2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
38 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41 * migrate_prep() needs to be called before we start compiling a list of pages
42 * to be migrated using isolate_lru_page().
44 int migrate_prep(void)
47 * Clear the LRU lists so pages can be isolated.
48 * Note that pages may be moved off the LRU after we have
49 * drained them. Those pages will fail to migrate like other
50 * pages that may be busy.
58 * Add isolated pages on the list back to the LRU under page lock
59 * to avoid leaking evictable pages back onto unevictable list.
61 * returns the number of pages put back.
63 int putback_lru_pages(struct list_head
*l
)
69 list_for_each_entry_safe(page
, page2
, l
, lru
) {
71 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
72 page_is_file_cache(page
));
73 putback_lru_page(page
);
80 * Restore a potential migration pte to a working pte entry
82 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
83 unsigned long addr
, void *old
)
85 struct mm_struct
*mm
= vma
->vm_mm
;
93 pgd
= pgd_offset(mm
, addr
);
94 if (!pgd_present(*pgd
))
97 pud
= pud_offset(pgd
, addr
);
98 if (!pud_present(*pud
))
101 pmd
= pmd_offset(pud
, addr
);
102 if (!pmd_present(*pmd
))
105 ptep
= pte_offset_map(pmd
, addr
);
107 if (!is_swap_pte(*ptep
)) {
112 ptl
= pte_lockptr(mm
, pmd
);
115 if (!is_swap_pte(pte
))
118 entry
= pte_to_swp_entry(pte
);
120 if (!is_migration_entry(entry
) ||
121 migration_entry_to_page(entry
) != old
)
125 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
126 if (is_write_migration_entry(entry
))
127 pte
= pte_mkwrite(pte
);
128 flush_cache_page(vma
, addr
, pte_pfn(pte
));
129 set_pte_at(mm
, addr
, ptep
, pte
);
132 page_add_anon_rmap(new, vma
, addr
);
134 page_add_file_rmap(new);
136 /* No need to invalidate - it was non-present before */
137 update_mmu_cache(vma
, addr
, ptep
);
139 pte_unmap_unlock(ptep
, ptl
);
145 * Get rid of all migration entries and replace them by
146 * references to the indicated page.
148 static void remove_migration_ptes(struct page
*old
, struct page
*new)
150 rmap_walk(new, remove_migration_pte
, old
);
154 * Something used the pte of a page under migration. We need to
155 * get to the page and wait until migration is finished.
156 * When we return from this function the fault will be retried.
158 * This function is called from do_swap_page().
160 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
161 unsigned long address
)
168 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
170 if (!is_swap_pte(pte
))
173 entry
= pte_to_swp_entry(pte
);
174 if (!is_migration_entry(entry
))
177 page
= migration_entry_to_page(entry
);
180 * Once radix-tree replacement of page migration started, page_count
181 * *must* be zero. And, we don't want to call wait_on_page_locked()
182 * against a page without get_page().
183 * So, we use get_page_unless_zero(), here. Even failed, page fault
186 if (!get_page_unless_zero(page
))
188 pte_unmap_unlock(ptep
, ptl
);
189 wait_on_page_locked(page
);
193 pte_unmap_unlock(ptep
, ptl
);
197 * Replace the page in the mapping.
199 * The number of remaining references must be:
200 * 1 for anonymous pages without a mapping
201 * 2 for pages with a mapping
202 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
204 static int migrate_page_move_mapping(struct address_space
*mapping
,
205 struct page
*newpage
, struct page
*page
)
211 /* Anonymous page without mapping */
212 if (page_count(page
) != 1)
217 spin_lock_irq(&mapping
->tree_lock
);
219 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
222 expected_count
= 2 + page_has_private(page
);
223 if (page_count(page
) != expected_count
||
224 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
225 spin_unlock_irq(&mapping
->tree_lock
);
229 if (!page_freeze_refs(page
, expected_count
)) {
230 spin_unlock_irq(&mapping
->tree_lock
);
235 * Now we know that no one else is looking at the page.
237 get_page(newpage
); /* add cache reference */
238 if (PageSwapCache(page
)) {
239 SetPageSwapCache(newpage
);
240 set_page_private(newpage
, page_private(page
));
243 radix_tree_replace_slot(pslot
, newpage
);
245 page_unfreeze_refs(page
, expected_count
);
247 * Drop cache reference from old page.
248 * We know this isn't the last reference.
253 * If moved to a different zone then also account
254 * the page for that zone. Other VM counters will be
255 * taken care of when we establish references to the
256 * new page and drop references to the old page.
258 * Note that anonymous pages are accounted for
259 * via NR_FILE_PAGES and NR_ANON_PAGES if they
260 * are mapped to swap space.
262 __dec_zone_page_state(page
, NR_FILE_PAGES
);
263 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
264 if (PageSwapBacked(page
)) {
265 __dec_zone_page_state(page
, NR_SHMEM
);
266 __inc_zone_page_state(newpage
, NR_SHMEM
);
268 spin_unlock_irq(&mapping
->tree_lock
);
274 * Copy the page to its new location
276 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
278 copy_highpage(newpage
, page
);
281 SetPageError(newpage
);
282 if (PageReferenced(page
))
283 SetPageReferenced(newpage
);
284 if (PageUptodate(page
))
285 SetPageUptodate(newpage
);
286 if (TestClearPageActive(page
)) {
287 VM_BUG_ON(PageUnevictable(page
));
288 SetPageActive(newpage
);
289 } else if (TestClearPageUnevictable(page
))
290 SetPageUnevictable(newpage
);
291 if (PageChecked(page
))
292 SetPageChecked(newpage
);
293 if (PageMappedToDisk(page
))
294 SetPageMappedToDisk(newpage
);
296 if (PageDirty(page
)) {
297 clear_page_dirty_for_io(page
);
299 * Want to mark the page and the radix tree as dirty, and
300 * redo the accounting that clear_page_dirty_for_io undid,
301 * but we can't use set_page_dirty because that function
302 * is actually a signal that all of the page has become dirty.
303 * Wheras only part of our page may be dirty.
305 __set_page_dirty_nobuffers(newpage
);
308 mlock_migrate_page(newpage
, page
);
309 ksm_migrate_page(newpage
, page
);
311 ClearPageSwapCache(page
);
312 ClearPagePrivate(page
);
313 set_page_private(page
, 0);
314 page
->mapping
= NULL
;
317 * If any waiters have accumulated on the new page then
320 if (PageWriteback(newpage
))
321 end_page_writeback(newpage
);
324 /************************************************************
325 * Migration functions
326 ***********************************************************/
328 /* Always fail migration. Used for mappings that are not movable */
329 int fail_migrate_page(struct address_space
*mapping
,
330 struct page
*newpage
, struct page
*page
)
334 EXPORT_SYMBOL(fail_migrate_page
);
337 * Common logic to directly migrate a single page suitable for
338 * pages that do not use PagePrivate/PagePrivate2.
340 * Pages are locked upon entry and exit.
342 int migrate_page(struct address_space
*mapping
,
343 struct page
*newpage
, struct page
*page
)
347 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
349 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
354 migrate_page_copy(newpage
, page
);
357 EXPORT_SYMBOL(migrate_page
);
361 * Migration function for pages with buffers. This function can only be used
362 * if the underlying filesystem guarantees that no other references to "page"
365 int buffer_migrate_page(struct address_space
*mapping
,
366 struct page
*newpage
, struct page
*page
)
368 struct buffer_head
*bh
, *head
;
371 if (!page_has_buffers(page
))
372 return migrate_page(mapping
, newpage
, page
);
374 head
= page_buffers(page
);
376 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
385 bh
= bh
->b_this_page
;
387 } while (bh
!= head
);
389 ClearPagePrivate(page
);
390 set_page_private(newpage
, page_private(page
));
391 set_page_private(page
, 0);
397 set_bh_page(bh
, newpage
, bh_offset(bh
));
398 bh
= bh
->b_this_page
;
400 } while (bh
!= head
);
402 SetPagePrivate(newpage
);
404 migrate_page_copy(newpage
, page
);
410 bh
= bh
->b_this_page
;
412 } while (bh
!= head
);
416 EXPORT_SYMBOL(buffer_migrate_page
);
420 * Writeback a page to clean the dirty state
422 static int writeout(struct address_space
*mapping
, struct page
*page
)
424 struct writeback_control wbc
= {
425 .sync_mode
= WB_SYNC_NONE
,
428 .range_end
= LLONG_MAX
,
434 if (!mapping
->a_ops
->writepage
)
435 /* No write method for the address space */
438 if (!clear_page_dirty_for_io(page
))
439 /* Someone else already triggered a write */
443 * A dirty page may imply that the underlying filesystem has
444 * the page on some queue. So the page must be clean for
445 * migration. Writeout may mean we loose the lock and the
446 * page state is no longer what we checked for earlier.
447 * At this point we know that the migration attempt cannot
450 remove_migration_ptes(page
, page
);
452 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
454 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
455 /* unlocked. Relock */
458 return (rc
< 0) ? -EIO
: -EAGAIN
;
462 * Default handling if a filesystem does not provide a migration function.
464 static int fallback_migrate_page(struct address_space
*mapping
,
465 struct page
*newpage
, struct page
*page
)
468 return writeout(mapping
, page
);
471 * Buffers may be managed in a filesystem specific way.
472 * We must have no buffers or drop them.
474 if (page_has_private(page
) &&
475 !try_to_release_page(page
, GFP_KERNEL
))
478 return migrate_page(mapping
, newpage
, page
);
482 * Move a page to a newly allocated page
483 * The page is locked and all ptes have been successfully removed.
485 * The new page will have replaced the old page if this function
492 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
494 struct address_space
*mapping
;
498 * Block others from accessing the page when we get around to
499 * establishing additional references. We are the only one
500 * holding a reference to the new page at this point.
502 if (!trylock_page(newpage
))
505 /* Prepare mapping for the new page.*/
506 newpage
->index
= page
->index
;
507 newpage
->mapping
= page
->mapping
;
508 if (PageSwapBacked(page
))
509 SetPageSwapBacked(newpage
);
511 mapping
= page_mapping(page
);
513 rc
= migrate_page(mapping
, newpage
, page
);
514 else if (mapping
->a_ops
->migratepage
)
516 * Most pages have a mapping and most filesystems
517 * should provide a migration function. Anonymous
518 * pages are part of swap space which also has its
519 * own migration function. This is the most common
520 * path for page migration.
522 rc
= mapping
->a_ops
->migratepage(mapping
,
525 rc
= fallback_migrate_page(mapping
, newpage
, page
);
528 remove_migration_ptes(page
, newpage
);
530 newpage
->mapping
= NULL
;
532 unlock_page(newpage
);
538 * Obtain the lock on page, remove all ptes and migrate the page
539 * to the newly allocated page in newpage.
541 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
542 struct page
*page
, int force
, int offlining
)
546 struct page
*newpage
= get_new_page(page
, private, &result
);
549 struct mem_cgroup
*mem
= NULL
;
554 if (page_count(page
) == 1) {
555 /* page was freed from under us. So we are done. */
559 /* prepare cgroup just returns 0 or -ENOMEM */
562 if (!trylock_page(page
)) {
569 * Only memory hotplug's offline_pages() caller has locked out KSM,
570 * and can safely migrate a KSM page. The other cases have skipped
571 * PageKsm along with PageReserved - but it is only now when we have
572 * the page lock that we can be certain it will not go KSM beneath us
573 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
574 * its pagecount raised, but only here do we take the page lock which
577 if (PageKsm(page
) && !offlining
) {
582 /* charge against new page */
583 charge
= mem_cgroup_prepare_migration(page
, &mem
);
584 if (charge
== -ENOMEM
) {
590 if (PageWriteback(page
)) {
593 wait_on_page_writeback(page
);
596 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
597 * we cannot notice that anon_vma is freed while we migrates a page.
598 * This rcu_read_lock() delays freeing anon_vma pointer until the end
599 * of migration. File cache pages are no problem because of page_lock()
600 * File Caches may use write_page() or lock_page() in migration, then,
601 * just care Anon page here.
603 if (PageAnon(page
)) {
609 * Corner case handling:
610 * 1. When a new swap-cache page is read into, it is added to the LRU
611 * and treated as swapcache but it has no rmap yet.
612 * Calling try_to_unmap() against a page->mapping==NULL page will
613 * trigger a BUG. So handle it here.
614 * 2. An orphaned page (see truncate_complete_page) might have
615 * fs-private metadata. The page can be picked up due to memory
616 * offlining. Everywhere else except page reclaim, the page is
617 * invisible to the vm, so the page can not be migrated. So try to
618 * free the metadata, so the page can be freed.
620 if (!page
->mapping
) {
621 if (!PageAnon(page
) && page_has_private(page
)) {
623 * Go direct to try_to_free_buffers() here because
624 * a) that's what try_to_release_page() would do anyway
625 * b) we may be under rcu_read_lock() here, so we can't
626 * use GFP_KERNEL which is what try_to_release_page()
627 * needs to be effective.
629 try_to_free_buffers(page
);
635 /* Establish migration ptes or remove ptes */
636 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
639 if (!page_mapped(page
))
640 rc
= move_to_new_page(newpage
, page
);
643 remove_migration_ptes(page
, page
);
649 mem_cgroup_end_migration(mem
, page
, newpage
);
655 * A page that has been migrated has all references
656 * removed and will be freed. A page that has not been
657 * migrated will have kepts its references and be
660 list_del(&page
->lru
);
661 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
662 page_is_file_cache(page
));
663 putback_lru_page(page
);
669 * Move the new page to the LRU. If migration was not successful
670 * then this will free the page.
672 putback_lru_page(newpage
);
678 *result
= page_to_nid(newpage
);
686 * The function takes one list of pages to migrate and a function
687 * that determines from the page to be migrated and the private data
688 * the target of the move and allocates the page.
690 * The function returns after 10 attempts or if no pages
691 * are movable anymore because to has become empty
692 * or no retryable pages exist anymore. All pages will be
693 * returned to the LRU or freed.
695 * Return: Number of pages not migrated or error code.
697 int migrate_pages(struct list_head
*from
,
698 new_page_t get_new_page
, unsigned long private, int offlining
)
705 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
709 current
->flags
|= PF_SWAPWRITE
;
711 for(pass
= 0; pass
< 10 && retry
; pass
++) {
714 list_for_each_entry_safe(page
, page2
, from
, lru
) {
717 rc
= unmap_and_move(get_new_page
, private,
718 page
, pass
> 2, offlining
);
729 /* Permanent failure */
738 current
->flags
&= ~PF_SWAPWRITE
;
740 putback_lru_pages(from
);
745 return nr_failed
+ retry
;
750 * Move a list of individual pages
752 struct page_to_node
{
759 static struct page
*new_page_node(struct page
*p
, unsigned long private,
762 struct page_to_node
*pm
= (struct page_to_node
*)private;
764 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
767 if (pm
->node
== MAX_NUMNODES
)
770 *result
= &pm
->status
;
772 return alloc_pages_exact_node(pm
->node
,
773 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
777 * Move a set of pages as indicated in the pm array. The addr
778 * field must be set to the virtual address of the page to be moved
779 * and the node number must contain a valid target node.
780 * The pm array ends with node = MAX_NUMNODES.
782 static int do_move_page_to_node_array(struct mm_struct
*mm
,
783 struct page_to_node
*pm
,
787 struct page_to_node
*pp
;
790 down_read(&mm
->mmap_sem
);
793 * Build a list of pages to migrate
795 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
796 struct vm_area_struct
*vma
;
800 vma
= find_vma(mm
, pp
->addr
);
801 if (!vma
|| !vma_migratable(vma
))
804 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
814 /* Use PageReserved to check for zero page */
815 if (PageReserved(page
) || PageKsm(page
))
819 err
= page_to_nid(page
);
823 * Node already in the right place
828 if (page_mapcount(page
) > 1 &&
832 err
= isolate_lru_page(page
);
834 list_add_tail(&page
->lru
, &pagelist
);
835 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
836 page_is_file_cache(page
));
840 * Either remove the duplicate refcount from
841 * isolate_lru_page() or drop the page ref if it was
850 if (!list_empty(&pagelist
))
851 err
= migrate_pages(&pagelist
, new_page_node
,
852 (unsigned long)pm
, 0);
854 up_read(&mm
->mmap_sem
);
859 * Migrate an array of page address onto an array of nodes and fill
860 * the corresponding array of status.
862 static int do_pages_move(struct mm_struct
*mm
, struct task_struct
*task
,
863 unsigned long nr_pages
,
864 const void __user
* __user
*pages
,
865 const int __user
*nodes
,
866 int __user
*status
, int flags
)
868 struct page_to_node
*pm
;
869 nodemask_t task_nodes
;
870 unsigned long chunk_nr_pages
;
871 unsigned long chunk_start
;
874 task_nodes
= cpuset_mems_allowed(task
);
877 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
884 * Store a chunk of page_to_node array in a page,
885 * but keep the last one as a marker
887 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
889 for (chunk_start
= 0;
890 chunk_start
< nr_pages
;
891 chunk_start
+= chunk_nr_pages
) {
894 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
895 chunk_nr_pages
= nr_pages
- chunk_start
;
897 /* fill the chunk pm with addrs and nodes from user-space */
898 for (j
= 0; j
< chunk_nr_pages
; j
++) {
899 const void __user
*p
;
903 if (get_user(p
, pages
+ j
+ chunk_start
))
905 pm
[j
].addr
= (unsigned long) p
;
907 if (get_user(node
, nodes
+ j
+ chunk_start
))
911 if (node
< 0 || node
>= MAX_NUMNODES
)
914 if (!node_state(node
, N_HIGH_MEMORY
))
918 if (!node_isset(node
, task_nodes
))
924 /* End marker for this chunk */
925 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
927 /* Migrate this chunk */
928 err
= do_move_page_to_node_array(mm
, pm
,
929 flags
& MPOL_MF_MOVE_ALL
);
933 /* Return status information */
934 for (j
= 0; j
< chunk_nr_pages
; j
++)
935 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
943 free_page((unsigned long)pm
);
949 * Determine the nodes of an array of pages and store it in an array of status.
951 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
952 const void __user
**pages
, int *status
)
956 down_read(&mm
->mmap_sem
);
958 for (i
= 0; i
< nr_pages
; i
++) {
959 unsigned long addr
= (unsigned long)(*pages
);
960 struct vm_area_struct
*vma
;
964 vma
= find_vma(mm
, addr
);
968 page
= follow_page(vma
, addr
, 0);
975 /* Use PageReserved to check for zero page */
976 if (!page
|| PageReserved(page
) || PageKsm(page
))
979 err
= page_to_nid(page
);
987 up_read(&mm
->mmap_sem
);
991 * Determine the nodes of a user array of pages and store it in
992 * a user array of status.
994 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
995 const void __user
* __user
*pages
,
998 #define DO_PAGES_STAT_CHUNK_NR 16
999 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1000 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1003 unsigned long chunk_nr
;
1005 chunk_nr
= nr_pages
;
1006 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1007 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1009 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1012 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1014 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1019 nr_pages
-= chunk_nr
;
1021 return nr_pages
? -EFAULT
: 0;
1025 * Move a list of pages in the address space of the currently executing
1028 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1029 const void __user
* __user
*, pages
,
1030 const int __user
*, nodes
,
1031 int __user
*, status
, int, flags
)
1033 const struct cred
*cred
= current_cred(), *tcred
;
1034 struct task_struct
*task
;
1035 struct mm_struct
*mm
;
1039 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1042 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1045 /* Find the mm_struct */
1046 read_lock(&tasklist_lock
);
1047 task
= pid
? find_task_by_vpid(pid
) : current
;
1049 read_unlock(&tasklist_lock
);
1052 mm
= get_task_mm(task
);
1053 read_unlock(&tasklist_lock
);
1059 * Check if this process has the right to modify the specified
1060 * process. The right exists if the process has administrative
1061 * capabilities, superuser privileges or the same
1062 * userid as the target process.
1065 tcred
= __task_cred(task
);
1066 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1067 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1068 !capable(CAP_SYS_NICE
)) {
1075 err
= security_task_movememory(task
);
1080 err
= do_pages_move(mm
, task
, nr_pages
, pages
, nodes
, status
,
1083 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1092 * Call migration functions in the vma_ops that may prepare
1093 * memory in a vm for migration. migration functions may perform
1094 * the migration for vmas that do not have an underlying page struct.
1096 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1097 const nodemask_t
*from
, unsigned long flags
)
1099 struct vm_area_struct
*vma
;
1102 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1103 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1104 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);