mm: now that all old mmu_gather code is gone, remove the storage
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blobd303b60f4c2abb309a85392e94b8a33a25ed73d0
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
85 unsigned long hibernation_mode;
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
90 int may_writepage;
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
98 int swappiness;
100 int order;
103 * Intend to reclaim enough continuous memory rather than reclaim
104 * enough amount of memory. i.e, mode for high order allocation.
106 reclaim_mode_t reclaim_mode;
108 /* Which cgroup do we reclaim from */
109 struct mem_cgroup *mem_cgroup;
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 * are scanned.
115 nodemask_t *nodemask;
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
149 * From 0 .. 100. Higher means more swappy.
151 int vm_swappiness = 60;
152 long vm_total_pages; /* The total number of pages which the VM controls */
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164 struct scan_control *sc)
166 if (!scanning_global_lru(sc))
167 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
169 return &zone->reclaim_stat;
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173 struct scan_control *sc, enum lru_list lru)
175 if (!scanning_global_lru(sc))
176 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
178 return zone_page_state(zone, NR_LRU_BASE + lru);
183 * Add a shrinker callback to be called from the vm
185 void register_shrinker(struct shrinker *shrinker)
187 shrinker->nr = 0;
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
192 EXPORT_SYMBOL(register_shrinker);
195 * Remove one
197 void unregister_shrinker(struct shrinker *shrinker)
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
203 EXPORT_SYMBOL(unregister_shrinker);
205 #define SHRINK_BATCH 128
207 * Call the shrink functions to age shrinkable caches
209 * Here we assume it costs one seek to replace a lru page and that it also
210 * takes a seek to recreate a cache object. With this in mind we age equal
211 * percentages of the lru and ageable caches. This should balance the seeks
212 * generated by these structures.
214 * If the vm encountered mapped pages on the LRU it increase the pressure on
215 * slab to avoid swapping.
217 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
219 * `lru_pages' represents the number of on-LRU pages in all the zones which
220 * are eligible for the caller's allocation attempt. It is used for balancing
221 * slab reclaim versus page reclaim.
223 * Returns the number of slab objects which we shrunk.
225 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
226 unsigned long lru_pages)
228 struct shrinker *shrinker;
229 unsigned long ret = 0;
231 if (scanned == 0)
232 scanned = SWAP_CLUSTER_MAX;
234 if (!down_read_trylock(&shrinker_rwsem)) {
235 /* Assume we'll be able to shrink next time */
236 ret = 1;
237 goto out;
240 list_for_each_entry(shrinker, &shrinker_list, list) {
241 unsigned long long delta;
242 unsigned long total_scan;
243 unsigned long max_pass;
245 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
246 delta = (4 * scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 shrinker->nr += delta;
250 if (shrinker->nr < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, shrinker->nr);
254 shrinker->nr = max_pass;
258 * Avoid risking looping forever due to too large nr value:
259 * never try to free more than twice the estimate number of
260 * freeable entries.
262 if (shrinker->nr > max_pass * 2)
263 shrinker->nr = max_pass * 2;
265 total_scan = shrinker->nr;
266 shrinker->nr = 0;
268 while (total_scan >= SHRINK_BATCH) {
269 long this_scan = SHRINK_BATCH;
270 int shrink_ret;
271 int nr_before;
273 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
274 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
275 gfp_mask);
276 if (shrink_ret == -1)
277 break;
278 if (shrink_ret < nr_before)
279 ret += nr_before - shrink_ret;
280 count_vm_events(SLABS_SCANNED, this_scan);
281 total_scan -= this_scan;
283 cond_resched();
286 shrinker->nr += total_scan;
288 up_read(&shrinker_rwsem);
289 out:
290 cond_resched();
291 return ret;
294 static void set_reclaim_mode(int priority, struct scan_control *sc,
295 bool sync)
297 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
300 * Initially assume we are entering either lumpy reclaim or
301 * reclaim/compaction.Depending on the order, we will either set the
302 * sync mode or just reclaim order-0 pages later.
304 if (COMPACTION_BUILD)
305 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
306 else
307 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
310 * Avoid using lumpy reclaim or reclaim/compaction if possible by
311 * restricting when its set to either costly allocations or when
312 * under memory pressure
314 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
315 sc->reclaim_mode |= syncmode;
316 else if (sc->order && priority < DEF_PRIORITY - 2)
317 sc->reclaim_mode |= syncmode;
318 else
319 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
322 static void reset_reclaim_mode(struct scan_control *sc)
324 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
327 static inline int is_page_cache_freeable(struct page *page)
330 * A freeable page cache page is referenced only by the caller
331 * that isolated the page, the page cache radix tree and
332 * optional buffer heads at page->private.
334 return page_count(page) - page_has_private(page) == 2;
337 static int may_write_to_queue(struct backing_dev_info *bdi,
338 struct scan_control *sc)
340 if (current->flags & PF_SWAPWRITE)
341 return 1;
342 if (!bdi_write_congested(bdi))
343 return 1;
344 if (bdi == current->backing_dev_info)
345 return 1;
347 /* lumpy reclaim for hugepage often need a lot of write */
348 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
349 return 1;
350 return 0;
354 * We detected a synchronous write error writing a page out. Probably
355 * -ENOSPC. We need to propagate that into the address_space for a subsequent
356 * fsync(), msync() or close().
358 * The tricky part is that after writepage we cannot touch the mapping: nothing
359 * prevents it from being freed up. But we have a ref on the page and once
360 * that page is locked, the mapping is pinned.
362 * We're allowed to run sleeping lock_page() here because we know the caller has
363 * __GFP_FS.
365 static void handle_write_error(struct address_space *mapping,
366 struct page *page, int error)
368 lock_page(page);
369 if (page_mapping(page) == mapping)
370 mapping_set_error(mapping, error);
371 unlock_page(page);
374 /* possible outcome of pageout() */
375 typedef enum {
376 /* failed to write page out, page is locked */
377 PAGE_KEEP,
378 /* move page to the active list, page is locked */
379 PAGE_ACTIVATE,
380 /* page has been sent to the disk successfully, page is unlocked */
381 PAGE_SUCCESS,
382 /* page is clean and locked */
383 PAGE_CLEAN,
384 } pageout_t;
387 * pageout is called by shrink_page_list() for each dirty page.
388 * Calls ->writepage().
390 static pageout_t pageout(struct page *page, struct address_space *mapping,
391 struct scan_control *sc)
394 * If the page is dirty, only perform writeback if that write
395 * will be non-blocking. To prevent this allocation from being
396 * stalled by pagecache activity. But note that there may be
397 * stalls if we need to run get_block(). We could test
398 * PagePrivate for that.
400 * If this process is currently in __generic_file_aio_write() against
401 * this page's queue, we can perform writeback even if that
402 * will block.
404 * If the page is swapcache, write it back even if that would
405 * block, for some throttling. This happens by accident, because
406 * swap_backing_dev_info is bust: it doesn't reflect the
407 * congestion state of the swapdevs. Easy to fix, if needed.
409 if (!is_page_cache_freeable(page))
410 return PAGE_KEEP;
411 if (!mapping) {
413 * Some data journaling orphaned pages can have
414 * page->mapping == NULL while being dirty with clean buffers.
416 if (page_has_private(page)) {
417 if (try_to_free_buffers(page)) {
418 ClearPageDirty(page);
419 printk("%s: orphaned page\n", __func__);
420 return PAGE_CLEAN;
423 return PAGE_KEEP;
425 if (mapping->a_ops->writepage == NULL)
426 return PAGE_ACTIVATE;
427 if (!may_write_to_queue(mapping->backing_dev_info, sc))
428 return PAGE_KEEP;
430 if (clear_page_dirty_for_io(page)) {
431 int res;
432 struct writeback_control wbc = {
433 .sync_mode = WB_SYNC_NONE,
434 .nr_to_write = SWAP_CLUSTER_MAX,
435 .range_start = 0,
436 .range_end = LLONG_MAX,
437 .for_reclaim = 1,
440 SetPageReclaim(page);
441 res = mapping->a_ops->writepage(page, &wbc);
442 if (res < 0)
443 handle_write_error(mapping, page, res);
444 if (res == AOP_WRITEPAGE_ACTIVATE) {
445 ClearPageReclaim(page);
446 return PAGE_ACTIVATE;
450 * Wait on writeback if requested to. This happens when
451 * direct reclaiming a large contiguous area and the
452 * first attempt to free a range of pages fails.
454 if (PageWriteback(page) &&
455 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
456 wait_on_page_writeback(page);
458 if (!PageWriteback(page)) {
459 /* synchronous write or broken a_ops? */
460 ClearPageReclaim(page);
462 trace_mm_vmscan_writepage(page,
463 trace_reclaim_flags(page, sc->reclaim_mode));
464 inc_zone_page_state(page, NR_VMSCAN_WRITE);
465 return PAGE_SUCCESS;
468 return PAGE_CLEAN;
472 * Same as remove_mapping, but if the page is removed from the mapping, it
473 * gets returned with a refcount of 0.
475 static int __remove_mapping(struct address_space *mapping, struct page *page)
477 BUG_ON(!PageLocked(page));
478 BUG_ON(mapping != page_mapping(page));
480 spin_lock_irq(&mapping->tree_lock);
482 * The non racy check for a busy page.
484 * Must be careful with the order of the tests. When someone has
485 * a ref to the page, it may be possible that they dirty it then
486 * drop the reference. So if PageDirty is tested before page_count
487 * here, then the following race may occur:
489 * get_user_pages(&page);
490 * [user mapping goes away]
491 * write_to(page);
492 * !PageDirty(page) [good]
493 * SetPageDirty(page);
494 * put_page(page);
495 * !page_count(page) [good, discard it]
497 * [oops, our write_to data is lost]
499 * Reversing the order of the tests ensures such a situation cannot
500 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
501 * load is not satisfied before that of page->_count.
503 * Note that if SetPageDirty is always performed via set_page_dirty,
504 * and thus under tree_lock, then this ordering is not required.
506 if (!page_freeze_refs(page, 2))
507 goto cannot_free;
508 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
509 if (unlikely(PageDirty(page))) {
510 page_unfreeze_refs(page, 2);
511 goto cannot_free;
514 if (PageSwapCache(page)) {
515 swp_entry_t swap = { .val = page_private(page) };
516 __delete_from_swap_cache(page);
517 spin_unlock_irq(&mapping->tree_lock);
518 swapcache_free(swap, page);
519 } else {
520 void (*freepage)(struct page *);
522 freepage = mapping->a_ops->freepage;
524 __delete_from_page_cache(page);
525 spin_unlock_irq(&mapping->tree_lock);
526 mem_cgroup_uncharge_cache_page(page);
528 if (freepage != NULL)
529 freepage(page);
532 return 1;
534 cannot_free:
535 spin_unlock_irq(&mapping->tree_lock);
536 return 0;
540 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
541 * someone else has a ref on the page, abort and return 0. If it was
542 * successfully detached, return 1. Assumes the caller has a single ref on
543 * this page.
545 int remove_mapping(struct address_space *mapping, struct page *page)
547 if (__remove_mapping(mapping, page)) {
549 * Unfreezing the refcount with 1 rather than 2 effectively
550 * drops the pagecache ref for us without requiring another
551 * atomic operation.
553 page_unfreeze_refs(page, 1);
554 return 1;
556 return 0;
560 * putback_lru_page - put previously isolated page onto appropriate LRU list
561 * @page: page to be put back to appropriate lru list
563 * Add previously isolated @page to appropriate LRU list.
564 * Page may still be unevictable for other reasons.
566 * lru_lock must not be held, interrupts must be enabled.
568 void putback_lru_page(struct page *page)
570 int lru;
571 int active = !!TestClearPageActive(page);
572 int was_unevictable = PageUnevictable(page);
574 VM_BUG_ON(PageLRU(page));
576 redo:
577 ClearPageUnevictable(page);
579 if (page_evictable(page, NULL)) {
581 * For evictable pages, we can use the cache.
582 * In event of a race, worst case is we end up with an
583 * unevictable page on [in]active list.
584 * We know how to handle that.
586 lru = active + page_lru_base_type(page);
587 lru_cache_add_lru(page, lru);
588 } else {
590 * Put unevictable pages directly on zone's unevictable
591 * list.
593 lru = LRU_UNEVICTABLE;
594 add_page_to_unevictable_list(page);
596 * When racing with an mlock clearing (page is
597 * unlocked), make sure that if the other thread does
598 * not observe our setting of PG_lru and fails
599 * isolation, we see PG_mlocked cleared below and move
600 * the page back to the evictable list.
602 * The other side is TestClearPageMlocked().
604 smp_mb();
608 * page's status can change while we move it among lru. If an evictable
609 * page is on unevictable list, it never be freed. To avoid that,
610 * check after we added it to the list, again.
612 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
613 if (!isolate_lru_page(page)) {
614 put_page(page);
615 goto redo;
617 /* This means someone else dropped this page from LRU
618 * So, it will be freed or putback to LRU again. There is
619 * nothing to do here.
623 if (was_unevictable && lru != LRU_UNEVICTABLE)
624 count_vm_event(UNEVICTABLE_PGRESCUED);
625 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
626 count_vm_event(UNEVICTABLE_PGCULLED);
628 put_page(page); /* drop ref from isolate */
631 enum page_references {
632 PAGEREF_RECLAIM,
633 PAGEREF_RECLAIM_CLEAN,
634 PAGEREF_KEEP,
635 PAGEREF_ACTIVATE,
638 static enum page_references page_check_references(struct page *page,
639 struct scan_control *sc)
641 int referenced_ptes, referenced_page;
642 unsigned long vm_flags;
644 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
645 referenced_page = TestClearPageReferenced(page);
647 /* Lumpy reclaim - ignore references */
648 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
649 return PAGEREF_RECLAIM;
652 * Mlock lost the isolation race with us. Let try_to_unmap()
653 * move the page to the unevictable list.
655 if (vm_flags & VM_LOCKED)
656 return PAGEREF_RECLAIM;
658 if (referenced_ptes) {
659 if (PageAnon(page))
660 return PAGEREF_ACTIVATE;
662 * All mapped pages start out with page table
663 * references from the instantiating fault, so we need
664 * to look twice if a mapped file page is used more
665 * than once.
667 * Mark it and spare it for another trip around the
668 * inactive list. Another page table reference will
669 * lead to its activation.
671 * Note: the mark is set for activated pages as well
672 * so that recently deactivated but used pages are
673 * quickly recovered.
675 SetPageReferenced(page);
677 if (referenced_page)
678 return PAGEREF_ACTIVATE;
680 return PAGEREF_KEEP;
683 /* Reclaim if clean, defer dirty pages to writeback */
684 if (referenced_page && !PageSwapBacked(page))
685 return PAGEREF_RECLAIM_CLEAN;
687 return PAGEREF_RECLAIM;
690 static noinline_for_stack void free_page_list(struct list_head *free_pages)
692 struct pagevec freed_pvec;
693 struct page *page, *tmp;
695 pagevec_init(&freed_pvec, 1);
697 list_for_each_entry_safe(page, tmp, free_pages, lru) {
698 list_del(&page->lru);
699 if (!pagevec_add(&freed_pvec, page)) {
700 __pagevec_free(&freed_pvec);
701 pagevec_reinit(&freed_pvec);
705 pagevec_free(&freed_pvec);
709 * shrink_page_list() returns the number of reclaimed pages
711 static unsigned long shrink_page_list(struct list_head *page_list,
712 struct zone *zone,
713 struct scan_control *sc)
715 LIST_HEAD(ret_pages);
716 LIST_HEAD(free_pages);
717 int pgactivate = 0;
718 unsigned long nr_dirty = 0;
719 unsigned long nr_congested = 0;
720 unsigned long nr_reclaimed = 0;
722 cond_resched();
724 while (!list_empty(page_list)) {
725 enum page_references references;
726 struct address_space *mapping;
727 struct page *page;
728 int may_enter_fs;
730 cond_resched();
732 page = lru_to_page(page_list);
733 list_del(&page->lru);
735 if (!trylock_page(page))
736 goto keep;
738 VM_BUG_ON(PageActive(page));
739 VM_BUG_ON(page_zone(page) != zone);
741 sc->nr_scanned++;
743 if (unlikely(!page_evictable(page, NULL)))
744 goto cull_mlocked;
746 if (!sc->may_unmap && page_mapped(page))
747 goto keep_locked;
749 /* Double the slab pressure for mapped and swapcache pages */
750 if (page_mapped(page) || PageSwapCache(page))
751 sc->nr_scanned++;
753 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
754 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
756 if (PageWriteback(page)) {
758 * Synchronous reclaim is performed in two passes,
759 * first an asynchronous pass over the list to
760 * start parallel writeback, and a second synchronous
761 * pass to wait for the IO to complete. Wait here
762 * for any page for which writeback has already
763 * started.
765 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
766 may_enter_fs)
767 wait_on_page_writeback(page);
768 else {
769 unlock_page(page);
770 goto keep_lumpy;
774 references = page_check_references(page, sc);
775 switch (references) {
776 case PAGEREF_ACTIVATE:
777 goto activate_locked;
778 case PAGEREF_KEEP:
779 goto keep_locked;
780 case PAGEREF_RECLAIM:
781 case PAGEREF_RECLAIM_CLEAN:
782 ; /* try to reclaim the page below */
786 * Anonymous process memory has backing store?
787 * Try to allocate it some swap space here.
789 if (PageAnon(page) && !PageSwapCache(page)) {
790 if (!(sc->gfp_mask & __GFP_IO))
791 goto keep_locked;
792 if (!add_to_swap(page))
793 goto activate_locked;
794 may_enter_fs = 1;
797 mapping = page_mapping(page);
800 * The page is mapped into the page tables of one or more
801 * processes. Try to unmap it here.
803 if (page_mapped(page) && mapping) {
804 switch (try_to_unmap(page, TTU_UNMAP)) {
805 case SWAP_FAIL:
806 goto activate_locked;
807 case SWAP_AGAIN:
808 goto keep_locked;
809 case SWAP_MLOCK:
810 goto cull_mlocked;
811 case SWAP_SUCCESS:
812 ; /* try to free the page below */
816 if (PageDirty(page)) {
817 nr_dirty++;
819 if (references == PAGEREF_RECLAIM_CLEAN)
820 goto keep_locked;
821 if (!may_enter_fs)
822 goto keep_locked;
823 if (!sc->may_writepage)
824 goto keep_locked;
826 /* Page is dirty, try to write it out here */
827 switch (pageout(page, mapping, sc)) {
828 case PAGE_KEEP:
829 nr_congested++;
830 goto keep_locked;
831 case PAGE_ACTIVATE:
832 goto activate_locked;
833 case PAGE_SUCCESS:
834 if (PageWriteback(page))
835 goto keep_lumpy;
836 if (PageDirty(page))
837 goto keep;
840 * A synchronous write - probably a ramdisk. Go
841 * ahead and try to reclaim the page.
843 if (!trylock_page(page))
844 goto keep;
845 if (PageDirty(page) || PageWriteback(page))
846 goto keep_locked;
847 mapping = page_mapping(page);
848 case PAGE_CLEAN:
849 ; /* try to free the page below */
854 * If the page has buffers, try to free the buffer mappings
855 * associated with this page. If we succeed we try to free
856 * the page as well.
858 * We do this even if the page is PageDirty().
859 * try_to_release_page() does not perform I/O, but it is
860 * possible for a page to have PageDirty set, but it is actually
861 * clean (all its buffers are clean). This happens if the
862 * buffers were written out directly, with submit_bh(). ext3
863 * will do this, as well as the blockdev mapping.
864 * try_to_release_page() will discover that cleanness and will
865 * drop the buffers and mark the page clean - it can be freed.
867 * Rarely, pages can have buffers and no ->mapping. These are
868 * the pages which were not successfully invalidated in
869 * truncate_complete_page(). We try to drop those buffers here
870 * and if that worked, and the page is no longer mapped into
871 * process address space (page_count == 1) it can be freed.
872 * Otherwise, leave the page on the LRU so it is swappable.
874 if (page_has_private(page)) {
875 if (!try_to_release_page(page, sc->gfp_mask))
876 goto activate_locked;
877 if (!mapping && page_count(page) == 1) {
878 unlock_page(page);
879 if (put_page_testzero(page))
880 goto free_it;
881 else {
883 * rare race with speculative reference.
884 * the speculative reference will free
885 * this page shortly, so we may
886 * increment nr_reclaimed here (and
887 * leave it off the LRU).
889 nr_reclaimed++;
890 continue;
895 if (!mapping || !__remove_mapping(mapping, page))
896 goto keep_locked;
899 * At this point, we have no other references and there is
900 * no way to pick any more up (removed from LRU, removed
901 * from pagecache). Can use non-atomic bitops now (and
902 * we obviously don't have to worry about waking up a process
903 * waiting on the page lock, because there are no references.
905 __clear_page_locked(page);
906 free_it:
907 nr_reclaimed++;
910 * Is there need to periodically free_page_list? It would
911 * appear not as the counts should be low
913 list_add(&page->lru, &free_pages);
914 continue;
916 cull_mlocked:
917 if (PageSwapCache(page))
918 try_to_free_swap(page);
919 unlock_page(page);
920 putback_lru_page(page);
921 reset_reclaim_mode(sc);
922 continue;
924 activate_locked:
925 /* Not a candidate for swapping, so reclaim swap space. */
926 if (PageSwapCache(page) && vm_swap_full())
927 try_to_free_swap(page);
928 VM_BUG_ON(PageActive(page));
929 SetPageActive(page);
930 pgactivate++;
931 keep_locked:
932 unlock_page(page);
933 keep:
934 reset_reclaim_mode(sc);
935 keep_lumpy:
936 list_add(&page->lru, &ret_pages);
937 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
941 * Tag a zone as congested if all the dirty pages encountered were
942 * backed by a congested BDI. In this case, reclaimers should just
943 * back off and wait for congestion to clear because further reclaim
944 * will encounter the same problem
946 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
947 zone_set_flag(zone, ZONE_CONGESTED);
949 free_page_list(&free_pages);
951 list_splice(&ret_pages, page_list);
952 count_vm_events(PGACTIVATE, pgactivate);
953 return nr_reclaimed;
957 * Attempt to remove the specified page from its LRU. Only take this page
958 * if it is of the appropriate PageActive status. Pages which are being
959 * freed elsewhere are also ignored.
961 * page: page to consider
962 * mode: one of the LRU isolation modes defined above
964 * returns 0 on success, -ve errno on failure.
966 int __isolate_lru_page(struct page *page, int mode, int file)
968 int ret = -EINVAL;
970 /* Only take pages on the LRU. */
971 if (!PageLRU(page))
972 return ret;
975 * When checking the active state, we need to be sure we are
976 * dealing with comparible boolean values. Take the logical not
977 * of each.
979 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
980 return ret;
982 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
983 return ret;
986 * When this function is being called for lumpy reclaim, we
987 * initially look into all LRU pages, active, inactive and
988 * unevictable; only give shrink_page_list evictable pages.
990 if (PageUnevictable(page))
991 return ret;
993 ret = -EBUSY;
995 if (likely(get_page_unless_zero(page))) {
997 * Be careful not to clear PageLRU until after we're
998 * sure the page is not being freed elsewhere -- the
999 * page release code relies on it.
1001 ClearPageLRU(page);
1002 ret = 0;
1005 return ret;
1009 * zone->lru_lock is heavily contended. Some of the functions that
1010 * shrink the lists perform better by taking out a batch of pages
1011 * and working on them outside the LRU lock.
1013 * For pagecache intensive workloads, this function is the hottest
1014 * spot in the kernel (apart from copy_*_user functions).
1016 * Appropriate locks must be held before calling this function.
1018 * @nr_to_scan: The number of pages to look through on the list.
1019 * @src: The LRU list to pull pages off.
1020 * @dst: The temp list to put pages on to.
1021 * @scanned: The number of pages that were scanned.
1022 * @order: The caller's attempted allocation order
1023 * @mode: One of the LRU isolation modes
1024 * @file: True [1] if isolating file [!anon] pages
1026 * returns how many pages were moved onto *@dst.
1028 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1029 struct list_head *src, struct list_head *dst,
1030 unsigned long *scanned, int order, int mode, int file)
1032 unsigned long nr_taken = 0;
1033 unsigned long nr_lumpy_taken = 0;
1034 unsigned long nr_lumpy_dirty = 0;
1035 unsigned long nr_lumpy_failed = 0;
1036 unsigned long scan;
1038 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1039 struct page *page;
1040 unsigned long pfn;
1041 unsigned long end_pfn;
1042 unsigned long page_pfn;
1043 int zone_id;
1045 page = lru_to_page(src);
1046 prefetchw_prev_lru_page(page, src, flags);
1048 VM_BUG_ON(!PageLRU(page));
1050 switch (__isolate_lru_page(page, mode, file)) {
1051 case 0:
1052 list_move(&page->lru, dst);
1053 mem_cgroup_del_lru(page);
1054 nr_taken += hpage_nr_pages(page);
1055 break;
1057 case -EBUSY:
1058 /* else it is being freed elsewhere */
1059 list_move(&page->lru, src);
1060 mem_cgroup_rotate_lru_list(page, page_lru(page));
1061 continue;
1063 default:
1064 BUG();
1067 if (!order)
1068 continue;
1071 * Attempt to take all pages in the order aligned region
1072 * surrounding the tag page. Only take those pages of
1073 * the same active state as that tag page. We may safely
1074 * round the target page pfn down to the requested order
1075 * as the mem_map is guaranteed valid out to MAX_ORDER,
1076 * where that page is in a different zone we will detect
1077 * it from its zone id and abort this block scan.
1079 zone_id = page_zone_id(page);
1080 page_pfn = page_to_pfn(page);
1081 pfn = page_pfn & ~((1 << order) - 1);
1082 end_pfn = pfn + (1 << order);
1083 for (; pfn < end_pfn; pfn++) {
1084 struct page *cursor_page;
1086 /* The target page is in the block, ignore it. */
1087 if (unlikely(pfn == page_pfn))
1088 continue;
1090 /* Avoid holes within the zone. */
1091 if (unlikely(!pfn_valid_within(pfn)))
1092 break;
1094 cursor_page = pfn_to_page(pfn);
1096 /* Check that we have not crossed a zone boundary. */
1097 if (unlikely(page_zone_id(cursor_page) != zone_id))
1098 break;
1101 * If we don't have enough swap space, reclaiming of
1102 * anon page which don't already have a swap slot is
1103 * pointless.
1105 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1106 !PageSwapCache(cursor_page))
1107 break;
1109 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1110 list_move(&cursor_page->lru, dst);
1111 mem_cgroup_del_lru(cursor_page);
1112 nr_taken += hpage_nr_pages(page);
1113 nr_lumpy_taken++;
1114 if (PageDirty(cursor_page))
1115 nr_lumpy_dirty++;
1116 scan++;
1117 } else {
1118 /* the page is freed already. */
1119 if (!page_count(cursor_page))
1120 continue;
1121 break;
1125 /* If we break out of the loop above, lumpy reclaim failed */
1126 if (pfn < end_pfn)
1127 nr_lumpy_failed++;
1130 *scanned = scan;
1132 trace_mm_vmscan_lru_isolate(order,
1133 nr_to_scan, scan,
1134 nr_taken,
1135 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1136 mode);
1137 return nr_taken;
1140 static unsigned long isolate_pages_global(unsigned long nr,
1141 struct list_head *dst,
1142 unsigned long *scanned, int order,
1143 int mode, struct zone *z,
1144 int active, int file)
1146 int lru = LRU_BASE;
1147 if (active)
1148 lru += LRU_ACTIVE;
1149 if (file)
1150 lru += LRU_FILE;
1151 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1152 mode, file);
1156 * clear_active_flags() is a helper for shrink_active_list(), clearing
1157 * any active bits from the pages in the list.
1159 static unsigned long clear_active_flags(struct list_head *page_list,
1160 unsigned int *count)
1162 int nr_active = 0;
1163 int lru;
1164 struct page *page;
1166 list_for_each_entry(page, page_list, lru) {
1167 int numpages = hpage_nr_pages(page);
1168 lru = page_lru_base_type(page);
1169 if (PageActive(page)) {
1170 lru += LRU_ACTIVE;
1171 ClearPageActive(page);
1172 nr_active += numpages;
1174 if (count)
1175 count[lru] += numpages;
1178 return nr_active;
1182 * isolate_lru_page - tries to isolate a page from its LRU list
1183 * @page: page to isolate from its LRU list
1185 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1186 * vmstat statistic corresponding to whatever LRU list the page was on.
1188 * Returns 0 if the page was removed from an LRU list.
1189 * Returns -EBUSY if the page was not on an LRU list.
1191 * The returned page will have PageLRU() cleared. If it was found on
1192 * the active list, it will have PageActive set. If it was found on
1193 * the unevictable list, it will have the PageUnevictable bit set. That flag
1194 * may need to be cleared by the caller before letting the page go.
1196 * The vmstat statistic corresponding to the list on which the page was
1197 * found will be decremented.
1199 * Restrictions:
1200 * (1) Must be called with an elevated refcount on the page. This is a
1201 * fundamentnal difference from isolate_lru_pages (which is called
1202 * without a stable reference).
1203 * (2) the lru_lock must not be held.
1204 * (3) interrupts must be enabled.
1206 int isolate_lru_page(struct page *page)
1208 int ret = -EBUSY;
1210 if (PageLRU(page)) {
1211 struct zone *zone = page_zone(page);
1213 spin_lock_irq(&zone->lru_lock);
1214 if (PageLRU(page) && get_page_unless_zero(page)) {
1215 int lru = page_lru(page);
1216 ret = 0;
1217 ClearPageLRU(page);
1219 del_page_from_lru_list(zone, page, lru);
1221 spin_unlock_irq(&zone->lru_lock);
1223 return ret;
1227 * Are there way too many processes in the direct reclaim path already?
1229 static int too_many_isolated(struct zone *zone, int file,
1230 struct scan_control *sc)
1232 unsigned long inactive, isolated;
1234 if (current_is_kswapd())
1235 return 0;
1237 if (!scanning_global_lru(sc))
1238 return 0;
1240 if (file) {
1241 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1242 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1243 } else {
1244 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1245 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1248 return isolated > inactive;
1252 * TODO: Try merging with migrations version of putback_lru_pages
1254 static noinline_for_stack void
1255 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1256 unsigned long nr_anon, unsigned long nr_file,
1257 struct list_head *page_list)
1259 struct page *page;
1260 struct pagevec pvec;
1261 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1263 pagevec_init(&pvec, 1);
1266 * Put back any unfreeable pages.
1268 spin_lock(&zone->lru_lock);
1269 while (!list_empty(page_list)) {
1270 int lru;
1271 page = lru_to_page(page_list);
1272 VM_BUG_ON(PageLRU(page));
1273 list_del(&page->lru);
1274 if (unlikely(!page_evictable(page, NULL))) {
1275 spin_unlock_irq(&zone->lru_lock);
1276 putback_lru_page(page);
1277 spin_lock_irq(&zone->lru_lock);
1278 continue;
1280 SetPageLRU(page);
1281 lru = page_lru(page);
1282 add_page_to_lru_list(zone, page, lru);
1283 if (is_active_lru(lru)) {
1284 int file = is_file_lru(lru);
1285 int numpages = hpage_nr_pages(page);
1286 reclaim_stat->recent_rotated[file] += numpages;
1288 if (!pagevec_add(&pvec, page)) {
1289 spin_unlock_irq(&zone->lru_lock);
1290 __pagevec_release(&pvec);
1291 spin_lock_irq(&zone->lru_lock);
1294 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1295 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1297 spin_unlock_irq(&zone->lru_lock);
1298 pagevec_release(&pvec);
1301 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1302 struct scan_control *sc,
1303 unsigned long *nr_anon,
1304 unsigned long *nr_file,
1305 struct list_head *isolated_list)
1307 unsigned long nr_active;
1308 unsigned int count[NR_LRU_LISTS] = { 0, };
1309 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1311 nr_active = clear_active_flags(isolated_list, count);
1312 __count_vm_events(PGDEACTIVATE, nr_active);
1314 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1315 -count[LRU_ACTIVE_FILE]);
1316 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1317 -count[LRU_INACTIVE_FILE]);
1318 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1319 -count[LRU_ACTIVE_ANON]);
1320 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1321 -count[LRU_INACTIVE_ANON]);
1323 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1324 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1325 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1326 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1328 reclaim_stat->recent_scanned[0] += *nr_anon;
1329 reclaim_stat->recent_scanned[1] += *nr_file;
1333 * Returns true if the caller should wait to clean dirty/writeback pages.
1335 * If we are direct reclaiming for contiguous pages and we do not reclaim
1336 * everything in the list, try again and wait for writeback IO to complete.
1337 * This will stall high-order allocations noticeably. Only do that when really
1338 * need to free the pages under high memory pressure.
1340 static inline bool should_reclaim_stall(unsigned long nr_taken,
1341 unsigned long nr_freed,
1342 int priority,
1343 struct scan_control *sc)
1345 int lumpy_stall_priority;
1347 /* kswapd should not stall on sync IO */
1348 if (current_is_kswapd())
1349 return false;
1351 /* Only stall on lumpy reclaim */
1352 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1353 return false;
1355 /* If we have relaimed everything on the isolated list, no stall */
1356 if (nr_freed == nr_taken)
1357 return false;
1360 * For high-order allocations, there are two stall thresholds.
1361 * High-cost allocations stall immediately where as lower
1362 * order allocations such as stacks require the scanning
1363 * priority to be much higher before stalling.
1365 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1366 lumpy_stall_priority = DEF_PRIORITY;
1367 else
1368 lumpy_stall_priority = DEF_PRIORITY / 3;
1370 return priority <= lumpy_stall_priority;
1374 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1375 * of reclaimed pages
1377 static noinline_for_stack unsigned long
1378 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1379 struct scan_control *sc, int priority, int file)
1381 LIST_HEAD(page_list);
1382 unsigned long nr_scanned;
1383 unsigned long nr_reclaimed = 0;
1384 unsigned long nr_taken;
1385 unsigned long nr_anon;
1386 unsigned long nr_file;
1388 while (unlikely(too_many_isolated(zone, file, sc))) {
1389 congestion_wait(BLK_RW_ASYNC, HZ/10);
1391 /* We are about to die and free our memory. Return now. */
1392 if (fatal_signal_pending(current))
1393 return SWAP_CLUSTER_MAX;
1396 set_reclaim_mode(priority, sc, false);
1397 lru_add_drain();
1398 spin_lock_irq(&zone->lru_lock);
1400 if (scanning_global_lru(sc)) {
1401 nr_taken = isolate_pages_global(nr_to_scan,
1402 &page_list, &nr_scanned, sc->order,
1403 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1404 ISOLATE_BOTH : ISOLATE_INACTIVE,
1405 zone, 0, file);
1406 zone->pages_scanned += nr_scanned;
1407 if (current_is_kswapd())
1408 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1409 nr_scanned);
1410 else
1411 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1412 nr_scanned);
1413 } else {
1414 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1415 &page_list, &nr_scanned, sc->order,
1416 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1417 ISOLATE_BOTH : ISOLATE_INACTIVE,
1418 zone, sc->mem_cgroup,
1419 0, file);
1421 * mem_cgroup_isolate_pages() keeps track of
1422 * scanned pages on its own.
1426 if (nr_taken == 0) {
1427 spin_unlock_irq(&zone->lru_lock);
1428 return 0;
1431 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1433 spin_unlock_irq(&zone->lru_lock);
1435 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1437 /* Check if we should syncronously wait for writeback */
1438 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1439 set_reclaim_mode(priority, sc, true);
1440 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1443 local_irq_disable();
1444 if (current_is_kswapd())
1445 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1446 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1448 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1450 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1451 zone_idx(zone),
1452 nr_scanned, nr_reclaimed,
1453 priority,
1454 trace_shrink_flags(file, sc->reclaim_mode));
1455 return nr_reclaimed;
1459 * This moves pages from the active list to the inactive list.
1461 * We move them the other way if the page is referenced by one or more
1462 * processes, from rmap.
1464 * If the pages are mostly unmapped, the processing is fast and it is
1465 * appropriate to hold zone->lru_lock across the whole operation. But if
1466 * the pages are mapped, the processing is slow (page_referenced()) so we
1467 * should drop zone->lru_lock around each page. It's impossible to balance
1468 * this, so instead we remove the pages from the LRU while processing them.
1469 * It is safe to rely on PG_active against the non-LRU pages in here because
1470 * nobody will play with that bit on a non-LRU page.
1472 * The downside is that we have to touch page->_count against each page.
1473 * But we had to alter page->flags anyway.
1476 static void move_active_pages_to_lru(struct zone *zone,
1477 struct list_head *list,
1478 enum lru_list lru)
1480 unsigned long pgmoved = 0;
1481 struct pagevec pvec;
1482 struct page *page;
1484 pagevec_init(&pvec, 1);
1486 while (!list_empty(list)) {
1487 page = lru_to_page(list);
1489 VM_BUG_ON(PageLRU(page));
1490 SetPageLRU(page);
1492 list_move(&page->lru, &zone->lru[lru].list);
1493 mem_cgroup_add_lru_list(page, lru);
1494 pgmoved += hpage_nr_pages(page);
1496 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1497 spin_unlock_irq(&zone->lru_lock);
1498 if (buffer_heads_over_limit)
1499 pagevec_strip(&pvec);
1500 __pagevec_release(&pvec);
1501 spin_lock_irq(&zone->lru_lock);
1504 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1505 if (!is_active_lru(lru))
1506 __count_vm_events(PGDEACTIVATE, pgmoved);
1509 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1510 struct scan_control *sc, int priority, int file)
1512 unsigned long nr_taken;
1513 unsigned long pgscanned;
1514 unsigned long vm_flags;
1515 LIST_HEAD(l_hold); /* The pages which were snipped off */
1516 LIST_HEAD(l_active);
1517 LIST_HEAD(l_inactive);
1518 struct page *page;
1519 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1520 unsigned long nr_rotated = 0;
1522 lru_add_drain();
1523 spin_lock_irq(&zone->lru_lock);
1524 if (scanning_global_lru(sc)) {
1525 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1526 &pgscanned, sc->order,
1527 ISOLATE_ACTIVE, zone,
1528 1, file);
1529 zone->pages_scanned += pgscanned;
1530 } else {
1531 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1532 &pgscanned, sc->order,
1533 ISOLATE_ACTIVE, zone,
1534 sc->mem_cgroup, 1, file);
1536 * mem_cgroup_isolate_pages() keeps track of
1537 * scanned pages on its own.
1541 reclaim_stat->recent_scanned[file] += nr_taken;
1543 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1544 if (file)
1545 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1546 else
1547 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1548 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1549 spin_unlock_irq(&zone->lru_lock);
1551 while (!list_empty(&l_hold)) {
1552 cond_resched();
1553 page = lru_to_page(&l_hold);
1554 list_del(&page->lru);
1556 if (unlikely(!page_evictable(page, NULL))) {
1557 putback_lru_page(page);
1558 continue;
1561 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1562 nr_rotated += hpage_nr_pages(page);
1564 * Identify referenced, file-backed active pages and
1565 * give them one more trip around the active list. So
1566 * that executable code get better chances to stay in
1567 * memory under moderate memory pressure. Anon pages
1568 * are not likely to be evicted by use-once streaming
1569 * IO, plus JVM can create lots of anon VM_EXEC pages,
1570 * so we ignore them here.
1572 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1573 list_add(&page->lru, &l_active);
1574 continue;
1578 ClearPageActive(page); /* we are de-activating */
1579 list_add(&page->lru, &l_inactive);
1583 * Move pages back to the lru list.
1585 spin_lock_irq(&zone->lru_lock);
1587 * Count referenced pages from currently used mappings as rotated,
1588 * even though only some of them are actually re-activated. This
1589 * helps balance scan pressure between file and anonymous pages in
1590 * get_scan_ratio.
1592 reclaim_stat->recent_rotated[file] += nr_rotated;
1594 move_active_pages_to_lru(zone, &l_active,
1595 LRU_ACTIVE + file * LRU_FILE);
1596 move_active_pages_to_lru(zone, &l_inactive,
1597 LRU_BASE + file * LRU_FILE);
1598 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1599 spin_unlock_irq(&zone->lru_lock);
1602 #ifdef CONFIG_SWAP
1603 static int inactive_anon_is_low_global(struct zone *zone)
1605 unsigned long active, inactive;
1607 active = zone_page_state(zone, NR_ACTIVE_ANON);
1608 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1610 if (inactive * zone->inactive_ratio < active)
1611 return 1;
1613 return 0;
1617 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1618 * @zone: zone to check
1619 * @sc: scan control of this context
1621 * Returns true if the zone does not have enough inactive anon pages,
1622 * meaning some active anon pages need to be deactivated.
1624 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1626 int low;
1629 * If we don't have swap space, anonymous page deactivation
1630 * is pointless.
1632 if (!total_swap_pages)
1633 return 0;
1635 if (scanning_global_lru(sc))
1636 low = inactive_anon_is_low_global(zone);
1637 else
1638 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1639 return low;
1641 #else
1642 static inline int inactive_anon_is_low(struct zone *zone,
1643 struct scan_control *sc)
1645 return 0;
1647 #endif
1649 static int inactive_file_is_low_global(struct zone *zone)
1651 unsigned long active, inactive;
1653 active = zone_page_state(zone, NR_ACTIVE_FILE);
1654 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1656 return (active > inactive);
1660 * inactive_file_is_low - check if file pages need to be deactivated
1661 * @zone: zone to check
1662 * @sc: scan control of this context
1664 * When the system is doing streaming IO, memory pressure here
1665 * ensures that active file pages get deactivated, until more
1666 * than half of the file pages are on the inactive list.
1668 * Once we get to that situation, protect the system's working
1669 * set from being evicted by disabling active file page aging.
1671 * This uses a different ratio than the anonymous pages, because
1672 * the page cache uses a use-once replacement algorithm.
1674 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1676 int low;
1678 if (scanning_global_lru(sc))
1679 low = inactive_file_is_low_global(zone);
1680 else
1681 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1682 return low;
1685 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1686 int file)
1688 if (file)
1689 return inactive_file_is_low(zone, sc);
1690 else
1691 return inactive_anon_is_low(zone, sc);
1694 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1695 struct zone *zone, struct scan_control *sc, int priority)
1697 int file = is_file_lru(lru);
1699 if (is_active_lru(lru)) {
1700 if (inactive_list_is_low(zone, sc, file))
1701 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1702 return 0;
1705 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1709 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1710 * until we collected @swap_cluster_max pages to scan.
1712 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1713 unsigned long *nr_saved_scan)
1715 unsigned long nr;
1717 *nr_saved_scan += nr_to_scan;
1718 nr = *nr_saved_scan;
1720 if (nr >= SWAP_CLUSTER_MAX)
1721 *nr_saved_scan = 0;
1722 else
1723 nr = 0;
1725 return nr;
1729 * Determine how aggressively the anon and file LRU lists should be
1730 * scanned. The relative value of each set of LRU lists is determined
1731 * by looking at the fraction of the pages scanned we did rotate back
1732 * onto the active list instead of evict.
1734 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1736 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1737 unsigned long *nr, int priority)
1739 unsigned long anon, file, free;
1740 unsigned long anon_prio, file_prio;
1741 unsigned long ap, fp;
1742 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1743 u64 fraction[2], denominator;
1744 enum lru_list l;
1745 int noswap = 0;
1747 /* If we have no swap space, do not bother scanning anon pages. */
1748 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1749 noswap = 1;
1750 fraction[0] = 0;
1751 fraction[1] = 1;
1752 denominator = 1;
1753 goto out;
1756 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1757 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1758 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1759 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1761 if (scanning_global_lru(sc)) {
1762 free = zone_page_state(zone, NR_FREE_PAGES);
1763 /* If we have very few page cache pages,
1764 force-scan anon pages. */
1765 if (unlikely(file + free <= high_wmark_pages(zone))) {
1766 fraction[0] = 1;
1767 fraction[1] = 0;
1768 denominator = 1;
1769 goto out;
1774 * With swappiness at 100, anonymous and file have the same priority.
1775 * This scanning priority is essentially the inverse of IO cost.
1777 anon_prio = sc->swappiness;
1778 file_prio = 200 - sc->swappiness;
1781 * OK, so we have swap space and a fair amount of page cache
1782 * pages. We use the recently rotated / recently scanned
1783 * ratios to determine how valuable each cache is.
1785 * Because workloads change over time (and to avoid overflow)
1786 * we keep these statistics as a floating average, which ends
1787 * up weighing recent references more than old ones.
1789 * anon in [0], file in [1]
1791 spin_lock_irq(&zone->lru_lock);
1792 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1793 reclaim_stat->recent_scanned[0] /= 2;
1794 reclaim_stat->recent_rotated[0] /= 2;
1797 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1798 reclaim_stat->recent_scanned[1] /= 2;
1799 reclaim_stat->recent_rotated[1] /= 2;
1803 * The amount of pressure on anon vs file pages is inversely
1804 * proportional to the fraction of recently scanned pages on
1805 * each list that were recently referenced and in active use.
1807 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1808 ap /= reclaim_stat->recent_rotated[0] + 1;
1810 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1811 fp /= reclaim_stat->recent_rotated[1] + 1;
1812 spin_unlock_irq(&zone->lru_lock);
1814 fraction[0] = ap;
1815 fraction[1] = fp;
1816 denominator = ap + fp + 1;
1817 out:
1818 for_each_evictable_lru(l) {
1819 int file = is_file_lru(l);
1820 unsigned long scan;
1822 scan = zone_nr_lru_pages(zone, sc, l);
1823 if (priority || noswap) {
1824 scan >>= priority;
1825 scan = div64_u64(scan * fraction[file], denominator);
1827 nr[l] = nr_scan_try_batch(scan,
1828 &reclaim_stat->nr_saved_scan[l]);
1833 * Reclaim/compaction depends on a number of pages being freed. To avoid
1834 * disruption to the system, a small number of order-0 pages continue to be
1835 * rotated and reclaimed in the normal fashion. However, by the time we get
1836 * back to the allocator and call try_to_compact_zone(), we ensure that
1837 * there are enough free pages for it to be likely successful
1839 static inline bool should_continue_reclaim(struct zone *zone,
1840 unsigned long nr_reclaimed,
1841 unsigned long nr_scanned,
1842 struct scan_control *sc)
1844 unsigned long pages_for_compaction;
1845 unsigned long inactive_lru_pages;
1847 /* If not in reclaim/compaction mode, stop */
1848 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1849 return false;
1851 /* Consider stopping depending on scan and reclaim activity */
1852 if (sc->gfp_mask & __GFP_REPEAT) {
1854 * For __GFP_REPEAT allocations, stop reclaiming if the
1855 * full LRU list has been scanned and we are still failing
1856 * to reclaim pages. This full LRU scan is potentially
1857 * expensive but a __GFP_REPEAT caller really wants to succeed
1859 if (!nr_reclaimed && !nr_scanned)
1860 return false;
1861 } else {
1863 * For non-__GFP_REPEAT allocations which can presumably
1864 * fail without consequence, stop if we failed to reclaim
1865 * any pages from the last SWAP_CLUSTER_MAX number of
1866 * pages that were scanned. This will return to the
1867 * caller faster at the risk reclaim/compaction and
1868 * the resulting allocation attempt fails
1870 if (!nr_reclaimed)
1871 return false;
1875 * If we have not reclaimed enough pages for compaction and the
1876 * inactive lists are large enough, continue reclaiming
1878 pages_for_compaction = (2UL << sc->order);
1879 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1880 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1881 if (sc->nr_reclaimed < pages_for_compaction &&
1882 inactive_lru_pages > pages_for_compaction)
1883 return true;
1885 /* If compaction would go ahead or the allocation would succeed, stop */
1886 switch (compaction_suitable(zone, sc->order)) {
1887 case COMPACT_PARTIAL:
1888 case COMPACT_CONTINUE:
1889 return false;
1890 default:
1891 return true;
1896 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1898 static void shrink_zone(int priority, struct zone *zone,
1899 struct scan_control *sc)
1901 unsigned long nr[NR_LRU_LISTS];
1902 unsigned long nr_to_scan;
1903 enum lru_list l;
1904 unsigned long nr_reclaimed, nr_scanned;
1905 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1907 restart:
1908 nr_reclaimed = 0;
1909 nr_scanned = sc->nr_scanned;
1910 get_scan_count(zone, sc, nr, priority);
1912 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1913 nr[LRU_INACTIVE_FILE]) {
1914 for_each_evictable_lru(l) {
1915 if (nr[l]) {
1916 nr_to_scan = min_t(unsigned long,
1917 nr[l], SWAP_CLUSTER_MAX);
1918 nr[l] -= nr_to_scan;
1920 nr_reclaimed += shrink_list(l, nr_to_scan,
1921 zone, sc, priority);
1925 * On large memory systems, scan >> priority can become
1926 * really large. This is fine for the starting priority;
1927 * we want to put equal scanning pressure on each zone.
1928 * However, if the VM has a harder time of freeing pages,
1929 * with multiple processes reclaiming pages, the total
1930 * freeing target can get unreasonably large.
1932 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1933 break;
1935 sc->nr_reclaimed += nr_reclaimed;
1938 * Even if we did not try to evict anon pages at all, we want to
1939 * rebalance the anon lru active/inactive ratio.
1941 if (inactive_anon_is_low(zone, sc))
1942 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1944 /* reclaim/compaction might need reclaim to continue */
1945 if (should_continue_reclaim(zone, nr_reclaimed,
1946 sc->nr_scanned - nr_scanned, sc))
1947 goto restart;
1949 throttle_vm_writeout(sc->gfp_mask);
1953 * This is the direct reclaim path, for page-allocating processes. We only
1954 * try to reclaim pages from zones which will satisfy the caller's allocation
1955 * request.
1957 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1958 * Because:
1959 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1960 * allocation or
1961 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1962 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1963 * zone defense algorithm.
1965 * If a zone is deemed to be full of pinned pages then just give it a light
1966 * scan then give up on it.
1968 static void shrink_zones(int priority, struct zonelist *zonelist,
1969 struct scan_control *sc)
1971 struct zoneref *z;
1972 struct zone *zone;
1974 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1975 gfp_zone(sc->gfp_mask), sc->nodemask) {
1976 if (!populated_zone(zone))
1977 continue;
1979 * Take care memory controller reclaiming has small influence
1980 * to global LRU.
1982 if (scanning_global_lru(sc)) {
1983 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1984 continue;
1985 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1986 continue; /* Let kswapd poll it */
1989 shrink_zone(priority, zone, sc);
1993 static bool zone_reclaimable(struct zone *zone)
1995 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1998 /* All zones in zonelist are unreclaimable? */
1999 static bool all_unreclaimable(struct zonelist *zonelist,
2000 struct scan_control *sc)
2002 struct zoneref *z;
2003 struct zone *zone;
2005 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2006 gfp_zone(sc->gfp_mask), sc->nodemask) {
2007 if (!populated_zone(zone))
2008 continue;
2009 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2010 continue;
2011 if (!zone->all_unreclaimable)
2012 return false;
2015 return true;
2019 * This is the main entry point to direct page reclaim.
2021 * If a full scan of the inactive list fails to free enough memory then we
2022 * are "out of memory" and something needs to be killed.
2024 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2025 * high - the zone may be full of dirty or under-writeback pages, which this
2026 * caller can't do much about. We kick the writeback threads and take explicit
2027 * naps in the hope that some of these pages can be written. But if the
2028 * allocating task holds filesystem locks which prevent writeout this might not
2029 * work, and the allocation attempt will fail.
2031 * returns: 0, if no pages reclaimed
2032 * else, the number of pages reclaimed
2034 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2035 struct scan_control *sc)
2037 int priority;
2038 unsigned long total_scanned = 0;
2039 struct reclaim_state *reclaim_state = current->reclaim_state;
2040 struct zoneref *z;
2041 struct zone *zone;
2042 unsigned long writeback_threshold;
2044 get_mems_allowed();
2045 delayacct_freepages_start();
2047 if (scanning_global_lru(sc))
2048 count_vm_event(ALLOCSTALL);
2050 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2051 sc->nr_scanned = 0;
2052 if (!priority)
2053 disable_swap_token();
2054 shrink_zones(priority, zonelist, sc);
2056 * Don't shrink slabs when reclaiming memory from
2057 * over limit cgroups
2059 if (scanning_global_lru(sc)) {
2060 unsigned long lru_pages = 0;
2061 for_each_zone_zonelist(zone, z, zonelist,
2062 gfp_zone(sc->gfp_mask)) {
2063 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2064 continue;
2066 lru_pages += zone_reclaimable_pages(zone);
2069 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2070 if (reclaim_state) {
2071 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2072 reclaim_state->reclaimed_slab = 0;
2075 total_scanned += sc->nr_scanned;
2076 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2077 goto out;
2080 * Try to write back as many pages as we just scanned. This
2081 * tends to cause slow streaming writers to write data to the
2082 * disk smoothly, at the dirtying rate, which is nice. But
2083 * that's undesirable in laptop mode, where we *want* lumpy
2084 * writeout. So in laptop mode, write out the whole world.
2086 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2087 if (total_scanned > writeback_threshold) {
2088 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2089 sc->may_writepage = 1;
2092 /* Take a nap, wait for some writeback to complete */
2093 if (!sc->hibernation_mode && sc->nr_scanned &&
2094 priority < DEF_PRIORITY - 2) {
2095 struct zone *preferred_zone;
2097 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2098 &cpuset_current_mems_allowed,
2099 &preferred_zone);
2100 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2104 out:
2105 delayacct_freepages_end();
2106 put_mems_allowed();
2108 if (sc->nr_reclaimed)
2109 return sc->nr_reclaimed;
2112 * As hibernation is going on, kswapd is freezed so that it can't mark
2113 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2114 * check.
2116 if (oom_killer_disabled)
2117 return 0;
2119 /* top priority shrink_zones still had more to do? don't OOM, then */
2120 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2121 return 1;
2123 return 0;
2126 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2127 gfp_t gfp_mask, nodemask_t *nodemask)
2129 unsigned long nr_reclaimed;
2130 struct scan_control sc = {
2131 .gfp_mask = gfp_mask,
2132 .may_writepage = !laptop_mode,
2133 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2134 .may_unmap = 1,
2135 .may_swap = 1,
2136 .swappiness = vm_swappiness,
2137 .order = order,
2138 .mem_cgroup = NULL,
2139 .nodemask = nodemask,
2142 trace_mm_vmscan_direct_reclaim_begin(order,
2143 sc.may_writepage,
2144 gfp_mask);
2146 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2148 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2150 return nr_reclaimed;
2153 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2155 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2156 gfp_t gfp_mask, bool noswap,
2157 unsigned int swappiness,
2158 struct zone *zone)
2160 struct scan_control sc = {
2161 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2162 .may_writepage = !laptop_mode,
2163 .may_unmap = 1,
2164 .may_swap = !noswap,
2165 .swappiness = swappiness,
2166 .order = 0,
2167 .mem_cgroup = mem,
2169 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2170 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2172 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2173 sc.may_writepage,
2174 sc.gfp_mask);
2177 * NOTE: Although we can get the priority field, using it
2178 * here is not a good idea, since it limits the pages we can scan.
2179 * if we don't reclaim here, the shrink_zone from balance_pgdat
2180 * will pick up pages from other mem cgroup's as well. We hack
2181 * the priority and make it zero.
2183 shrink_zone(0, zone, &sc);
2185 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2187 return sc.nr_reclaimed;
2190 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2191 gfp_t gfp_mask,
2192 bool noswap,
2193 unsigned int swappiness)
2195 struct zonelist *zonelist;
2196 unsigned long nr_reclaimed;
2197 struct scan_control sc = {
2198 .may_writepage = !laptop_mode,
2199 .may_unmap = 1,
2200 .may_swap = !noswap,
2201 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2202 .swappiness = swappiness,
2203 .order = 0,
2204 .mem_cgroup = mem_cont,
2205 .nodemask = NULL, /* we don't care the placement */
2208 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2209 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2210 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2212 trace_mm_vmscan_memcg_reclaim_begin(0,
2213 sc.may_writepage,
2214 sc.gfp_mask);
2216 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2218 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2220 return nr_reclaimed;
2222 #endif
2225 * pgdat_balanced is used when checking if a node is balanced for high-order
2226 * allocations. Only zones that meet watermarks and are in a zone allowed
2227 * by the callers classzone_idx are added to balanced_pages. The total of
2228 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2229 * for the node to be considered balanced. Forcing all zones to be balanced
2230 * for high orders can cause excessive reclaim when there are imbalanced zones.
2231 * The choice of 25% is due to
2232 * o a 16M DMA zone that is balanced will not balance a zone on any
2233 * reasonable sized machine
2234 * o On all other machines, the top zone must be at least a reasonable
2235 * percentage of the middle zones. For example, on 32-bit x86, highmem
2236 * would need to be at least 256M for it to be balance a whole node.
2237 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2238 * to balance a node on its own. These seemed like reasonable ratios.
2240 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2241 int classzone_idx)
2243 unsigned long present_pages = 0;
2244 int i;
2246 for (i = 0; i <= classzone_idx; i++)
2247 present_pages += pgdat->node_zones[i].present_pages;
2249 return balanced_pages > (present_pages >> 2);
2252 /* is kswapd sleeping prematurely? */
2253 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2254 int classzone_idx)
2256 int i;
2257 unsigned long balanced = 0;
2258 bool all_zones_ok = true;
2260 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2261 if (remaining)
2262 return true;
2264 /* Check the watermark levels */
2265 for (i = 0; i < pgdat->nr_zones; i++) {
2266 struct zone *zone = pgdat->node_zones + i;
2268 if (!populated_zone(zone))
2269 continue;
2272 * balance_pgdat() skips over all_unreclaimable after
2273 * DEF_PRIORITY. Effectively, it considers them balanced so
2274 * they must be considered balanced here as well if kswapd
2275 * is to sleep
2277 if (zone->all_unreclaimable) {
2278 balanced += zone->present_pages;
2279 continue;
2282 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2283 classzone_idx, 0))
2284 all_zones_ok = false;
2285 else
2286 balanced += zone->present_pages;
2290 * For high-order requests, the balanced zones must contain at least
2291 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2292 * must be balanced
2294 if (order)
2295 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2296 else
2297 return !all_zones_ok;
2301 * For kswapd, balance_pgdat() will work across all this node's zones until
2302 * they are all at high_wmark_pages(zone).
2304 * Returns the final order kswapd was reclaiming at
2306 * There is special handling here for zones which are full of pinned pages.
2307 * This can happen if the pages are all mlocked, or if they are all used by
2308 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2309 * What we do is to detect the case where all pages in the zone have been
2310 * scanned twice and there has been zero successful reclaim. Mark the zone as
2311 * dead and from now on, only perform a short scan. Basically we're polling
2312 * the zone for when the problem goes away.
2314 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2315 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2316 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2317 * lower zones regardless of the number of free pages in the lower zones. This
2318 * interoperates with the page allocator fallback scheme to ensure that aging
2319 * of pages is balanced across the zones.
2321 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2322 int *classzone_idx)
2324 int all_zones_ok;
2325 unsigned long balanced;
2326 int priority;
2327 int i;
2328 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2329 unsigned long total_scanned;
2330 struct reclaim_state *reclaim_state = current->reclaim_state;
2331 struct scan_control sc = {
2332 .gfp_mask = GFP_KERNEL,
2333 .may_unmap = 1,
2334 .may_swap = 1,
2336 * kswapd doesn't want to be bailed out while reclaim. because
2337 * we want to put equal scanning pressure on each zone.
2339 .nr_to_reclaim = ULONG_MAX,
2340 .swappiness = vm_swappiness,
2341 .order = order,
2342 .mem_cgroup = NULL,
2344 loop_again:
2345 total_scanned = 0;
2346 sc.nr_reclaimed = 0;
2347 sc.may_writepage = !laptop_mode;
2348 count_vm_event(PAGEOUTRUN);
2350 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2351 unsigned long lru_pages = 0;
2352 int has_under_min_watermark_zone = 0;
2354 /* The swap token gets in the way of swapout... */
2355 if (!priority)
2356 disable_swap_token();
2358 all_zones_ok = 1;
2359 balanced = 0;
2362 * Scan in the highmem->dma direction for the highest
2363 * zone which needs scanning
2365 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2366 struct zone *zone = pgdat->node_zones + i;
2368 if (!populated_zone(zone))
2369 continue;
2371 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2372 continue;
2375 * Do some background aging of the anon list, to give
2376 * pages a chance to be referenced before reclaiming.
2378 if (inactive_anon_is_low(zone, &sc))
2379 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2380 &sc, priority, 0);
2382 if (!zone_watermark_ok_safe(zone, order,
2383 high_wmark_pages(zone), 0, 0)) {
2384 end_zone = i;
2385 *classzone_idx = i;
2386 break;
2389 if (i < 0)
2390 goto out;
2392 for (i = 0; i <= end_zone; i++) {
2393 struct zone *zone = pgdat->node_zones + i;
2395 lru_pages += zone_reclaimable_pages(zone);
2399 * Now scan the zone in the dma->highmem direction, stopping
2400 * at the last zone which needs scanning.
2402 * We do this because the page allocator works in the opposite
2403 * direction. This prevents the page allocator from allocating
2404 * pages behind kswapd's direction of progress, which would
2405 * cause too much scanning of the lower zones.
2407 for (i = 0; i <= end_zone; i++) {
2408 struct zone *zone = pgdat->node_zones + i;
2409 int nr_slab;
2410 unsigned long balance_gap;
2412 if (!populated_zone(zone))
2413 continue;
2415 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2416 continue;
2418 sc.nr_scanned = 0;
2421 * Call soft limit reclaim before calling shrink_zone.
2422 * For now we ignore the return value
2424 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2427 * We put equal pressure on every zone, unless
2428 * one zone has way too many pages free
2429 * already. The "too many pages" is defined
2430 * as the high wmark plus a "gap" where the
2431 * gap is either the low watermark or 1%
2432 * of the zone, whichever is smaller.
2434 balance_gap = min(low_wmark_pages(zone),
2435 (zone->present_pages +
2436 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2437 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2438 if (!zone_watermark_ok_safe(zone, order,
2439 high_wmark_pages(zone) + balance_gap,
2440 end_zone, 0))
2441 shrink_zone(priority, zone, &sc);
2442 reclaim_state->reclaimed_slab = 0;
2443 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2444 lru_pages);
2445 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2446 total_scanned += sc.nr_scanned;
2448 if (zone->all_unreclaimable)
2449 continue;
2450 if (nr_slab == 0 &&
2451 !zone_reclaimable(zone))
2452 zone->all_unreclaimable = 1;
2454 * If we've done a decent amount of scanning and
2455 * the reclaim ratio is low, start doing writepage
2456 * even in laptop mode
2458 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2459 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2460 sc.may_writepage = 1;
2462 if (!zone_watermark_ok_safe(zone, order,
2463 high_wmark_pages(zone), end_zone, 0)) {
2464 all_zones_ok = 0;
2466 * We are still under min water mark. This
2467 * means that we have a GFP_ATOMIC allocation
2468 * failure risk. Hurry up!
2470 if (!zone_watermark_ok_safe(zone, order,
2471 min_wmark_pages(zone), end_zone, 0))
2472 has_under_min_watermark_zone = 1;
2473 } else {
2475 * If a zone reaches its high watermark,
2476 * consider it to be no longer congested. It's
2477 * possible there are dirty pages backed by
2478 * congested BDIs but as pressure is relieved,
2479 * spectulatively avoid congestion waits
2481 zone_clear_flag(zone, ZONE_CONGESTED);
2482 if (i <= *classzone_idx)
2483 balanced += zone->present_pages;
2487 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2488 break; /* kswapd: all done */
2490 * OK, kswapd is getting into trouble. Take a nap, then take
2491 * another pass across the zones.
2493 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2494 if (has_under_min_watermark_zone)
2495 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2496 else
2497 congestion_wait(BLK_RW_ASYNC, HZ/10);
2501 * We do this so kswapd doesn't build up large priorities for
2502 * example when it is freeing in parallel with allocators. It
2503 * matches the direct reclaim path behaviour in terms of impact
2504 * on zone->*_priority.
2506 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2507 break;
2509 out:
2512 * order-0: All zones must meet high watermark for a balanced node
2513 * high-order: Balanced zones must make up at least 25% of the node
2514 * for the node to be balanced
2516 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2517 cond_resched();
2519 try_to_freeze();
2522 * Fragmentation may mean that the system cannot be
2523 * rebalanced for high-order allocations in all zones.
2524 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2525 * it means the zones have been fully scanned and are still
2526 * not balanced. For high-order allocations, there is
2527 * little point trying all over again as kswapd may
2528 * infinite loop.
2530 * Instead, recheck all watermarks at order-0 as they
2531 * are the most important. If watermarks are ok, kswapd will go
2532 * back to sleep. High-order users can still perform direct
2533 * reclaim if they wish.
2535 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2536 order = sc.order = 0;
2538 goto loop_again;
2542 * If kswapd was reclaiming at a higher order, it has the option of
2543 * sleeping without all zones being balanced. Before it does, it must
2544 * ensure that the watermarks for order-0 on *all* zones are met and
2545 * that the congestion flags are cleared. The congestion flag must
2546 * be cleared as kswapd is the only mechanism that clears the flag
2547 * and it is potentially going to sleep here.
2549 if (order) {
2550 for (i = 0; i <= end_zone; i++) {
2551 struct zone *zone = pgdat->node_zones + i;
2553 if (!populated_zone(zone))
2554 continue;
2556 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2557 continue;
2559 /* Confirm the zone is balanced for order-0 */
2560 if (!zone_watermark_ok(zone, 0,
2561 high_wmark_pages(zone), 0, 0)) {
2562 order = sc.order = 0;
2563 goto loop_again;
2566 /* If balanced, clear the congested flag */
2567 zone_clear_flag(zone, ZONE_CONGESTED);
2572 * Return the order we were reclaiming at so sleeping_prematurely()
2573 * makes a decision on the order we were last reclaiming at. However,
2574 * if another caller entered the allocator slow path while kswapd
2575 * was awake, order will remain at the higher level
2577 *classzone_idx = end_zone;
2578 return order;
2581 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2583 long remaining = 0;
2584 DEFINE_WAIT(wait);
2586 if (freezing(current) || kthread_should_stop())
2587 return;
2589 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2591 /* Try to sleep for a short interval */
2592 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2593 remaining = schedule_timeout(HZ/10);
2594 finish_wait(&pgdat->kswapd_wait, &wait);
2595 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2599 * After a short sleep, check if it was a premature sleep. If not, then
2600 * go fully to sleep until explicitly woken up.
2602 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2603 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2606 * vmstat counters are not perfectly accurate and the estimated
2607 * value for counters such as NR_FREE_PAGES can deviate from the
2608 * true value by nr_online_cpus * threshold. To avoid the zone
2609 * watermarks being breached while under pressure, we reduce the
2610 * per-cpu vmstat threshold while kswapd is awake and restore
2611 * them before going back to sleep.
2613 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2614 schedule();
2615 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2616 } else {
2617 if (remaining)
2618 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2619 else
2620 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2622 finish_wait(&pgdat->kswapd_wait, &wait);
2626 * The background pageout daemon, started as a kernel thread
2627 * from the init process.
2629 * This basically trickles out pages so that we have _some_
2630 * free memory available even if there is no other activity
2631 * that frees anything up. This is needed for things like routing
2632 * etc, where we otherwise might have all activity going on in
2633 * asynchronous contexts that cannot page things out.
2635 * If there are applications that are active memory-allocators
2636 * (most normal use), this basically shouldn't matter.
2638 static int kswapd(void *p)
2640 unsigned long order;
2641 int classzone_idx;
2642 pg_data_t *pgdat = (pg_data_t*)p;
2643 struct task_struct *tsk = current;
2645 struct reclaim_state reclaim_state = {
2646 .reclaimed_slab = 0,
2648 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2650 lockdep_set_current_reclaim_state(GFP_KERNEL);
2652 if (!cpumask_empty(cpumask))
2653 set_cpus_allowed_ptr(tsk, cpumask);
2654 current->reclaim_state = &reclaim_state;
2657 * Tell the memory management that we're a "memory allocator",
2658 * and that if we need more memory we should get access to it
2659 * regardless (see "__alloc_pages()"). "kswapd" should
2660 * never get caught in the normal page freeing logic.
2662 * (Kswapd normally doesn't need memory anyway, but sometimes
2663 * you need a small amount of memory in order to be able to
2664 * page out something else, and this flag essentially protects
2665 * us from recursively trying to free more memory as we're
2666 * trying to free the first piece of memory in the first place).
2668 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2669 set_freezable();
2671 order = 0;
2672 classzone_idx = MAX_NR_ZONES - 1;
2673 for ( ; ; ) {
2674 unsigned long new_order;
2675 int new_classzone_idx;
2676 int ret;
2678 new_order = pgdat->kswapd_max_order;
2679 new_classzone_idx = pgdat->classzone_idx;
2680 pgdat->kswapd_max_order = 0;
2681 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2682 if (order < new_order || classzone_idx > new_classzone_idx) {
2684 * Don't sleep if someone wants a larger 'order'
2685 * allocation or has tigher zone constraints
2687 order = new_order;
2688 classzone_idx = new_classzone_idx;
2689 } else {
2690 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2691 order = pgdat->kswapd_max_order;
2692 classzone_idx = pgdat->classzone_idx;
2693 pgdat->kswapd_max_order = 0;
2694 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2697 ret = try_to_freeze();
2698 if (kthread_should_stop())
2699 break;
2702 * We can speed up thawing tasks if we don't call balance_pgdat
2703 * after returning from the refrigerator
2705 if (!ret) {
2706 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2707 order = balance_pgdat(pgdat, order, &classzone_idx);
2710 return 0;
2714 * A zone is low on free memory, so wake its kswapd task to service it.
2716 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2718 pg_data_t *pgdat;
2720 if (!populated_zone(zone))
2721 return;
2723 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2724 return;
2725 pgdat = zone->zone_pgdat;
2726 if (pgdat->kswapd_max_order < order) {
2727 pgdat->kswapd_max_order = order;
2728 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2730 if (!waitqueue_active(&pgdat->kswapd_wait))
2731 return;
2732 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2733 return;
2735 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2736 wake_up_interruptible(&pgdat->kswapd_wait);
2740 * The reclaimable count would be mostly accurate.
2741 * The less reclaimable pages may be
2742 * - mlocked pages, which will be moved to unevictable list when encountered
2743 * - mapped pages, which may require several travels to be reclaimed
2744 * - dirty pages, which is not "instantly" reclaimable
2746 unsigned long global_reclaimable_pages(void)
2748 int nr;
2750 nr = global_page_state(NR_ACTIVE_FILE) +
2751 global_page_state(NR_INACTIVE_FILE);
2753 if (nr_swap_pages > 0)
2754 nr += global_page_state(NR_ACTIVE_ANON) +
2755 global_page_state(NR_INACTIVE_ANON);
2757 return nr;
2760 unsigned long zone_reclaimable_pages(struct zone *zone)
2762 int nr;
2764 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2765 zone_page_state(zone, NR_INACTIVE_FILE);
2767 if (nr_swap_pages > 0)
2768 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2769 zone_page_state(zone, NR_INACTIVE_ANON);
2771 return nr;
2774 #ifdef CONFIG_HIBERNATION
2776 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2777 * freed pages.
2779 * Rather than trying to age LRUs the aim is to preserve the overall
2780 * LRU order by reclaiming preferentially
2781 * inactive > active > active referenced > active mapped
2783 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2785 struct reclaim_state reclaim_state;
2786 struct scan_control sc = {
2787 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2788 .may_swap = 1,
2789 .may_unmap = 1,
2790 .may_writepage = 1,
2791 .nr_to_reclaim = nr_to_reclaim,
2792 .hibernation_mode = 1,
2793 .swappiness = vm_swappiness,
2794 .order = 0,
2796 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2797 struct task_struct *p = current;
2798 unsigned long nr_reclaimed;
2800 p->flags |= PF_MEMALLOC;
2801 lockdep_set_current_reclaim_state(sc.gfp_mask);
2802 reclaim_state.reclaimed_slab = 0;
2803 p->reclaim_state = &reclaim_state;
2805 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2807 p->reclaim_state = NULL;
2808 lockdep_clear_current_reclaim_state();
2809 p->flags &= ~PF_MEMALLOC;
2811 return nr_reclaimed;
2813 #endif /* CONFIG_HIBERNATION */
2815 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2816 not required for correctness. So if the last cpu in a node goes
2817 away, we get changed to run anywhere: as the first one comes back,
2818 restore their cpu bindings. */
2819 static int __devinit cpu_callback(struct notifier_block *nfb,
2820 unsigned long action, void *hcpu)
2822 int nid;
2824 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2825 for_each_node_state(nid, N_HIGH_MEMORY) {
2826 pg_data_t *pgdat = NODE_DATA(nid);
2827 const struct cpumask *mask;
2829 mask = cpumask_of_node(pgdat->node_id);
2831 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2832 /* One of our CPUs online: restore mask */
2833 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2836 return NOTIFY_OK;
2840 * This kswapd start function will be called by init and node-hot-add.
2841 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2843 int kswapd_run(int nid)
2845 pg_data_t *pgdat = NODE_DATA(nid);
2846 int ret = 0;
2848 if (pgdat->kswapd)
2849 return 0;
2851 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2852 if (IS_ERR(pgdat->kswapd)) {
2853 /* failure at boot is fatal */
2854 BUG_ON(system_state == SYSTEM_BOOTING);
2855 printk("Failed to start kswapd on node %d\n",nid);
2856 ret = -1;
2858 return ret;
2862 * Called by memory hotplug when all memory in a node is offlined.
2864 void kswapd_stop(int nid)
2866 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2868 if (kswapd)
2869 kthread_stop(kswapd);
2872 static int __init kswapd_init(void)
2874 int nid;
2876 swap_setup();
2877 for_each_node_state(nid, N_HIGH_MEMORY)
2878 kswapd_run(nid);
2879 hotcpu_notifier(cpu_callback, 0);
2880 return 0;
2883 module_init(kswapd_init)
2885 #ifdef CONFIG_NUMA
2887 * Zone reclaim mode
2889 * If non-zero call zone_reclaim when the number of free pages falls below
2890 * the watermarks.
2892 int zone_reclaim_mode __read_mostly;
2894 #define RECLAIM_OFF 0
2895 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2896 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2897 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2900 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2901 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2902 * a zone.
2904 #define ZONE_RECLAIM_PRIORITY 4
2907 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2908 * occur.
2910 int sysctl_min_unmapped_ratio = 1;
2913 * If the number of slab pages in a zone grows beyond this percentage then
2914 * slab reclaim needs to occur.
2916 int sysctl_min_slab_ratio = 5;
2918 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2920 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2921 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2922 zone_page_state(zone, NR_ACTIVE_FILE);
2925 * It's possible for there to be more file mapped pages than
2926 * accounted for by the pages on the file LRU lists because
2927 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2929 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2932 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2933 static long zone_pagecache_reclaimable(struct zone *zone)
2935 long nr_pagecache_reclaimable;
2936 long delta = 0;
2939 * If RECLAIM_SWAP is set, then all file pages are considered
2940 * potentially reclaimable. Otherwise, we have to worry about
2941 * pages like swapcache and zone_unmapped_file_pages() provides
2942 * a better estimate
2944 if (zone_reclaim_mode & RECLAIM_SWAP)
2945 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2946 else
2947 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2949 /* If we can't clean pages, remove dirty pages from consideration */
2950 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2951 delta += zone_page_state(zone, NR_FILE_DIRTY);
2953 /* Watch for any possible underflows due to delta */
2954 if (unlikely(delta > nr_pagecache_reclaimable))
2955 delta = nr_pagecache_reclaimable;
2957 return nr_pagecache_reclaimable - delta;
2961 * Try to free up some pages from this zone through reclaim.
2963 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2965 /* Minimum pages needed in order to stay on node */
2966 const unsigned long nr_pages = 1 << order;
2967 struct task_struct *p = current;
2968 struct reclaim_state reclaim_state;
2969 int priority;
2970 struct scan_control sc = {
2971 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2972 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2973 .may_swap = 1,
2974 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2975 SWAP_CLUSTER_MAX),
2976 .gfp_mask = gfp_mask,
2977 .swappiness = vm_swappiness,
2978 .order = order,
2980 unsigned long nr_slab_pages0, nr_slab_pages1;
2982 cond_resched();
2984 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2985 * and we also need to be able to write out pages for RECLAIM_WRITE
2986 * and RECLAIM_SWAP.
2988 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2989 lockdep_set_current_reclaim_state(gfp_mask);
2990 reclaim_state.reclaimed_slab = 0;
2991 p->reclaim_state = &reclaim_state;
2993 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2995 * Free memory by calling shrink zone with increasing
2996 * priorities until we have enough memory freed.
2998 priority = ZONE_RECLAIM_PRIORITY;
2999 do {
3000 shrink_zone(priority, zone, &sc);
3001 priority--;
3002 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3005 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3006 if (nr_slab_pages0 > zone->min_slab_pages) {
3008 * shrink_slab() does not currently allow us to determine how
3009 * many pages were freed in this zone. So we take the current
3010 * number of slab pages and shake the slab until it is reduced
3011 * by the same nr_pages that we used for reclaiming unmapped
3012 * pages.
3014 * Note that shrink_slab will free memory on all zones and may
3015 * take a long time.
3017 for (;;) {
3018 unsigned long lru_pages = zone_reclaimable_pages(zone);
3020 /* No reclaimable slab or very low memory pressure */
3021 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3022 break;
3024 /* Freed enough memory */
3025 nr_slab_pages1 = zone_page_state(zone,
3026 NR_SLAB_RECLAIMABLE);
3027 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3028 break;
3032 * Update nr_reclaimed by the number of slab pages we
3033 * reclaimed from this zone.
3035 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3036 if (nr_slab_pages1 < nr_slab_pages0)
3037 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3040 p->reclaim_state = NULL;
3041 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3042 lockdep_clear_current_reclaim_state();
3043 return sc.nr_reclaimed >= nr_pages;
3046 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3048 int node_id;
3049 int ret;
3052 * Zone reclaim reclaims unmapped file backed pages and
3053 * slab pages if we are over the defined limits.
3055 * A small portion of unmapped file backed pages is needed for
3056 * file I/O otherwise pages read by file I/O will be immediately
3057 * thrown out if the zone is overallocated. So we do not reclaim
3058 * if less than a specified percentage of the zone is used by
3059 * unmapped file backed pages.
3061 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3062 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3063 return ZONE_RECLAIM_FULL;
3065 if (zone->all_unreclaimable)
3066 return ZONE_RECLAIM_FULL;
3069 * Do not scan if the allocation should not be delayed.
3071 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3072 return ZONE_RECLAIM_NOSCAN;
3075 * Only run zone reclaim on the local zone or on zones that do not
3076 * have associated processors. This will favor the local processor
3077 * over remote processors and spread off node memory allocations
3078 * as wide as possible.
3080 node_id = zone_to_nid(zone);
3081 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3082 return ZONE_RECLAIM_NOSCAN;
3084 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3085 return ZONE_RECLAIM_NOSCAN;
3087 ret = __zone_reclaim(zone, gfp_mask, order);
3088 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3090 if (!ret)
3091 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3093 return ret;
3095 #endif
3098 * page_evictable - test whether a page is evictable
3099 * @page: the page to test
3100 * @vma: the VMA in which the page is or will be mapped, may be NULL
3102 * Test whether page is evictable--i.e., should be placed on active/inactive
3103 * lists vs unevictable list. The vma argument is !NULL when called from the
3104 * fault path to determine how to instantate a new page.
3106 * Reasons page might not be evictable:
3107 * (1) page's mapping marked unevictable
3108 * (2) page is part of an mlocked VMA
3111 int page_evictable(struct page *page, struct vm_area_struct *vma)
3114 if (mapping_unevictable(page_mapping(page)))
3115 return 0;
3117 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3118 return 0;
3120 return 1;
3124 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3125 * @page: page to check evictability and move to appropriate lru list
3126 * @zone: zone page is in
3128 * Checks a page for evictability and moves the page to the appropriate
3129 * zone lru list.
3131 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3132 * have PageUnevictable set.
3134 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3136 VM_BUG_ON(PageActive(page));
3138 retry:
3139 ClearPageUnevictable(page);
3140 if (page_evictable(page, NULL)) {
3141 enum lru_list l = page_lru_base_type(page);
3143 __dec_zone_state(zone, NR_UNEVICTABLE);
3144 list_move(&page->lru, &zone->lru[l].list);
3145 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3146 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3147 __count_vm_event(UNEVICTABLE_PGRESCUED);
3148 } else {
3150 * rotate unevictable list
3152 SetPageUnevictable(page);
3153 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3154 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3155 if (page_evictable(page, NULL))
3156 goto retry;
3161 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3162 * @mapping: struct address_space to scan for evictable pages
3164 * Scan all pages in mapping. Check unevictable pages for
3165 * evictability and move them to the appropriate zone lru list.
3167 void scan_mapping_unevictable_pages(struct address_space *mapping)
3169 pgoff_t next = 0;
3170 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3171 PAGE_CACHE_SHIFT;
3172 struct zone *zone;
3173 struct pagevec pvec;
3175 if (mapping->nrpages == 0)
3176 return;
3178 pagevec_init(&pvec, 0);
3179 while (next < end &&
3180 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3181 int i;
3182 int pg_scanned = 0;
3184 zone = NULL;
3186 for (i = 0; i < pagevec_count(&pvec); i++) {
3187 struct page *page = pvec.pages[i];
3188 pgoff_t page_index = page->index;
3189 struct zone *pagezone = page_zone(page);
3191 pg_scanned++;
3192 if (page_index > next)
3193 next = page_index;
3194 next++;
3196 if (pagezone != zone) {
3197 if (zone)
3198 spin_unlock_irq(&zone->lru_lock);
3199 zone = pagezone;
3200 spin_lock_irq(&zone->lru_lock);
3203 if (PageLRU(page) && PageUnevictable(page))
3204 check_move_unevictable_page(page, zone);
3206 if (zone)
3207 spin_unlock_irq(&zone->lru_lock);
3208 pagevec_release(&pvec);
3210 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3216 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3217 * @zone - zone of which to scan the unevictable list
3219 * Scan @zone's unevictable LRU lists to check for pages that have become
3220 * evictable. Move those that have to @zone's inactive list where they
3221 * become candidates for reclaim, unless shrink_inactive_zone() decides
3222 * to reactivate them. Pages that are still unevictable are rotated
3223 * back onto @zone's unevictable list.
3225 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3226 static void scan_zone_unevictable_pages(struct zone *zone)
3228 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3229 unsigned long scan;
3230 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3232 while (nr_to_scan > 0) {
3233 unsigned long batch_size = min(nr_to_scan,
3234 SCAN_UNEVICTABLE_BATCH_SIZE);
3236 spin_lock_irq(&zone->lru_lock);
3237 for (scan = 0; scan < batch_size; scan++) {
3238 struct page *page = lru_to_page(l_unevictable);
3240 if (!trylock_page(page))
3241 continue;
3243 prefetchw_prev_lru_page(page, l_unevictable, flags);
3245 if (likely(PageLRU(page) && PageUnevictable(page)))
3246 check_move_unevictable_page(page, zone);
3248 unlock_page(page);
3250 spin_unlock_irq(&zone->lru_lock);
3252 nr_to_scan -= batch_size;
3258 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3260 * A really big hammer: scan all zones' unevictable LRU lists to check for
3261 * pages that have become evictable. Move those back to the zones'
3262 * inactive list where they become candidates for reclaim.
3263 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3264 * and we add swap to the system. As such, it runs in the context of a task
3265 * that has possibly/probably made some previously unevictable pages
3266 * evictable.
3268 static void scan_all_zones_unevictable_pages(void)
3270 struct zone *zone;
3272 for_each_zone(zone) {
3273 scan_zone_unevictable_pages(zone);
3278 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3279 * all nodes' unevictable lists for evictable pages
3281 unsigned long scan_unevictable_pages;
3283 int scan_unevictable_handler(struct ctl_table *table, int write,
3284 void __user *buffer,
3285 size_t *length, loff_t *ppos)
3287 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3289 if (write && *(unsigned long *)table->data)
3290 scan_all_zones_unevictable_pages();
3292 scan_unevictable_pages = 0;
3293 return 0;
3296 #ifdef CONFIG_NUMA
3298 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3299 * a specified node's per zone unevictable lists for evictable pages.
3302 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3303 struct sysdev_attribute *attr,
3304 char *buf)
3306 return sprintf(buf, "0\n"); /* always zero; should fit... */
3309 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3310 struct sysdev_attribute *attr,
3311 const char *buf, size_t count)
3313 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3314 struct zone *zone;
3315 unsigned long res;
3316 unsigned long req = strict_strtoul(buf, 10, &res);
3318 if (!req)
3319 return 1; /* zero is no-op */
3321 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3322 if (!populated_zone(zone))
3323 continue;
3324 scan_zone_unevictable_pages(zone);
3326 return 1;
3330 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3331 read_scan_unevictable_node,
3332 write_scan_unevictable_node);
3334 int scan_unevictable_register_node(struct node *node)
3336 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3339 void scan_unevictable_unregister_node(struct node *node)
3341 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3343 #endif