MIPS: Implement __read_mostly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blob99999a9b2b0b333aeba513a1b606621928196586
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/compaction.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
51 #include "internal.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 * page from the LRU and reclaim all pages within a
63 * naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 * order-0 pages and then compact the zone
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74 struct scan_control {
75 /* Incremented by the number of inactive pages that were scanned */
76 unsigned long nr_scanned;
78 /* Number of pages freed so far during a call to shrink_zones() */
79 unsigned long nr_reclaimed;
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim;
84 unsigned long hibernation_mode;
86 /* This context's GFP mask */
87 gfp_t gfp_mask;
89 int may_writepage;
91 /* Can mapped pages be reclaimed? */
92 int may_unmap;
94 /* Can pages be swapped as part of reclaim? */
95 int may_swap;
97 int swappiness;
99 int order;
102 * Intend to reclaim enough continuous memory rather than reclaim
103 * enough amount of memory. i.e, mode for high order allocation.
105 reclaim_mode_t reclaim_mode;
107 /* Which cgroup do we reclaim from */
108 struct mem_cgroup *mem_cgroup;
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 * are scanned.
114 nodemask_t *nodemask;
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
121 do { \
122 if ((_page)->lru.prev != _base) { \
123 struct page *prev; \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
128 } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
142 } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
148 * From 0 .. 100. Higher means more swappy.
150 int vm_swappiness = 60;
151 long vm_total_pages; /* The total number of pages which the VM controls */
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 struct scan_control *sc)
165 if (!scanning_global_lru(sc))
166 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168 return &zone->reclaim_stat;
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 struct scan_control *sc, enum lru_list lru)
174 if (!scanning_global_lru(sc))
175 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
177 return zone_page_state(zone, NR_LRU_BASE + lru);
182 * Add a shrinker callback to be called from the vm
184 void register_shrinker(struct shrinker *shrinker)
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
191 EXPORT_SYMBOL(register_shrinker);
194 * Remove one
196 void unregister_shrinker(struct shrinker *shrinker)
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
202 EXPORT_SYMBOL(unregister_shrinker);
204 #define SHRINK_BATCH 128
206 * Call the shrink functions to age shrinkable caches
208 * Here we assume it costs one seek to replace a lru page and that it also
209 * takes a seek to recreate a cache object. With this in mind we age equal
210 * percentages of the lru and ageable caches. This should balance the seeks
211 * generated by these structures.
213 * If the vm encountered mapped pages on the LRU it increase the pressure on
214 * slab to avoid swapping.
216 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
218 * `lru_pages' represents the number of on-LRU pages in all the zones which
219 * are eligible for the caller's allocation attempt. It is used for balancing
220 * slab reclaim versus page reclaim.
222 * Returns the number of slab objects which we shrunk.
224 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225 unsigned long lru_pages)
227 struct shrinker *shrinker;
228 unsigned long ret = 0;
230 if (scanned == 0)
231 scanned = SWAP_CLUSTER_MAX;
233 if (!down_read_trylock(&shrinker_rwsem))
234 return 1; /* Assume we'll be able to shrink next time */
236 list_for_each_entry(shrinker, &shrinker_list, list) {
237 unsigned long long delta;
238 unsigned long total_scan;
239 unsigned long max_pass;
241 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
242 delta = (4 * scanned) / shrinker->seeks;
243 delta *= max_pass;
244 do_div(delta, lru_pages + 1);
245 shrinker->nr += delta;
246 if (shrinker->nr < 0) {
247 printk(KERN_ERR "shrink_slab: %pF negative objects to "
248 "delete nr=%ld\n",
249 shrinker->shrink, shrinker->nr);
250 shrinker->nr = max_pass;
254 * Avoid risking looping forever due to too large nr value:
255 * never try to free more than twice the estimate number of
256 * freeable entries.
258 if (shrinker->nr > max_pass * 2)
259 shrinker->nr = max_pass * 2;
261 total_scan = shrinker->nr;
262 shrinker->nr = 0;
264 while (total_scan >= SHRINK_BATCH) {
265 long this_scan = SHRINK_BATCH;
266 int shrink_ret;
267 int nr_before;
269 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
270 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
271 gfp_mask);
272 if (shrink_ret == -1)
273 break;
274 if (shrink_ret < nr_before)
275 ret += nr_before - shrink_ret;
276 count_vm_events(SLABS_SCANNED, this_scan);
277 total_scan -= this_scan;
279 cond_resched();
282 shrinker->nr += total_scan;
284 up_read(&shrinker_rwsem);
285 return ret;
288 static void set_reclaim_mode(int priority, struct scan_control *sc,
289 bool sync)
291 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
294 * Initially assume we are entering either lumpy reclaim or
295 * reclaim/compaction.Depending on the order, we will either set the
296 * sync mode or just reclaim order-0 pages later.
298 if (COMPACTION_BUILD)
299 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
300 else
301 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
304 * Avoid using lumpy reclaim or reclaim/compaction if possible by
305 * restricting when its set to either costly allocations or when
306 * under memory pressure
308 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
309 sc->reclaim_mode |= syncmode;
310 else if (sc->order && priority < DEF_PRIORITY - 2)
311 sc->reclaim_mode |= syncmode;
312 else
313 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
316 static void reset_reclaim_mode(struct scan_control *sc)
318 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
321 static inline int is_page_cache_freeable(struct page *page)
324 * A freeable page cache page is referenced only by the caller
325 * that isolated the page, the page cache radix tree and
326 * optional buffer heads at page->private.
328 return page_count(page) - page_has_private(page) == 2;
331 static int may_write_to_queue(struct backing_dev_info *bdi,
332 struct scan_control *sc)
334 if (current->flags & PF_SWAPWRITE)
335 return 1;
336 if (!bdi_write_congested(bdi))
337 return 1;
338 if (bdi == current->backing_dev_info)
339 return 1;
341 /* lumpy reclaim for hugepage often need a lot of write */
342 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
343 return 1;
344 return 0;
348 * We detected a synchronous write error writing a page out. Probably
349 * -ENOSPC. We need to propagate that into the address_space for a subsequent
350 * fsync(), msync() or close().
352 * The tricky part is that after writepage we cannot touch the mapping: nothing
353 * prevents it from being freed up. But we have a ref on the page and once
354 * that page is locked, the mapping is pinned.
356 * We're allowed to run sleeping lock_page() here because we know the caller has
357 * __GFP_FS.
359 static void handle_write_error(struct address_space *mapping,
360 struct page *page, int error)
362 lock_page_nosync(page);
363 if (page_mapping(page) == mapping)
364 mapping_set_error(mapping, error);
365 unlock_page(page);
368 /* possible outcome of pageout() */
369 typedef enum {
370 /* failed to write page out, page is locked */
371 PAGE_KEEP,
372 /* move page to the active list, page is locked */
373 PAGE_ACTIVATE,
374 /* page has been sent to the disk successfully, page is unlocked */
375 PAGE_SUCCESS,
376 /* page is clean and locked */
377 PAGE_CLEAN,
378 } pageout_t;
381 * pageout is called by shrink_page_list() for each dirty page.
382 * Calls ->writepage().
384 static pageout_t pageout(struct page *page, struct address_space *mapping,
385 struct scan_control *sc)
388 * If the page is dirty, only perform writeback if that write
389 * will be non-blocking. To prevent this allocation from being
390 * stalled by pagecache activity. But note that there may be
391 * stalls if we need to run get_block(). We could test
392 * PagePrivate for that.
394 * If this process is currently in __generic_file_aio_write() against
395 * this page's queue, we can perform writeback even if that
396 * will block.
398 * If the page is swapcache, write it back even if that would
399 * block, for some throttling. This happens by accident, because
400 * swap_backing_dev_info is bust: it doesn't reflect the
401 * congestion state of the swapdevs. Easy to fix, if needed.
403 if (!is_page_cache_freeable(page))
404 return PAGE_KEEP;
405 if (!mapping) {
407 * Some data journaling orphaned pages can have
408 * page->mapping == NULL while being dirty with clean buffers.
410 if (page_has_private(page)) {
411 if (try_to_free_buffers(page)) {
412 ClearPageDirty(page);
413 printk("%s: orphaned page\n", __func__);
414 return PAGE_CLEAN;
417 return PAGE_KEEP;
419 if (mapping->a_ops->writepage == NULL)
420 return PAGE_ACTIVATE;
421 if (!may_write_to_queue(mapping->backing_dev_info, sc))
422 return PAGE_KEEP;
424 if (clear_page_dirty_for_io(page)) {
425 int res;
426 struct writeback_control wbc = {
427 .sync_mode = WB_SYNC_NONE,
428 .nr_to_write = SWAP_CLUSTER_MAX,
429 .range_start = 0,
430 .range_end = LLONG_MAX,
431 .for_reclaim = 1,
434 SetPageReclaim(page);
435 res = mapping->a_ops->writepage(page, &wbc);
436 if (res < 0)
437 handle_write_error(mapping, page, res);
438 if (res == AOP_WRITEPAGE_ACTIVATE) {
439 ClearPageReclaim(page);
440 return PAGE_ACTIVATE;
444 * Wait on writeback if requested to. This happens when
445 * direct reclaiming a large contiguous area and the
446 * first attempt to free a range of pages fails.
448 if (PageWriteback(page) &&
449 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
450 wait_on_page_writeback(page);
452 if (!PageWriteback(page)) {
453 /* synchronous write or broken a_ops? */
454 ClearPageReclaim(page);
456 trace_mm_vmscan_writepage(page,
457 trace_reclaim_flags(page, sc->reclaim_mode));
458 inc_zone_page_state(page, NR_VMSCAN_WRITE);
459 return PAGE_SUCCESS;
462 return PAGE_CLEAN;
466 * Same as remove_mapping, but if the page is removed from the mapping, it
467 * gets returned with a refcount of 0.
469 static int __remove_mapping(struct address_space *mapping, struct page *page)
471 BUG_ON(!PageLocked(page));
472 BUG_ON(mapping != page_mapping(page));
474 spin_lock_irq(&mapping->tree_lock);
476 * The non racy check for a busy page.
478 * Must be careful with the order of the tests. When someone has
479 * a ref to the page, it may be possible that they dirty it then
480 * drop the reference. So if PageDirty is tested before page_count
481 * here, then the following race may occur:
483 * get_user_pages(&page);
484 * [user mapping goes away]
485 * write_to(page);
486 * !PageDirty(page) [good]
487 * SetPageDirty(page);
488 * put_page(page);
489 * !page_count(page) [good, discard it]
491 * [oops, our write_to data is lost]
493 * Reversing the order of the tests ensures such a situation cannot
494 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
495 * load is not satisfied before that of page->_count.
497 * Note that if SetPageDirty is always performed via set_page_dirty,
498 * and thus under tree_lock, then this ordering is not required.
500 if (!page_freeze_refs(page, 2))
501 goto cannot_free;
502 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
503 if (unlikely(PageDirty(page))) {
504 page_unfreeze_refs(page, 2);
505 goto cannot_free;
508 if (PageSwapCache(page)) {
509 swp_entry_t swap = { .val = page_private(page) };
510 __delete_from_swap_cache(page);
511 spin_unlock_irq(&mapping->tree_lock);
512 swapcache_free(swap, page);
513 } else {
514 void (*freepage)(struct page *);
516 freepage = mapping->a_ops->freepage;
518 __remove_from_page_cache(page);
519 spin_unlock_irq(&mapping->tree_lock);
520 mem_cgroup_uncharge_cache_page(page);
522 if (freepage != NULL)
523 freepage(page);
526 return 1;
528 cannot_free:
529 spin_unlock_irq(&mapping->tree_lock);
530 return 0;
534 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
535 * someone else has a ref on the page, abort and return 0. If it was
536 * successfully detached, return 1. Assumes the caller has a single ref on
537 * this page.
539 int remove_mapping(struct address_space *mapping, struct page *page)
541 if (__remove_mapping(mapping, page)) {
543 * Unfreezing the refcount with 1 rather than 2 effectively
544 * drops the pagecache ref for us without requiring another
545 * atomic operation.
547 page_unfreeze_refs(page, 1);
548 return 1;
550 return 0;
554 * putback_lru_page - put previously isolated page onto appropriate LRU list
555 * @page: page to be put back to appropriate lru list
557 * Add previously isolated @page to appropriate LRU list.
558 * Page may still be unevictable for other reasons.
560 * lru_lock must not be held, interrupts must be enabled.
562 void putback_lru_page(struct page *page)
564 int lru;
565 int active = !!TestClearPageActive(page);
566 int was_unevictable = PageUnevictable(page);
568 VM_BUG_ON(PageLRU(page));
570 redo:
571 ClearPageUnevictable(page);
573 if (page_evictable(page, NULL)) {
575 * For evictable pages, we can use the cache.
576 * In event of a race, worst case is we end up with an
577 * unevictable page on [in]active list.
578 * We know how to handle that.
580 lru = active + page_lru_base_type(page);
581 lru_cache_add_lru(page, lru);
582 } else {
584 * Put unevictable pages directly on zone's unevictable
585 * list.
587 lru = LRU_UNEVICTABLE;
588 add_page_to_unevictable_list(page);
590 * When racing with an mlock clearing (page is
591 * unlocked), make sure that if the other thread does
592 * not observe our setting of PG_lru and fails
593 * isolation, we see PG_mlocked cleared below and move
594 * the page back to the evictable list.
596 * The other side is TestClearPageMlocked().
598 smp_mb();
602 * page's status can change while we move it among lru. If an evictable
603 * page is on unevictable list, it never be freed. To avoid that,
604 * check after we added it to the list, again.
606 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
607 if (!isolate_lru_page(page)) {
608 put_page(page);
609 goto redo;
611 /* This means someone else dropped this page from LRU
612 * So, it will be freed or putback to LRU again. There is
613 * nothing to do here.
617 if (was_unevictable && lru != LRU_UNEVICTABLE)
618 count_vm_event(UNEVICTABLE_PGRESCUED);
619 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
620 count_vm_event(UNEVICTABLE_PGCULLED);
622 put_page(page); /* drop ref from isolate */
625 enum page_references {
626 PAGEREF_RECLAIM,
627 PAGEREF_RECLAIM_CLEAN,
628 PAGEREF_KEEP,
629 PAGEREF_ACTIVATE,
632 static enum page_references page_check_references(struct page *page,
633 struct scan_control *sc)
635 int referenced_ptes, referenced_page;
636 unsigned long vm_flags;
638 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
639 referenced_page = TestClearPageReferenced(page);
641 /* Lumpy reclaim - ignore references */
642 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
643 return PAGEREF_RECLAIM;
646 * Mlock lost the isolation race with us. Let try_to_unmap()
647 * move the page to the unevictable list.
649 if (vm_flags & VM_LOCKED)
650 return PAGEREF_RECLAIM;
652 if (referenced_ptes) {
653 if (PageAnon(page))
654 return PAGEREF_ACTIVATE;
656 * All mapped pages start out with page table
657 * references from the instantiating fault, so we need
658 * to look twice if a mapped file page is used more
659 * than once.
661 * Mark it and spare it for another trip around the
662 * inactive list. Another page table reference will
663 * lead to its activation.
665 * Note: the mark is set for activated pages as well
666 * so that recently deactivated but used pages are
667 * quickly recovered.
669 SetPageReferenced(page);
671 if (referenced_page)
672 return PAGEREF_ACTIVATE;
674 return PAGEREF_KEEP;
677 /* Reclaim if clean, defer dirty pages to writeback */
678 if (referenced_page && !PageSwapBacked(page))
679 return PAGEREF_RECLAIM_CLEAN;
681 return PAGEREF_RECLAIM;
684 static noinline_for_stack void free_page_list(struct list_head *free_pages)
686 struct pagevec freed_pvec;
687 struct page *page, *tmp;
689 pagevec_init(&freed_pvec, 1);
691 list_for_each_entry_safe(page, tmp, free_pages, lru) {
692 list_del(&page->lru);
693 if (!pagevec_add(&freed_pvec, page)) {
694 __pagevec_free(&freed_pvec);
695 pagevec_reinit(&freed_pvec);
699 pagevec_free(&freed_pvec);
703 * shrink_page_list() returns the number of reclaimed pages
705 static unsigned long shrink_page_list(struct list_head *page_list,
706 struct zone *zone,
707 struct scan_control *sc)
709 LIST_HEAD(ret_pages);
710 LIST_HEAD(free_pages);
711 int pgactivate = 0;
712 unsigned long nr_dirty = 0;
713 unsigned long nr_congested = 0;
714 unsigned long nr_reclaimed = 0;
716 cond_resched();
718 while (!list_empty(page_list)) {
719 enum page_references references;
720 struct address_space *mapping;
721 struct page *page;
722 int may_enter_fs;
724 cond_resched();
726 page = lru_to_page(page_list);
727 list_del(&page->lru);
729 if (!trylock_page(page))
730 goto keep;
732 VM_BUG_ON(PageActive(page));
733 VM_BUG_ON(page_zone(page) != zone);
735 sc->nr_scanned++;
737 if (unlikely(!page_evictable(page, NULL)))
738 goto cull_mlocked;
740 if (!sc->may_unmap && page_mapped(page))
741 goto keep_locked;
743 /* Double the slab pressure for mapped and swapcache pages */
744 if (page_mapped(page) || PageSwapCache(page))
745 sc->nr_scanned++;
747 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
748 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
750 if (PageWriteback(page)) {
752 * Synchronous reclaim is performed in two passes,
753 * first an asynchronous pass over the list to
754 * start parallel writeback, and a second synchronous
755 * pass to wait for the IO to complete. Wait here
756 * for any page for which writeback has already
757 * started.
759 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
760 may_enter_fs)
761 wait_on_page_writeback(page);
762 else {
763 unlock_page(page);
764 goto keep_lumpy;
768 references = page_check_references(page, sc);
769 switch (references) {
770 case PAGEREF_ACTIVATE:
771 goto activate_locked;
772 case PAGEREF_KEEP:
773 goto keep_locked;
774 case PAGEREF_RECLAIM:
775 case PAGEREF_RECLAIM_CLEAN:
776 ; /* try to reclaim the page below */
780 * Anonymous process memory has backing store?
781 * Try to allocate it some swap space here.
783 if (PageAnon(page) && !PageSwapCache(page)) {
784 if (!(sc->gfp_mask & __GFP_IO))
785 goto keep_locked;
786 if (!add_to_swap(page))
787 goto activate_locked;
788 may_enter_fs = 1;
791 mapping = page_mapping(page);
794 * The page is mapped into the page tables of one or more
795 * processes. Try to unmap it here.
797 if (page_mapped(page) && mapping) {
798 switch (try_to_unmap(page, TTU_UNMAP)) {
799 case SWAP_FAIL:
800 goto activate_locked;
801 case SWAP_AGAIN:
802 goto keep_locked;
803 case SWAP_MLOCK:
804 goto cull_mlocked;
805 case SWAP_SUCCESS:
806 ; /* try to free the page below */
810 if (PageDirty(page)) {
811 nr_dirty++;
813 if (references == PAGEREF_RECLAIM_CLEAN)
814 goto keep_locked;
815 if (!may_enter_fs)
816 goto keep_locked;
817 if (!sc->may_writepage)
818 goto keep_locked;
820 /* Page is dirty, try to write it out here */
821 switch (pageout(page, mapping, sc)) {
822 case PAGE_KEEP:
823 nr_congested++;
824 goto keep_locked;
825 case PAGE_ACTIVATE:
826 goto activate_locked;
827 case PAGE_SUCCESS:
828 if (PageWriteback(page))
829 goto keep_lumpy;
830 if (PageDirty(page))
831 goto keep;
834 * A synchronous write - probably a ramdisk. Go
835 * ahead and try to reclaim the page.
837 if (!trylock_page(page))
838 goto keep;
839 if (PageDirty(page) || PageWriteback(page))
840 goto keep_locked;
841 mapping = page_mapping(page);
842 case PAGE_CLEAN:
843 ; /* try to free the page below */
848 * If the page has buffers, try to free the buffer mappings
849 * associated with this page. If we succeed we try to free
850 * the page as well.
852 * We do this even if the page is PageDirty().
853 * try_to_release_page() does not perform I/O, but it is
854 * possible for a page to have PageDirty set, but it is actually
855 * clean (all its buffers are clean). This happens if the
856 * buffers were written out directly, with submit_bh(). ext3
857 * will do this, as well as the blockdev mapping.
858 * try_to_release_page() will discover that cleanness and will
859 * drop the buffers and mark the page clean - it can be freed.
861 * Rarely, pages can have buffers and no ->mapping. These are
862 * the pages which were not successfully invalidated in
863 * truncate_complete_page(). We try to drop those buffers here
864 * and if that worked, and the page is no longer mapped into
865 * process address space (page_count == 1) it can be freed.
866 * Otherwise, leave the page on the LRU so it is swappable.
868 if (page_has_private(page)) {
869 if (!try_to_release_page(page, sc->gfp_mask))
870 goto activate_locked;
871 if (!mapping && page_count(page) == 1) {
872 unlock_page(page);
873 if (put_page_testzero(page))
874 goto free_it;
875 else {
877 * rare race with speculative reference.
878 * the speculative reference will free
879 * this page shortly, so we may
880 * increment nr_reclaimed here (and
881 * leave it off the LRU).
883 nr_reclaimed++;
884 continue;
889 if (!mapping || !__remove_mapping(mapping, page))
890 goto keep_locked;
893 * At this point, we have no other references and there is
894 * no way to pick any more up (removed from LRU, removed
895 * from pagecache). Can use non-atomic bitops now (and
896 * we obviously don't have to worry about waking up a process
897 * waiting on the page lock, because there are no references.
899 __clear_page_locked(page);
900 free_it:
901 nr_reclaimed++;
904 * Is there need to periodically free_page_list? It would
905 * appear not as the counts should be low
907 list_add(&page->lru, &free_pages);
908 continue;
910 cull_mlocked:
911 if (PageSwapCache(page))
912 try_to_free_swap(page);
913 unlock_page(page);
914 putback_lru_page(page);
915 reset_reclaim_mode(sc);
916 continue;
918 activate_locked:
919 /* Not a candidate for swapping, so reclaim swap space. */
920 if (PageSwapCache(page) && vm_swap_full())
921 try_to_free_swap(page);
922 VM_BUG_ON(PageActive(page));
923 SetPageActive(page);
924 pgactivate++;
925 keep_locked:
926 unlock_page(page);
927 keep:
928 reset_reclaim_mode(sc);
929 keep_lumpy:
930 list_add(&page->lru, &ret_pages);
931 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
935 * Tag a zone as congested if all the dirty pages encountered were
936 * backed by a congested BDI. In this case, reclaimers should just
937 * back off and wait for congestion to clear because further reclaim
938 * will encounter the same problem
940 if (nr_dirty == nr_congested && nr_dirty != 0)
941 zone_set_flag(zone, ZONE_CONGESTED);
943 free_page_list(&free_pages);
945 list_splice(&ret_pages, page_list);
946 count_vm_events(PGACTIVATE, pgactivate);
947 return nr_reclaimed;
951 * Attempt to remove the specified page from its LRU. Only take this page
952 * if it is of the appropriate PageActive status. Pages which are being
953 * freed elsewhere are also ignored.
955 * page: page to consider
956 * mode: one of the LRU isolation modes defined above
958 * returns 0 on success, -ve errno on failure.
960 int __isolate_lru_page(struct page *page, int mode, int file)
962 int ret = -EINVAL;
964 /* Only take pages on the LRU. */
965 if (!PageLRU(page))
966 return ret;
969 * When checking the active state, we need to be sure we are
970 * dealing with comparible boolean values. Take the logical not
971 * of each.
973 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
974 return ret;
976 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
977 return ret;
980 * When this function is being called for lumpy reclaim, we
981 * initially look into all LRU pages, active, inactive and
982 * unevictable; only give shrink_page_list evictable pages.
984 if (PageUnevictable(page))
985 return ret;
987 ret = -EBUSY;
989 if (likely(get_page_unless_zero(page))) {
991 * Be careful not to clear PageLRU until after we're
992 * sure the page is not being freed elsewhere -- the
993 * page release code relies on it.
995 ClearPageLRU(page);
996 ret = 0;
999 return ret;
1003 * zone->lru_lock is heavily contended. Some of the functions that
1004 * shrink the lists perform better by taking out a batch of pages
1005 * and working on them outside the LRU lock.
1007 * For pagecache intensive workloads, this function is the hottest
1008 * spot in the kernel (apart from copy_*_user functions).
1010 * Appropriate locks must be held before calling this function.
1012 * @nr_to_scan: The number of pages to look through on the list.
1013 * @src: The LRU list to pull pages off.
1014 * @dst: The temp list to put pages on to.
1015 * @scanned: The number of pages that were scanned.
1016 * @order: The caller's attempted allocation order
1017 * @mode: One of the LRU isolation modes
1018 * @file: True [1] if isolating file [!anon] pages
1020 * returns how many pages were moved onto *@dst.
1022 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1023 struct list_head *src, struct list_head *dst,
1024 unsigned long *scanned, int order, int mode, int file)
1026 unsigned long nr_taken = 0;
1027 unsigned long nr_lumpy_taken = 0;
1028 unsigned long nr_lumpy_dirty = 0;
1029 unsigned long nr_lumpy_failed = 0;
1030 unsigned long scan;
1032 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033 struct page *page;
1034 unsigned long pfn;
1035 unsigned long end_pfn;
1036 unsigned long page_pfn;
1037 int zone_id;
1039 page = lru_to_page(src);
1040 prefetchw_prev_lru_page(page, src, flags);
1042 VM_BUG_ON(!PageLRU(page));
1044 switch (__isolate_lru_page(page, mode, file)) {
1045 case 0:
1046 list_move(&page->lru, dst);
1047 mem_cgroup_del_lru(page);
1048 nr_taken += hpage_nr_pages(page);
1049 break;
1051 case -EBUSY:
1052 /* else it is being freed elsewhere */
1053 list_move(&page->lru, src);
1054 mem_cgroup_rotate_lru_list(page, page_lru(page));
1055 continue;
1057 default:
1058 BUG();
1061 if (!order)
1062 continue;
1065 * Attempt to take all pages in the order aligned region
1066 * surrounding the tag page. Only take those pages of
1067 * the same active state as that tag page. We may safely
1068 * round the target page pfn down to the requested order
1069 * as the mem_map is guarenteed valid out to MAX_ORDER,
1070 * where that page is in a different zone we will detect
1071 * it from its zone id and abort this block scan.
1073 zone_id = page_zone_id(page);
1074 page_pfn = page_to_pfn(page);
1075 pfn = page_pfn & ~((1 << order) - 1);
1076 end_pfn = pfn + (1 << order);
1077 for (; pfn < end_pfn; pfn++) {
1078 struct page *cursor_page;
1080 /* The target page is in the block, ignore it. */
1081 if (unlikely(pfn == page_pfn))
1082 continue;
1084 /* Avoid holes within the zone. */
1085 if (unlikely(!pfn_valid_within(pfn)))
1086 break;
1088 cursor_page = pfn_to_page(pfn);
1090 /* Check that we have not crossed a zone boundary. */
1091 if (unlikely(page_zone_id(cursor_page) != zone_id))
1092 break;
1095 * If we don't have enough swap space, reclaiming of
1096 * anon page which don't already have a swap slot is
1097 * pointless.
1099 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1100 !PageSwapCache(cursor_page))
1101 break;
1103 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1104 list_move(&cursor_page->lru, dst);
1105 mem_cgroup_del_lru(cursor_page);
1106 nr_taken += hpage_nr_pages(page);
1107 nr_lumpy_taken++;
1108 if (PageDirty(cursor_page))
1109 nr_lumpy_dirty++;
1110 scan++;
1111 } else {
1112 /* the page is freed already. */
1113 if (!page_count(cursor_page))
1114 continue;
1115 break;
1119 /* If we break out of the loop above, lumpy reclaim failed */
1120 if (pfn < end_pfn)
1121 nr_lumpy_failed++;
1124 *scanned = scan;
1126 trace_mm_vmscan_lru_isolate(order,
1127 nr_to_scan, scan,
1128 nr_taken,
1129 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1130 mode);
1131 return nr_taken;
1134 static unsigned long isolate_pages_global(unsigned long nr,
1135 struct list_head *dst,
1136 unsigned long *scanned, int order,
1137 int mode, struct zone *z,
1138 int active, int file)
1140 int lru = LRU_BASE;
1141 if (active)
1142 lru += LRU_ACTIVE;
1143 if (file)
1144 lru += LRU_FILE;
1145 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1146 mode, file);
1150 * clear_active_flags() is a helper for shrink_active_list(), clearing
1151 * any active bits from the pages in the list.
1153 static unsigned long clear_active_flags(struct list_head *page_list,
1154 unsigned int *count)
1156 int nr_active = 0;
1157 int lru;
1158 struct page *page;
1160 list_for_each_entry(page, page_list, lru) {
1161 int numpages = hpage_nr_pages(page);
1162 lru = page_lru_base_type(page);
1163 if (PageActive(page)) {
1164 lru += LRU_ACTIVE;
1165 ClearPageActive(page);
1166 nr_active += numpages;
1168 if (count)
1169 count[lru] += numpages;
1172 return nr_active;
1176 * isolate_lru_page - tries to isolate a page from its LRU list
1177 * @page: page to isolate from its LRU list
1179 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180 * vmstat statistic corresponding to whatever LRU list the page was on.
1182 * Returns 0 if the page was removed from an LRU list.
1183 * Returns -EBUSY if the page was not on an LRU list.
1185 * The returned page will have PageLRU() cleared. If it was found on
1186 * the active list, it will have PageActive set. If it was found on
1187 * the unevictable list, it will have the PageUnevictable bit set. That flag
1188 * may need to be cleared by the caller before letting the page go.
1190 * The vmstat statistic corresponding to the list on which the page was
1191 * found will be decremented.
1193 * Restrictions:
1194 * (1) Must be called with an elevated refcount on the page. This is a
1195 * fundamentnal difference from isolate_lru_pages (which is called
1196 * without a stable reference).
1197 * (2) the lru_lock must not be held.
1198 * (3) interrupts must be enabled.
1200 int isolate_lru_page(struct page *page)
1202 int ret = -EBUSY;
1204 if (PageLRU(page)) {
1205 struct zone *zone = page_zone(page);
1207 spin_lock_irq(&zone->lru_lock);
1208 if (PageLRU(page) && get_page_unless_zero(page)) {
1209 int lru = page_lru(page);
1210 ret = 0;
1211 ClearPageLRU(page);
1213 del_page_from_lru_list(zone, page, lru);
1215 spin_unlock_irq(&zone->lru_lock);
1217 return ret;
1221 * Are there way too many processes in the direct reclaim path already?
1223 static int too_many_isolated(struct zone *zone, int file,
1224 struct scan_control *sc)
1226 unsigned long inactive, isolated;
1228 if (current_is_kswapd())
1229 return 0;
1231 if (!scanning_global_lru(sc))
1232 return 0;
1234 if (file) {
1235 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1236 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1237 } else {
1238 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1239 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1242 return isolated > inactive;
1246 * TODO: Try merging with migrations version of putback_lru_pages
1248 static noinline_for_stack void
1249 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1250 unsigned long nr_anon, unsigned long nr_file,
1251 struct list_head *page_list)
1253 struct page *page;
1254 struct pagevec pvec;
1255 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1257 pagevec_init(&pvec, 1);
1260 * Put back any unfreeable pages.
1262 spin_lock(&zone->lru_lock);
1263 while (!list_empty(page_list)) {
1264 int lru;
1265 page = lru_to_page(page_list);
1266 VM_BUG_ON(PageLRU(page));
1267 list_del(&page->lru);
1268 if (unlikely(!page_evictable(page, NULL))) {
1269 spin_unlock_irq(&zone->lru_lock);
1270 putback_lru_page(page);
1271 spin_lock_irq(&zone->lru_lock);
1272 continue;
1274 lru = page_lru(page);
1275 if (is_active_lru(lru)) {
1276 int file = is_file_lru(lru);
1277 int numpages = hpage_nr_pages(page);
1278 reclaim_stat->recent_rotated[file] += numpages;
1279 if (putback_active_lru_page(zone, page))
1280 continue;
1282 SetPageLRU(page);
1283 add_page_to_lru_list(zone, page, lru);
1284 if (!pagevec_add(&pvec, page)) {
1285 spin_unlock_irq(&zone->lru_lock);
1286 __pagevec_release(&pvec);
1287 spin_lock_irq(&zone->lru_lock);
1290 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1291 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1293 spin_unlock_irq(&zone->lru_lock);
1294 pagevec_release(&pvec);
1297 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1298 struct scan_control *sc,
1299 unsigned long *nr_anon,
1300 unsigned long *nr_file,
1301 struct list_head *isolated_list)
1303 unsigned long nr_active;
1304 unsigned int count[NR_LRU_LISTS] = { 0, };
1305 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1307 nr_active = clear_active_flags(isolated_list, count);
1308 __count_vm_events(PGDEACTIVATE, nr_active);
1310 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1311 -count[LRU_ACTIVE_FILE]);
1312 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1313 -count[LRU_INACTIVE_FILE]);
1314 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1315 -count[LRU_ACTIVE_ANON]);
1316 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1317 -count[LRU_INACTIVE_ANON]);
1319 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1320 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1321 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1322 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1324 reclaim_stat->recent_scanned[0] += *nr_anon;
1325 reclaim_stat->recent_scanned[1] += *nr_file;
1329 * Returns true if the caller should wait to clean dirty/writeback pages.
1331 * If we are direct reclaiming for contiguous pages and we do not reclaim
1332 * everything in the list, try again and wait for writeback IO to complete.
1333 * This will stall high-order allocations noticeably. Only do that when really
1334 * need to free the pages under high memory pressure.
1336 static inline bool should_reclaim_stall(unsigned long nr_taken,
1337 unsigned long nr_freed,
1338 int priority,
1339 struct scan_control *sc)
1341 int lumpy_stall_priority;
1343 /* kswapd should not stall on sync IO */
1344 if (current_is_kswapd())
1345 return false;
1347 /* Only stall on lumpy reclaim */
1348 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1349 return false;
1351 /* If we have relaimed everything on the isolated list, no stall */
1352 if (nr_freed == nr_taken)
1353 return false;
1356 * For high-order allocations, there are two stall thresholds.
1357 * High-cost allocations stall immediately where as lower
1358 * order allocations such as stacks require the scanning
1359 * priority to be much higher before stalling.
1361 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1362 lumpy_stall_priority = DEF_PRIORITY;
1363 else
1364 lumpy_stall_priority = DEF_PRIORITY / 3;
1366 return priority <= lumpy_stall_priority;
1370 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1371 * of reclaimed pages
1373 static noinline_for_stack unsigned long
1374 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1375 struct scan_control *sc, int priority, int file)
1377 LIST_HEAD(page_list);
1378 unsigned long nr_scanned;
1379 unsigned long nr_reclaimed = 0;
1380 unsigned long nr_taken;
1381 unsigned long nr_anon;
1382 unsigned long nr_file;
1384 while (unlikely(too_many_isolated(zone, file, sc))) {
1385 congestion_wait(BLK_RW_ASYNC, HZ/10);
1387 /* We are about to die and free our memory. Return now. */
1388 if (fatal_signal_pending(current))
1389 return SWAP_CLUSTER_MAX;
1392 set_reclaim_mode(priority, sc, false);
1393 lru_add_drain();
1394 spin_lock_irq(&zone->lru_lock);
1396 if (scanning_global_lru(sc)) {
1397 nr_taken = isolate_pages_global(nr_to_scan,
1398 &page_list, &nr_scanned, sc->order,
1399 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1400 ISOLATE_BOTH : ISOLATE_INACTIVE,
1401 zone, 0, file);
1402 zone->pages_scanned += nr_scanned;
1403 if (current_is_kswapd())
1404 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1405 nr_scanned);
1406 else
1407 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1408 nr_scanned);
1409 } else {
1410 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1411 &page_list, &nr_scanned, sc->order,
1412 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1413 ISOLATE_BOTH : ISOLATE_INACTIVE,
1414 zone, sc->mem_cgroup,
1415 0, file);
1417 * mem_cgroup_isolate_pages() keeps track of
1418 * scanned pages on its own.
1422 if (nr_taken == 0) {
1423 spin_unlock_irq(&zone->lru_lock);
1424 return 0;
1427 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1429 spin_unlock_irq(&zone->lru_lock);
1431 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1433 /* Check if we should syncronously wait for writeback */
1434 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1435 set_reclaim_mode(priority, sc, true);
1436 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1439 local_irq_disable();
1440 if (current_is_kswapd())
1441 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1442 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1444 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1446 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1447 zone_idx(zone),
1448 nr_scanned, nr_reclaimed,
1449 priority,
1450 trace_shrink_flags(file, sc->reclaim_mode));
1451 return nr_reclaimed;
1455 * This moves pages from the active list to the inactive list.
1457 * We move them the other way if the page is referenced by one or more
1458 * processes, from rmap.
1460 * If the pages are mostly unmapped, the processing is fast and it is
1461 * appropriate to hold zone->lru_lock across the whole operation. But if
1462 * the pages are mapped, the processing is slow (page_referenced()) so we
1463 * should drop zone->lru_lock around each page. It's impossible to balance
1464 * this, so instead we remove the pages from the LRU while processing them.
1465 * It is safe to rely on PG_active against the non-LRU pages in here because
1466 * nobody will play with that bit on a non-LRU page.
1468 * The downside is that we have to touch page->_count against each page.
1469 * But we had to alter page->flags anyway.
1472 static void move_active_pages_to_lru(struct zone *zone,
1473 struct list_head *list,
1474 enum lru_list lru)
1476 unsigned long pgmoved = 0;
1477 struct pagevec pvec;
1478 struct page *page;
1480 pagevec_init(&pvec, 1);
1482 while (!list_empty(list)) {
1483 page = lru_to_page(list);
1485 VM_BUG_ON(PageLRU(page));
1486 SetPageLRU(page);
1488 list_move(&page->lru, &zone->lru[lru].list);
1489 mem_cgroup_add_lru_list(page, lru);
1490 pgmoved += hpage_nr_pages(page);
1492 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1493 spin_unlock_irq(&zone->lru_lock);
1494 if (buffer_heads_over_limit)
1495 pagevec_strip(&pvec);
1496 __pagevec_release(&pvec);
1497 spin_lock_irq(&zone->lru_lock);
1500 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1501 if (!is_active_lru(lru))
1502 __count_vm_events(PGDEACTIVATE, pgmoved);
1505 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1506 struct scan_control *sc, int priority, int file)
1508 unsigned long nr_taken;
1509 unsigned long pgscanned;
1510 unsigned long vm_flags;
1511 LIST_HEAD(l_hold); /* The pages which were snipped off */
1512 LIST_HEAD(l_active);
1513 LIST_HEAD(l_inactive);
1514 struct page *page;
1515 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1516 unsigned long nr_rotated = 0;
1518 lru_add_drain();
1519 spin_lock_irq(&zone->lru_lock);
1520 if (scanning_global_lru(sc)) {
1521 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1522 &pgscanned, sc->order,
1523 ISOLATE_ACTIVE, zone,
1524 1, file);
1525 zone->pages_scanned += pgscanned;
1526 } else {
1527 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1528 &pgscanned, sc->order,
1529 ISOLATE_ACTIVE, zone,
1530 sc->mem_cgroup, 1, file);
1532 * mem_cgroup_isolate_pages() keeps track of
1533 * scanned pages on its own.
1537 reclaim_stat->recent_scanned[file] += nr_taken;
1539 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1540 if (file)
1541 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1542 else
1543 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1544 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1545 spin_unlock_irq(&zone->lru_lock);
1547 while (!list_empty(&l_hold)) {
1548 cond_resched();
1549 page = lru_to_page(&l_hold);
1550 list_del(&page->lru);
1552 if (unlikely(!page_evictable(page, NULL))) {
1553 putback_lru_page(page);
1554 continue;
1557 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1558 nr_rotated += hpage_nr_pages(page);
1560 * Identify referenced, file-backed active pages and
1561 * give them one more trip around the active list. So
1562 * that executable code get better chances to stay in
1563 * memory under moderate memory pressure. Anon pages
1564 * are not likely to be evicted by use-once streaming
1565 * IO, plus JVM can create lots of anon VM_EXEC pages,
1566 * so we ignore them here.
1568 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1569 list_add(&page->lru, &l_active);
1570 continue;
1574 ClearPageActive(page); /* we are de-activating */
1575 list_add(&page->lru, &l_inactive);
1579 * Move pages back to the lru list.
1581 spin_lock_irq(&zone->lru_lock);
1583 * Count referenced pages from currently used mappings as rotated,
1584 * even though only some of them are actually re-activated. This
1585 * helps balance scan pressure between file and anonymous pages in
1586 * get_scan_ratio.
1588 reclaim_stat->recent_rotated[file] += nr_rotated;
1590 move_active_pages_to_lru(zone, &l_active,
1591 LRU_ACTIVE + file * LRU_FILE);
1592 move_active_pages_to_lru(zone, &l_inactive,
1593 LRU_BASE + file * LRU_FILE);
1594 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1595 spin_unlock_irq(&zone->lru_lock);
1598 #ifdef CONFIG_SWAP
1599 static int inactive_anon_is_low_global(struct zone *zone)
1601 unsigned long active, inactive;
1603 active = zone_page_state(zone, NR_ACTIVE_ANON);
1604 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1606 if (inactive * zone->inactive_ratio < active)
1607 return 1;
1609 return 0;
1613 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1614 * @zone: zone to check
1615 * @sc: scan control of this context
1617 * Returns true if the zone does not have enough inactive anon pages,
1618 * meaning some active anon pages need to be deactivated.
1620 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1622 int low;
1625 * If we don't have swap space, anonymous page deactivation
1626 * is pointless.
1628 if (!total_swap_pages)
1629 return 0;
1631 if (scanning_global_lru(sc))
1632 low = inactive_anon_is_low_global(zone);
1633 else
1634 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1635 return low;
1637 #else
1638 static inline int inactive_anon_is_low(struct zone *zone,
1639 struct scan_control *sc)
1641 return 0;
1643 #endif
1645 static int inactive_file_is_low_global(struct zone *zone)
1647 unsigned long active, inactive;
1649 active = zone_page_state(zone, NR_ACTIVE_FILE);
1650 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1652 return (active > inactive);
1656 * inactive_file_is_low - check if file pages need to be deactivated
1657 * @zone: zone to check
1658 * @sc: scan control of this context
1660 * When the system is doing streaming IO, memory pressure here
1661 * ensures that active file pages get deactivated, until more
1662 * than half of the file pages are on the inactive list.
1664 * Once we get to that situation, protect the system's working
1665 * set from being evicted by disabling active file page aging.
1667 * This uses a different ratio than the anonymous pages, because
1668 * the page cache uses a use-once replacement algorithm.
1670 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1672 int low;
1674 if (scanning_global_lru(sc))
1675 low = inactive_file_is_low_global(zone);
1676 else
1677 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1678 return low;
1681 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1682 int file)
1684 if (file)
1685 return inactive_file_is_low(zone, sc);
1686 else
1687 return inactive_anon_is_low(zone, sc);
1690 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1691 struct zone *zone, struct scan_control *sc, int priority)
1693 int file = is_file_lru(lru);
1695 if (is_active_lru(lru)) {
1696 if (inactive_list_is_low(zone, sc, file))
1697 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1698 return 0;
1701 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1705 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1706 * until we collected @swap_cluster_max pages to scan.
1708 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1709 unsigned long *nr_saved_scan)
1711 unsigned long nr;
1713 *nr_saved_scan += nr_to_scan;
1714 nr = *nr_saved_scan;
1716 if (nr >= SWAP_CLUSTER_MAX)
1717 *nr_saved_scan = 0;
1718 else
1719 nr = 0;
1721 return nr;
1725 * Determine how aggressively the anon and file LRU lists should be
1726 * scanned. The relative value of each set of LRU lists is determined
1727 * by looking at the fraction of the pages scanned we did rotate back
1728 * onto the active list instead of evict.
1730 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1732 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1733 unsigned long *nr, int priority)
1735 unsigned long anon, file, free;
1736 unsigned long anon_prio, file_prio;
1737 unsigned long ap, fp;
1738 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1739 u64 fraction[2], denominator;
1740 enum lru_list l;
1741 int noswap = 0;
1743 /* If we have no swap space, do not bother scanning anon pages. */
1744 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1745 noswap = 1;
1746 fraction[0] = 0;
1747 fraction[1] = 1;
1748 denominator = 1;
1749 goto out;
1752 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1753 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1754 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1755 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1757 if (scanning_global_lru(sc)) {
1758 free = zone_page_state(zone, NR_FREE_PAGES);
1759 /* If we have very few page cache pages,
1760 force-scan anon pages. */
1761 if (unlikely(file + free <= high_wmark_pages(zone))) {
1762 fraction[0] = 1;
1763 fraction[1] = 0;
1764 denominator = 1;
1765 goto out;
1770 * With swappiness at 100, anonymous and file have the same priority.
1771 * This scanning priority is essentially the inverse of IO cost.
1773 anon_prio = sc->swappiness;
1774 file_prio = 200 - sc->swappiness;
1777 * OK, so we have swap space and a fair amount of page cache
1778 * pages. We use the recently rotated / recently scanned
1779 * ratios to determine how valuable each cache is.
1781 * Because workloads change over time (and to avoid overflow)
1782 * we keep these statistics as a floating average, which ends
1783 * up weighing recent references more than old ones.
1785 * anon in [0], file in [1]
1787 spin_lock_irq(&zone->lru_lock);
1788 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1789 reclaim_stat->recent_scanned[0] /= 2;
1790 reclaim_stat->recent_rotated[0] /= 2;
1793 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1794 reclaim_stat->recent_scanned[1] /= 2;
1795 reclaim_stat->recent_rotated[1] /= 2;
1799 * The amount of pressure on anon vs file pages is inversely
1800 * proportional to the fraction of recently scanned pages on
1801 * each list that were recently referenced and in active use.
1803 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1804 ap /= reclaim_stat->recent_rotated[0] + 1;
1806 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1807 fp /= reclaim_stat->recent_rotated[1] + 1;
1808 spin_unlock_irq(&zone->lru_lock);
1810 fraction[0] = ap;
1811 fraction[1] = fp;
1812 denominator = ap + fp + 1;
1813 out:
1814 for_each_evictable_lru(l) {
1815 int file = is_file_lru(l);
1816 unsigned long scan;
1818 scan = zone_nr_lru_pages(zone, sc, l);
1819 if (priority || noswap) {
1820 scan >>= priority;
1821 scan = div64_u64(scan * fraction[file], denominator);
1823 nr[l] = nr_scan_try_batch(scan,
1824 &reclaim_stat->nr_saved_scan[l]);
1829 * Reclaim/compaction depends on a number of pages being freed. To avoid
1830 * disruption to the system, a small number of order-0 pages continue to be
1831 * rotated and reclaimed in the normal fashion. However, by the time we get
1832 * back to the allocator and call try_to_compact_zone(), we ensure that
1833 * there are enough free pages for it to be likely successful
1835 static inline bool should_continue_reclaim(struct zone *zone,
1836 unsigned long nr_reclaimed,
1837 unsigned long nr_scanned,
1838 struct scan_control *sc)
1840 unsigned long pages_for_compaction;
1841 unsigned long inactive_lru_pages;
1843 /* If not in reclaim/compaction mode, stop */
1844 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1845 return false;
1848 * If we failed to reclaim and have scanned the full list, stop.
1849 * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
1850 * faster but obviously would be less likely to succeed
1851 * allocation. If this is desirable, use GFP_REPEAT to decide
1852 * if both reclaimed and scanned should be checked or just
1853 * reclaimed
1855 if (!nr_reclaimed && !nr_scanned)
1856 return false;
1859 * If we have not reclaimed enough pages for compaction and the
1860 * inactive lists are large enough, continue reclaiming
1862 pages_for_compaction = (2UL << sc->order);
1863 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1864 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1865 if (sc->nr_reclaimed < pages_for_compaction &&
1866 inactive_lru_pages > pages_for_compaction)
1867 return true;
1869 /* If compaction would go ahead or the allocation would succeed, stop */
1870 switch (compaction_suitable(zone, sc->order)) {
1871 case COMPACT_PARTIAL:
1872 case COMPACT_CONTINUE:
1873 return false;
1874 default:
1875 return true;
1880 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1882 static void shrink_zone(int priority, struct zone *zone,
1883 struct scan_control *sc)
1885 unsigned long nr[NR_LRU_LISTS];
1886 unsigned long nr_to_scan;
1887 enum lru_list l;
1888 unsigned long nr_reclaimed;
1889 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1890 unsigned long nr_scanned = sc->nr_scanned;
1892 restart:
1893 nr_reclaimed = 0;
1894 get_scan_count(zone, sc, nr, priority);
1896 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1897 nr[LRU_INACTIVE_FILE]) {
1898 for_each_evictable_lru(l) {
1899 if (nr[l]) {
1900 nr_to_scan = min_t(unsigned long,
1901 nr[l], SWAP_CLUSTER_MAX);
1902 nr[l] -= nr_to_scan;
1904 nr_reclaimed += shrink_list(l, nr_to_scan,
1905 zone, sc, priority);
1909 * On large memory systems, scan >> priority can become
1910 * really large. This is fine for the starting priority;
1911 * we want to put equal scanning pressure on each zone.
1912 * However, if the VM has a harder time of freeing pages,
1913 * with multiple processes reclaiming pages, the total
1914 * freeing target can get unreasonably large.
1916 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1917 break;
1919 sc->nr_reclaimed += nr_reclaimed;
1922 * Even if we did not try to evict anon pages at all, we want to
1923 * rebalance the anon lru active/inactive ratio.
1925 if (inactive_anon_is_low(zone, sc))
1926 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1928 /* reclaim/compaction might need reclaim to continue */
1929 if (should_continue_reclaim(zone, nr_reclaimed,
1930 sc->nr_scanned - nr_scanned, sc))
1931 goto restart;
1933 throttle_vm_writeout(sc->gfp_mask);
1937 * This is the direct reclaim path, for page-allocating processes. We only
1938 * try to reclaim pages from zones which will satisfy the caller's allocation
1939 * request.
1941 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1942 * Because:
1943 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1944 * allocation or
1945 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1946 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1947 * zone defense algorithm.
1949 * If a zone is deemed to be full of pinned pages then just give it a light
1950 * scan then give up on it.
1952 static void shrink_zones(int priority, struct zonelist *zonelist,
1953 struct scan_control *sc)
1955 struct zoneref *z;
1956 struct zone *zone;
1958 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1959 gfp_zone(sc->gfp_mask), sc->nodemask) {
1960 if (!populated_zone(zone))
1961 continue;
1963 * Take care memory controller reclaiming has small influence
1964 * to global LRU.
1966 if (scanning_global_lru(sc)) {
1967 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1968 continue;
1969 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1970 continue; /* Let kswapd poll it */
1973 shrink_zone(priority, zone, sc);
1977 static bool zone_reclaimable(struct zone *zone)
1979 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1983 * As hibernation is going on, kswapd is freezed so that it can't mark
1984 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1985 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1987 static bool all_unreclaimable(struct zonelist *zonelist,
1988 struct scan_control *sc)
1990 struct zoneref *z;
1991 struct zone *zone;
1992 bool all_unreclaimable = true;
1994 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1995 gfp_zone(sc->gfp_mask), sc->nodemask) {
1996 if (!populated_zone(zone))
1997 continue;
1998 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1999 continue;
2000 if (zone_reclaimable(zone)) {
2001 all_unreclaimable = false;
2002 break;
2006 return all_unreclaimable;
2010 * This is the main entry point to direct page reclaim.
2012 * If a full scan of the inactive list fails to free enough memory then we
2013 * are "out of memory" and something needs to be killed.
2015 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2016 * high - the zone may be full of dirty or under-writeback pages, which this
2017 * caller can't do much about. We kick the writeback threads and take explicit
2018 * naps in the hope that some of these pages can be written. But if the
2019 * allocating task holds filesystem locks which prevent writeout this might not
2020 * work, and the allocation attempt will fail.
2022 * returns: 0, if no pages reclaimed
2023 * else, the number of pages reclaimed
2025 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2026 struct scan_control *sc)
2028 int priority;
2029 unsigned long total_scanned = 0;
2030 struct reclaim_state *reclaim_state = current->reclaim_state;
2031 struct zoneref *z;
2032 struct zone *zone;
2033 unsigned long writeback_threshold;
2035 get_mems_allowed();
2036 delayacct_freepages_start();
2038 if (scanning_global_lru(sc))
2039 count_vm_event(ALLOCSTALL);
2041 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2042 sc->nr_scanned = 0;
2043 if (!priority)
2044 disable_swap_token();
2045 shrink_zones(priority, zonelist, sc);
2047 * Don't shrink slabs when reclaiming memory from
2048 * over limit cgroups
2050 if (scanning_global_lru(sc)) {
2051 unsigned long lru_pages = 0;
2052 for_each_zone_zonelist(zone, z, zonelist,
2053 gfp_zone(sc->gfp_mask)) {
2054 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2055 continue;
2057 lru_pages += zone_reclaimable_pages(zone);
2060 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2061 if (reclaim_state) {
2062 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2063 reclaim_state->reclaimed_slab = 0;
2066 total_scanned += sc->nr_scanned;
2067 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2068 goto out;
2071 * Try to write back as many pages as we just scanned. This
2072 * tends to cause slow streaming writers to write data to the
2073 * disk smoothly, at the dirtying rate, which is nice. But
2074 * that's undesirable in laptop mode, where we *want* lumpy
2075 * writeout. So in laptop mode, write out the whole world.
2077 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2078 if (total_scanned > writeback_threshold) {
2079 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2080 sc->may_writepage = 1;
2083 /* Take a nap, wait for some writeback to complete */
2084 if (!sc->hibernation_mode && sc->nr_scanned &&
2085 priority < DEF_PRIORITY - 2) {
2086 struct zone *preferred_zone;
2088 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2089 NULL, &preferred_zone);
2090 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2094 out:
2095 delayacct_freepages_end();
2096 put_mems_allowed();
2098 if (sc->nr_reclaimed)
2099 return sc->nr_reclaimed;
2101 /* top priority shrink_zones still had more to do? don't OOM, then */
2102 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2103 return 1;
2105 return 0;
2108 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2109 gfp_t gfp_mask, nodemask_t *nodemask)
2111 unsigned long nr_reclaimed;
2112 struct scan_control sc = {
2113 .gfp_mask = gfp_mask,
2114 .may_writepage = !laptop_mode,
2115 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2116 .may_unmap = 1,
2117 .may_swap = 1,
2118 .swappiness = vm_swappiness,
2119 .order = order,
2120 .mem_cgroup = NULL,
2121 .nodemask = nodemask,
2124 trace_mm_vmscan_direct_reclaim_begin(order,
2125 sc.may_writepage,
2126 gfp_mask);
2128 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2130 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2132 return nr_reclaimed;
2135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2137 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2138 gfp_t gfp_mask, bool noswap,
2139 unsigned int swappiness,
2140 struct zone *zone)
2142 struct scan_control sc = {
2143 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2144 .may_writepage = !laptop_mode,
2145 .may_unmap = 1,
2146 .may_swap = !noswap,
2147 .swappiness = swappiness,
2148 .order = 0,
2149 .mem_cgroup = mem,
2151 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2152 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2154 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2155 sc.may_writepage,
2156 sc.gfp_mask);
2159 * NOTE: Although we can get the priority field, using it
2160 * here is not a good idea, since it limits the pages we can scan.
2161 * if we don't reclaim here, the shrink_zone from balance_pgdat
2162 * will pick up pages from other mem cgroup's as well. We hack
2163 * the priority and make it zero.
2165 shrink_zone(0, zone, &sc);
2167 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2169 return sc.nr_reclaimed;
2172 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2173 gfp_t gfp_mask,
2174 bool noswap,
2175 unsigned int swappiness)
2177 struct zonelist *zonelist;
2178 unsigned long nr_reclaimed;
2179 struct scan_control sc = {
2180 .may_writepage = !laptop_mode,
2181 .may_unmap = 1,
2182 .may_swap = !noswap,
2183 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2184 .swappiness = swappiness,
2185 .order = 0,
2186 .mem_cgroup = mem_cont,
2187 .nodemask = NULL, /* we don't care the placement */
2190 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2191 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2192 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2194 trace_mm_vmscan_memcg_reclaim_begin(0,
2195 sc.may_writepage,
2196 sc.gfp_mask);
2198 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2200 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2202 return nr_reclaimed;
2204 #endif
2207 * pgdat_balanced is used when checking if a node is balanced for high-order
2208 * allocations. Only zones that meet watermarks and are in a zone allowed
2209 * by the callers classzone_idx are added to balanced_pages. The total of
2210 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2211 * for the node to be considered balanced. Forcing all zones to be balanced
2212 * for high orders can cause excessive reclaim when there are imbalanced zones.
2213 * The choice of 25% is due to
2214 * o a 16M DMA zone that is balanced will not balance a zone on any
2215 * reasonable sized machine
2216 * o On all other machines, the top zone must be at least a reasonable
2217 * precentage of the middle zones. For example, on 32-bit x86, highmem
2218 * would need to be at least 256M for it to be balance a whole node.
2219 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2220 * to balance a node on its own. These seemed like reasonable ratios.
2222 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2223 int classzone_idx)
2225 unsigned long present_pages = 0;
2226 int i;
2228 for (i = 0; i <= classzone_idx; i++)
2229 present_pages += pgdat->node_zones[i].present_pages;
2231 return balanced_pages > (present_pages >> 2);
2234 /* is kswapd sleeping prematurely? */
2235 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2236 int classzone_idx)
2238 int i;
2239 unsigned long balanced = 0;
2240 bool all_zones_ok = true;
2242 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2243 if (remaining)
2244 return true;
2246 /* Check the watermark levels */
2247 for (i = 0; i < pgdat->nr_zones; i++) {
2248 struct zone *zone = pgdat->node_zones + i;
2250 if (!populated_zone(zone))
2251 continue;
2254 * balance_pgdat() skips over all_unreclaimable after
2255 * DEF_PRIORITY. Effectively, it considers them balanced so
2256 * they must be considered balanced here as well if kswapd
2257 * is to sleep
2259 if (zone->all_unreclaimable) {
2260 balanced += zone->present_pages;
2261 continue;
2264 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2265 classzone_idx, 0))
2266 all_zones_ok = false;
2267 else
2268 balanced += zone->present_pages;
2272 * For high-order requests, the balanced zones must contain at least
2273 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2274 * must be balanced
2276 if (order)
2277 return pgdat_balanced(pgdat, balanced, classzone_idx);
2278 else
2279 return !all_zones_ok;
2283 * For kswapd, balance_pgdat() will work across all this node's zones until
2284 * they are all at high_wmark_pages(zone).
2286 * Returns the final order kswapd was reclaiming at
2288 * There is special handling here for zones which are full of pinned pages.
2289 * This can happen if the pages are all mlocked, or if they are all used by
2290 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2291 * What we do is to detect the case where all pages in the zone have been
2292 * scanned twice and there has been zero successful reclaim. Mark the zone as
2293 * dead and from now on, only perform a short scan. Basically we're polling
2294 * the zone for when the problem goes away.
2296 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2297 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2298 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2299 * lower zones regardless of the number of free pages in the lower zones. This
2300 * interoperates with the page allocator fallback scheme to ensure that aging
2301 * of pages is balanced across the zones.
2303 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2304 int *classzone_idx)
2306 int all_zones_ok;
2307 unsigned long balanced;
2308 int priority;
2309 int i;
2310 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2311 unsigned long total_scanned;
2312 struct reclaim_state *reclaim_state = current->reclaim_state;
2313 struct scan_control sc = {
2314 .gfp_mask = GFP_KERNEL,
2315 .may_unmap = 1,
2316 .may_swap = 1,
2318 * kswapd doesn't want to be bailed out while reclaim. because
2319 * we want to put equal scanning pressure on each zone.
2321 .nr_to_reclaim = ULONG_MAX,
2322 .swappiness = vm_swappiness,
2323 .order = order,
2324 .mem_cgroup = NULL,
2326 loop_again:
2327 total_scanned = 0;
2328 sc.nr_reclaimed = 0;
2329 sc.may_writepage = !laptop_mode;
2330 count_vm_event(PAGEOUTRUN);
2332 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2333 unsigned long lru_pages = 0;
2334 int has_under_min_watermark_zone = 0;
2336 /* The swap token gets in the way of swapout... */
2337 if (!priority)
2338 disable_swap_token();
2340 all_zones_ok = 1;
2341 balanced = 0;
2344 * Scan in the highmem->dma direction for the highest
2345 * zone which needs scanning
2347 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2348 struct zone *zone = pgdat->node_zones + i;
2350 if (!populated_zone(zone))
2351 continue;
2353 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2354 continue;
2357 * Do some background aging of the anon list, to give
2358 * pages a chance to be referenced before reclaiming.
2360 if (inactive_anon_is_low(zone, &sc))
2361 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2362 &sc, priority, 0);
2364 if (!zone_watermark_ok_safe(zone, order,
2365 high_wmark_pages(zone), 0, 0)) {
2366 end_zone = i;
2367 *classzone_idx = i;
2368 break;
2371 if (i < 0)
2372 goto out;
2374 for (i = 0; i <= end_zone; i++) {
2375 struct zone *zone = pgdat->node_zones + i;
2377 lru_pages += zone_reclaimable_pages(zone);
2381 * Now scan the zone in the dma->highmem direction, stopping
2382 * at the last zone which needs scanning.
2384 * We do this because the page allocator works in the opposite
2385 * direction. This prevents the page allocator from allocating
2386 * pages behind kswapd's direction of progress, which would
2387 * cause too much scanning of the lower zones.
2389 for (i = 0; i <= end_zone; i++) {
2390 int compaction;
2391 struct zone *zone = pgdat->node_zones + i;
2392 int nr_slab;
2394 if (!populated_zone(zone))
2395 continue;
2397 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2398 continue;
2400 sc.nr_scanned = 0;
2403 * Call soft limit reclaim before calling shrink_zone.
2404 * For now we ignore the return value
2406 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2409 * We put equal pressure on every zone, unless one
2410 * zone has way too many pages free already.
2412 if (!zone_watermark_ok_safe(zone, order,
2413 8*high_wmark_pages(zone), end_zone, 0))
2414 shrink_zone(priority, zone, &sc);
2415 reclaim_state->reclaimed_slab = 0;
2416 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2417 lru_pages);
2418 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2419 total_scanned += sc.nr_scanned;
2421 compaction = 0;
2422 if (order &&
2423 zone_watermark_ok(zone, 0,
2424 high_wmark_pages(zone),
2425 end_zone, 0) &&
2426 !zone_watermark_ok(zone, order,
2427 high_wmark_pages(zone),
2428 end_zone, 0)) {
2429 compact_zone_order(zone,
2430 order,
2431 sc.gfp_mask, false,
2432 COMPACT_MODE_KSWAPD);
2433 compaction = 1;
2436 if (zone->all_unreclaimable)
2437 continue;
2438 if (!compaction && nr_slab == 0 &&
2439 !zone_reclaimable(zone))
2440 zone->all_unreclaimable = 1;
2442 * If we've done a decent amount of scanning and
2443 * the reclaim ratio is low, start doing writepage
2444 * even in laptop mode
2446 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2447 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2448 sc.may_writepage = 1;
2450 if (!zone_watermark_ok_safe(zone, order,
2451 high_wmark_pages(zone), end_zone, 0)) {
2452 all_zones_ok = 0;
2454 * We are still under min water mark. This
2455 * means that we have a GFP_ATOMIC allocation
2456 * failure risk. Hurry up!
2458 if (!zone_watermark_ok_safe(zone, order,
2459 min_wmark_pages(zone), end_zone, 0))
2460 has_under_min_watermark_zone = 1;
2461 } else {
2463 * If a zone reaches its high watermark,
2464 * consider it to be no longer congested. It's
2465 * possible there are dirty pages backed by
2466 * congested BDIs but as pressure is relieved,
2467 * spectulatively avoid congestion waits
2469 zone_clear_flag(zone, ZONE_CONGESTED);
2470 if (i <= *classzone_idx)
2471 balanced += zone->present_pages;
2475 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2476 break; /* kswapd: all done */
2478 * OK, kswapd is getting into trouble. Take a nap, then take
2479 * another pass across the zones.
2481 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2482 if (has_under_min_watermark_zone)
2483 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2484 else
2485 congestion_wait(BLK_RW_ASYNC, HZ/10);
2489 * We do this so kswapd doesn't build up large priorities for
2490 * example when it is freeing in parallel with allocators. It
2491 * matches the direct reclaim path behaviour in terms of impact
2492 * on zone->*_priority.
2494 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2495 break;
2497 out:
2500 * order-0: All zones must meet high watermark for a balanced node
2501 * high-order: Balanced zones must make up at least 25% of the node
2502 * for the node to be balanced
2504 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2505 cond_resched();
2507 try_to_freeze();
2510 * Fragmentation may mean that the system cannot be
2511 * rebalanced for high-order allocations in all zones.
2512 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2513 * it means the zones have been fully scanned and are still
2514 * not balanced. For high-order allocations, there is
2515 * little point trying all over again as kswapd may
2516 * infinite loop.
2518 * Instead, recheck all watermarks at order-0 as they
2519 * are the most important. If watermarks are ok, kswapd will go
2520 * back to sleep. High-order users can still perform direct
2521 * reclaim if they wish.
2523 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2524 order = sc.order = 0;
2526 goto loop_again;
2530 * If kswapd was reclaiming at a higher order, it has the option of
2531 * sleeping without all zones being balanced. Before it does, it must
2532 * ensure that the watermarks for order-0 on *all* zones are met and
2533 * that the congestion flags are cleared. The congestion flag must
2534 * be cleared as kswapd is the only mechanism that clears the flag
2535 * and it is potentially going to sleep here.
2537 if (order) {
2538 for (i = 0; i <= end_zone; i++) {
2539 struct zone *zone = pgdat->node_zones + i;
2541 if (!populated_zone(zone))
2542 continue;
2544 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2545 continue;
2547 /* Confirm the zone is balanced for order-0 */
2548 if (!zone_watermark_ok(zone, 0,
2549 high_wmark_pages(zone), 0, 0)) {
2550 order = sc.order = 0;
2551 goto loop_again;
2554 /* If balanced, clear the congested flag */
2555 zone_clear_flag(zone, ZONE_CONGESTED);
2560 * Return the order we were reclaiming at so sleeping_prematurely()
2561 * makes a decision on the order we were last reclaiming at. However,
2562 * if another caller entered the allocator slow path while kswapd
2563 * was awake, order will remain at the higher level
2565 *classzone_idx = end_zone;
2566 return order;
2569 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2571 long remaining = 0;
2572 DEFINE_WAIT(wait);
2574 if (freezing(current) || kthread_should_stop())
2575 return;
2577 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2579 /* Try to sleep for a short interval */
2580 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2581 remaining = schedule_timeout(HZ/10);
2582 finish_wait(&pgdat->kswapd_wait, &wait);
2583 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2587 * After a short sleep, check if it was a premature sleep. If not, then
2588 * go fully to sleep until explicitly woken up.
2590 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2591 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2594 * vmstat counters are not perfectly accurate and the estimated
2595 * value for counters such as NR_FREE_PAGES can deviate from the
2596 * true value by nr_online_cpus * threshold. To avoid the zone
2597 * watermarks being breached while under pressure, we reduce the
2598 * per-cpu vmstat threshold while kswapd is awake and restore
2599 * them before going back to sleep.
2601 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2602 schedule();
2603 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2604 } else {
2605 if (remaining)
2606 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2607 else
2608 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2610 finish_wait(&pgdat->kswapd_wait, &wait);
2614 * The background pageout daemon, started as a kernel thread
2615 * from the init process.
2617 * This basically trickles out pages so that we have _some_
2618 * free memory available even if there is no other activity
2619 * that frees anything up. This is needed for things like routing
2620 * etc, where we otherwise might have all activity going on in
2621 * asynchronous contexts that cannot page things out.
2623 * If there are applications that are active memory-allocators
2624 * (most normal use), this basically shouldn't matter.
2626 static int kswapd(void *p)
2628 unsigned long order;
2629 int classzone_idx;
2630 pg_data_t *pgdat = (pg_data_t*)p;
2631 struct task_struct *tsk = current;
2633 struct reclaim_state reclaim_state = {
2634 .reclaimed_slab = 0,
2636 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2638 lockdep_set_current_reclaim_state(GFP_KERNEL);
2640 if (!cpumask_empty(cpumask))
2641 set_cpus_allowed_ptr(tsk, cpumask);
2642 current->reclaim_state = &reclaim_state;
2645 * Tell the memory management that we're a "memory allocator",
2646 * and that if we need more memory we should get access to it
2647 * regardless (see "__alloc_pages()"). "kswapd" should
2648 * never get caught in the normal page freeing logic.
2650 * (Kswapd normally doesn't need memory anyway, but sometimes
2651 * you need a small amount of memory in order to be able to
2652 * page out something else, and this flag essentially protects
2653 * us from recursively trying to free more memory as we're
2654 * trying to free the first piece of memory in the first place).
2656 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2657 set_freezable();
2659 order = 0;
2660 classzone_idx = MAX_NR_ZONES - 1;
2661 for ( ; ; ) {
2662 unsigned long new_order;
2663 int new_classzone_idx;
2664 int ret;
2666 new_order = pgdat->kswapd_max_order;
2667 new_classzone_idx = pgdat->classzone_idx;
2668 pgdat->kswapd_max_order = 0;
2669 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2670 if (order < new_order || classzone_idx > new_classzone_idx) {
2672 * Don't sleep if someone wants a larger 'order'
2673 * allocation or has tigher zone constraints
2675 order = new_order;
2676 classzone_idx = new_classzone_idx;
2677 } else {
2678 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2679 order = pgdat->kswapd_max_order;
2680 classzone_idx = pgdat->classzone_idx;
2681 pgdat->kswapd_max_order = 0;
2682 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2685 ret = try_to_freeze();
2686 if (kthread_should_stop())
2687 break;
2690 * We can speed up thawing tasks if we don't call balance_pgdat
2691 * after returning from the refrigerator
2693 if (!ret) {
2694 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2695 order = balance_pgdat(pgdat, order, &classzone_idx);
2698 return 0;
2702 * A zone is low on free memory, so wake its kswapd task to service it.
2704 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2706 pg_data_t *pgdat;
2708 if (!populated_zone(zone))
2709 return;
2711 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2712 return;
2713 pgdat = zone->zone_pgdat;
2714 if (pgdat->kswapd_max_order < order) {
2715 pgdat->kswapd_max_order = order;
2716 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2718 if (!waitqueue_active(&pgdat->kswapd_wait))
2719 return;
2720 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2721 return;
2723 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2724 wake_up_interruptible(&pgdat->kswapd_wait);
2728 * The reclaimable count would be mostly accurate.
2729 * The less reclaimable pages may be
2730 * - mlocked pages, which will be moved to unevictable list when encountered
2731 * - mapped pages, which may require several travels to be reclaimed
2732 * - dirty pages, which is not "instantly" reclaimable
2734 unsigned long global_reclaimable_pages(void)
2736 int nr;
2738 nr = global_page_state(NR_ACTIVE_FILE) +
2739 global_page_state(NR_INACTIVE_FILE);
2741 if (nr_swap_pages > 0)
2742 nr += global_page_state(NR_ACTIVE_ANON) +
2743 global_page_state(NR_INACTIVE_ANON);
2745 return nr;
2748 unsigned long zone_reclaimable_pages(struct zone *zone)
2750 int nr;
2752 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2753 zone_page_state(zone, NR_INACTIVE_FILE);
2755 if (nr_swap_pages > 0)
2756 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2757 zone_page_state(zone, NR_INACTIVE_ANON);
2759 return nr;
2762 #ifdef CONFIG_HIBERNATION
2764 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2765 * freed pages.
2767 * Rather than trying to age LRUs the aim is to preserve the overall
2768 * LRU order by reclaiming preferentially
2769 * inactive > active > active referenced > active mapped
2771 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2773 struct reclaim_state reclaim_state;
2774 struct scan_control sc = {
2775 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2776 .may_swap = 1,
2777 .may_unmap = 1,
2778 .may_writepage = 1,
2779 .nr_to_reclaim = nr_to_reclaim,
2780 .hibernation_mode = 1,
2781 .swappiness = vm_swappiness,
2782 .order = 0,
2784 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2785 struct task_struct *p = current;
2786 unsigned long nr_reclaimed;
2788 p->flags |= PF_MEMALLOC;
2789 lockdep_set_current_reclaim_state(sc.gfp_mask);
2790 reclaim_state.reclaimed_slab = 0;
2791 p->reclaim_state = &reclaim_state;
2793 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2795 p->reclaim_state = NULL;
2796 lockdep_clear_current_reclaim_state();
2797 p->flags &= ~PF_MEMALLOC;
2799 return nr_reclaimed;
2801 #endif /* CONFIG_HIBERNATION */
2803 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2804 not required for correctness. So if the last cpu in a node goes
2805 away, we get changed to run anywhere: as the first one comes back,
2806 restore their cpu bindings. */
2807 static int __devinit cpu_callback(struct notifier_block *nfb,
2808 unsigned long action, void *hcpu)
2810 int nid;
2812 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2813 for_each_node_state(nid, N_HIGH_MEMORY) {
2814 pg_data_t *pgdat = NODE_DATA(nid);
2815 const struct cpumask *mask;
2817 mask = cpumask_of_node(pgdat->node_id);
2819 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2820 /* One of our CPUs online: restore mask */
2821 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2824 return NOTIFY_OK;
2828 * This kswapd start function will be called by init and node-hot-add.
2829 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2831 int kswapd_run(int nid)
2833 pg_data_t *pgdat = NODE_DATA(nid);
2834 int ret = 0;
2836 if (pgdat->kswapd)
2837 return 0;
2839 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2840 if (IS_ERR(pgdat->kswapd)) {
2841 /* failure at boot is fatal */
2842 BUG_ON(system_state == SYSTEM_BOOTING);
2843 printk("Failed to start kswapd on node %d\n",nid);
2844 ret = -1;
2846 return ret;
2850 * Called by memory hotplug when all memory in a node is offlined.
2852 void kswapd_stop(int nid)
2854 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2856 if (kswapd)
2857 kthread_stop(kswapd);
2860 static int __init kswapd_init(void)
2862 int nid;
2864 swap_setup();
2865 for_each_node_state(nid, N_HIGH_MEMORY)
2866 kswapd_run(nid);
2867 hotcpu_notifier(cpu_callback, 0);
2868 return 0;
2871 module_init(kswapd_init)
2873 #ifdef CONFIG_NUMA
2875 * Zone reclaim mode
2877 * If non-zero call zone_reclaim when the number of free pages falls below
2878 * the watermarks.
2880 int zone_reclaim_mode __read_mostly;
2882 #define RECLAIM_OFF 0
2883 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2884 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2885 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2888 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2889 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2890 * a zone.
2892 #define ZONE_RECLAIM_PRIORITY 4
2895 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2896 * occur.
2898 int sysctl_min_unmapped_ratio = 1;
2901 * If the number of slab pages in a zone grows beyond this percentage then
2902 * slab reclaim needs to occur.
2904 int sysctl_min_slab_ratio = 5;
2906 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2908 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2909 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2910 zone_page_state(zone, NR_ACTIVE_FILE);
2913 * It's possible for there to be more file mapped pages than
2914 * accounted for by the pages on the file LRU lists because
2915 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2917 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2920 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2921 static long zone_pagecache_reclaimable(struct zone *zone)
2923 long nr_pagecache_reclaimable;
2924 long delta = 0;
2927 * If RECLAIM_SWAP is set, then all file pages are considered
2928 * potentially reclaimable. Otherwise, we have to worry about
2929 * pages like swapcache and zone_unmapped_file_pages() provides
2930 * a better estimate
2932 if (zone_reclaim_mode & RECLAIM_SWAP)
2933 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2934 else
2935 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2937 /* If we can't clean pages, remove dirty pages from consideration */
2938 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2939 delta += zone_page_state(zone, NR_FILE_DIRTY);
2941 /* Watch for any possible underflows due to delta */
2942 if (unlikely(delta > nr_pagecache_reclaimable))
2943 delta = nr_pagecache_reclaimable;
2945 return nr_pagecache_reclaimable - delta;
2949 * Try to free up some pages from this zone through reclaim.
2951 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2953 /* Minimum pages needed in order to stay on node */
2954 const unsigned long nr_pages = 1 << order;
2955 struct task_struct *p = current;
2956 struct reclaim_state reclaim_state;
2957 int priority;
2958 struct scan_control sc = {
2959 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2960 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2961 .may_swap = 1,
2962 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2963 SWAP_CLUSTER_MAX),
2964 .gfp_mask = gfp_mask,
2965 .swappiness = vm_swappiness,
2966 .order = order,
2968 unsigned long nr_slab_pages0, nr_slab_pages1;
2970 cond_resched();
2972 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2973 * and we also need to be able to write out pages for RECLAIM_WRITE
2974 * and RECLAIM_SWAP.
2976 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2977 lockdep_set_current_reclaim_state(gfp_mask);
2978 reclaim_state.reclaimed_slab = 0;
2979 p->reclaim_state = &reclaim_state;
2981 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2983 * Free memory by calling shrink zone with increasing
2984 * priorities until we have enough memory freed.
2986 priority = ZONE_RECLAIM_PRIORITY;
2987 do {
2988 shrink_zone(priority, zone, &sc);
2989 priority--;
2990 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2993 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2994 if (nr_slab_pages0 > zone->min_slab_pages) {
2996 * shrink_slab() does not currently allow us to determine how
2997 * many pages were freed in this zone. So we take the current
2998 * number of slab pages and shake the slab until it is reduced
2999 * by the same nr_pages that we used for reclaiming unmapped
3000 * pages.
3002 * Note that shrink_slab will free memory on all zones and may
3003 * take a long time.
3005 for (;;) {
3006 unsigned long lru_pages = zone_reclaimable_pages(zone);
3008 /* No reclaimable slab or very low memory pressure */
3009 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3010 break;
3012 /* Freed enough memory */
3013 nr_slab_pages1 = zone_page_state(zone,
3014 NR_SLAB_RECLAIMABLE);
3015 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3016 break;
3020 * Update nr_reclaimed by the number of slab pages we
3021 * reclaimed from this zone.
3023 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3024 if (nr_slab_pages1 < nr_slab_pages0)
3025 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3028 p->reclaim_state = NULL;
3029 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3030 lockdep_clear_current_reclaim_state();
3031 return sc.nr_reclaimed >= nr_pages;
3034 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3036 int node_id;
3037 int ret;
3040 * Zone reclaim reclaims unmapped file backed pages and
3041 * slab pages if we are over the defined limits.
3043 * A small portion of unmapped file backed pages is needed for
3044 * file I/O otherwise pages read by file I/O will be immediately
3045 * thrown out if the zone is overallocated. So we do not reclaim
3046 * if less than a specified percentage of the zone is used by
3047 * unmapped file backed pages.
3049 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3050 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3051 return ZONE_RECLAIM_FULL;
3053 if (zone->all_unreclaimable)
3054 return ZONE_RECLAIM_FULL;
3057 * Do not scan if the allocation should not be delayed.
3059 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3060 return ZONE_RECLAIM_NOSCAN;
3063 * Only run zone reclaim on the local zone or on zones that do not
3064 * have associated processors. This will favor the local processor
3065 * over remote processors and spread off node memory allocations
3066 * as wide as possible.
3068 node_id = zone_to_nid(zone);
3069 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3070 return ZONE_RECLAIM_NOSCAN;
3072 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3073 return ZONE_RECLAIM_NOSCAN;
3075 ret = __zone_reclaim(zone, gfp_mask, order);
3076 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3078 if (!ret)
3079 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3081 return ret;
3083 #endif
3086 * page_evictable - test whether a page is evictable
3087 * @page: the page to test
3088 * @vma: the VMA in which the page is or will be mapped, may be NULL
3090 * Test whether page is evictable--i.e., should be placed on active/inactive
3091 * lists vs unevictable list. The vma argument is !NULL when called from the
3092 * fault path to determine how to instantate a new page.
3094 * Reasons page might not be evictable:
3095 * (1) page's mapping marked unevictable
3096 * (2) page is part of an mlocked VMA
3099 int page_evictable(struct page *page, struct vm_area_struct *vma)
3102 if (mapping_unevictable(page_mapping(page)))
3103 return 0;
3105 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3106 return 0;
3108 return 1;
3112 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3113 * @page: page to check evictability and move to appropriate lru list
3114 * @zone: zone page is in
3116 * Checks a page for evictability and moves the page to the appropriate
3117 * zone lru list.
3119 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3120 * have PageUnevictable set.
3122 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3124 VM_BUG_ON(PageActive(page));
3126 retry:
3127 ClearPageUnevictable(page);
3128 if (page_evictable(page, NULL)) {
3129 enum lru_list l = page_lru_base_type(page);
3131 __dec_zone_state(zone, NR_UNEVICTABLE);
3132 list_move(&page->lru, &zone->lru[l].list);
3133 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3134 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3135 __count_vm_event(UNEVICTABLE_PGRESCUED);
3136 } else {
3138 * rotate unevictable list
3140 SetPageUnevictable(page);
3141 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3142 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3143 if (page_evictable(page, NULL))
3144 goto retry;
3149 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3150 * @mapping: struct address_space to scan for evictable pages
3152 * Scan all pages in mapping. Check unevictable pages for
3153 * evictability and move them to the appropriate zone lru list.
3155 void scan_mapping_unevictable_pages(struct address_space *mapping)
3157 pgoff_t next = 0;
3158 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3159 PAGE_CACHE_SHIFT;
3160 struct zone *zone;
3161 struct pagevec pvec;
3163 if (mapping->nrpages == 0)
3164 return;
3166 pagevec_init(&pvec, 0);
3167 while (next < end &&
3168 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3169 int i;
3170 int pg_scanned = 0;
3172 zone = NULL;
3174 for (i = 0; i < pagevec_count(&pvec); i++) {
3175 struct page *page = pvec.pages[i];
3176 pgoff_t page_index = page->index;
3177 struct zone *pagezone = page_zone(page);
3179 pg_scanned++;
3180 if (page_index > next)
3181 next = page_index;
3182 next++;
3184 if (pagezone != zone) {
3185 if (zone)
3186 spin_unlock_irq(&zone->lru_lock);
3187 zone = pagezone;
3188 spin_lock_irq(&zone->lru_lock);
3191 if (PageLRU(page) && PageUnevictable(page))
3192 check_move_unevictable_page(page, zone);
3194 if (zone)
3195 spin_unlock_irq(&zone->lru_lock);
3196 pagevec_release(&pvec);
3198 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3204 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3205 * @zone - zone of which to scan the unevictable list
3207 * Scan @zone's unevictable LRU lists to check for pages that have become
3208 * evictable. Move those that have to @zone's inactive list where they
3209 * become candidates for reclaim, unless shrink_inactive_zone() decides
3210 * to reactivate them. Pages that are still unevictable are rotated
3211 * back onto @zone's unevictable list.
3213 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3214 static void scan_zone_unevictable_pages(struct zone *zone)
3216 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3217 unsigned long scan;
3218 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3220 while (nr_to_scan > 0) {
3221 unsigned long batch_size = min(nr_to_scan,
3222 SCAN_UNEVICTABLE_BATCH_SIZE);
3224 spin_lock_irq(&zone->lru_lock);
3225 for (scan = 0; scan < batch_size; scan++) {
3226 struct page *page = lru_to_page(l_unevictable);
3228 if (!trylock_page(page))
3229 continue;
3231 prefetchw_prev_lru_page(page, l_unevictable, flags);
3233 if (likely(PageLRU(page) && PageUnevictable(page)))
3234 check_move_unevictable_page(page, zone);
3236 unlock_page(page);
3238 spin_unlock_irq(&zone->lru_lock);
3240 nr_to_scan -= batch_size;
3246 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3248 * A really big hammer: scan all zones' unevictable LRU lists to check for
3249 * pages that have become evictable. Move those back to the zones'
3250 * inactive list where they become candidates for reclaim.
3251 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3252 * and we add swap to the system. As such, it runs in the context of a task
3253 * that has possibly/probably made some previously unevictable pages
3254 * evictable.
3256 static void scan_all_zones_unevictable_pages(void)
3258 struct zone *zone;
3260 for_each_zone(zone) {
3261 scan_zone_unevictable_pages(zone);
3266 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3267 * all nodes' unevictable lists for evictable pages
3269 unsigned long scan_unevictable_pages;
3271 int scan_unevictable_handler(struct ctl_table *table, int write,
3272 void __user *buffer,
3273 size_t *length, loff_t *ppos)
3275 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3277 if (write && *(unsigned long *)table->data)
3278 scan_all_zones_unevictable_pages();
3280 scan_unevictable_pages = 0;
3281 return 0;
3284 #ifdef CONFIG_NUMA
3286 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3287 * a specified node's per zone unevictable lists for evictable pages.
3290 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3291 struct sysdev_attribute *attr,
3292 char *buf)
3294 return sprintf(buf, "0\n"); /* always zero; should fit... */
3297 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3298 struct sysdev_attribute *attr,
3299 const char *buf, size_t count)
3301 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3302 struct zone *zone;
3303 unsigned long res;
3304 unsigned long req = strict_strtoul(buf, 10, &res);
3306 if (!req)
3307 return 1; /* zero is no-op */
3309 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3310 if (!populated_zone(zone))
3311 continue;
3312 scan_zone_unevictable_pages(zone);
3314 return 1;
3318 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3319 read_scan_unevictable_node,
3320 write_scan_unevictable_node);
3322 int scan_unevictable_register_node(struct node *node)
3324 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3327 void scan_unevictable_unregister_node(struct node *node)
3329 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3331 #endif