NFSv4.1: Use more sensible names for 'initialize_mountpoint'
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nilfs2 / page.c
blobaab11db2cb083cbf2d45fc258b0de5315d598cf3
1 /*
2 * page.c - buffer/page management specific to NILFS
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21 * Seiji Kihara <kihara@osrg.net>.
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
32 #include <linux/gfp.h>
33 #include "nilfs.h"
34 #include "page.h"
35 #include "mdt.h"
38 #define NILFS_BUFFER_INHERENT_BITS \
39 ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated) | \
41 (1UL << BH_NILFS_Checked))
43 static struct buffer_head *
44 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
45 int blkbits, unsigned long b_state)
48 unsigned long first_block;
49 struct buffer_head *bh;
51 if (!page_has_buffers(page))
52 create_empty_buffers(page, 1 << blkbits, b_state);
54 first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
55 bh = nilfs_page_get_nth_block(page, block - first_block);
57 touch_buffer(bh);
58 wait_on_buffer(bh);
59 return bh;
63 * Since the page cache of B-tree node pages or data page cache of pseudo
64 * inodes does not have a valid mapping->host pointer, calling
65 * mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
66 * it calls __mark_inode_dirty(NULL) through __set_page_dirty().
67 * To avoid this problem, the old style mark_buffer_dirty() is used instead.
69 void nilfs_mark_buffer_dirty(struct buffer_head *bh)
71 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
72 __set_page_dirty_nobuffers(bh->b_page);
75 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
76 struct address_space *mapping,
77 unsigned long blkoff,
78 unsigned long b_state)
80 int blkbits = inode->i_blkbits;
81 pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
82 struct page *page, *opage;
83 struct buffer_head *bh, *obh;
85 page = grab_cache_page(mapping, index);
86 if (unlikely(!page))
87 return NULL;
89 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
90 if (unlikely(!bh)) {
91 unlock_page(page);
92 page_cache_release(page);
93 return NULL;
95 if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
97 * Shadow page cache uses assoc_mapping to point its original
98 * page cache. The following code tries the original cache
99 * if the given cache is a shadow and it didn't hit.
101 opage = find_lock_page(mapping->assoc_mapping, index);
102 if (!opage)
103 return bh;
105 obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
106 b_state);
107 if (buffer_uptodate(obh)) {
108 nilfs_copy_buffer(bh, obh);
109 if (buffer_dirty(obh)) {
110 nilfs_mark_buffer_dirty(bh);
111 if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
112 nilfs_mdt_mark_dirty(inode);
115 brelse(obh);
116 unlock_page(opage);
117 page_cache_release(opage);
119 return bh;
123 * nilfs_forget_buffer - discard dirty state
124 * @inode: owner inode of the buffer
125 * @bh: buffer head of the buffer to be discarded
127 void nilfs_forget_buffer(struct buffer_head *bh)
129 struct page *page = bh->b_page;
131 lock_buffer(bh);
132 clear_buffer_nilfs_volatile(bh);
133 clear_buffer_nilfs_checked(bh);
134 clear_buffer_dirty(bh);
135 if (nilfs_page_buffers_clean(page))
136 __nilfs_clear_page_dirty(page);
138 clear_buffer_uptodate(bh);
139 clear_buffer_mapped(bh);
140 bh->b_blocknr = -1;
141 ClearPageUptodate(page);
142 ClearPageMappedToDisk(page);
143 unlock_buffer(bh);
144 brelse(bh);
148 * nilfs_copy_buffer -- copy buffer data and flags
149 * @dbh: destination buffer
150 * @sbh: source buffer
152 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
154 void *kaddr0, *kaddr1;
155 unsigned long bits;
156 struct page *spage = sbh->b_page, *dpage = dbh->b_page;
157 struct buffer_head *bh;
159 kaddr0 = kmap_atomic(spage, KM_USER0);
160 kaddr1 = kmap_atomic(dpage, KM_USER1);
161 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
162 kunmap_atomic(kaddr1, KM_USER1);
163 kunmap_atomic(kaddr0, KM_USER0);
165 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
166 dbh->b_blocknr = sbh->b_blocknr;
167 dbh->b_bdev = sbh->b_bdev;
169 bh = dbh;
170 bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
171 while ((bh = bh->b_this_page) != dbh) {
172 lock_buffer(bh);
173 bits &= bh->b_state;
174 unlock_buffer(bh);
176 if (bits & (1UL << BH_Uptodate))
177 SetPageUptodate(dpage);
178 else
179 ClearPageUptodate(dpage);
180 if (bits & (1UL << BH_Mapped))
181 SetPageMappedToDisk(dpage);
182 else
183 ClearPageMappedToDisk(dpage);
187 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
188 * @page: page to be checked
190 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
191 * Otherwise, it returns non-zero value.
193 int nilfs_page_buffers_clean(struct page *page)
195 struct buffer_head *bh, *head;
197 bh = head = page_buffers(page);
198 do {
199 if (buffer_dirty(bh))
200 return 0;
201 bh = bh->b_this_page;
202 } while (bh != head);
203 return 1;
206 void nilfs_page_bug(struct page *page)
208 struct address_space *m;
209 unsigned long ino = 0;
211 if (unlikely(!page)) {
212 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
213 return;
216 m = page->mapping;
217 if (m) {
218 struct inode *inode = NILFS_AS_I(m);
219 if (inode != NULL)
220 ino = inode->i_ino;
222 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
223 "mapping=%p ino=%lu\n",
224 page, atomic_read(&page->_count),
225 (unsigned long long)page->index, page->flags, m, ino);
227 if (page_has_buffers(page)) {
228 struct buffer_head *bh, *head;
229 int i = 0;
231 bh = head = page_buffers(page);
232 do {
233 printk(KERN_CRIT
234 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
235 i++, bh, atomic_read(&bh->b_count),
236 (unsigned long long)bh->b_blocknr, bh->b_state);
237 bh = bh->b_this_page;
238 } while (bh != head);
243 * nilfs_alloc_private_page - allocate a private page with buffer heads
245 * Return Value: On success, a pointer to the allocated page is returned.
246 * On error, NULL is returned.
248 struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
249 unsigned long state)
251 struct buffer_head *bh, *head, *tail;
252 struct page *page;
254 page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
255 if (unlikely(!page))
256 return NULL;
258 lock_page(page);
259 head = alloc_page_buffers(page, size, 0);
260 if (unlikely(!head)) {
261 unlock_page(page);
262 __free_page(page);
263 return NULL;
266 bh = head;
267 do {
268 bh->b_state = (1UL << BH_NILFS_Allocated) | state;
269 tail = bh;
270 bh->b_bdev = bdev;
271 bh = bh->b_this_page;
272 } while (bh);
274 tail->b_this_page = head;
275 attach_page_buffers(page, head);
277 return page;
280 void nilfs_free_private_page(struct page *page)
282 BUG_ON(!PageLocked(page));
283 BUG_ON(page->mapping);
285 if (page_has_buffers(page) && !try_to_free_buffers(page))
286 NILFS_PAGE_BUG(page, "failed to free page");
288 unlock_page(page);
289 __free_page(page);
293 * nilfs_copy_page -- copy the page with buffers
294 * @dst: destination page
295 * @src: source page
296 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
298 * This function is for both data pages and btnode pages. The dirty flag
299 * should be treated by caller. The page must not be under i/o.
300 * Both src and dst page must be locked
302 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
304 struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
305 unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
307 BUG_ON(PageWriteback(dst));
309 sbh = sbufs = page_buffers(src);
310 if (!page_has_buffers(dst))
311 create_empty_buffers(dst, sbh->b_size, 0);
313 if (copy_dirty)
314 mask |= (1UL << BH_Dirty);
316 dbh = dbufs = page_buffers(dst);
317 do {
318 lock_buffer(sbh);
319 lock_buffer(dbh);
320 dbh->b_state = sbh->b_state & mask;
321 dbh->b_blocknr = sbh->b_blocknr;
322 dbh->b_bdev = sbh->b_bdev;
323 sbh = sbh->b_this_page;
324 dbh = dbh->b_this_page;
325 } while (dbh != dbufs);
327 copy_highpage(dst, src);
329 if (PageUptodate(src) && !PageUptodate(dst))
330 SetPageUptodate(dst);
331 else if (!PageUptodate(src) && PageUptodate(dst))
332 ClearPageUptodate(dst);
333 if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
334 SetPageMappedToDisk(dst);
335 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
336 ClearPageMappedToDisk(dst);
338 do {
339 unlock_buffer(sbh);
340 unlock_buffer(dbh);
341 sbh = sbh->b_this_page;
342 dbh = dbh->b_this_page;
343 } while (dbh != dbufs);
346 int nilfs_copy_dirty_pages(struct address_space *dmap,
347 struct address_space *smap)
349 struct pagevec pvec;
350 unsigned int i;
351 pgoff_t index = 0;
352 int err = 0;
354 pagevec_init(&pvec, 0);
355 repeat:
356 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
357 PAGEVEC_SIZE))
358 return 0;
360 for (i = 0; i < pagevec_count(&pvec); i++) {
361 struct page *page = pvec.pages[i], *dpage;
363 lock_page(page);
364 if (unlikely(!PageDirty(page)))
365 NILFS_PAGE_BUG(page, "inconsistent dirty state");
367 dpage = grab_cache_page(dmap, page->index);
368 if (unlikely(!dpage)) {
369 /* No empty page is added to the page cache */
370 err = -ENOMEM;
371 unlock_page(page);
372 break;
374 if (unlikely(!page_has_buffers(page)))
375 NILFS_PAGE_BUG(page,
376 "found empty page in dat page cache");
378 nilfs_copy_page(dpage, page, 1);
379 __set_page_dirty_nobuffers(dpage);
381 unlock_page(dpage);
382 page_cache_release(dpage);
383 unlock_page(page);
385 pagevec_release(&pvec);
386 cond_resched();
388 if (likely(!err))
389 goto repeat;
390 return err;
394 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
395 * @dmap: destination page cache
396 * @smap: source page cache
398 * No pages must no be added to the cache during this process.
399 * This must be ensured by the caller.
401 void nilfs_copy_back_pages(struct address_space *dmap,
402 struct address_space *smap)
404 struct pagevec pvec;
405 unsigned int i, n;
406 pgoff_t index = 0;
407 int err;
409 pagevec_init(&pvec, 0);
410 repeat:
411 n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
412 if (!n)
413 return;
414 index = pvec.pages[n - 1]->index + 1;
416 for (i = 0; i < pagevec_count(&pvec); i++) {
417 struct page *page = pvec.pages[i], *dpage;
418 pgoff_t offset = page->index;
420 lock_page(page);
421 dpage = find_lock_page(dmap, offset);
422 if (dpage) {
423 /* override existing page on the destination cache */
424 WARN_ON(PageDirty(dpage));
425 nilfs_copy_page(dpage, page, 0);
426 unlock_page(dpage);
427 page_cache_release(dpage);
428 } else {
429 struct page *page2;
431 /* move the page to the destination cache */
432 spin_lock_irq(&smap->tree_lock);
433 page2 = radix_tree_delete(&smap->page_tree, offset);
434 WARN_ON(page2 != page);
436 smap->nrpages--;
437 spin_unlock_irq(&smap->tree_lock);
439 spin_lock_irq(&dmap->tree_lock);
440 err = radix_tree_insert(&dmap->page_tree, offset, page);
441 if (unlikely(err < 0)) {
442 WARN_ON(err == -EEXIST);
443 page->mapping = NULL;
444 page_cache_release(page); /* for cache */
445 } else {
446 page->mapping = dmap;
447 dmap->nrpages++;
448 if (PageDirty(page))
449 radix_tree_tag_set(&dmap->page_tree,
450 offset,
451 PAGECACHE_TAG_DIRTY);
453 spin_unlock_irq(&dmap->tree_lock);
455 unlock_page(page);
457 pagevec_release(&pvec);
458 cond_resched();
460 goto repeat;
463 void nilfs_clear_dirty_pages(struct address_space *mapping)
465 struct pagevec pvec;
466 unsigned int i;
467 pgoff_t index = 0;
469 pagevec_init(&pvec, 0);
471 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
472 PAGEVEC_SIZE)) {
473 for (i = 0; i < pagevec_count(&pvec); i++) {
474 struct page *page = pvec.pages[i];
475 struct buffer_head *bh, *head;
477 lock_page(page);
478 ClearPageUptodate(page);
479 ClearPageMappedToDisk(page);
480 bh = head = page_buffers(page);
481 do {
482 lock_buffer(bh);
483 clear_buffer_dirty(bh);
484 clear_buffer_nilfs_volatile(bh);
485 clear_buffer_nilfs_checked(bh);
486 clear_buffer_uptodate(bh);
487 clear_buffer_mapped(bh);
488 unlock_buffer(bh);
489 bh = bh->b_this_page;
490 } while (bh != head);
492 __nilfs_clear_page_dirty(page);
493 unlock_page(page);
495 pagevec_release(&pvec);
496 cond_resched();
500 unsigned nilfs_page_count_clean_buffers(struct page *page,
501 unsigned from, unsigned to)
503 unsigned block_start, block_end;
504 struct buffer_head *bh, *head;
505 unsigned nc = 0;
507 for (bh = head = page_buffers(page), block_start = 0;
508 bh != head || !block_start;
509 block_start = block_end, bh = bh->b_this_page) {
510 block_end = block_start + bh->b_size;
511 if (block_end > from && block_start < to && !buffer_dirty(bh))
512 nc++;
514 return nc;
518 * NILFS2 needs clear_page_dirty() in the following two cases:
520 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
521 * page dirty flags when it copies back pages from the shadow cache
522 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache
523 * (dat->{i_mapping,i_btnode_cache}).
525 * 2) Some B-tree operations like insertion or deletion may dispose buffers
526 * in dirty state, and this needs to cancel the dirty state of their pages.
528 int __nilfs_clear_page_dirty(struct page *page)
530 struct address_space *mapping = page->mapping;
532 if (mapping) {
533 spin_lock_irq(&mapping->tree_lock);
534 if (test_bit(PG_dirty, &page->flags)) {
535 radix_tree_tag_clear(&mapping->page_tree,
536 page_index(page),
537 PAGECACHE_TAG_DIRTY);
538 spin_unlock_irq(&mapping->tree_lock);
539 return clear_page_dirty_for_io(page);
541 spin_unlock_irq(&mapping->tree_lock);
542 return 0;
544 return TestClearPageDirty(page);