;
7216 BUG_ON(cpu_online(smp_processor_id()));
7218 if (mm != &init_mm)
7219 switch_mm(mm, &init_mm, current);
7220 mmdrop(mm);
7223 /* called under rq->lock with disabled interrupts */
7224 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7226 struct rq *rq = cpu_rq(dead_cpu);
7228 /* Must be exiting, otherwise would be on tasklist. */
7229 BUG_ON(!p->exit_state);
7231 /* Cannot have done final schedule yet: would have vanished. */
7232 BUG_ON(p->state == TASK_DEAD);
7234 get_task_struct(p);
7237 * Drop lock around migration; if someone else moves it,
7238 * that's OK. No task can be added to this CPU, so iteration is
7239 * fine.
7241 spin_unlock_irq(&rq->lock);
7242 move_task_off_dead_cpu(dead_cpu, p);
7243 spin_lock_irq(&rq->lock);
7245 put_task_struct(p);
7248 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7249 static void migrate_dead_tasks(unsigned int dead_cpu)
7251 struct rq *rq = cpu_rq(dead_cpu);
7252 struct task_struct *next;
7254 for ( ; ; ) {
7255 if (!rq->nr_running)
7256 break;
7257 update_rq_clock(rq);
7258 next = pick_next_task(rq);
7259 if (!next)
7260 break;
7261 next->sched_class->put_prev_task(rq, next);
7262 migrate_dead(dead_cpu, next);
7268 * remove the tasks which were accounted by rq from calc_load_tasks.
7270 static void calc_global_load_remove(struct rq *rq)
7272 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7274 #endif /* CONFIG_HOTPLUG_CPU */
7276 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7278 static struct ctl_table sd_ctl_dir[] = {
7280 .procname = "sched_domain",
7281 .mode = 0555,
7283 {0, },
7286 static struct ctl_table sd_ctl_root[] = {
7288 .ctl_name = CTL_KERN,
7289 .procname = "kernel",
7290 .mode = 0555,
7291 .child = sd_ctl_dir,
7293 {0, },
7296 static struct ctl_table *sd_alloc_ctl_entry(int n)
7298 struct ctl_table *entry =
7299 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7301 return entry;
7304 static void sd_free_ctl_entry(struct ctl_table **tablep)
7306 struct ctl_table *entry;
7309 * In the intermediate directories, both the child directory and
7310 * procname are dynamically allocated and could fail but the mode
7311 * will always be set. In the lowest directory the names are
7312 * static strings and all have proc handlers.
7314 for (entry = *tablep; entry->mode; entry++) {
7315 if (entry->child)
7316 sd_free_ctl_entry(&entry->child);
7317 if (entry->proc_handler == NULL)
7318 kfree(entry->procname);
7321 kfree(*tablep);
7322 *tablep = NULL;
7325 static void
7326 set_table_entry(struct ctl_table *entry,
7327 const char *procname, void *data, int maxlen,
7328 mode_t mode, proc_handler *proc_handler)
7330 entry->procname = procname;
7331 entry->data = data;
7332 entry->maxlen = maxlen;
7333 entry->mode = mode;
7334 entry->proc_handler = proc_handler;
7337 static struct ctl_table *
7338 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7340 struct ctl_table *table = sd_alloc_ctl_entry(13);
7342 if (table == NULL)
7343 return NULL;
7345 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7346 sizeof(long), 0644, proc_doulongvec_minmax);
7347 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7348 sizeof(long), 0644, proc_doulongvec_minmax);
7349 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7350 sizeof(int), 0644, proc_dointvec_minmax);
7351 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7352 sizeof(int), 0644, proc_dointvec_minmax);
7353 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7354 sizeof(int), 0644, proc_dointvec_minmax);
7355 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7356 sizeof(int), 0644, proc_dointvec_minmax);
7357 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7358 sizeof(int), 0644, proc_dointvec_minmax);
7359 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7360 sizeof(int), 0644, proc_dointvec_minmax);
7361 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7362 sizeof(int), 0644, proc_dointvec_minmax);
7363 set_table_entry(&table[9], "cache_nice_tries",
7364 &sd->cache_nice_tries,
7365 sizeof(int), 0644, proc_dointvec_minmax);
7366 set_table_entry(&table[10], "flags", &sd->flags,
7367 sizeof(int), 0644, proc_dointvec_minmax);
7368 set_table_entry(&table[11], "name", sd->name,
7369 CORENAME_MAX_SIZE, 0444, proc_dostring);
7370 /* &table[12] is terminator */
7372 return table;
7375 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7377 struct ctl_table *entry, *table;
7378 struct sched_domain *sd;
7379 int domain_num = 0, i;
7380 char buf[32];
7382 for_each_domain(cpu, sd)
7383 domain_num++;
7384 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7385 if (table == NULL)
7386 return NULL;
7388 i = 0;
7389 for_each_domain(cpu, sd) {
7390 snprintf(buf, 32, "domain%d", i);
7391 entry->procname = kstrdup(buf, GFP_KERNEL);
7392 entry->mode = 0555;
7393 entry->child = sd_alloc_ctl_domain_table(sd);
7394 entry++;
7395 i++;
7397 return table;
7400 static struct ctl_table_header *sd_sysctl_header;
7401 static void register_sched_domain_sysctl(void)
7403 int i, cpu_num = num_online_cpus();
7404 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7405 char buf[32];
7407 WARN_ON(sd_ctl_dir[0].child);
7408 sd_ctl_dir[0].child = entry;
7410 if (entry == NULL)
7411 return;
7413 for_each_online_cpu(i) {
7414 snprintf(buf, 32, "cpu%d", i);
7415 entry->procname = kstrdup(buf, GFP_KERNEL);
7416 entry->mode = 0555;
7417 entry->child = sd_alloc_ctl_cpu_table(i);
7418 entry++;
7421 WARN_ON(sd_sysctl_header);
7422 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7425 /* may be called multiple times per register */
7426 static void unregister_sched_domain_sysctl(void)
7428 if (sd_sysctl_header)
7429 unregister_sysctl_table(sd_sysctl_header);
7430 sd_sysctl_header = NULL;
7431 if (sd_ctl_dir[0].child)
7432 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7434 #else
7435 static void register_sched_domain_sysctl(void)
7438 static void unregister_sched_domain_sysctl(void)
7441 #endif
7443 static void set_rq_online(struct rq *rq)
7445 if (!rq->online) {
7446 const struct sched_class *class;
7448 cpumask_set_cpu(rq->cpu, rq->rd->online);
7449 rq->online = 1;
7451 for_each_class(class) {
7452 if (class->rq_online)
7453 class->rq_online(rq);
7458 static void set_rq_offline(struct rq *rq)
7460 if (rq->online) {
7461 const struct sched_class *class;
7463 for_each_class(class) {
7464 if (class->rq_offline)
7465 class->rq_offline(rq);
7468 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7469 rq->online = 0;
7474 * migration_call - callback that gets triggered when a CPU is added.
7475 * Here we can start up the necessary migration thread for the new CPU.
7477 static int __cpuinit
7478 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7480 struct task_struct *p;
7481 int cpu = (long)hcpu;
7482 unsigned long flags;
7483 struct rq *rq;
7485 switch (action) {
7487 case CPU_UP_PREPARE:
7488 case CPU_UP_PREPARE_FROZEN:
7489 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7490 if (IS_ERR(p))
7491 return NOTIFY_BAD;
7492 kthread_bind(p, cpu);
7493 /* Must be high prio: stop_machine expects to yield to it. */
7494 rq = task_rq_lock(p, &flags);
7495 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7496 task_rq_unlock(rq, &flags);
7497 cpu_rq(cpu)->migration_thread = p;
7498 break;
7500 case CPU_ONLINE:
7501 case CPU_ONLINE_FROZEN:
7502 /* Strictly unnecessary, as first user will wake it. */
7503 wake_up_process(cpu_rq(cpu)->migration_thread);
7505 /* Update our root-domain */
7506 rq = cpu_rq(cpu);
7507 spin_lock_irqsave(&rq->lock, flags);
7508 rq->calc_load_update = calc_load_update;
7509 rq->calc_load_active = 0;
7510 if (rq->rd) {
7511 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7513 set_rq_online(rq);
7515 spin_unlock_irqrestore(&rq->lock, flags);
7516 break;
7518 #ifdef CONFIG_HOTPLUG_CPU
7519 case CPU_UP_CANCELED:
7520 case CPU_UP_CANCELED_FROZEN:
7521 if (!cpu_rq(cpu)->migration_thread)
7522 break;
7523 /* Unbind it from offline cpu so it can run. Fall thru. */
7524 kthread_bind(cpu_rq(cpu)->migration_thread,
7525 cpumask_any(cpu_online_mask));
7526 kthread_stop(cpu_rq(cpu)->migration_thread);
7527 cpu_rq(cpu)->migration_thread = NULL;
7528 break;
7530 case CPU_DEAD:
7531 case CPU_DEAD_FROZEN:
7532 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7533 migrate_live_tasks(cpu);
7534 rq = cpu_rq(cpu);
7535 kthread_stop(rq->migration_thread);
7536 rq->migration_thread = NULL;
7537 /* Idle task back to normal (off runqueue, low prio) */
7538 spin_lock_irq(&rq->lock);
7539 update_rq_clock(rq);
7540 deactivate_task(rq, rq->idle, 0);
7541 rq->idle->static_prio = MAX_PRIO;
7542 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7543 rq->idle->sched_class = &idle_sched_class;
7544 migrate_dead_tasks(cpu);
7545 spin_unlock_irq(&rq->lock);
7546 cpuset_unlock();
7547 migrate_nr_uninterruptible(rq);
7548 BUG_ON(rq->nr_running != 0);
7549 calc_global_load_remove(rq);
7551 * No need to migrate the tasks: it was best-effort if
7552 * they didn't take sched_hotcpu_mutex. Just wake up
7553 * the requestors.
7555 spin_lock_irq(&rq->lock);
7556 while (!list_empty(&rq->migration_queue)) {
7557 struct migration_req *req;
7559 req = list_entry(rq->migration_queue.next,
7560 struct migration_req, list);
7561 list_del_init(&req->list);
7562 spin_unlock_irq(&rq->lock);
7563 complete(&req->done);
7564 spin_lock_irq(&rq->lock);
7566 spin_unlock_irq(&rq->lock);
7567 break;
7569 case CPU_DYING:
7570 case CPU_DYING_FROZEN:
7571 /* Update our root-domain */
7572 rq = cpu_rq(cpu);
7573 spin_lock_irqsave(&rq->lock, flags);
7574 if (rq->rd) {
7575 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7576 set_rq_offline(rq);
7578 spin_unlock_irqrestore(&rq->lock, flags);
7579 break;
7580 #endif
7582 return NOTIFY_OK;
7586 * Register at high priority so that task migration (migrate_all_tasks)
7587 * happens before everything else. This has to be lower priority than
7588 * the notifier in the perf_counter subsystem, though.
7590 static struct notifier_block __cpuinitdata migration_notifier = {
7591 .notifier_call = migration_call,
7592 .priority = 10
7595 static int __init migration_init(void)
7597 void *cpu = (void *)(long)smp_processor_id();
7598 int err;
7600 /* Start one for the boot CPU: */
7601 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7602 BUG_ON(err == NOTIFY_BAD);
7603 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7604 register_cpu_notifier(&migration_notifier);
7606 return err;
7608 early_initcall(migration_init);
7609 #endif
7611 #ifdef CONFIG_SMP
7613 #ifdef CONFIG_SCHED_DEBUG
7615 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7616 struct cpumask *groupmask)
7618 struct sched_group *group = sd->groups;
7619 char str[256];
7621 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7622 cpumask_clear(groupmask);
7624 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7626 if (!(sd->flags & SD_LOAD_BALANCE)) {
7627 printk("does not load-balance\n");
7628 if (sd->parent)
7629 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7630 " has parent");
7631 return -1;
7634 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7636 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7637 printk(KERN_ERR "ERROR: domain->span does not contain "
7638 "CPU%d\n", cpu);
7640 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7641 printk(KERN_ERR "ERROR: domain->groups does not contain"
7642 " CPU%d\n", cpu);
7645 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7646 do {
7647 if (!group) {
7648 printk("\n");
7649 printk(KERN_ERR "ERROR: group is NULL\n");
7650 break;
7653 if (!group->__cpu_power) {
7654 printk(KERN_CONT "\n");
7655 printk(KERN_ERR "ERROR: domain->cpu_power not "
7656 "set\n");
7657 break;
7660 if (!cpumask_weight(sched_group_cpus(group))) {
7661 printk(KERN_CONT "\n");
7662 printk(KERN_ERR "ERROR: empty group\n");
7663 break;
7666 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7667 printk(KERN_CONT "\n");
7668 printk(KERN_ERR "ERROR: repeated CPUs\n");
7669 break;
7672 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7674 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7676 printk(KERN_CONT " %s", str);
7677 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7678 printk(KERN_CONT " (__cpu_power = %d)",
7679 group->__cpu_power);
7682 group = group->next;
7683 } while (group != sd->groups);
7684 printk(KERN_CONT "\n");
7686 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7687 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7689 if (sd->parent &&
7690 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7691 printk(KERN_ERR "ERROR: parent span is not a superset "
7692 "of domain->span\n");
7693 return 0;
7696 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7698 cpumask_var_t groupmask;
7699 int level = 0;
7701 if (!sd) {
7702 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7703 return;
7706 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7708 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7709 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7710 return;
7713 for (;;) {
7714 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7715 break;
7716 level++;
7717 sd = sd->parent;
7718 if (!sd)
7719 break;
7721 free_cpumask_var(groupmask);
7723 #else /* !CONFIG_SCHED_DEBUG */
7724 # define sched_domain_debug(sd, cpu) do { } while (0)
7725 #endif /* CONFIG_SCHED_DEBUG */
7727 static int sd_degenerate(struct sched_domain *sd)
7729 if (cpumask_weight(sched_domain_span(sd)) == 1)
7730 return 1;
7732 /* Following flags need at least 2 groups */
7733 if (sd->flags & (SD_LOAD_BALANCE |
7734 SD_BALANCE_NEWIDLE |
7735 SD_BALANCE_FORK |
7736 SD_BALANCE_EXEC |
7737 SD_SHARE_CPUPOWER |
7738 SD_SHARE_PKG_RESOURCES)) {
7739 if (sd->groups != sd->groups->next)
7740 return 0;
7743 /* Following flags don't use groups */
7744 if (sd->flags & (SD_WAKE_IDLE |
7745 SD_WAKE_AFFINE |
7746 SD_WAKE_BALANCE))
7747 return 0;
7749 return 1;
7752 static int
7753 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7755 unsigned long cflags = sd->flags, pflags = parent->flags;
7757 if (sd_degenerate(parent))
7758 return 1;
7760 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7761 return 0;
7763 /* Does parent contain flags not in child? */
7764 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7765 if (cflags & SD_WAKE_AFFINE)
7766 pflags &= ~SD_WAKE_BALANCE;
7767 /* Flags needing groups don't count if only 1 group in parent */
7768 if (parent->groups == parent->groups->next) {
7769 pflags &= ~(SD_LOAD_BALANCE |
7770 SD_BALANCE_NEWIDLE |
7771 SD_BALANCE_FORK |
7772 SD_BALANCE_EXEC |
7773 SD_SHARE_CPUPOWER |
7774 SD_SHARE_PKG_RESOURCES);
7775 if (nr_node_ids == 1)
7776 pflags &= ~SD_SERIALIZE;
7778 if (~cflags & pflags)
7779 return 0;
7781 return 1;
7784 static void free_rootdomain(struct root_domain *rd)
7786 cpupri_cleanup(&rd->cpupri);
7788 free_cpumask_var(rd->rto_mask);
7789 free_cpumask_var(rd->online);
7790 free_cpumask_var(rd->span);
7791 kfree(rd);
7794 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7796 struct root_domain *old_rd = NULL;
7797 unsigned long flags;
7799 spin_lock_irqsave(&rq->lock, flags);
7801 if (rq->rd) {
7802 old_rd = rq->rd;
7804 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7805 set_rq_offline(rq);
7807 cpumask_clear_cpu(rq->cpu, old_rd->span);
7810 * If we dont want to free the old_rt yet then
7811 * set old_rd to NULL to skip the freeing later
7812 * in this function:
7814 if (!atomic_dec_and_test(&old_rd->refcount))
7815 old_rd = NULL;
7818 atomic_inc(&rd->refcount);
7819 rq->rd = rd;
7821 cpumask_set_cpu(rq->cpu, rd->span);
7822 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7823 set_rq_online(rq);
7825 spin_unlock_irqrestore(&rq->lock, flags);
7827 if (old_rd)
7828 free_rootdomain(old_rd);
7831 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7833 gfp_t gfp = GFP_KERNEL;
7835 memset(rd, 0, sizeof(*rd));
7837 if (bootmem)
7838 gfp = GFP_NOWAIT;
7840 if (!alloc_cpumask_var(&rd->span, gfp))
7841 goto out;
7842 if (!alloc_cpumask_var(&rd->online, gfp))
7843 goto free_span;
7844 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7845 goto free_online;
7847 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7848 goto free_rto_mask;
7849 return 0;
7851 free_rto_mask:
7852 free_cpumask_var(rd->rto_mask);
7853 free_online:
7854 free_cpumask_var(rd->online);
7855 free_span:
7856 free_cpumask_var(rd->span);
7857 out:
7858 return -ENOMEM;
7861 static void init_defrootdomain(void)
7863 init_rootdomain(&def_root_domain, true);
7865 atomic_set(&def_root_domain.refcount, 1);
7868 static struct root_domain *alloc_rootdomain(void)
7870 struct root_domain *rd;
7872 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7873 if (!rd)
7874 return NULL;
7876 if (init_rootdomain(rd, false) != 0) {
7877 kfree(rd);
7878 return NULL;
7881 return rd;
7885 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7886 * hold the hotplug lock.
7888 static void
7889 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7891 struct rq *rq = cpu_rq(cpu);
7892 struct sched_domain *tmp;
7894 /* Remove the sched domains which do not contribute to scheduling. */
7895 for (tmp = sd; tmp; ) {
7896 struct sched_domain *parent = tmp->parent;
7897 if (!parent)
7898 break;
7900 if (sd_parent_degenerate(tmp, parent)) {
7901 tmp->parent = parent->parent;
7902 if (parent->parent)
7903 parent->parent->child = tmp;
7904 } else
7905 tmp = tmp->parent;
7908 if (sd && sd_degenerate(sd)) {
7909 sd = sd->parent;
7910 if (sd)
7911 sd->child = NULL;
7914 sched_domain_debug(sd, cpu);
7916 rq_attach_root(rq, rd);
7917 rcu_assign_pointer(rq->sd, sd);
7920 /* cpus with isolated domains */
7921 static cpumask_var_t cpu_isolated_map;
7923 /* Setup the mask of cpus configured for isolated domains */
7924 static int __init isolated_cpu_setup(char *str)
7926 cpulist_parse(str, cpu_isolated_map);
7927 return 1;
7930 __setup("isolcpus=", isolated_cpu_setup);
7933 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7934 * to a function which identifies what group(along with sched group) a CPU
7935 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7936 * (due to the fact that we keep track of groups covered with a struct cpumask).
7938 * init_sched_build_groups will build a circular linked list of the groups
7939 * covered by the given span, and will set each group's ->cpumask correctly,
7940 * and ->cpu_power to 0.
7942 static void
7943 init_sched_build_groups(const struct cpumask *span,
7944 const struct cpumask *cpu_map,
7945 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7946 struct sched_group **sg,
7947 struct cpumask *tmpmask),
7948 struct cpumask *covered, struct cpumask *tmpmask)
7950 struct sched_group *first = NULL, *last = NULL;
7951 int i;
7953 cpumask_clear(covered);
7955 for_each_cpu(i, span) {
7956 struct sched_group *sg;
7957 int group = group_fn(i, cpu_map, &sg, tmpmask);
7958 int j;
7960 if (cpumask_test_cpu(i, covered))
7961 continue;
7963 cpumask_clear(sched_group_cpus(sg));
7964 sg->__cpu_power = 0;
7966 for_each_cpu(j, span) {
7967 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7968 continue;
7970 cpumask_set_cpu(j, covered);
7971 cpumask_set_cpu(j, sched_group_cpus(sg));
7973 if (!first)
7974 first = sg;
7975 if (last)
7976 last->next = sg;
7977 last = sg;
7979 last->next = first;
7982 #define SD_NODES_PER_DOMAIN 16
7984 #ifdef CONFIG_NUMA
7987 * find_next_best_node - find the next node to include in a sched_domain
7988 * @node: node whose sched_domain we're building
7989 * @used_nodes: nodes already in the sched_domain
7991 * Find the next node to include in a given scheduling domain. Simply
7992 * finds the closest node not already in the @used_nodes map.
7994 * Should use nodemask_t.
7996 static int find_next_best_node(int node, nodemask_t *used_nodes)
7998 int i, n, val, min_val, best_node = 0;
8000 min_val = INT_MAX;
8002 for (i = 0; i < nr_node_ids; i++) {
8003 /* Start at @node */
8004 n = (node + i) % nr_node_ids;
8006 if (!nr_cpus_node(n))
8007 continue;
8009 /* Skip already used nodes */
8010 if (node_isset(n, *used_nodes))
8011 continue;
8013 /* Simple min distance search */
8014 val = node_distance(node, n);
8016 if (val < min_val) {
8017 min_val = val;
8018 best_node = n;
8022 node_set(best_node, *used_nodes);
8023 return best_node;
8027 * sched_domain_node_span - get a cpumask for a node's sched_domain
8028 * @node: node whose cpumask we're constructing
8029 * @span: resulting cpumask
8031 * Given a node, construct a good cpumask for its sched_domain to span. It
8032 * should be one that prevents unnecessary balancing, but also spreads tasks
8033 * out optimally.
8035 static void sched_domain_node_span(int node, struct cpumask *span)
8037 nodemask_t used_nodes;
8038 int i;
8040 cpumask_clear(span);
8041 nodes_clear(used_nodes);
8043 cpumask_or(span, span, cpumask_of_node(node));
8044 node_set(node, used_nodes);
8046 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8047 int next_node = find_next_best_node(node, &used_nodes);
8049 cpumask_or(span, span, cpumask_of_node(next_node));
8052 #endif /* CONFIG_NUMA */
8054 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8057 * The cpus mask in sched_group and sched_domain hangs off the end.
8059 * ( See the the comments in include/linux/sched.h:struct sched_group
8060 * and struct sched_domain. )
8062 struct static_sched_group {
8063 struct sched_group sg;
8064 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8067 struct static_sched_domain {
8068 struct sched_domain sd;
8069 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8073 * SMT sched-domains:
8075 #ifdef CONFIG_SCHED_SMT
8076 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8077 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8079 static int
8080 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8081 struct sched_group **sg, struct cpumask *unused)
8083 if (sg)
8084 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8085 return cpu;
8087 #endif /* CONFIG_SCHED_SMT */
8090 * multi-core sched-domains:
8092 #ifdef CONFIG_SCHED_MC
8093 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8094 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8095 #endif /* CONFIG_SCHED_MC */
8097 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8098 static int
8099 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8100 struct sched_group **sg, struct cpumask *mask)
8102 int group;
8104 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8105 group = cpumask_first(mask);
8106 if (sg)
8107 *sg = &per_cpu(sched_group_core, group).sg;
8108 return group;
8110 #elif defined(CONFIG_SCHED_MC)
8111 static int
8112 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8113 struct sched_group **sg, struct cpumask *unused)
8115 if (sg)
8116 *sg = &per_cpu(sched_group_core, cpu).sg;
8117 return cpu;
8119 #endif
8121 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8122 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8124 static int
8125 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8126 struct sched_group **sg, struct cpumask *mask)
8128 int group;
8129 #ifdef CONFIG_SCHED_MC
8130 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8131 group = cpumask_first(mask);
8132 #elif defined(CONFIG_SCHED_SMT)
8133 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8134 group = cpumask_first(mask);
8135 #else
8136 group = cpu;
8137 #endif
8138 if (sg)
8139 *sg = &per_cpu(sched_group_phys, group).sg;
8140 return group;
8143 #ifdef CONFIG_NUMA
8145 * The init_sched_build_groups can't handle what we want to do with node
8146 * groups, so roll our own. Now each node has its own list of groups which
8147 * gets dynamically allocated.
8149 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8150 static struct sched_group ***sched_group_nodes_bycpu;
8152 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8153 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8155 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8156 struct sched_group **sg,
8157 struct cpumask *nodemask)
8159 int group;
8161 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8162 group = cpumask_first(nodemask);
8164 if (sg)
8165 *sg = &per_cpu(sched_group_allnodes, group).sg;
8166 return group;
8169 static void init_numa_sched_groups_power(struct sched_group *group_head)
8171 struct sched_group *sg = group_head;
8172 int j;
8174 if (!sg)
8175 return;
8176 do {
8177 for_each_cpu(j, sched_group_cpus(sg)) {
8178 struct sched_domain *sd;
8180 sd = &per_cpu(phys_domains, j).sd;
8181 if (j != group_first_cpu(sd->groups)) {
8183 * Only add "power" once for each
8184 * physical package.
8186 continue;
8189 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8191 sg = sg->next;
8192 } while (sg != group_head);
8194 #endif /* CONFIG_NUMA */
8196 #ifdef CONFIG_NUMA
8197 /* Free memory allocated for various sched_group structures */
8198 static void free_sched_groups(const struct cpumask *cpu_map,
8199 struct cpumask *nodemask)
8201 int cpu, i;
8203 for_each_cpu(cpu, cpu_map) {
8204 struct sched_group **sched_group_nodes
8205 = sched_group_nodes_bycpu[cpu];
8207 if (!sched_group_nodes)
8208 continue;
8210 for (i = 0; i < nr_node_ids; i++) {
8211 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8213 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8214 if (cpumask_empty(nodemask))
8215 continue;
8217 if (sg == NULL)
8218 continue;
8219 sg = sg->next;
8220 next_sg:
8221 oldsg = sg;
8222 sg = sg->next;
8223 kfree(oldsg);
8224 if (oldsg != sched_group_nodes[i])
8225 goto next_sg;
8227 kfree(sched_group_nodes);
8228 sched_group_nodes_bycpu[cpu] = NULL;
8231 #else /* !CONFIG_NUMA */
8232 static void free_sched_groups(const struct cpumask *cpu_map,
8233 struct cpumask *nodemask)
8236 #endif /* CONFIG_NUMA */
8239 * Initialize sched groups cpu_power.
8241 * cpu_power indicates the capacity of sched group, which is used while
8242 * distributing the load between different sched groups in a sched domain.
8243 * Typically cpu_power for all the groups in a sched domain will be same unless
8244 * there are asymmetries in the topology. If there are asymmetries, group
8245 * having more cpu_power will pickup more load compared to the group having
8246 * less cpu_power.
8248 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8249 * the maximum number of tasks a group can handle in the presence of other idle
8250 * or lightly loaded groups in the same sched domain.
8252 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8254 struct sched_domain *child;
8255 struct sched_group *group;
8257 WARN_ON(!sd || !sd->groups);
8259 if (cpu != group_first_cpu(sd->groups))
8260 return;
8262 child = sd->child;
8264 sd->groups->__cpu_power = 0;
8267 * For perf policy, if the groups in child domain share resources
8268 * (for example cores sharing some portions of the cache hierarchy
8269 * or SMT), then set this domain groups cpu_power such that each group
8270 * can handle only one task, when there are other idle groups in the
8271 * same sched domain.
8273 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8274 (child->flags &
8275 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8276 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8277 return;
8281 * add cpu_power of each child group to this groups cpu_power
8283 group = child->groups;
8284 do {
8285 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8286 group = group->next;
8287 } while (group != child->groups);
8291 * Initializers for schedule domains
8292 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8295 #ifdef CONFIG_SCHED_DEBUG
8296 # define SD_INIT_NAME(sd, type) sd->name = #type
8297 #else
8298 # define SD_INIT_NAME(sd, type) do { } while (0)
8299 #endif
8301 #define SD_INIT(sd, type) sd_init_##type(sd)
8303 #define SD_INIT_FUNC(type) \
8304 static noinline void sd_init_##type(struct sched_domain *sd) \
8306 memset(sd, 0, sizeof(*sd)); \
8307 *sd = SD_##type##_INIT; \
8308 sd->level = SD_LV_##type; \
8309 SD_INIT_NAME(sd, type); \
8312 SD_INIT_FUNC(CPU)
8313 #ifdef CONFIG_NUMA
8314 SD_INIT_FUNC(ALLNODES)
8315 SD_INIT_FUNC(NODE)
8316 #endif
8317 #ifdef CONFIG_SCHED_SMT
8318 SD_INIT_FUNC(SIBLING)
8319 #endif
8320 #ifdef CONFIG_SCHED_MC
8321 SD_INIT_FUNC(MC)
8322 #endif
8324 static int default_relax_domain_level = -1;
8326 static int __init setup_relax_domain_level(char *str)
8328 unsigned long val;
8330 val = simple_strtoul(str, NULL, 0);
8331 if (val < SD_LV_MAX)
8332 default_relax_domain_level = val;
8334 return 1;
8336 __setup("relax_domain_level=", setup_relax_domain_level);
8338 static void set_domain_attribute(struct sched_domain *sd,
8339 struct sched_domain_attr *attr)
8341 int request;
8343 if (!attr || attr->relax_domain_level < 0) {
8344 if (default_relax_domain_level < 0)
8345 return;
8346 else
8347 request = default_relax_domain_level;
8348 } else
8349 request = attr->relax_domain_level;
8350 if (request < sd->level) {
8351 /* turn off idle balance on this domain */
8352 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8353 } else {
8354 /* turn on idle balance on this domain */
8355 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8360 * Build sched domains for a given set of cpus and attach the sched domains
8361 * to the individual cpus
8363 static int __build_sched_domains(const struct cpumask *cpu_map,
8364 struct sched_domain_attr *attr)
8366 int i, err = -ENOMEM;
8367 struct root_domain *rd;
8368 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8369 tmpmask;
8370 #ifdef CONFIG_NUMA
8371 cpumask_var_t domainspan, covered, notcovered;
8372 struct sched_group **sched_group_nodes = NULL;
8373 int sd_allnodes = 0;
8375 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8376 goto out;
8377 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8378 goto free_domainspan;
8379 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8380 goto free_covered;
8381 #endif
8383 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8384 goto free_notcovered;
8385 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8386 goto free_nodemask;
8387 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8388 goto free_this_sibling_map;
8389 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8390 goto free_this_core_map;
8391 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8392 goto free_send_covered;
8394 #ifdef CONFIG_NUMA
8396 * Allocate the per-node list of sched groups
8398 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8399 GFP_KERNEL);
8400 if (!sched_group_nodes) {
8401 printk(KERN_WARNING "Can not alloc sched group node list\n");
8402 goto free_tmpmask;
8404 #endif
8406 rd = alloc_rootdomain();
8407 if (!rd) {
8408 printk(KERN_WARNING "Cannot alloc root domain\n");
8409 goto free_sched_groups;
8412 #ifdef CONFIG_NUMA
8413 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8414 #endif
8417 * Set up domains for cpus specified by the cpu_map.
8419 for_each_cpu(i, cpu_map) {
8420 struct sched_domain *sd = NULL, *p;
8422 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8424 #ifdef CONFIG_NUMA
8425 if (cpumask_weight(cpu_map) >
8426 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8427 sd = &per_cpu(allnodes_domains, i).sd;
8428 SD_INIT(sd, ALLNODES);
8429 set_domain_attribute(sd, attr);
8430 cpumask_copy(sched_domain_span(sd), cpu_map);
8431 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8432 p = sd;
8433 sd_allnodes = 1;
8434 } else
8435 p = NULL;
8437 sd = &per_cpu(node_domains, i).sd;
8438 SD_INIT(sd, NODE);
8439 set_domain_attribute(sd, attr);
8440 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8441 sd->parent = p;
8442 if (p)
8443 p->child = sd;
8444 cpumask_and(sched_domain_span(sd),
8445 sched_domain_span(sd), cpu_map);
8446 #endif
8448 p = sd;
8449 sd = &per_cpu(phys_domains, i).sd;
8450 SD_INIT(sd, CPU);
8451 set_domain_attribute(sd, attr);
8452 cpumask_copy(sched_domain_span(sd), nodemask);
8453 sd->parent = p;
8454 if (p)
8455 p->child = sd;
8456 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8458 #ifdef CONFIG_SCHED_MC
8459 p = sd;
8460 sd = &per_cpu(core_domains, i).sd;
8461 SD_INIT(sd, MC);
8462 set_domain_attribute(sd, attr);
8463 cpumask_and(sched_domain_span(sd), cpu_map,
8464 cpu_coregroup_mask(i));
8465 sd->parent = p;
8466 p->child = sd;
8467 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8468 #endif
8470 #ifdef CONFIG_SCHED_SMT
8471 p = sd;
8472 sd = &per_cpu(cpu_domains, i).sd;
8473 SD_INIT(sd, SIBLING);
8474 set_domain_attribute(sd, attr);
8475 cpumask_and(sched_domain_span(sd),
8476 topology_thread_cpumask(i), cpu_map);
8477 sd->parent = p;
8478 p->child = sd;
8479 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8480 #endif
8483 #ifdef CONFIG_SCHED_SMT
8484 /* Set up CPU (sibling) groups */
8485 for_each_cpu(i, cpu_map) {
8486 cpumask_and(this_sibling_map,
8487 topology_thread_cpumask(i), cpu_map);
8488 if (i != cpumask_first(this_sibling_map))
8489 continue;
8491 init_sched_build_groups(this_sibling_map, cpu_map,
8492 &cpu_to_cpu_group,
8493 send_covered, tmpmask);
8495 #endif
8497 #ifdef CONFIG_SCHED_MC
8498 /* Set up multi-core groups */
8499 for_each_cpu(i, cpu_map) {
8500 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8501 if (i != cpumask_first(this_core_map))
8502 continue;
8504 init_sched_build_groups(this_core_map, cpu_map,
8505 &cpu_to_core_group,
8506 send_covered, tmpmask);
8508 #endif
8510 /* Set up physical groups */
8511 for (i = 0; i < nr_node_ids; i++) {
8512 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8513 if (cpumask_empty(nodemask))
8514 continue;
8516 init_sched_build_groups(nodemask, cpu_map,
8517 &cpu_to_phys_group,
8518 send_covered, tmpmask);
8521 #ifdef CONFIG_NUMA
8522 /* Set up node groups */
8523 if (sd_allnodes) {
8524 init_sched_build_groups(cpu_map, cpu_map,
8525 &cpu_to_allnodes_group,
8526 send_covered, tmpmask);
8529 for (i = 0; i < nr_node_ids; i++) {
8530 /* Set up node groups */
8531 struct sched_group *sg, *prev;
8532 int j;
8534 cpumask_clear(covered);
8535 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8536 if (cpumask_empty(nodemask)) {
8537 sched_group_nodes[i] = NULL;
8538 continue;
8541 sched_domain_node_span(i, domainspan);
8542 cpumask_and(domainspan, domainspan, cpu_map);
8544 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8545 GFP_KERNEL, i);
8546 if (!sg) {
8547 printk(KERN_WARNING "Can not alloc domain group for "
8548 "node %d\n", i);
8549 goto error;
8551 sched_group_nodes[i] = sg;
8552 for_each_cpu(j, nodemask) {
8553 struct sched_domain *sd;
8555 sd = &per_cpu(node_domains, j).sd;
8556 sd->groups = sg;
8558 sg->__cpu_power = 0;
8559 cpumask_copy(sched_group_cpus(sg), nodemask);
8560 sg->next = sg;
8561 cpumask_or(covered, covered, nodemask);
8562 prev = sg;
8564 for (j = 0; j < nr_node_ids; j++) {
8565 int n = (i + j) % nr_node_ids;
8567 cpumask_complement(notcovered, covered);
8568 cpumask_and(tmpmask, notcovered, cpu_map);
8569 cpumask_and(tmpmask, tmpmask, domainspan);
8570 if (cpumask_empty(tmpmask))
8571 break;
8573 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8574 if (cpumask_empty(tmpmask))
8575 continue;
8577 sg = kmalloc_node(sizeof(struct sched_group) +
8578 cpumask_size(),
8579 GFP_KERNEL, i);
8580 if (!sg) {
8581 printk(KERN_WARNING
8582 "Can not alloc domain group for node %d\n", j);
8583 goto error;
8585 sg->__cpu_power = 0;
8586 cpumask_copy(sched_group_cpus(sg), tmpmask);
8587 sg->next = prev->next;
8588 cpumask_or(covered, covered, tmpmask);
8589 prev->next = sg;
8590 prev = sg;
8593 #endif
8595 /* Calculate CPU power for physical packages and nodes */
8596 #ifdef CONFIG_SCHED_SMT
8597 for_each_cpu(i, cpu_map) {
8598 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8600 init_sched_groups_power(i, sd);
8602 #endif
8603 #ifdef CONFIG_SCHED_MC
8604 for_each_cpu(i, cpu_map) {
8605 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8607 init_sched_groups_power(i, sd);
8609 #endif
8611 for_each_cpu(i, cpu_map) {
8612 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8614 init_sched_groups_power(i, sd);
8617 #ifdef CONFIG_NUMA
8618 for (i = 0; i < nr_node_ids; i++)
8619 init_numa_sched_groups_power(sched_group_nodes[i]);
8621 if (sd_allnodes) {
8622 struct sched_group *sg;
8624 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8625 tmpmask);
8626 init_numa_sched_groups_power(sg);
8628 #endif
8630 /* Attach the domains */
8631 for_each_cpu(i, cpu_map) {
8632 struct sched_domain *sd;
8633 #ifdef CONFIG_SCHED_SMT
8634 sd = &per_cpu(cpu_domains, i).sd;
8635 #elif defined(CONFIG_SCHED_MC)
8636 sd = &per_cpu(core_domains, i).sd;
8637 #else
8638 sd = &per_cpu(phys_domains, i).sd;
8639 #endif
8640 cpu_attach_domain(sd, rd, i);
8643 err = 0;
8645 free_tmpmask:
8646 free_cpumask_var(tmpmask);
8647 free_send_covered:
8648 free_cpumask_var(send_covered);
8649 free_this_core_map:
8650 free_cpumask_var(this_core_map);
8651 free_this_sibling_map:
8652 free_cpumask_var(this_sibling_map);
8653 free_nodemask:
8654 free_cpumask_var(nodemask);
8655 free_notcovered:
8656 #ifdef CONFIG_NUMA
8657 free_cpumask_var(notcovered);
8658 free_covered:
8659 free_cpumask_var(covered);
8660 free_domainspan:
8661 free_cpumask_var(domainspan);
8662 out:
8663 #endif
8664 return err;
8666 free_sched_groups:
8667 #ifdef CONFIG_NUMA
8668 kfree(sched_group_nodes);
8669 #endif
8670 goto free_tmpmask;
8672 #ifdef CONFIG_NUMA
8673 error:
8674 free_sched_groups(cpu_map, tmpmask);
8675 free_rootdomain(rd);
8676 goto free_tmpmask;
8677 #endif
8680 static int build_sched_domains(const struct cpumask *cpu_map)
8682 return __build_sched_domains(cpu_map, NULL);
8685 static struct cpumask *doms_cur; /* current sched domains */
8686 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8687 static struct sched_domain_attr *dattr_cur;
8688 /* attribues of custom domains in 'doms_cur' */
8691 * Special case: If a kmalloc of a doms_cur partition (array of
8692 * cpumask) fails, then fallback to a single sched domain,
8693 * as determined by the single cpumask fallback_doms.
8695 static cpumask_var_t fallback_doms;
8698 * arch_update_cpu_topology lets virtualized architectures update the
8699 * cpu core maps. It is supposed to return 1 if the topology changed
8700 * or 0 if it stayed the same.
8702 int __attribute__((weak)) arch_update_cpu_topology(void)
8704 return 0;
8708 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8709 * For now this just excludes isolated cpus, but could be used to
8710 * exclude other special cases in the future.
8712 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8714 int err;
8716 arch_update_cpu_topology();
8717 ndoms_cur = 1;
8718 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8719 if (!doms_cur)
8720 doms_cur = fallback_doms;
8721 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8722 dattr_cur = NULL;
8723 err = build_sched_domains(doms_cur);
8724 register_sched_domain_sysctl();
8726 return err;
8729 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8730 struct cpumask *tmpmask)
8732 free_sched_groups(cpu_map, tmpmask);
8736 * Detach sched domains from a group of cpus specified in cpu_map
8737 * These cpus will now be attached to the NULL domain
8739 static void detach_destroy_domains(const struct cpumask *cpu_map)
8741 /* Save because hotplug lock held. */
8742 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8743 int i;
8745 for_each_cpu(i, cpu_map)
8746 cpu_attach_domain(NULL, &def_root_domain, i);
8747 synchronize_sched();
8748 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8751 /* handle null as "default" */
8752 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8753 struct sched_domain_attr *new, int idx_new)
8755 struct sched_domain_attr tmp;
8757 /* fast path */
8758 if (!new && !cur)
8759 return 1;
8761 tmp = SD_ATTR_INIT;
8762 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8763 new ? (new + idx_new) : &tmp,
8764 sizeof(struct sched_domain_attr));
8768 * Partition sched domains as specified by the 'ndoms_new'
8769 * cpumasks in the array doms_new[] of cpumasks. This compares
8770 * doms_new[] to the current sched domain partitioning, doms_cur[].
8771 * It destroys each deleted domain and builds each new domain.
8773 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8774 * The masks don't intersect (don't overlap.) We should setup one
8775 * sched domain for each mask. CPUs not in any of the cpumasks will
8776 * not be load balanced. If the same cpumask appears both in the
8777 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8778 * it as it is.
8780 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8781 * ownership of it and will kfree it when done with it. If the caller
8782 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8783 * ndoms_new == 1, and partition_sched_domains() will fallback to
8784 * the single partition 'fallback_doms', it also forces the domains
8785 * to be rebuilt.
8787 * If doms_new == NULL it will be replaced with cpu_online_mask.
8788 * ndoms_new == 0 is a special case for destroying existing domains,
8789 * and it will not create the default domain.
8791 * Call with hotplug lock held
8793 /* FIXME: Change to struct cpumask *doms_new[] */
8794 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8795 struct sched_domain_attr *dattr_new)
8797 int i, j, n;
8798 int new_topology;
8800 mutex_lock(&sched_domains_mutex);
8802 /* always unregister in case we don't destroy any domains */
8803 unregister_sched_domain_sysctl();
8805 /* Let architecture update cpu core mappings. */
8806 new_topology = arch_update_cpu_topology();
8808 n = doms_new ? ndoms_new : 0;
8810 /* Destroy deleted domains */
8811 for (i = 0; i < ndoms_cur; i++) {
8812 for (j = 0; j < n && !new_topology; j++) {
8813 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8814 && dattrs_equal(dattr_cur, i, dattr_new, j))
8815 goto match1;
8817 /* no match - a current sched domain not in new doms_new[] */
8818 detach_destroy_domains(doms_cur + i);
8819 match1:
8823 if (doms_new == NULL) {
8824 ndoms_cur = 0;
8825 doms_new = fallback_doms;
8826 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8827 WARN_ON_ONCE(dattr_new);
8830 /* Build new domains */
8831 for (i = 0; i < ndoms_new; i++) {
8832 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8833 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8834 && dattrs_equal(dattr_new, i, dattr_cur, j))
8835 goto match2;
8837 /* no match - add a new doms_new */
8838 __build_sched_domains(doms_new + i,
8839 dattr_new ? dattr_new + i : NULL);
8840 match2:
8844 /* Remember the new sched domains */
8845 if (doms_cur != fallback_doms)
8846 kfree(doms_cur);
8847 kfree(dattr_cur); /* kfree(NULL) is safe */
8848 doms_cur = doms_new;
8849 dattr_cur = dattr_new;
8850 ndoms_cur = ndoms_new;
8852 register_sched_domain_sysctl();
8854 mutex_unlock(&sched_domains_mutex);
8857 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8858 static void arch_reinit_sched_domains(void)
8860 get_online_cpus();
8862 /* Destroy domains first to force the rebuild */
8863 partition_sched_domains(0, NULL, NULL);
8865 rebuild_sched_domains();
8866 put_online_cpus();
8869 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8871 unsigned int level = 0;
8873 if (sscanf(buf, "%u", &level) != 1)
8874 return -EINVAL;
8877 * level is always be positive so don't check for
8878 * level < POWERSAVINGS_BALANCE_NONE which is 0
8879 * What happens on 0 or 1 byte write,
8880 * need to check for count as well?
8883 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8884 return -EINVAL;
8886 if (smt)
8887 sched_smt_power_savings = level;
8888 else
8889 sched_mc_power_savings = level;
8891 arch_reinit_sched_domains();
8893 return count;
8896 #ifdef CONFIG_SCHED_MC
8897 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8898 char *page)
8900 return sprintf(page, "%u\n", sched_mc_power_savings);
8902 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8903 const char *buf, size_t count)
8905 return sched_power_savings_store(buf, count, 0);
8907 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8908 sched_mc_power_savings_show,
8909 sched_mc_power_savings_store);
8910 #endif
8912 #ifdef CONFIG_SCHED_SMT
8913 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8914 char *page)
8916 return sprintf(page, "%u\n", sched_smt_power_savings);
8918 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8919 const char *buf, size_t count)
8921 return sched_power_savings_store(buf, count, 1);
8923 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8924 sched_smt_power_savings_show,
8925 sched_smt_power_savings_store);
8926 #endif
8928 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8930 int err = 0;
8932 #ifdef CONFIG_SCHED_SMT
8933 if (smt_capable())
8934 err = sysfs_create_file(&cls->kset.kobj,
8935 &attr_sched_smt_power_savings.attr);
8936 #endif
8937 #ifdef CONFIG_SCHED_MC
8938 if (!err && mc_capable())
8939 err = sysfs_create_file(&cls->kset.kobj,
8940 &attr_sched_mc_power_savings.attr);
8941 #endif
8942 return err;
8944 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8946 #ifndef CONFIG_CPUSETS
8948 * Add online and remove offline CPUs from the scheduler domains.
8949 * When cpusets are enabled they take over this function.
8951 static int update_sched_domains(struct notifier_block *nfb,
8952 unsigned long action, void *hcpu)
8954 switch (action) {
8955 case CPU_ONLINE:
8956 case CPU_ONLINE_FROZEN:
8957 case CPU_DEAD:
8958 case CPU_DEAD_FROZEN:
8959 partition_sched_domains(1, NULL, NULL);
8960 return NOTIFY_OK;
8962 default:
8963 return NOTIFY_DONE;
8966 #endif
8968 static int update_runtime(struct notifier_block *nfb,
8969 unsigned long action, void *hcpu)
8971 int cpu = (int)(long)hcpu;
8973 switch (action) {
8974 case CPU_DOWN_PREPARE:
8975 case CPU_DOWN_PREPARE_FROZEN:
8976 disable_runtime(cpu_rq(cpu));
8977 return NOTIFY_OK;
8979 case CPU_DOWN_FAILED:
8980 case CPU_DOWN_FAILED_FROZEN:
8981 case CPU_ONLINE:
8982 case CPU_ONLINE_FROZEN:
8983 enable_runtime(cpu_rq(cpu));
8984 return NOTIFY_OK;
8986 default:
8987 return NOTIFY_DONE;
8991 void __init sched_init_smp(void)
8993 cpumask_var_t non_isolated_cpus;
8995 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8997 #if defined(CONFIG_NUMA)
8998 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8999 GFP_KERNEL);
9000 BUG_ON(sched_group_nodes_bycpu == NULL);
9001 #endif
9002 get_online_cpus();
9003 mutex_lock(&sched_domains_mutex);
9004 arch_init_sched_domains(cpu_online_mask);
9005 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9006 if (cpumask_empty(non_isolated_cpus))
9007 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9008 mutex_unlock(&sched_domains_mutex);
9009 put_online_cpus();
9011 #ifndef CONFIG_CPUSETS
9012 /* XXX: Theoretical race here - CPU may be hotplugged now */
9013 hotcpu_notifier(update_sched_domains, 0);
9014 #endif
9016 /* RT runtime code needs to handle some hotplug events */
9017 hotcpu_notifier(update_runtime, 0);
9019 init_hrtick();
9021 /* Move init over to a non-isolated CPU */
9022 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9023 BUG();
9024 sched_init_granularity();
9025 free_cpumask_var(non_isolated_cpus);
9027 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9028 init_sched_rt_class();
9030 #else
9031 void __init sched_init_smp(void)
9033 sched_init_granularity();
9035 #endif /* CONFIG_SMP */
9037 const_debug unsigned int sysctl_timer_migration = 1;
9039 int in_sched_functions(unsigned long addr)
9041 return in_lock_functions(addr) ||
9042 (addr >= (unsigned long)__sched_text_start
9043 && addr < (unsigned long)__sched_text_end);
9046 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9048 cfs_rq->tasks_timeline = RB_ROOT;
9049 INIT_LIST_HEAD(&cfs_rq->tasks);
9050 #ifdef CONFIG_FAIR_GROUP_SCHED
9051 cfs_rq->rq = rq;
9052 #endif
9053 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9056 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9058 struct rt_prio_array *array;
9059 int i;
9061 array = &rt_rq->active;
9062 for (i = 0; i < MAX_RT_PRIO; i++) {
9063 INIT_LIST_HEAD(array->queue + i);
9064 __clear_bit(i, array->bitmap);
9066 /* delimiter for bitsearch: */
9067 __set_bit(MAX_RT_PRIO, array->bitmap);
9069 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9070 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9071 #ifdef CONFIG_SMP
9072 rt_rq->highest_prio.next = MAX_RT_PRIO;
9073 #endif
9074 #endif
9075 #ifdef CONFIG_SMP
9076 rt_rq->rt_nr_migratory = 0;
9077 rt_rq->overloaded = 0;
9078 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9079 #endif
9081 rt_rq->rt_time = 0;
9082 rt_rq->rt_throttled = 0;
9083 rt_rq->rt_runtime = 0;
9084 spin_lock_init(&rt_rq->rt_runtime_lock);
9086 #ifdef CONFIG_RT_GROUP_SCHED
9087 rt_rq->rt_nr_boosted = 0;
9088 rt_rq->rq = rq;
9089 #endif
9092 #ifdef CONFIG_FAIR_GROUP_SCHED
9093 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9094 struct sched_entity *se, int cpu, int add,
9095 struct sched_entity *parent)
9097 struct rq *rq = cpu_rq(cpu);
9098 tg->cfs_rq[cpu] = cfs_rq;
9099 init_cfs_rq(cfs_rq, rq);
9100 cfs_rq->tg = tg;
9101 if (add)
9102 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9104 tg->se[cpu] = se;
9105 /* se could be NULL for init_task_group */
9106 if (!se)
9107 return;
9109 if (!parent)
9110 se->cfs_rq = &rq->cfs;
9111 else
9112 se->cfs_rq = parent->my_q;
9114 se->my_q = cfs_rq;
9115 se->load.weight = tg->shares;
9116 se->load.inv_weight = 0;
9117 se->parent = parent;
9119 #endif
9121 #ifdef CONFIG_RT_GROUP_SCHED
9122 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9123 struct sched_rt_entity *rt_se, int cpu, int add,
9124 struct sched_rt_entity *parent)
9126 struct rq *rq = cpu_rq(cpu);
9128 tg->rt_rq[cpu] = rt_rq;
9129 init_rt_rq(rt_rq, rq);
9130 rt_rq->tg = tg;
9131 rt_rq->rt_se = rt_se;
9132 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9133 if (add)
9134 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9136 tg->rt_se[cpu] = rt_se;
9137 if (!rt_se)
9138 return;
9140 if (!parent)
9141 rt_se->rt_rq = &rq->rt;
9142 else
9143 rt_se->rt_rq = parent->my_q;
9145 rt_se->my_q = rt_rq;
9146 rt_se->parent = parent;
9147 INIT_LIST_HEAD(&rt_se->run_list);
9149 #endif
9151 void __init sched_init(void)
9153 int i, j;
9154 unsigned long alloc_size = 0, ptr;
9156 #ifdef CONFIG_FAIR_GROUP_SCHED
9157 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9158 #endif
9159 #ifdef CONFIG_RT_GROUP_SCHED
9160 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9161 #endif
9162 #ifdef CONFIG_USER_SCHED
9163 alloc_size *= 2;
9164 #endif
9165 #ifdef CONFIG_CPUMASK_OFFSTACK
9166 alloc_size += num_possible_cpus() * cpumask_size();
9167 #endif
9169 * As sched_init() is called before page_alloc is setup,
9170 * we use alloc_bootmem().
9172 if (alloc_size) {
9173 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9175 #ifdef CONFIG_FAIR_GROUP_SCHED
9176 init_task_group.se = (struct sched_entity **)ptr;
9177 ptr += nr_cpu_ids * sizeof(void **);
9179 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9180 ptr += nr_cpu_ids * sizeof(void **);
9182 #ifdef CONFIG_USER_SCHED
9183 root_task_group.se = (struct sched_entity **)ptr;
9184 ptr += nr_cpu_ids * sizeof(void **);
9186 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9187 ptr += nr_cpu_ids * sizeof(void **);
9188 #endif /* CONFIG_USER_SCHED */
9189 #endif /* CONFIG_FAIR_GROUP_SCHED */
9190 #ifdef CONFIG_RT_GROUP_SCHED
9191 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9192 ptr += nr_cpu_ids * sizeof(void **);
9194 init_task_group.rt_rq = (struct rt_rq **)ptr;
9195 ptr += nr_cpu_ids * sizeof(void **);
9197 #ifdef CONFIG_USER_SCHED
9198 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9199 ptr += nr_cpu_ids * sizeof(void **);
9201 root_task_group.rt_rq = (struct rt_rq **)ptr;
9202 ptr += nr_cpu_ids * sizeof(void **);
9203 #endif /* CONFIG_USER_SCHED */
9204 #endif /* CONFIG_RT_GROUP_SCHED */
9205 #ifdef CONFIG_CPUMASK_OFFSTACK
9206 for_each_possible_cpu(i) {
9207 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9208 ptr += cpumask_size();
9210 #endif /* CONFIG_CPUMASK_OFFSTACK */
9213 #ifdef CONFIG_SMP
9214 init_defrootdomain();
9215 #endif
9217 init_rt_bandwidth(&def_rt_bandwidth,
9218 global_rt_period(), global_rt_runtime());
9220 #ifdef CONFIG_RT_GROUP_SCHED
9221 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9222 global_rt_period(), global_rt_runtime());
9223 #ifdef CONFIG_USER_SCHED
9224 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9225 global_rt_period(), RUNTIME_INF);
9226 #endif /* CONFIG_USER_SCHED */
9227 #endif /* CONFIG_RT_GROUP_SCHED */
9229 #ifdef CONFIG_GROUP_SCHED
9230 list_add(&init_task_group.list, &task_groups);
9231 INIT_LIST_HEAD(&init_task_group.children);
9233 #ifdef CONFIG_USER_SCHED
9234 INIT_LIST_HEAD(&root_task_group.children);
9235 init_task_group.parent = &root_task_group;
9236 list_add(&init_task_group.siblings, &root_task_group.children);
9237 #endif /* CONFIG_USER_SCHED */
9238 #endif /* CONFIG_GROUP_SCHED */
9240 for_each_possible_cpu(i) {
9241 struct rq *rq;
9243 rq = cpu_rq(i);
9244 spin_lock_init(&rq->lock);
9245 rq->nr_running = 0;
9246 rq->calc_load_active = 0;
9247 rq->calc_load_update = jiffies + LOAD_FREQ;
9248 init_cfs_rq(&rq->cfs, rq);
9249 init_rt_rq(&rq->rt, rq);
9250 #ifdef CONFIG_FAIR_GROUP_SCHED
9251 init_task_group.shares = init_task_group_load;
9252 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9253 #ifdef CONFIG_CGROUP_SCHED
9255 * How much cpu bandwidth does init_task_group get?
9257 * In case of task-groups formed thr' the cgroup filesystem, it
9258 * gets 100% of the cpu resources in the system. This overall
9259 * system cpu resource is divided among the tasks of
9260 * init_task_group and its child task-groups in a fair manner,
9261 * based on each entity's (task or task-group's) weight
9262 * (se->load.weight).
9264 * In other words, if init_task_group has 10 tasks of weight
9265 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9266 * then A0's share of the cpu resource is:
9268 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9270 * We achieve this by letting init_task_group's tasks sit
9271 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9273 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9274 #elif defined CONFIG_USER_SCHED
9275 root_task_group.shares = NICE_0_LOAD;
9276 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9278 * In case of task-groups formed thr' the user id of tasks,
9279 * init_task_group represents tasks belonging to root user.
9280 * Hence it forms a sibling of all subsequent groups formed.
9281 * In this case, init_task_group gets only a fraction of overall
9282 * system cpu resource, based on the weight assigned to root
9283 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9284 * by letting tasks of init_task_group sit in a separate cfs_rq
9285 * (init_cfs_rq) and having one entity represent this group of
9286 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9288 init_tg_cfs_entry(&init_task_group,
9289 &per_cpu(init_cfs_rq, i),
9290 &per_cpu(init_sched_entity, i), i, 1,
9291 root_task_group.se[i]);
9293 #endif
9294 #endif /* CONFIG_FAIR_GROUP_SCHED */
9296 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9297 #ifdef CONFIG_RT_GROUP_SCHED
9298 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9299 #ifdef CONFIG_CGROUP_SCHED
9300 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9301 #elif defined CONFIG_USER_SCHED
9302 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9303 init_tg_rt_entry(&init_task_group,
9304 &per_cpu(init_rt_rq, i),
9305 &per_cpu(init_sched_rt_entity, i), i, 1,
9306 root_task_group.rt_se[i]);
9307 #endif
9308 #endif
9310 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9311 rq->cpu_load[j] = 0;
9312 #ifdef CONFIG_SMP
9313 rq->sd = NULL;
9314 rq->rd = NULL;
9315 rq->active_balance = 0;
9316 rq->next_balance = jiffies;
9317 rq->push_cpu = 0;
9318 rq->cpu = i;
9319 rq->online = 0;
9320 rq->migration_thread = NULL;
9321 INIT_LIST_HEAD(&rq->migration_queue);
9322 rq_attach_root(rq, &def_root_domain);
9323 #endif
9324 init_rq_hrtick(rq);
9325 atomic_set(&rq->nr_iowait, 0);
9328 set_load_weight(&init_task);
9330 #ifdef CONFIG_PREEMPT_NOTIFIERS
9331 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9332 #endif
9334 #ifdef CONFIG_SMP
9335 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9336 #endif
9338 #ifdef CONFIG_RT_MUTEXES
9339 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9340 #endif
9343 * The boot idle thread does lazy MMU switching as well:
9345 atomic_inc(&init_mm.mm_count);
9346 enter_lazy_tlb(&init_mm, current);
9349 * Make us the idle thread. Technically, schedule() should not be
9350 * called from this thread, however somewhere below it might be,
9351 * but because we are the idle thread, we just pick up running again
9352 * when this runqueue becomes "idle".
9354 init_idle(current, smp_processor_id());
9356 calc_load_update = jiffies + LOAD_FREQ;
9359 * During early bootup we pretend to be a normal task:
9361 current->sched_class = &fair_sched_class;
9363 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9364 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9365 #ifdef CONFIG_SMP
9366 #ifdef CONFIG_NO_HZ
9367 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9368 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9369 #endif
9370 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9371 #endif /* SMP */
9373 perf_counter_init();
9375 scheduler_running = 1;
9378 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9379 void __might_sleep(char *file, int line)
9381 #ifdef in_atomic
9382 static unsigned long prev_jiffy; /* ratelimiting */
9384 if ((!in_atomic() && !irqs_disabled()) ||
9385 system_state != SYSTEM_RUNNING || oops_in_progress)
9386 return;
9387 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9388 return;
9389 prev_jiffy = jiffies;
9391 printk(KERN_ERR
9392 "BUG: sleeping function called from invalid context at %s:%d\n",
9393 file, line);
9394 printk(KERN_ERR
9395 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9396 in_atomic(), irqs_disabled(),
9397 current->pid, current->comm);
9399 debug_show_held_locks(current);
9400 if (irqs_disabled())
9401 print_irqtrace_events(current);
9402 dump_stack();
9403 #endif
9405 EXPORT_SYMBOL(__might_sleep);
9406 #endif
9408 #ifdef CONFIG_MAGIC_SYSRQ
9409 static void normalize_task(struct rq *rq, struct task_struct *p)
9411 int on_rq;
9413 update_rq_clock(rq);
9414 on_rq = p->se.on_rq;
9415 if (on_rq)
9416 deactivate_task(rq, p, 0);
9417 __setscheduler(rq, p, SCHED_NORMAL, 0);
9418 if (on_rq) {
9419 activate_task(rq, p, 0);
9420 resched_task(rq->curr);
9424 void normalize_rt_tasks(void)
9426 struct task_struct *g, *p;
9427 unsigned long flags;
9428 struct rq *rq;
9430 read_lock_irqsave(&tasklist_lock, flags);
9431 do_each_thread(g, p) {
9433 * Only normalize user tasks:
9435 if (!p->mm)
9436 continue;
9438 p->se.exec_start = 0;
9439 #ifdef CONFIG_SCHEDSTATS
9440 p->se.wait_start = 0;
9441 p->se.sleep_start = 0;
9442 p->se.block_start = 0;
9443 #endif
9445 if (!rt_task(p)) {
9447 * Renice negative nice level userspace
9448 * tasks back to 0:
9450 if (TASK_NICE(p) < 0 && p->mm)
9451 set_user_nice(p, 0);
9452 continue;
9455 spin_lock(&p->pi_lock);
9456 rq = __task_rq_lock(p);
9458 normalize_task(rq, p);
9460 __task_rq_unlock(rq);
9461 spin_unlock(&p->pi_lock);
9462 } while_each_thread(g, p);
9464 read_unlock_irqrestore(&tasklist_lock, flags);
9467 #endif /* CONFIG_MAGIC_SYSRQ */
9469 #ifdef CONFIG_IA64
9471 * These functions are only useful for the IA64 MCA handling.
9473 * They can only be called when the whole system has been
9474 * stopped - every CPU needs to be quiescent, and no scheduling
9475 * activity can take place. Using them for anything else would
9476 * be a serious bug, and as a result, they aren't even visible
9477 * under any other configuration.
9481 * curr_task - return the current task for a given cpu.
9482 * @cpu: the processor in question.
9484 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9486 struct task_struct *curr_task(int cpu)
9488 return cpu_curr(cpu);
9492 * set_curr_task - set the current task for a given cpu.
9493 * @cpu: the processor in question.
9494 * @p: the task pointer to set.
9496 * Description: This function must only be used when non-maskable interrupts
9497 * are serviced on a separate stack. It allows the architecture to switch the
9498 * notion of the current task on a cpu in a non-blocking manner. This function
9499 * must be called with all CPU's synchronized, and interrupts disabled, the
9500 * and caller must save the original value of the current task (see
9501 * curr_task() above) and restore that value before reenabling interrupts and
9502 * re-starting the system.
9504 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9506 void set_curr_task(int cpu, struct task_struct *p)
9508 cpu_curr(cpu) = p;
9511 #endif
9513 #ifdef CONFIG_FAIR_GROUP_SCHED
9514 static void free_fair_sched_group(struct task_group *tg)
9516 int i;
9518 for_each_possible_cpu(i) {
9519 if (tg->cfs_rq)
9520 kfree(tg->cfs_rq[i]);
9521 if (tg->se)
9522 kfree(tg->se[i]);
9525 kfree(tg->cfs_rq);
9526 kfree(tg->se);
9529 static
9530 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9532 struct cfs_rq *cfs_rq;
9533 struct sched_entity *se;
9534 struct rq *rq;
9535 int i;
9537 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9538 if (!tg->cfs_rq)
9539 goto err;
9540 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9541 if (!tg->se)
9542 goto err;
9544 tg->shares = NICE_0_LOAD;
9546 for_each_possible_cpu(i) {
9547 rq = cpu_rq(i);
9549 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9550 GFP_KERNEL, cpu_to_node(i));
9551 if (!cfs_rq)
9552 goto err;
9554 se = kzalloc_node(sizeof(struct sched_entity),
9555 GFP_KERNEL, cpu_to_node(i));
9556 if (!se)
9557 goto err;
9559 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9562 return 1;
9564 err:
9565 return 0;
9568 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9570 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9571 &cpu_rq(cpu)->leaf_cfs_rq_list);
9574 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9576 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9578 #else /* !CONFG_FAIR_GROUP_SCHED */
9579 static inline void free_fair_sched_group(struct task_group *tg)
9583 static inline
9584 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9586 return 1;
9589 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9593 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9596 #endif /* CONFIG_FAIR_GROUP_SCHED */
9598 #ifdef CONFIG_RT_GROUP_SCHED
9599 static void free_rt_sched_group(struct task_group *tg)
9601 int i;
9603 destroy_rt_bandwidth(&tg->rt_bandwidth);
9605 for_each_possible_cpu(i) {
9606 if (tg->rt_rq)
9607 kfree(tg->rt_rq[i]);
9608 if (tg->rt_se)
9609 kfree(tg->rt_se[i]);
9612 kfree(tg->rt_rq);
9613 kfree(tg->rt_se);
9616 static
9617 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9619 struct rt_rq *rt_rq;
9620 struct sched_rt_entity *rt_se;
9621 struct rq *rq;
9622 int i;
9624 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9625 if (!tg->rt_rq)
9626 goto err;
9627 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9628 if (!tg->rt_se)
9629 goto err;
9631 init_rt_bandwidth(&tg->rt_bandwidth,
9632 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9634 for_each_possible_cpu(i) {
9635 rq = cpu_rq(i);
9637 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9638 GFP_KERNEL, cpu_to_node(i));
9639 if (!rt_rq)
9640 goto err;
9642 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9643 GFP_KERNEL, cpu_to_node(i));
9644 if (!rt_se)
9645 goto err;
9647 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9650 return 1;
9652 err:
9653 return 0;
9656 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9658 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9659 &cpu_rq(cpu)->leaf_rt_rq_list);
9662 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9664 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9666 #else /* !CONFIG_RT_GROUP_SCHED */
9667 static inline void free_rt_sched_group(struct task_group *tg)
9671 static inline
9672 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9674 return 1;
9677 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9681 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9684 #endif /* CONFIG_RT_GROUP_SCHED */
9686 #ifdef CONFIG_GROUP_SCHED
9687 static void free_sched_group(struct task_group *tg)
9689 free_fair_sched_group(tg);
9690 free_rt_sched_group(tg);
9691 kfree(tg);
9694 /* allocate runqueue etc for a new task group */
9695 struct task_group *sched_create_group(struct task_group *parent)
9697 struct task_group *tg;
9698 unsigned long flags;
9699 int i;
9701 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9702 if (!tg)
9703 return ERR_PTR(-ENOMEM);
9705 if (!alloc_fair_sched_group(tg, parent))
9706 goto err;
9708 if (!alloc_rt_sched_group(tg, parent))
9709 goto err;
9711 spin_lock_irqsave(&task_group_lock, flags);
9712 for_each_possible_cpu(i) {
9713 register_fair_sched_group(tg, i);
9714 register_rt_sched_group(tg, i);
9716 list_add_rcu(&tg->list, &task_groups);
9718 WARN_ON(!parent); /* root should already exist */
9720 tg->parent = parent;
9721 INIT_LIST_HEAD(&tg->children);
9722 list_add_rcu(&tg->siblings, &parent->children);
9723 spin_unlock_irqrestore(&task_group_lock, flags);
9725 return tg;
9727 err:
9728 free_sched_group(tg);
9729 return ERR_PTR(-ENOMEM);
9732 /* rcu callback to free various structures associated with a task group */
9733 static void free_sched_group_rcu(struct rcu_head *rhp)
9735 /* now it should be safe to free those cfs_rqs */
9736 free_sched_group(container_of(rhp, struct task_group, rcu));
9739 /* Destroy runqueue etc associated with a task group */
9740 void sched_destroy_group(struct task_group *tg)
9742 unsigned long flags;
9743 int i;
9745 spin_lock_irqsave(&task_group_lock, flags);
9746 for_each_possible_cpu(i) {
9747 unregister_fair_sched_group(tg, i);
9748 unregister_rt_sched_group(tg, i);
9750 list_del_rcu(&tg->list);
9751 list_del_rcu(&tg->siblings);
9752 spin_unlock_irqrestore(&task_group_lock, flags);
9754 /* wait for possible concurrent references to cfs_rqs complete */
9755 call_rcu(&tg->rcu, free_sched_group_rcu);
9758 /* change task's runqueue when it moves between groups.
9759 * The caller of this function should have put the task in its new group
9760 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9761 * reflect its new group.
9763 void sched_move_task(struct task_struct *tsk)
9765 int on_rq, running;
9766 unsigned long flags;
9767 struct rq *rq;
9769 rq = task_rq_lock(tsk, &flags);
9771 update_rq_clock(rq);
9773 running = task_current(rq, tsk);
9774 on_rq = tsk->se.on_rq;
9776 if (on_rq)
9777 dequeue_task(rq, tsk, 0);
9778 if (unlikely(running))
9779 tsk->sched_class->put_prev_task(rq, tsk);
9781 set_task_rq(tsk, task_cpu(tsk));
9783 #ifdef CONFIG_FAIR_GROUP_SCHED
9784 if (tsk->sched_class->moved_group)
9785 tsk->sched_class->moved_group(tsk);
9786 #endif
9788 if (unlikely(running))
9789 tsk->sched_class->set_curr_task(rq);
9790 if (on_rq)
9791 enqueue_task(rq, tsk, 0);
9793 task_rq_unlock(rq, &flags);
9795 #endif /* CONFIG_GROUP_SCHED */
9797 #ifdef CONFIG_FAIR_GROUP_SCHED
9798 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9800 struct cfs_rq *cfs_rq = se->cfs_rq;
9801 int on_rq;
9803 on_rq = se->on_rq;
9804 if (on_rq)
9805 dequeue_entity(cfs_rq, se, 0);
9807 se->load.weight = shares;
9808 se->load.inv_weight = 0;
9810 if (on_rq)
9811 enqueue_entity(cfs_rq, se, 0);
9814 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9816 struct cfs_rq *cfs_rq = se->cfs_rq;
9817 struct rq *rq = cfs_rq->rq;
9818 unsigned long flags;
9820 spin_lock_irqsave(&rq->lock, flags);
9821 __set_se_shares(se, shares);
9822 spin_unlock_irqrestore(&rq->lock, flags);
9825 static DEFINE_MUTEX(shares_mutex);
9827 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9829 int i;
9830 unsigned long flags;
9833 * We can't change the weight of the root cgroup.
9835 if (!tg->se[0])
9836 return -EINVAL;
9838 if (shares < MIN_SHARES)
9839 shares = MIN_SHARES;
9840 else if (shares > MAX_SHARES)
9841 shares = MAX_SHARES;
9843 mutex_lock(&shares_mutex);
9844 if (tg->shares == shares)
9845 goto done;
9847 spin_lock_irqsave(&task_group_lock, flags);
9848 for_each_possible_cpu(i)
9849 unregister_fair_sched_group(tg, i);
9850 list_del_rcu(&tg->siblings);
9851 spin_unlock_irqrestore(&task_group_lock, flags);
9853 /* wait for any ongoing reference to this group to finish */
9854 synchronize_sched();
9857 * Now we are free to modify the group's share on each cpu
9858 * w/o tripping rebalance_share or load_balance_fair.
9860 tg->shares = shares;
9861 for_each_possible_cpu(i) {
9863 * force a rebalance
9865 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9866 set_se_shares(tg->se[i], shares);
9870 * Enable load balance activity on this group, by inserting it back on
9871 * each cpu's rq->leaf_cfs_rq_list.
9873 spin_lock_irqsave(&task_group_lock, flags);
9874 for_each_possible_cpu(i)
9875 register_fair_sched_group(tg, i);
9876 list_add_rcu(&tg->siblings, &tg->parent->children);
9877 spin_unlock_irqrestore(&task_group_lock, flags);
9878 done:
9879 mutex_unlock(&shares_mutex);
9880 return 0;
9883 unsigned long sched_group_shares(struct task_group *tg)
9885 return tg->shares;
9887 #endif
9889 #ifdef CONFIG_RT_GROUP_SCHED
9891 * Ensure that the real time constraints are schedulable.
9893 static DEFINE_MUTEX(rt_constraints_mutex);
9895 static unsigned long to_ratio(u64 period, u64 runtime)
9897 if (runtime == RUNTIME_INF)
9898 return 1ULL << 20;
9900 return div64_u64(runtime << 20, period);
9903 /* Must be called with tasklist_lock held */
9904 static inline int tg_has_rt_tasks(struct task_group *tg)
9906 struct task_struct *g, *p;
9908 do_each_thread(g, p) {
9909 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9910 return 1;
9911 } while_each_thread(g, p);
9913 return 0;
9916 struct rt_schedulable_data {
9917 struct task_group *tg;
9918 u64 rt_period;
9919 u64 rt_runtime;
9922 static int tg_schedulable(struct task_group *tg, void *data)
9924 struct rt_schedulable_data *d = data;
9925 struct task_group *child;
9926 unsigned long total, sum = 0;
9927 u64 period, runtime;
9929 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9930 runtime = tg->rt_bandwidth.rt_runtime;
9932 if (tg == d->tg) {
9933 period = d->rt_period;
9934 runtime = d->rt_runtime;
9937 #ifdef CONFIG_USER_SCHED
9938 if (tg == &root_task_group) {
9939 period = global_rt_period();
9940 runtime = global_rt_runtime();
9942 #endif
9945 * Cannot have more runtime than the period.
9947 if (runtime > period && runtime != RUNTIME_INF)
9948 return -EINVAL;
9951 * Ensure we don't starve existing RT tasks.
9953 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9954 return -EBUSY;
9956 total = to_ratio(period, runtime);
9959 * Nobody can have more than the global setting allows.
9961 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9962 return -EINVAL;
9965 * The sum of our children's runtime should not exceed our own.
9967 list_for_each_entry_rcu(child, &tg->children, siblings) {
9968 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9969 runtime = child->rt_bandwidth.rt_runtime;
9971 if (child == d->tg) {
9972 period = d->rt_period;
9973 runtime = d->rt_runtime;
9976 sum += to_ratio(period, runtime);
9979 if (sum > total)
9980 return -EINVAL;
9982 return 0;
9985 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9987 struct rt_schedulable_data data = {
9988 .tg = tg,
9989 .rt_period = period,
9990 .rt_runtime = runtime,
9993 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9996 static int tg_set_bandwidth(struct task_group *tg,
9997 u64 rt_period, u64 rt_runtime)
9999 int i, err = 0;
10001 mutex_lock(&rt_constraints_mutex);
10002 read_lock(&tasklist_lock);
10003 err = __rt_schedulable(tg, rt_period, rt_runtime);
10004 if (err)
10005 goto unlock;
10007 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10008 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10009 tg->rt_bandwidth.rt_runtime = rt_runtime;
10011 for_each_possible_cpu(i) {
10012 struct rt_rq *rt_rq = tg->rt_rq[i];
10014 spin_lock(&rt_rq->rt_runtime_lock);
10015 rt_rq->rt_runtime = rt_runtime;
10016 spin_unlock(&rt_rq->rt_runtime_lock);
10018 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10019 unlock:
10020 read_unlock(&tasklist_lock);
10021 mutex_unlock(&rt_constraints_mutex);
10023 return err;
10026 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10028 u64 rt_runtime, rt_period;
10030 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10031 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10032 if (rt_runtime_us < 0)
10033 rt_runtime = RUNTIME_INF;
10035 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10038 long sched_group_rt_runtime(struct task_group *tg)
10040 u64 rt_runtime_us;
10042 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10043 return -1;
10045 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10046 do_div(rt_runtime_us, NSEC_PER_USEC);
10047 return rt_runtime_us;
10050 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10052 u64 rt_runtime, rt_period;
10054 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10055 rt_runtime = tg->rt_bandwidth.rt_runtime;
10057 if (rt_period == 0)
10058 return -EINVAL;
10060 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10063 long sched_group_rt_period(struct task_group *tg)
10065 u64 rt_period_us;
10067 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10068 do_div(rt_period_us, NSEC_PER_USEC);
10069 return rt_period_us;
10072 static int sched_rt_global_constraints(void)
10074 u64 runtime, period;
10075 int ret = 0;
10077 if (sysctl_sched_rt_period <= 0)
10078 return -EINVAL;
10080 runtime = global_rt_runtime();
10081 period = global_rt_period();
10084 * Sanity check on the sysctl variables.
10086 if (runtime > period && runtime != RUNTIME_INF)
10087 return -EINVAL;
10089 mutex_lock(&rt_constraints_mutex);
10090 read_lock(&tasklist_lock);
10091 ret = __rt_schedulable(NULL, 0, 0);
10092 read_unlock(&tasklist_lock);
10093 mutex_unlock(&rt_constraints_mutex);
10095 return ret;
10098 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10100 /* Don't accept realtime tasks when there is no way for them to run */
10101 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10102 return 0;
10104 return 1;
10107 #else /* !CONFIG_RT_GROUP_SCHED */
10108 static int sched_rt_global_constraints(void)
10110 unsigned long flags;
10111 int i;
10113 if (sysctl_sched_rt_period <= 0)
10114 return -EINVAL;
10117 * There's always some RT tasks in the root group
10118 * -- migration, kstopmachine etc..
10120 if (sysctl_sched_rt_runtime == 0)
10121 return -EBUSY;
10123 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10124 for_each_possible_cpu(i) {
10125 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10127 spin_lock(&rt_rq->rt_runtime_lock);
10128 rt_rq->rt_runtime = global_rt_runtime();
10129 spin_unlock(&rt_rq->rt_runtime_lock);
10131 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10133 return 0;
10135 #endif /* CONFIG_RT_GROUP_SCHED */
10137 int sched_rt_handler(struct ctl_table *table, int write,
10138 struct file *filp, void __user *buffer, size_t *lenp,
10139 loff_t *ppos)
10141 int ret;
10142 int old_period, old_runtime;
10143 static DEFINE_MUTEX(mutex);
10145 mutex_lock(&mutex);
10146 old_period = sysctl_sched_rt_period;
10147 old_runtime = sysctl_sched_rt_runtime;
10149 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10151 if (!ret && write) {
10152 ret = sched_rt_global_constraints();
10153 if (ret) {
10154 sysctl_sched_rt_period = old_period;
10155 sysctl_sched_rt_runtime = old_runtime;
10156 } else {
10157 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10158 def_rt_bandwidth.rt_period =
10159 ns_to_ktime(global_rt_period());
10162 mutex_unlock(&mutex);
10164 return ret;
10167 #ifdef CONFIG_CGROUP_SCHED
10169 /* return corresponding task_group object of a cgroup */
10170 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10172 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10173 struct task_group, css);
10176 static struct cgroup_subsys_state *
10177 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10179 struct task_group *tg, *parent;
10181 if (!cgrp->parent) {
10182 /* This is early initialization for the top cgroup */
10183 return &init_task_group.css;
10186 parent = cgroup_tg(cgrp->parent);
10187 tg = sched_create_group(parent);
10188 if (IS_ERR(tg))
10189 return ERR_PTR(-ENOMEM);
10191 return &tg->css;
10194 static void
10195 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10197 struct task_group *tg = cgroup_tg(cgrp);
10199 sched_destroy_group(tg);
10202 static int
10203 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10204 struct task_struct *tsk)
10206 #ifdef CONFIG_RT_GROUP_SCHED
10207 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10208 return -EINVAL;
10209 #else
10210 /* We don't support RT-tasks being in separate groups */
10211 if (tsk->sched_class != &fair_sched_class)
10212 return -EINVAL;
10213 #endif
10215 return 0;
10218 static void
10219 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10220 struct cgroup *old_cont, struct task_struct *tsk)
10222 sched_move_task(tsk);
10225 #ifdef CONFIG_FAIR_GROUP_SCHED
10226 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10227 u64 shareval)
10229 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10232 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10234 struct task_group *tg = cgroup_tg(cgrp);
10236 return (u64) tg->shares;
10238 #endif /* CONFIG_FAIR_GROUP_SCHED */
10240 #ifdef CONFIG_RT_GROUP_SCHED
10241 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10242 s64 val)
10244 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10247 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10249 return sched_group_rt_runtime(cgroup_tg(cgrp));
10252 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10253 u64 rt_period_us)
10255 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10258 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10260 return sched_group_rt_period(cgroup_tg(cgrp));
10262 #endif /* CONFIG_RT_GROUP_SCHED */
10264 static struct cftype cpu_files[] = {
10265 #ifdef CONFIG_FAIR_GROUP_SCHED
10267 .name = "shares",
10268 .read_u64 = cpu_shares_read_u64,
10269 .write_u64 = cpu_shares_write_u64,
10271 #endif
10272 #ifdef CONFIG_RT_GROUP_SCHED
10274 .name = "rt_runtime_us",
10275 .read_s64 = cpu_rt_runtime_read,
10276 .write_s64 = cpu_rt_runtime_write,
10279 .name = "rt_period_us",
10280 .read_u64 = cpu_rt_period_read_uint,
10281 .write_u64 = cpu_rt_period_write_uint,
10283 #endif
10286 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10288 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10291 struct cgroup_subsys cpu_cgroup_subsys = {
10292 .name = "cpu",
10293 .create = cpu_cgroup_create,
10294 .destroy = cpu_cgroup_destroy,
10295 .can_attach = cpu_cgroup_can_attach,
10296 .attach = cpu_cgroup_attach,
10297 .populate = cpu_cgroup_populate,
10298 .subsys_id = cpu_cgroup_subsys_id,
10299 .early_init = 1,
10302 #endif /* CONFIG_CGROUP_SCHED */
10304 #ifdef CONFIG_CGROUP_CPUACCT
10307 * CPU accounting code for task groups.
10309 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10310 * (balbir@in.ibm.com).
10313 /* track cpu usage of a group of tasks and its child groups */
10314 struct cpuacct {
10315 struct cgroup_subsys_state css;
10316 /* cpuusage holds pointer to a u64-type object on every cpu */
10317 u64 *cpuusage;
10318 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10319 struct cpuacct *parent;
10322 struct cgroup_subsys cpuacct_subsys;
10324 /* return cpu accounting group corresponding to this container */
10325 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10327 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10328 struct cpuacct, css);
10331 /* return cpu accounting group to which this task belongs */
10332 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10334 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10335 struct cpuacct, css);
10338 /* create a new cpu accounting group */
10339 static struct cgroup_subsys_state *cpuacct_create(
10340 struct cgroup_subsys *ss, struct cgroup *cgrp)
10342 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10343 int i;
10345 if (!ca)
10346 goto out;
10348 ca->cpuusage = alloc_percpu(u64);
10349 if (!ca->cpuusage)
10350 goto out_free_ca;
10352 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10353 if (percpu_counter_init(&ca->cpustat[i], 0))
10354 goto out_free_counters;
10356 if (cgrp->parent)
10357 ca->parent = cgroup_ca(cgrp->parent);
10359 return &ca->css;
10361 out_free_counters:
10362 while (--i >= 0)
10363 percpu_counter_destroy(&ca->cpustat[i]);
10364 free_percpu(ca->cpuusage);
10365 out_free_ca:
10366 kfree(ca);
10367 out:
10368 return ERR_PTR(-ENOMEM);
10371 /* destroy an existing cpu accounting group */
10372 static void
10373 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10375 struct cpuacct *ca = cgroup_ca(cgrp);
10376 int i;
10378 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10379 percpu_counter_destroy(&ca->cpustat[i]);
10380 free_percpu(ca->cpuusage);
10381 kfree(ca);
10384 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10386 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10387 u64 data;
10389 #ifndef CONFIG_64BIT
10391 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10393 spin_lock_irq(&cpu_rq(cpu)->lock);
10394 data = *cpuusage;
10395 spin_unlock_irq(&cpu_rq(cpu)->lock);
10396 #else
10397 data = *cpuusage;
10398 #endif
10400 return data;
10403 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10405 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10407 #ifndef CONFIG_64BIT
10409 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10411 spin_lock_irq(&cpu_rq(cpu)->lock);
10412 *cpuusage = val;
10413 spin_unlock_irq(&cpu_rq(cpu)->lock);
10414 #else
10415 *cpuusage = val;
10416 #endif
10419 /* return total cpu usage (in nanoseconds) of a group */
10420 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10422 struct cpuacct *ca = cgroup_ca(cgrp);
10423 u64 totalcpuusage = 0;
10424 int i;
10426 for_each_present_cpu(i)
10427 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10429 return totalcpuusage;
10432 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10433 u64 reset)
10435 struct cpuacct *ca = cgroup_ca(cgrp);
10436 int err = 0;
10437 int i;
10439 if (reset) {
10440 err = -EINVAL;
10441 goto out;
10444 for_each_present_cpu(i)
10445 cpuacct_cpuusage_write(ca, i, 0);
10447 out:
10448 return err;
10451 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10452 struct seq_file *m)
10454 struct cpuacct *ca = cgroup_ca(cgroup);
10455 u64 percpu;
10456 int i;
10458 for_each_present_cpu(i) {
10459 percpu = cpuacct_cpuusage_read(ca, i);
10460 seq_printf(m, "%llu ", (unsigned long long) percpu);
10462 seq_printf(m, "\n");
10463 return 0;
10466 static const char *cpuacct_stat_desc[] = {
10467 [CPUACCT_STAT_USER] = "user",
10468 [CPUACCT_STAT_SYSTEM] = "system",
10471 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10472 struct cgroup_map_cb *cb)
10474 struct cpuacct *ca = cgroup_ca(cgrp);
10475 int i;
10477 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10478 s64 val = percpu_counter_read(&ca->cpustat[i]);
10479 val = cputime64_to_clock_t(val);
10480 cb->fill(cb, cpuacct_stat_desc[i], val);
10482 return 0;
10485 static struct cftype files[] = {
10487 .name = "usage",
10488 .read_u64 = cpuusage_read,
10489 .write_u64 = cpuusage_write,
10492 .name = "usage_percpu",
10493 .read_seq_string = cpuacct_percpu_seq_read,
10496 .name = "stat",
10497 .read_map = cpuacct_stats_show,
10501 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10503 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10507 * charge this task's execution time to its accounting group.
10509 * called with rq->lock held.
10511 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10513 struct cpuacct *ca;
10514 int cpu;
10516 if (unlikely(!cpuacct_subsys.active))
10517 return;
10519 cpu = task_cpu(tsk);
10521 rcu_read_lock();
10523 ca = task_ca(tsk);
10525 for (; ca; ca = ca->parent) {
10526 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10527 *cpuusage += cputime;
10530 rcu_read_unlock();
10534 * Charge the system/user time to the task's accounting group.
10536 static void cpuacct_update_stats(struct task_struct *tsk,
10537 enum cpuacct_stat_index idx, cputime_t val)
10539 struct cpuacct *ca;
10541 if (unlikely(!cpuacct_subsys.active))
10542 return;
10544 rcu_read_lock();
10545 ca = task_ca(tsk);
10547 do {
10548 percpu_counter_add(&ca->cpustat[idx], val);
10549 ca = ca->parent;
10550 } while (ca);
10551 rcu_read_unlock();
10554 struct cgroup_subsys cpuacct_subsys = {
10555 .name = "cpuacct",
10556 .create = cpuacct_create,
10557 .destroy = cpuacct_destroy,
10558 .populate = cpuacct_populate,
10559 .subsys_id = cpuacct_subsys_id,
10561 #endif /* CONFIG_CGROUP_CPUACCT */