x86/PCI: use host bridge _CRS info on ASRock ALiveSATA2-GLAN
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / tick-sched.c
blobf992762d7f51c9e187160f8ee78543a5933cf679
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
25 #include <asm/irq_regs.h>
27 #include "tick-internal.h"
30 * Per cpu nohz control structure
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
37 static ktime_t last_jiffies_update;
39 struct tick_sched *tick_get_tick_sched(int cpu)
41 return &per_cpu(tick_cpu_sched, cpu);
45 * Must be called with interrupts disabled !
47 static void tick_do_update_jiffies64(ktime_t now)
49 unsigned long ticks = 0;
50 ktime_t delta;
53 * Do a quick check without holding xtime_lock:
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
73 ticks = ktime_divns(delta, incr);
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
78 do_timer(++ticks);
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
83 write_sequnlock(&xtime_lock);
87 * Initialize and return retrieve the jiffies update.
89 static ktime_t tick_init_jiffy_update(void)
91 ktime_t period;
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
103 * NOHZ - aka dynamic tick functionality
105 #ifdef CONFIG_NO_HZ
107 * NO HZ enabled ?
109 static int tick_nohz_enabled __read_mostly = 1;
112 * Enable / Disable tickless mode
114 static int __init setup_tick_nohz(char *str)
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
125 __setup("nohz=", setup_tick_nohz);
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
130 * Called from interrupt entry when the CPU was idle
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
137 static void tick_nohz_update_jiffies(ktime_t now)
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
143 cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 ts->idle_waketime = now;
146 local_irq_save(flags);
147 tick_do_update_jiffies64(now);
148 local_irq_restore(flags);
150 touch_softlockup_watchdog();
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
155 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 ktime_t delta;
158 delta = ktime_sub(now, ts->idle_entrytime);
159 ts->idle_lastupdate = now;
160 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 ts->idle_active = 0;
163 sched_clock_idle_wakeup_event(0);
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
168 ktime_t now, delta;
170 now = ktime_get();
171 if (ts->idle_active) {
172 delta = ktime_sub(now, ts->idle_entrytime);
173 ts->idle_lastupdate = now;
174 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
176 ts->idle_entrytime = now;
177 ts->idle_active = 1;
178 sched_clock_idle_sleep_event();
179 return now;
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
184 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
186 if (!tick_nohz_enabled)
187 return -1;
189 if (ts->idle_active)
190 *last_update_time = ktime_to_us(ts->idle_lastupdate);
191 else
192 *last_update_time = ktime_to_us(ktime_get());
194 return ktime_to_us(ts->idle_sleeptime);
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
199 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
201 * When the next event is more than a tick into the future, stop the idle tick
202 * Called either from the idle loop or from irq_exit() when an idle period was
203 * just interrupted by an interrupt which did not cause a reschedule.
205 void tick_nohz_stop_sched_tick(int inidle)
207 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 struct tick_sched *ts;
209 ktime_t last_update, expires, now;
210 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 u64 time_delta;
212 int cpu;
214 local_irq_save(flags);
216 cpu = smp_processor_id();
217 ts = &per_cpu(tick_cpu_sched, cpu);
220 * Call to tick_nohz_start_idle stops the last_update_time from being
221 * updated. Thus, it must not be called in the event we are called from
222 * irq_exit() with the prior state different than idle.
224 if (!inidle && !ts->inidle)
225 goto end;
228 * Set ts->inidle unconditionally. Even if the system did not
229 * switch to NOHZ mode the cpu frequency governers rely on the
230 * update of the idle time accounting in tick_nohz_start_idle().
232 ts->inidle = 1;
234 now = tick_nohz_start_idle(ts);
237 * If this cpu is offline and it is the one which updates
238 * jiffies, then give up the assignment and let it be taken by
239 * the cpu which runs the tick timer next. If we don't drop
240 * this here the jiffies might be stale and do_timer() never
241 * invoked.
243 if (unlikely(!cpu_online(cpu))) {
244 if (cpu == tick_do_timer_cpu)
245 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
248 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
249 goto end;
251 if (need_resched())
252 goto end;
254 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
255 static int ratelimit;
257 if (ratelimit < 10) {
258 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
259 (unsigned int) local_softirq_pending());
260 ratelimit++;
262 goto end;
265 ts->idle_calls++;
266 /* Read jiffies and the time when jiffies were updated last */
267 do {
268 seq = read_seqbegin(&xtime_lock);
269 last_update = last_jiffies_update;
270 last_jiffies = jiffies;
271 time_delta = timekeeping_max_deferment();
272 } while (read_seqretry(&xtime_lock, seq));
274 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
275 arch_needs_cpu(cpu)) {
276 next_jiffies = last_jiffies + 1;
277 delta_jiffies = 1;
278 } else {
279 /* Get the next timer wheel timer */
280 next_jiffies = get_next_timer_interrupt(last_jiffies);
281 delta_jiffies = next_jiffies - last_jiffies;
284 * Do not stop the tick, if we are only one off
285 * or if the cpu is required for rcu
287 if (!ts->tick_stopped && delta_jiffies == 1)
288 goto out;
290 /* Schedule the tick, if we are at least one jiffie off */
291 if ((long)delta_jiffies >= 1) {
294 * If this cpu is the one which updates jiffies, then
295 * give up the assignment and let it be taken by the
296 * cpu which runs the tick timer next, which might be
297 * this cpu as well. If we don't drop this here the
298 * jiffies might be stale and do_timer() never
299 * invoked. Keep track of the fact that it was the one
300 * which had the do_timer() duty last. If this cpu is
301 * the one which had the do_timer() duty last, we
302 * limit the sleep time to the timekeeping
303 * max_deferement value which we retrieved
304 * above. Otherwise we can sleep as long as we want.
306 if (cpu == tick_do_timer_cpu) {
307 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
308 ts->do_timer_last = 1;
309 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
310 time_delta = KTIME_MAX;
311 ts->do_timer_last = 0;
312 } else if (!ts->do_timer_last) {
313 time_delta = KTIME_MAX;
317 * calculate the expiry time for the next timer wheel
318 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
319 * that there is no timer pending or at least extremely
320 * far into the future (12 days for HZ=1000). In this
321 * case we set the expiry to the end of time.
323 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
325 * Calculate the time delta for the next timer event.
326 * If the time delta exceeds the maximum time delta
327 * permitted by the current clocksource then adjust
328 * the time delta accordingly to ensure the
329 * clocksource does not wrap.
331 time_delta = min_t(u64, time_delta,
332 tick_period.tv64 * delta_jiffies);
335 if (time_delta < KTIME_MAX)
336 expires = ktime_add_ns(last_update, time_delta);
337 else
338 expires.tv64 = KTIME_MAX;
340 if (delta_jiffies > 1)
341 cpumask_set_cpu(cpu, nohz_cpu_mask);
343 /* Skip reprogram of event if its not changed */
344 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
345 goto out;
348 * nohz_stop_sched_tick can be called several times before
349 * the nohz_restart_sched_tick is called. This happens when
350 * interrupts arrive which do not cause a reschedule. In the
351 * first call we save the current tick time, so we can restart
352 * the scheduler tick in nohz_restart_sched_tick.
354 if (!ts->tick_stopped) {
355 if (select_nohz_load_balancer(1)) {
357 * sched tick not stopped!
359 cpumask_clear_cpu(cpu, nohz_cpu_mask);
360 goto out;
363 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
364 ts->tick_stopped = 1;
365 ts->idle_jiffies = last_jiffies;
366 rcu_enter_nohz();
369 ts->idle_sleeps++;
371 /* Mark expires */
372 ts->idle_expires = expires;
375 * If the expiration time == KTIME_MAX, then
376 * in this case we simply stop the tick timer.
378 if (unlikely(expires.tv64 == KTIME_MAX)) {
379 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
380 hrtimer_cancel(&ts->sched_timer);
381 goto out;
384 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
385 hrtimer_start(&ts->sched_timer, expires,
386 HRTIMER_MODE_ABS_PINNED);
387 /* Check, if the timer was already in the past */
388 if (hrtimer_active(&ts->sched_timer))
389 goto out;
390 } else if (!tick_program_event(expires, 0))
391 goto out;
393 * We are past the event already. So we crossed a
394 * jiffie boundary. Update jiffies and raise the
395 * softirq.
397 tick_do_update_jiffies64(ktime_get());
398 cpumask_clear_cpu(cpu, nohz_cpu_mask);
400 raise_softirq_irqoff(TIMER_SOFTIRQ);
401 out:
402 ts->next_jiffies = next_jiffies;
403 ts->last_jiffies = last_jiffies;
404 ts->sleep_length = ktime_sub(dev->next_event, now);
405 end:
406 local_irq_restore(flags);
410 * tick_nohz_get_sleep_length - return the length of the current sleep
412 * Called from power state control code with interrupts disabled
414 ktime_t tick_nohz_get_sleep_length(void)
416 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
418 return ts->sleep_length;
421 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
423 hrtimer_cancel(&ts->sched_timer);
424 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
426 while (1) {
427 /* Forward the time to expire in the future */
428 hrtimer_forward(&ts->sched_timer, now, tick_period);
430 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431 hrtimer_start_expires(&ts->sched_timer,
432 HRTIMER_MODE_ABS_PINNED);
433 /* Check, if the timer was already in the past */
434 if (hrtimer_active(&ts->sched_timer))
435 break;
436 } else {
437 if (!tick_program_event(
438 hrtimer_get_expires(&ts->sched_timer), 0))
439 break;
441 /* Update jiffies and reread time */
442 tick_do_update_jiffies64(now);
443 now = ktime_get();
448 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
450 * Restart the idle tick when the CPU is woken up from idle
452 void tick_nohz_restart_sched_tick(void)
454 int cpu = smp_processor_id();
455 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
456 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
457 unsigned long ticks;
458 #endif
459 ktime_t now;
461 local_irq_disable();
462 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
463 now = ktime_get();
465 if (ts->idle_active)
466 tick_nohz_stop_idle(cpu, now);
468 if (!ts->inidle || !ts->tick_stopped) {
469 ts->inidle = 0;
470 local_irq_enable();
471 return;
474 ts->inidle = 0;
476 rcu_exit_nohz();
478 /* Update jiffies first */
479 select_nohz_load_balancer(0);
480 tick_do_update_jiffies64(now);
481 cpumask_clear_cpu(cpu, nohz_cpu_mask);
483 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
485 * We stopped the tick in idle. Update process times would miss the
486 * time we slept as update_process_times does only a 1 tick
487 * accounting. Enforce that this is accounted to idle !
489 ticks = jiffies - ts->idle_jiffies;
491 * We might be one off. Do not randomly account a huge number of ticks!
493 if (ticks && ticks < LONG_MAX)
494 account_idle_ticks(ticks);
495 #endif
497 touch_softlockup_watchdog();
499 * Cancel the scheduled timer and restore the tick
501 ts->tick_stopped = 0;
502 ts->idle_exittime = now;
504 tick_nohz_restart(ts, now);
506 local_irq_enable();
509 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
511 hrtimer_forward(&ts->sched_timer, now, tick_period);
512 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
516 * The nohz low res interrupt handler
518 static void tick_nohz_handler(struct clock_event_device *dev)
520 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
521 struct pt_regs *regs = get_irq_regs();
522 int cpu = smp_processor_id();
523 ktime_t now = ktime_get();
525 dev->next_event.tv64 = KTIME_MAX;
528 * Check if the do_timer duty was dropped. We don't care about
529 * concurrency: This happens only when the cpu in charge went
530 * into a long sleep. If two cpus happen to assign themself to
531 * this duty, then the jiffies update is still serialized by
532 * xtime_lock.
534 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
535 tick_do_timer_cpu = cpu;
537 /* Check, if the jiffies need an update */
538 if (tick_do_timer_cpu == cpu)
539 tick_do_update_jiffies64(now);
542 * When we are idle and the tick is stopped, we have to touch
543 * the watchdog as we might not schedule for a really long
544 * time. This happens on complete idle SMP systems while
545 * waiting on the login prompt. We also increment the "start
546 * of idle" jiffy stamp so the idle accounting adjustment we
547 * do when we go busy again does not account too much ticks.
549 if (ts->tick_stopped) {
550 touch_softlockup_watchdog();
551 ts->idle_jiffies++;
554 update_process_times(user_mode(regs));
555 profile_tick(CPU_PROFILING);
557 while (tick_nohz_reprogram(ts, now)) {
558 now = ktime_get();
559 tick_do_update_jiffies64(now);
564 * tick_nohz_switch_to_nohz - switch to nohz mode
566 static void tick_nohz_switch_to_nohz(void)
568 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
569 ktime_t next;
571 if (!tick_nohz_enabled)
572 return;
574 local_irq_disable();
575 if (tick_switch_to_oneshot(tick_nohz_handler)) {
576 local_irq_enable();
577 return;
580 ts->nohz_mode = NOHZ_MODE_LOWRES;
583 * Recycle the hrtimer in ts, so we can share the
584 * hrtimer_forward with the highres code.
586 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
587 /* Get the next period */
588 next = tick_init_jiffy_update();
590 for (;;) {
591 hrtimer_set_expires(&ts->sched_timer, next);
592 if (!tick_program_event(next, 0))
593 break;
594 next = ktime_add(next, tick_period);
596 local_irq_enable();
598 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
599 smp_processor_id());
603 * When NOHZ is enabled and the tick is stopped, we need to kick the
604 * tick timer from irq_enter() so that the jiffies update is kept
605 * alive during long running softirqs. That's ugly as hell, but
606 * correctness is key even if we need to fix the offending softirq in
607 * the first place.
609 * Note, this is different to tick_nohz_restart. We just kick the
610 * timer and do not touch the other magic bits which need to be done
611 * when idle is left.
613 static void tick_nohz_kick_tick(int cpu, ktime_t now)
615 #if 0
616 /* Switch back to 2.6.27 behaviour */
618 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
619 ktime_t delta;
622 * Do not touch the tick device, when the next expiry is either
623 * already reached or less/equal than the tick period.
625 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
626 if (delta.tv64 <= tick_period.tv64)
627 return;
629 tick_nohz_restart(ts, now);
630 #endif
633 static inline void tick_check_nohz(int cpu)
635 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
636 ktime_t now;
638 if (!ts->idle_active && !ts->tick_stopped)
639 return;
640 now = ktime_get();
641 if (ts->idle_active)
642 tick_nohz_stop_idle(cpu, now);
643 if (ts->tick_stopped) {
644 tick_nohz_update_jiffies(now);
645 tick_nohz_kick_tick(cpu, now);
649 #else
651 static inline void tick_nohz_switch_to_nohz(void) { }
652 static inline void tick_check_nohz(int cpu) { }
654 #endif /* NO_HZ */
657 * Called from irq_enter to notify about the possible interruption of idle()
659 void tick_check_idle(int cpu)
661 tick_check_oneshot_broadcast(cpu);
662 tick_check_nohz(cpu);
666 * High resolution timer specific code
668 #ifdef CONFIG_HIGH_RES_TIMERS
670 * We rearm the timer until we get disabled by the idle code.
671 * Called with interrupts disabled and timer->base->cpu_base->lock held.
673 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
675 struct tick_sched *ts =
676 container_of(timer, struct tick_sched, sched_timer);
677 struct pt_regs *regs = get_irq_regs();
678 ktime_t now = ktime_get();
679 int cpu = smp_processor_id();
681 #ifdef CONFIG_NO_HZ
683 * Check if the do_timer duty was dropped. We don't care about
684 * concurrency: This happens only when the cpu in charge went
685 * into a long sleep. If two cpus happen to assign themself to
686 * this duty, then the jiffies update is still serialized by
687 * xtime_lock.
689 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
690 tick_do_timer_cpu = cpu;
691 #endif
693 /* Check, if the jiffies need an update */
694 if (tick_do_timer_cpu == cpu)
695 tick_do_update_jiffies64(now);
698 * Do not call, when we are not in irq context and have
699 * no valid regs pointer
701 if (regs) {
703 * When we are idle and the tick is stopped, we have to touch
704 * the watchdog as we might not schedule for a really long
705 * time. This happens on complete idle SMP systems while
706 * waiting on the login prompt. We also increment the "start of
707 * idle" jiffy stamp so the idle accounting adjustment we do
708 * when we go busy again does not account too much ticks.
710 if (ts->tick_stopped) {
711 touch_softlockup_watchdog();
712 ts->idle_jiffies++;
714 update_process_times(user_mode(regs));
715 profile_tick(CPU_PROFILING);
718 hrtimer_forward(timer, now, tick_period);
720 return HRTIMER_RESTART;
724 * tick_setup_sched_timer - setup the tick emulation timer
726 void tick_setup_sched_timer(void)
728 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
729 ktime_t now = ktime_get();
730 u64 offset;
733 * Emulate tick processing via per-CPU hrtimers:
735 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
736 ts->sched_timer.function = tick_sched_timer;
738 /* Get the next period (per cpu) */
739 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
740 offset = ktime_to_ns(tick_period) >> 1;
741 do_div(offset, num_possible_cpus());
742 offset *= smp_processor_id();
743 hrtimer_add_expires_ns(&ts->sched_timer, offset);
745 for (;;) {
746 hrtimer_forward(&ts->sched_timer, now, tick_period);
747 hrtimer_start_expires(&ts->sched_timer,
748 HRTIMER_MODE_ABS_PINNED);
749 /* Check, if the timer was already in the past */
750 if (hrtimer_active(&ts->sched_timer))
751 break;
752 now = ktime_get();
755 #ifdef CONFIG_NO_HZ
756 if (tick_nohz_enabled)
757 ts->nohz_mode = NOHZ_MODE_HIGHRES;
758 #endif
760 #endif /* HIGH_RES_TIMERS */
762 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
763 void tick_cancel_sched_timer(int cpu)
765 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
767 # ifdef CONFIG_HIGH_RES_TIMERS
768 if (ts->sched_timer.base)
769 hrtimer_cancel(&ts->sched_timer);
770 # endif
772 ts->nohz_mode = NOHZ_MODE_INACTIVE;
774 #endif
777 * Async notification about clocksource changes
779 void tick_clock_notify(void)
781 int cpu;
783 for_each_possible_cpu(cpu)
784 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
788 * Async notification about clock event changes
790 void tick_oneshot_notify(void)
792 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
794 set_bit(0, &ts->check_clocks);
798 * Check, if a change happened, which makes oneshot possible.
800 * Called cyclic from the hrtimer softirq (driven by the timer
801 * softirq) allow_nohz signals, that we can switch into low-res nohz
802 * mode, because high resolution timers are disabled (either compile
803 * or runtime).
805 int tick_check_oneshot_change(int allow_nohz)
807 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
809 if (!test_and_clear_bit(0, &ts->check_clocks))
810 return 0;
812 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
813 return 0;
815 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
816 return 0;
818 if (!allow_nohz)
819 return 1;
821 tick_nohz_switch_to_nohz();
822 return 0;