2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
39 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
41 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
46 * This returns the number of iovecs needed to log the given inode item.
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
54 struct xfs_log_item
*lip
)
56 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
57 struct xfs_inode
*ip
= iip
->ili_inode
;
61 * Only log the data/extents/b-tree root if there is something
64 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
66 switch (ip
->i_d
.di_format
) {
67 case XFS_DINODE_FMT_EXTENTS
:
68 iip
->ili_format
.ilf_fields
&=
69 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
70 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
71 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
72 (ip
->i_d
.di_nextents
> 0) &&
73 (ip
->i_df
.if_bytes
> 0)) {
74 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
77 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
81 case XFS_DINODE_FMT_BTREE
:
82 ASSERT(ip
->i_df
.if_ext_max
==
83 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
84 iip
->ili_format
.ilf_fields
&=
85 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
86 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
87 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
88 (ip
->i_df
.if_broot_bytes
> 0)) {
89 ASSERT(ip
->i_df
.if_broot
!= NULL
);
92 ASSERT(!(iip
->ili_format
.ilf_fields
&
94 #ifdef XFS_TRANS_DEBUG
95 if (iip
->ili_root_size
> 0) {
96 ASSERT(iip
->ili_root_size
==
97 ip
->i_df
.if_broot_bytes
);
98 ASSERT(memcmp(iip
->ili_orig_root
,
100 iip
->ili_root_size
) == 0);
102 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
105 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
109 case XFS_DINODE_FMT_LOCAL
:
110 iip
->ili_format
.ilf_fields
&=
111 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
112 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
113 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
114 (ip
->i_df
.if_bytes
> 0)) {
115 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
116 ASSERT(ip
->i_d
.di_size
> 0);
119 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
123 case XFS_DINODE_FMT_DEV
:
124 iip
->ili_format
.ilf_fields
&=
125 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
126 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
129 case XFS_DINODE_FMT_UUID
:
130 iip
->ili_format
.ilf_fields
&=
131 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
132 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
145 if (!XFS_IFORK_Q(ip
)) {
146 iip
->ili_format
.ilf_fields
&=
147 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
152 * Log any necessary attribute data.
154 switch (ip
->i_d
.di_aformat
) {
155 case XFS_DINODE_FMT_EXTENTS
:
156 iip
->ili_format
.ilf_fields
&=
157 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
158 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
159 (ip
->i_d
.di_anextents
> 0) &&
160 (ip
->i_afp
->if_bytes
> 0)) {
161 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
164 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
168 case XFS_DINODE_FMT_BTREE
:
169 iip
->ili_format
.ilf_fields
&=
170 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
171 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
172 (ip
->i_afp
->if_broot_bytes
> 0)) {
173 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
176 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
180 case XFS_DINODE_FMT_LOCAL
:
181 iip
->ili_format
.ilf_fields
&=
182 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
183 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
184 (ip
->i_afp
->if_bytes
> 0)) {
185 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
188 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
201 * This is called to fill in the vector of log iovecs for the
202 * given inode log item. It fills the first item with an inode
203 * log format structure, the second with the on-disk inode structure,
204 * and a possible third and/or fourth with the inode data/extents/b-tree
205 * root and inode attributes data/extents/b-tree root.
208 xfs_inode_item_format(
209 struct xfs_log_item
*lip
,
210 struct xfs_log_iovec
*vecp
)
212 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
213 struct xfs_inode
*ip
= iip
->ili_inode
;
216 xfs_bmbt_rec_t
*ext_buffer
;
219 vecp
->i_addr
= &iip
->ili_format
;
220 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
221 vecp
->i_type
= XLOG_REG_TYPE_IFORMAT
;
226 * Clear i_update_core if the timestamps (or any other
227 * non-transactional modification) need flushing/logging
228 * and we're about to log them with the rest of the core.
230 * This is the same logic as xfs_iflush() but this code can't
231 * run at the same time as xfs_iflush because we're in commit
232 * processing here and so we have the inode lock held in
233 * exclusive mode. Although it doesn't really matter
234 * for the timestamps if both routines were to grab the
235 * timestamps or not. That would be ok.
237 * We clear i_update_core before copying out the data.
238 * This is for coordination with our timestamp updates
239 * that don't hold the inode lock. They will always
240 * update the timestamps BEFORE setting i_update_core,
241 * so if we clear i_update_core after they set it we
242 * are guaranteed to see their updates to the timestamps
243 * either here. Likewise, if they set it after we clear it
244 * here, we'll see it either on the next commit of this
245 * inode or the next time the inode gets flushed via
246 * xfs_iflush(). This depends on strongly ordered memory
247 * semantics, but we have that. We use the SYNCHRONIZE
248 * macro to make sure that the compiler does not reorder
249 * the i_update_core access below the data copy below.
251 if (ip
->i_update_core
) {
252 ip
->i_update_core
= 0;
257 * Make sure to get the latest timestamps from the Linux inode.
259 xfs_synchronize_times(ip
);
261 vecp
->i_addr
= &ip
->i_d
;
262 vecp
->i_len
= sizeof(struct xfs_icdinode
);
263 vecp
->i_type
= XLOG_REG_TYPE_ICORE
;
266 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
269 * If this is really an old format inode, then we need to
270 * log it as such. This means that we have to copy the link
271 * count from the new field to the old. We don't have to worry
272 * about the new fields, because nothing trusts them as long as
273 * the old inode version number is there. If the superblock already
274 * has a new version number, then we don't bother converting back.
277 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
278 if (ip
->i_d
.di_version
== 1) {
279 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
283 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
284 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
287 * The superblock version has already been bumped,
288 * so just make the conversion to the new inode
291 ip
->i_d
.di_version
= 2;
292 ip
->i_d
.di_onlink
= 0;
293 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
297 switch (ip
->i_d
.di_format
) {
298 case XFS_DINODE_FMT_EXTENTS
:
299 ASSERT(!(iip
->ili_format
.ilf_fields
&
300 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
301 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
302 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
303 ASSERT(ip
->i_df
.if_bytes
> 0);
304 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
305 ASSERT(ip
->i_d
.di_nextents
> 0);
306 ASSERT(iip
->ili_extents_buf
== NULL
);
307 ASSERT((ip
->i_df
.if_bytes
/
308 (uint
)sizeof(xfs_bmbt_rec_t
)) > 0);
309 #ifdef XFS_NATIVE_HOST
310 if (ip
->i_d
.di_nextents
== ip
->i_df
.if_bytes
/
311 (uint
)sizeof(xfs_bmbt_rec_t
)) {
313 * There are no delayed allocation
314 * extents, so just point to the
315 * real extents array.
317 vecp
->i_addr
= ip
->i_df
.if_u1
.if_extents
;
318 vecp
->i_len
= ip
->i_df
.if_bytes
;
319 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
324 * There are delayed allocation extents
325 * in the inode, or we need to convert
326 * the extents to on disk format.
327 * Use xfs_iextents_copy()
328 * to copy only the real extents into
329 * a separate buffer. We'll free the
330 * buffer in the unlock routine.
332 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
334 iip
->ili_extents_buf
= ext_buffer
;
335 vecp
->i_addr
= ext_buffer
;
336 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
338 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
340 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
341 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
347 case XFS_DINODE_FMT_BTREE
:
348 ASSERT(!(iip
->ili_format
.ilf_fields
&
349 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
350 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
351 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
352 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
353 ASSERT(ip
->i_df
.if_broot
!= NULL
);
354 vecp
->i_addr
= ip
->i_df
.if_broot
;
355 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
356 vecp
->i_type
= XLOG_REG_TYPE_IBROOT
;
359 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
363 case XFS_DINODE_FMT_LOCAL
:
364 ASSERT(!(iip
->ili_format
.ilf_fields
&
365 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
366 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
367 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
368 ASSERT(ip
->i_df
.if_bytes
> 0);
369 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
370 ASSERT(ip
->i_d
.di_size
> 0);
372 vecp
->i_addr
= ip
->i_df
.if_u1
.if_data
;
374 * Round i_bytes up to a word boundary.
375 * The underlying memory is guaranteed to
376 * to be there by xfs_idata_realloc().
378 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
379 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
380 (ip
->i_df
.if_real_bytes
== data_bytes
));
381 vecp
->i_len
= (int)data_bytes
;
382 vecp
->i_type
= XLOG_REG_TYPE_ILOCAL
;
385 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
389 case XFS_DINODE_FMT_DEV
:
390 ASSERT(!(iip
->ili_format
.ilf_fields
&
391 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
392 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
393 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
394 iip
->ili_format
.ilf_u
.ilfu_rdev
=
395 ip
->i_df
.if_u2
.if_rdev
;
399 case XFS_DINODE_FMT_UUID
:
400 ASSERT(!(iip
->ili_format
.ilf_fields
&
401 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
402 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
403 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
404 iip
->ili_format
.ilf_u
.ilfu_uuid
=
405 ip
->i_df
.if_u2
.if_uuid
;
415 * If there are no attributes associated with the file,
417 * Assert that no attribute-related log flags are set.
419 if (!XFS_IFORK_Q(ip
)) {
420 ASSERT(nvecs
== lip
->li_desc
->lid_size
);
421 iip
->ili_format
.ilf_size
= nvecs
;
422 ASSERT(!(iip
->ili_format
.ilf_fields
&
423 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
427 switch (ip
->i_d
.di_aformat
) {
428 case XFS_DINODE_FMT_EXTENTS
:
429 ASSERT(!(iip
->ili_format
.ilf_fields
&
430 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
431 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
433 int nrecs
= ip
->i_afp
->if_bytes
/
434 (uint
)sizeof(xfs_bmbt_rec_t
);
436 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
437 ASSERT(ip
->i_afp
->if_bytes
> 0);
438 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
439 ASSERT(ip
->i_d
.di_anextents
> 0);
441 #ifdef XFS_NATIVE_HOST
443 * There are not delayed allocation extents
444 * for attributes, so just point at the array.
446 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_extents
;
447 vecp
->i_len
= ip
->i_afp
->if_bytes
;
449 ASSERT(iip
->ili_aextents_buf
== NULL
);
451 * Need to endian flip before logging
453 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
455 iip
->ili_aextents_buf
= ext_buffer
;
456 vecp
->i_addr
= ext_buffer
;
457 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
460 vecp
->i_type
= XLOG_REG_TYPE_IATTR_EXT
;
461 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
467 case XFS_DINODE_FMT_BTREE
:
468 ASSERT(!(iip
->ili_format
.ilf_fields
&
469 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
470 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
471 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
472 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
473 vecp
->i_addr
= ip
->i_afp
->if_broot
;
474 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
475 vecp
->i_type
= XLOG_REG_TYPE_IATTR_BROOT
;
478 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
482 case XFS_DINODE_FMT_LOCAL
:
483 ASSERT(!(iip
->ili_format
.ilf_fields
&
484 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
485 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
486 ASSERT(ip
->i_afp
->if_bytes
> 0);
487 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
489 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_data
;
491 * Round i_bytes up to a word boundary.
492 * The underlying memory is guaranteed to
493 * to be there by xfs_idata_realloc().
495 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
496 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
497 (ip
->i_afp
->if_real_bytes
== data_bytes
));
498 vecp
->i_len
= (int)data_bytes
;
499 vecp
->i_type
= XLOG_REG_TYPE_IATTR_LOCAL
;
502 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
511 ASSERT(nvecs
== lip
->li_desc
->lid_size
);
512 iip
->ili_format
.ilf_size
= nvecs
;
517 * This is called to pin the inode associated with the inode log
518 * item in memory so it cannot be written out.
522 struct xfs_log_item
*lip
)
524 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
526 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
528 trace_xfs_inode_pin(ip
, _RET_IP_
);
529 atomic_inc(&ip
->i_pincount
);
534 * This is called to unpin the inode associated with the inode log
535 * item which was previously pinned with a call to xfs_inode_item_pin().
537 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
540 xfs_inode_item_unpin(
541 struct xfs_log_item
*lip
,
544 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
546 trace_xfs_inode_unpin(ip
, _RET_IP_
);
547 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
548 if (atomic_dec_and_test(&ip
->i_pincount
))
549 wake_up(&ip
->i_ipin_wait
);
553 * This is called to attempt to lock the inode associated with this
554 * inode log item, in preparation for the push routine which does the actual
555 * iflush. Don't sleep on the inode lock or the flush lock.
557 * If the flush lock is already held, indicating that the inode has
558 * been or is in the process of being flushed, then (ideally) we'd like to
559 * see if the inode's buffer is still incore, and if so give it a nudge.
560 * We delay doing so until the pushbuf routine, though, to avoid holding
561 * the AIL lock across a call to the blackhole which is the buffer cache.
562 * Also we don't want to sleep in any device strategy routines, which can happen
563 * if we do the subsequent bawrite in here.
566 xfs_inode_item_trylock(
567 struct xfs_log_item
*lip
)
569 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
570 struct xfs_inode
*ip
= iip
->ili_inode
;
572 if (xfs_ipincount(ip
) > 0)
573 return XFS_ITEM_PINNED
;
575 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
576 return XFS_ITEM_LOCKED
;
578 if (!xfs_iflock_nowait(ip
)) {
580 * inode has already been flushed to the backing buffer,
581 * leave it locked in shared mode, pushbuf routine will
584 return XFS_ITEM_PUSHBUF
;
587 /* Stale items should force out the iclog */
588 if (ip
->i_flags
& XFS_ISTALE
) {
591 * we hold the AIL lock - notify the unlock routine of this
592 * so it doesn't try to get the lock again.
594 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
595 return XFS_ITEM_PINNED
;
599 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
600 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
601 ASSERT(iip
->ili_logged
== 0);
602 ASSERT(lip
->li_flags
& XFS_LI_IN_AIL
);
605 return XFS_ITEM_SUCCESS
;
609 * Unlock the inode associated with the inode log item.
610 * Clear the fields of the inode and inode log item that
611 * are specific to the current transaction. If the
612 * hold flags is set, do not unlock the inode.
615 xfs_inode_item_unlock(
616 struct xfs_log_item
*lip
)
618 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
619 struct xfs_inode
*ip
= iip
->ili_inode
;
620 unsigned short lock_flags
;
622 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
623 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
626 * Clear the transaction pointer in the inode.
631 * If the inode needed a separate buffer with which to log
632 * its extents, then free it now.
634 if (iip
->ili_extents_buf
!= NULL
) {
635 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
636 ASSERT(ip
->i_d
.di_nextents
> 0);
637 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
638 ASSERT(ip
->i_df
.if_bytes
> 0);
639 kmem_free(iip
->ili_extents_buf
);
640 iip
->ili_extents_buf
= NULL
;
642 if (iip
->ili_aextents_buf
!= NULL
) {
643 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
644 ASSERT(ip
->i_d
.di_anextents
> 0);
645 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
646 ASSERT(ip
->i_afp
->if_bytes
> 0);
647 kmem_free(iip
->ili_aextents_buf
);
648 iip
->ili_aextents_buf
= NULL
;
651 lock_flags
= iip
->ili_lock_flags
;
652 iip
->ili_lock_flags
= 0;
654 xfs_iunlock(iip
->ili_inode
, lock_flags
);
655 IRELE(iip
->ili_inode
);
660 * This is called to find out where the oldest active copy of the inode log
661 * item in the on disk log resides now that the last log write of it completed
662 * at the given lsn. Since we always re-log all dirty data in an inode, the
663 * latest copy in the on disk log is the only one that matters. Therefore,
664 * simply return the given lsn.
666 * If the inode has been marked stale because the cluster is being freed, we
667 * don't want to (re-)insert this inode into the AIL. There is a race condition
668 * where the cluster buffer may be unpinned before the inode is inserted into
669 * the AIL during transaction committed processing. If the buffer is unpinned
670 * before the inode item has been committed and inserted, then it is possible
671 * for the buffer to be written and IO completions before the inode is inserted
672 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
673 * AIL which will never get removed. It will, however, get reclaimed which
674 * triggers an assert in xfs_inode_free() complaining about freein an inode
677 * To avoid this, return a lower LSN than the one passed in so that the
678 * transaction committed code will not move the inode forward in the AIL but
679 * will still unpin it properly.
682 xfs_inode_item_committed(
683 struct xfs_log_item
*lip
,
686 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
687 struct xfs_inode
*ip
= iip
->ili_inode
;
689 if (xfs_iflags_test(ip
, XFS_ISTALE
))
695 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
696 * failed to get the inode flush lock but did get the inode locked SHARED.
697 * Here we're trying to see if the inode buffer is incore, and if so whether it's
698 * marked delayed write. If that's the case, we'll promote it and that will
699 * allow the caller to write the buffer by triggering the xfsbufd to run.
702 xfs_inode_item_pushbuf(
703 struct xfs_log_item
*lip
)
705 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
706 struct xfs_inode
*ip
= iip
->ili_inode
;
709 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
712 * If a flush is not in progress anymore, chances are that the
713 * inode was taken off the AIL. So, just get out.
715 if (completion_done(&ip
->i_flush
) ||
716 !(lip
->li_flags
& XFS_LI_IN_AIL
)) {
717 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
721 bp
= xfs_incore(ip
->i_mount
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
722 iip
->ili_format
.ilf_len
, XBF_TRYLOCK
);
724 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
727 if (XFS_BUF_ISDELAYWRITE(bp
))
728 xfs_buf_delwri_promote(bp
);
733 * This is called to asynchronously write the inode associated with this
734 * inode log item out to disk. The inode will already have been locked by
735 * a successful call to xfs_inode_item_trylock().
739 struct xfs_log_item
*lip
)
741 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
742 struct xfs_inode
*ip
= iip
->ili_inode
;
744 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
745 ASSERT(!completion_done(&ip
->i_flush
));
748 * Since we were able to lock the inode's flush lock and
749 * we found it on the AIL, the inode must be dirty. This
750 * is because the inode is removed from the AIL while still
751 * holding the flush lock in xfs_iflush_done(). Thus, if
752 * we found it in the AIL and were able to obtain the flush
753 * lock without sleeping, then there must not have been
754 * anyone in the process of flushing the inode.
756 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
757 iip
->ili_format
.ilf_fields
!= 0);
760 * Push the inode to it's backing buffer. This will not remove the
761 * inode from the AIL - a further push will be required to trigger a
762 * buffer push. However, this allows all the dirty inodes to be pushed
763 * to the buffer before it is pushed to disk. The buffer IO completion
764 * will pull the inode from the AIL, mark it clean and unlock the flush
767 (void) xfs_iflush(ip
, SYNC_TRYLOCK
);
768 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
772 * XXX rcc - this one really has to do something. Probably needs
773 * to stamp in a new field in the incore inode.
776 xfs_inode_item_committing(
777 struct xfs_log_item
*lip
,
780 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
784 * This is the ops vector shared by all buf log items.
786 static struct xfs_item_ops xfs_inode_item_ops
= {
787 .iop_size
= xfs_inode_item_size
,
788 .iop_format
= xfs_inode_item_format
,
789 .iop_pin
= xfs_inode_item_pin
,
790 .iop_unpin
= xfs_inode_item_unpin
,
791 .iop_trylock
= xfs_inode_item_trylock
,
792 .iop_unlock
= xfs_inode_item_unlock
,
793 .iop_committed
= xfs_inode_item_committed
,
794 .iop_push
= xfs_inode_item_push
,
795 .iop_pushbuf
= xfs_inode_item_pushbuf
,
796 .iop_committing
= xfs_inode_item_committing
801 * Initialize the inode log item for a newly allocated (in-core) inode.
805 struct xfs_inode
*ip
,
806 struct xfs_mount
*mp
)
808 struct xfs_inode_log_item
*iip
;
810 ASSERT(ip
->i_itemp
== NULL
);
811 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
814 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
815 &xfs_inode_item_ops
);
816 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
817 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
818 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
819 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
820 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
824 * Free the inode log item and any memory hanging off of it.
827 xfs_inode_item_destroy(
830 #ifdef XFS_TRANS_DEBUG
831 if (ip
->i_itemp
->ili_root_size
!= 0) {
832 kmem_free(ip
->i_itemp
->ili_orig_root
);
835 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
840 * This is the inode flushing I/O completion routine. It is called
841 * from interrupt level when the buffer containing the inode is
842 * flushed to disk. It is responsible for removing the inode item
843 * from the AIL if it has not been re-logged, and unlocking the inode's
846 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
847 * list for other inodes that will run this function. We remove them from the
848 * buffer list so we can process all the inode IO completions in one AIL lock
854 struct xfs_log_item
*lip
)
856 struct xfs_inode_log_item
*iip
;
857 struct xfs_log_item
*blip
;
858 struct xfs_log_item
*next
;
859 struct xfs_log_item
*prev
;
860 struct xfs_ail
*ailp
= lip
->li_ailp
;
864 * Scan the buffer IO completions for other inodes being completed and
865 * attach them to the current inode log item.
867 blip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
869 while (blip
!= NULL
) {
870 if (lip
->li_cb
!= xfs_iflush_done
) {
872 blip
= blip
->li_bio_list
;
876 /* remove from list */
877 next
= blip
->li_bio_list
;
879 XFS_BUF_SET_FSPRIVATE(bp
, next
);
881 prev
->li_bio_list
= next
;
884 /* add to current list */
885 blip
->li_bio_list
= lip
->li_bio_list
;
886 lip
->li_bio_list
= blip
;
889 * while we have the item, do the unlocked check for needing
892 iip
= INODE_ITEM(blip
);
893 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
899 /* make sure we capture the state of the initial inode. */
900 iip
= INODE_ITEM(lip
);
901 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
905 * We only want to pull the item from the AIL if it is
906 * actually there and its location in the log has not
907 * changed since we started the flush. Thus, we only bother
908 * if the ili_logged flag is set and the inode's lsn has not
909 * changed. First we check the lsn outside
910 * the lock since it's cheaper, and then we recheck while
911 * holding the lock before removing the inode from the AIL.
914 struct xfs_log_item
*log_items
[need_ail
];
916 spin_lock(&ailp
->xa_lock
);
917 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
918 iip
= INODE_ITEM(blip
);
919 if (iip
->ili_logged
&&
920 blip
->li_lsn
== iip
->ili_flush_lsn
) {
921 log_items
[i
++] = blip
;
923 ASSERT(i
<= need_ail
);
925 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
926 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
);
931 * clean up and unlock the flush lock now we are done. We can clear the
932 * ili_last_fields bits now that we know that the data corresponding to
933 * them is safely on disk.
935 for (blip
= lip
; blip
; blip
= next
) {
936 next
= blip
->li_bio_list
;
937 blip
->li_bio_list
= NULL
;
939 iip
= INODE_ITEM(blip
);
941 iip
->ili_last_fields
= 0;
942 xfs_ifunlock(iip
->ili_inode
);
947 * This is the inode flushing abort routine. It is called
948 * from xfs_iflush when the filesystem is shutting down to clean
949 * up the inode state.
950 * It is responsible for removing the inode item
951 * from the AIL if it has not been re-logged, and unlocking the inode's
958 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
962 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
963 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
964 spin_lock(&ailp
->xa_lock
);
965 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
966 /* xfs_trans_ail_delete() drops the AIL lock. */
967 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
969 spin_unlock(&ailp
->xa_lock
);
973 * Clear the ili_last_fields bits now that we know that the
974 * data corresponding to them is safely on disk.
976 iip
->ili_last_fields
= 0;
978 * Clear the inode logging fields so no more flushes are
981 iip
->ili_format
.ilf_fields
= 0;
984 * Release the inode's flush lock since we're done with it.
992 struct xfs_log_item
*lip
)
994 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
);
998 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
999 * (which can have different field alignments) to the native version
1002 xfs_inode_item_format_convert(
1003 xfs_log_iovec_t
*buf
,
1004 xfs_inode_log_format_t
*in_f
)
1006 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
1007 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
1009 in_f
->ilf_type
= in_f32
->ilf_type
;
1010 in_f
->ilf_size
= in_f32
->ilf_size
;
1011 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1012 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1013 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1014 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1015 /* copy biggest field of ilf_u */
1016 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1017 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
1019 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1020 in_f
->ilf_len
= in_f32
->ilf_len
;
1021 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
1023 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
1024 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
1026 in_f
->ilf_type
= in_f64
->ilf_type
;
1027 in_f
->ilf_size
= in_f64
->ilf_size
;
1028 in_f
->ilf_fields
= in_f64
->ilf_fields
;
1029 in_f
->ilf_asize
= in_f64
->ilf_asize
;
1030 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
1031 in_f
->ilf_ino
= in_f64
->ilf_ino
;
1032 /* copy biggest field of ilf_u */
1033 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1034 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
1036 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
1037 in_f
->ilf_len
= in_f64
->ilf_len
;
1038 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
1041 return EFSCORRUPTED
;