ext4: add block plug for .writepages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob081bb25a9ad3ceb442b10e0f7ec10c5fd36eec16
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 trace_ext4_begin_ordered_truncate(inode, new_size);
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
77 * Test whether an inode is a fast symlink.
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 (inode->i_sb->s_blocksize >> 9) : 0;
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 int nblocks)
95 int ret;
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 jbd_debug(2, "restarting handle %p\n", handle);
105 up_write(&EXT4_I(inode)->i_data_sem);
106 ret = ext4_journal_restart(handle, nblocks);
107 down_write(&EXT4_I(inode)->i_data_sem);
108 ext4_discard_preallocations(inode);
110 return ret;
114 * Called at the last iput() if i_nlink is zero.
116 void ext4_evict_inode(struct inode *inode)
118 handle_t *handle;
119 int err;
121 trace_ext4_evict_inode(inode);
123 ext4_ioend_wait(inode);
125 if (inode->i_nlink) {
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
141 * Note that directories do not have this problem because they
142 * don't use page cache.
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
157 if (!is_bad_inode(inode))
158 dquot_initialize(inode);
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
162 truncate_inode_pages(&inode->i_data, 0);
164 if (is_bad_inode(inode))
165 goto no_delete;
167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 if (IS_ERR(handle)) {
169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
175 ext4_orphan_del(NULL, inode);
176 goto no_delete;
179 if (IS_SYNC(inode))
180 ext4_handle_sync(handle);
181 inode->i_size = 0;
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
184 ext4_warning(inode->i_sb,
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
188 if (inode->i_blocks)
189 ext4_truncate(inode);
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
197 if (!ext4_handle_has_enough_credits(handle, 3)) {
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
202 ext4_warning(inode->i_sb,
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
206 ext4_orphan_del(NULL, inode);
207 goto no_delete;
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
229 if (ext4_mark_inode_dirty(handle, inode))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode);
232 else
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
235 return;
236 no_delete:
237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
243 return &EXT4_I(inode)->i_reserved_quota;
245 #endif
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 return ext4_ext_calc_metadata_amount(inode, lblock);
256 return ext4_ind_calc_metadata_amount(inode, lblock);
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
263 void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 struct ext4_inode_info *ei = EXT4_I(inode);
269 spin_lock(&ei->i_block_reservation_lock);
270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 used + ei->i_allocated_meta_blocks);
285 ei->i_allocated_meta_blocks = 0;
287 if (ei->i_reserved_data_blocks == 0) {
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 ei->i_reserved_meta_blocks);
295 ei->i_reserved_meta_blocks = 0;
296 ei->i_da_metadata_calc_len = 0;
298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 else {
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
319 ext4_discard_preallocations(inode);
322 static int __check_block_validity(struct inode *inode, const char *func,
323 unsigned int line,
324 struct ext4_map_blocks *map)
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
332 return -EIO;
334 return 0;
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
390 if (num >= max_pages) {
391 done = 1;
392 break;
395 pagevec_release(&pvec);
397 return num;
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
403 static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
437 index++;
439 pagevec_release(&pvec);
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 * based files
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
463 * It returns the error in case of allocation failure.
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
468 int retval;
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
475 * Try to see if we can get the block without requesting a new
476 * file system block.
478 down_read((&EXT4_I(inode)->i_data_sem));
479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 retval = ext4_ext_map_blocks(handle, inode, map, 0);
481 } else {
482 retval = ext4_ind_map_blocks(handle, inode, map, 0);
484 up_read((&EXT4_I(inode)->i_data_sem));
486 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487 int ret = check_block_validity(inode, map);
488 if (ret != 0)
489 return ret;
492 /* If it is only a block(s) look up */
493 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494 return retval;
497 * Returns if the blocks have already allocated
499 * Note that if blocks have been preallocated
500 * ext4_ext_get_block() returns the create = 0
501 * with buffer head unmapped.
503 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504 return retval;
507 * When we call get_blocks without the create flag, the
508 * BH_Unwritten flag could have gotten set if the blocks
509 * requested were part of a uninitialized extent. We need to
510 * clear this flag now that we are committed to convert all or
511 * part of the uninitialized extent to be an initialized
512 * extent. This is because we need to avoid the combination
513 * of BH_Unwritten and BH_Mapped flags being simultaneously
514 * set on the buffer_head.
516 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
519 * New blocks allocate and/or writing to uninitialized extent
520 * will possibly result in updating i_data, so we take
521 * the write lock of i_data_sem, and call get_blocks()
522 * with create == 1 flag.
524 down_write((&EXT4_I(inode)->i_data_sem));
527 * if the caller is from delayed allocation writeout path
528 * we have already reserved fs blocks for allocation
529 * let the underlying get_block() function know to
530 * avoid double accounting
532 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
535 * We need to check for EXT4 here because migrate
536 * could have changed the inode type in between
538 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539 retval = ext4_ext_map_blocks(handle, inode, map, flags);
540 } else {
541 retval = ext4_ind_map_blocks(handle, inode, map, flags);
543 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
545 * We allocated new blocks which will result in
546 * i_data's format changing. Force the migrate
547 * to fail by clearing migrate flags
549 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
553 * Update reserved blocks/metadata blocks after successful
554 * block allocation which had been deferred till now. We don't
555 * support fallocate for non extent files. So we can update
556 * reserve space here.
558 if ((retval > 0) &&
559 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560 ext4_da_update_reserve_space(inode, retval, 1);
562 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
565 /* If we have successfully mapped the delayed allocated blocks,
566 * set the BH_Da_Mapped bit on them. Its important to do this
567 * under the protection of i_data_sem.
569 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570 set_buffers_da_mapped(inode, map);
573 up_write((&EXT4_I(inode)->i_data_sem));
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 int ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
579 return retval;
582 /* Maximum number of blocks we map for direct IO at once. */
583 #define DIO_MAX_BLOCKS 4096
585 static int _ext4_get_block(struct inode *inode, sector_t iblock,
586 struct buffer_head *bh, int flags)
588 handle_t *handle = ext4_journal_current_handle();
589 struct ext4_map_blocks map;
590 int ret = 0, started = 0;
591 int dio_credits;
593 map.m_lblk = iblock;
594 map.m_len = bh->b_size >> inode->i_blkbits;
596 if (flags && !handle) {
597 /* Direct IO write... */
598 if (map.m_len > DIO_MAX_BLOCKS)
599 map.m_len = DIO_MAX_BLOCKS;
600 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601 handle = ext4_journal_start(inode, dio_credits);
602 if (IS_ERR(handle)) {
603 ret = PTR_ERR(handle);
604 return ret;
606 started = 1;
609 ret = ext4_map_blocks(handle, inode, &map, flags);
610 if (ret > 0) {
611 map_bh(bh, inode->i_sb, map.m_pblk);
612 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
614 ret = 0;
616 if (started)
617 ext4_journal_stop(handle);
618 return ret;
621 int ext4_get_block(struct inode *inode, sector_t iblock,
622 struct buffer_head *bh, int create)
624 return _ext4_get_block(inode, iblock, bh,
625 create ? EXT4_GET_BLOCKS_CREATE : 0);
629 * `handle' can be NULL if create is zero
631 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
632 ext4_lblk_t block, int create, int *errp)
634 struct ext4_map_blocks map;
635 struct buffer_head *bh;
636 int fatal = 0, err;
638 J_ASSERT(handle != NULL || create == 0);
640 map.m_lblk = block;
641 map.m_len = 1;
642 err = ext4_map_blocks(handle, inode, &map,
643 create ? EXT4_GET_BLOCKS_CREATE : 0);
645 if (err < 0)
646 *errp = err;
647 if (err <= 0)
648 return NULL;
649 *errp = 0;
651 bh = sb_getblk(inode->i_sb, map.m_pblk);
652 if (!bh) {
653 *errp = -EIO;
654 return NULL;
656 if (map.m_flags & EXT4_MAP_NEW) {
657 J_ASSERT(create != 0);
658 J_ASSERT(handle != NULL);
661 * Now that we do not always journal data, we should
662 * keep in mind whether this should always journal the
663 * new buffer as metadata. For now, regular file
664 * writes use ext4_get_block instead, so it's not a
665 * problem.
667 lock_buffer(bh);
668 BUFFER_TRACE(bh, "call get_create_access");
669 fatal = ext4_journal_get_create_access(handle, bh);
670 if (!fatal && !buffer_uptodate(bh)) {
671 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672 set_buffer_uptodate(bh);
674 unlock_buffer(bh);
675 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676 err = ext4_handle_dirty_metadata(handle, inode, bh);
677 if (!fatal)
678 fatal = err;
679 } else {
680 BUFFER_TRACE(bh, "not a new buffer");
682 if (fatal) {
683 *errp = fatal;
684 brelse(bh);
685 bh = NULL;
687 return bh;
690 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
691 ext4_lblk_t block, int create, int *err)
693 struct buffer_head *bh;
695 bh = ext4_getblk(handle, inode, block, create, err);
696 if (!bh)
697 return bh;
698 if (buffer_uptodate(bh))
699 return bh;
700 ll_rw_block(READ_META, 1, &bh);
701 wait_on_buffer(bh);
702 if (buffer_uptodate(bh))
703 return bh;
704 put_bh(bh);
705 *err = -EIO;
706 return NULL;
709 static int walk_page_buffers(handle_t *handle,
710 struct buffer_head *head,
711 unsigned from,
712 unsigned to,
713 int *partial,
714 int (*fn)(handle_t *handle,
715 struct buffer_head *bh))
717 struct buffer_head *bh;
718 unsigned block_start, block_end;
719 unsigned blocksize = head->b_size;
720 int err, ret = 0;
721 struct buffer_head *next;
723 for (bh = head, block_start = 0;
724 ret == 0 && (bh != head || !block_start);
725 block_start = block_end, bh = next) {
726 next = bh->b_this_page;
727 block_end = block_start + blocksize;
728 if (block_end <= from || block_start >= to) {
729 if (partial && !buffer_uptodate(bh))
730 *partial = 1;
731 continue;
733 err = (*fn)(handle, bh);
734 if (!ret)
735 ret = err;
737 return ret;
741 * To preserve ordering, it is essential that the hole instantiation and
742 * the data write be encapsulated in a single transaction. We cannot
743 * close off a transaction and start a new one between the ext4_get_block()
744 * and the commit_write(). So doing the jbd2_journal_start at the start of
745 * prepare_write() is the right place.
747 * Also, this function can nest inside ext4_writepage() ->
748 * block_write_full_page(). In that case, we *know* that ext4_writepage()
749 * has generated enough buffer credits to do the whole page. So we won't
750 * block on the journal in that case, which is good, because the caller may
751 * be PF_MEMALLOC.
753 * By accident, ext4 can be reentered when a transaction is open via
754 * quota file writes. If we were to commit the transaction while thus
755 * reentered, there can be a deadlock - we would be holding a quota
756 * lock, and the commit would never complete if another thread had a
757 * transaction open and was blocking on the quota lock - a ranking
758 * violation.
760 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761 * will _not_ run commit under these circumstances because handle->h_ref
762 * is elevated. We'll still have enough credits for the tiny quotafile
763 * write.
765 static int do_journal_get_write_access(handle_t *handle,
766 struct buffer_head *bh)
768 int dirty = buffer_dirty(bh);
769 int ret;
771 if (!buffer_mapped(bh) || buffer_freed(bh))
772 return 0;
774 * __block_write_begin() could have dirtied some buffers. Clean
775 * the dirty bit as jbd2_journal_get_write_access() could complain
776 * otherwise about fs integrity issues. Setting of the dirty bit
777 * by __block_write_begin() isn't a real problem here as we clear
778 * the bit before releasing a page lock and thus writeback cannot
779 * ever write the buffer.
781 if (dirty)
782 clear_buffer_dirty(bh);
783 ret = ext4_journal_get_write_access(handle, bh);
784 if (!ret && dirty)
785 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786 return ret;
789 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create);
791 static int ext4_write_begin(struct file *file, struct address_space *mapping,
792 loff_t pos, unsigned len, unsigned flags,
793 struct page **pagep, void **fsdata)
795 struct inode *inode = mapping->host;
796 int ret, needed_blocks;
797 handle_t *handle;
798 int retries = 0;
799 struct page *page;
800 pgoff_t index;
801 unsigned from, to;
803 trace_ext4_write_begin(inode, pos, len, flags);
805 * Reserve one block more for addition to orphan list in case
806 * we allocate blocks but write fails for some reason
808 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809 index = pos >> PAGE_CACHE_SHIFT;
810 from = pos & (PAGE_CACHE_SIZE - 1);
811 to = from + len;
813 retry:
814 handle = ext4_journal_start(inode, needed_blocks);
815 if (IS_ERR(handle)) {
816 ret = PTR_ERR(handle);
817 goto out;
820 /* We cannot recurse into the filesystem as the transaction is already
821 * started */
822 flags |= AOP_FLAG_NOFS;
824 page = grab_cache_page_write_begin(mapping, index, flags);
825 if (!page) {
826 ext4_journal_stop(handle);
827 ret = -ENOMEM;
828 goto out;
830 *pagep = page;
832 if (ext4_should_dioread_nolock(inode))
833 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834 else
835 ret = __block_write_begin(page, pos, len, ext4_get_block);
837 if (!ret && ext4_should_journal_data(inode)) {
838 ret = walk_page_buffers(handle, page_buffers(page),
839 from, to, NULL, do_journal_get_write_access);
842 if (ret) {
843 unlock_page(page);
844 page_cache_release(page);
846 * __block_write_begin may have instantiated a few blocks
847 * outside i_size. Trim these off again. Don't need
848 * i_size_read because we hold i_mutex.
850 * Add inode to orphan list in case we crash before
851 * truncate finishes
853 if (pos + len > inode->i_size && ext4_can_truncate(inode))
854 ext4_orphan_add(handle, inode);
856 ext4_journal_stop(handle);
857 if (pos + len > inode->i_size) {
858 ext4_truncate_failed_write(inode);
860 * If truncate failed early the inode might
861 * still be on the orphan list; we need to
862 * make sure the inode is removed from the
863 * orphan list in that case.
865 if (inode->i_nlink)
866 ext4_orphan_del(NULL, inode);
870 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871 goto retry;
872 out:
873 return ret;
876 /* For write_end() in data=journal mode */
877 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
879 if (!buffer_mapped(bh) || buffer_freed(bh))
880 return 0;
881 set_buffer_uptodate(bh);
882 return ext4_handle_dirty_metadata(handle, NULL, bh);
885 static int ext4_generic_write_end(struct file *file,
886 struct address_space *mapping,
887 loff_t pos, unsigned len, unsigned copied,
888 struct page *page, void *fsdata)
890 int i_size_changed = 0;
891 struct inode *inode = mapping->host;
892 handle_t *handle = ext4_journal_current_handle();
894 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
897 * No need to use i_size_read() here, the i_size
898 * cannot change under us because we hold i_mutex.
900 * But it's important to update i_size while still holding page lock:
901 * page writeout could otherwise come in and zero beyond i_size.
903 if (pos + copied > inode->i_size) {
904 i_size_write(inode, pos + copied);
905 i_size_changed = 1;
908 if (pos + copied > EXT4_I(inode)->i_disksize) {
909 /* We need to mark inode dirty even if
910 * new_i_size is less that inode->i_size
911 * bu greater than i_disksize.(hint delalloc)
913 ext4_update_i_disksize(inode, (pos + copied));
914 i_size_changed = 1;
916 unlock_page(page);
917 page_cache_release(page);
920 * Don't mark the inode dirty under page lock. First, it unnecessarily
921 * makes the holding time of page lock longer. Second, it forces lock
922 * ordering of page lock and transaction start for journaling
923 * filesystems.
925 if (i_size_changed)
926 ext4_mark_inode_dirty(handle, inode);
928 return copied;
932 * We need to pick up the new inode size which generic_commit_write gave us
933 * `file' can be NULL - eg, when called from page_symlink().
935 * ext4 never places buffers on inode->i_mapping->private_list. metadata
936 * buffers are managed internally.
938 static int ext4_ordered_write_end(struct file *file,
939 struct address_space *mapping,
940 loff_t pos, unsigned len, unsigned copied,
941 struct page *page, void *fsdata)
943 handle_t *handle = ext4_journal_current_handle();
944 struct inode *inode = mapping->host;
945 int ret = 0, ret2;
947 trace_ext4_ordered_write_end(inode, pos, len, copied);
948 ret = ext4_jbd2_file_inode(handle, inode);
950 if (ret == 0) {
951 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
952 page, fsdata);
953 copied = ret2;
954 if (pos + len > inode->i_size && ext4_can_truncate(inode))
955 /* if we have allocated more blocks and copied
956 * less. We will have blocks allocated outside
957 * inode->i_size. So truncate them
959 ext4_orphan_add(handle, inode);
960 if (ret2 < 0)
961 ret = ret2;
963 ret2 = ext4_journal_stop(handle);
964 if (!ret)
965 ret = ret2;
967 if (pos + len > inode->i_size) {
968 ext4_truncate_failed_write(inode);
970 * If truncate failed early the inode might still be
971 * on the orphan list; we need to make sure the inode
972 * is removed from the orphan list in that case.
974 if (inode->i_nlink)
975 ext4_orphan_del(NULL, inode);
979 return ret ? ret : copied;
982 static int ext4_writeback_write_end(struct file *file,
983 struct address_space *mapping,
984 loff_t pos, unsigned len, unsigned copied,
985 struct page *page, void *fsdata)
987 handle_t *handle = ext4_journal_current_handle();
988 struct inode *inode = mapping->host;
989 int ret = 0, ret2;
991 trace_ext4_writeback_write_end(inode, pos, len, copied);
992 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
993 page, fsdata);
994 copied = ret2;
995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
996 /* if we have allocated more blocks and copied
997 * less. We will have blocks allocated outside
998 * inode->i_size. So truncate them
1000 ext4_orphan_add(handle, inode);
1002 if (ret2 < 0)
1003 ret = ret2;
1005 ret2 = ext4_journal_stop(handle);
1006 if (!ret)
1007 ret = ret2;
1009 if (pos + len > inode->i_size) {
1010 ext4_truncate_failed_write(inode);
1012 * If truncate failed early the inode might still be
1013 * on the orphan list; we need to make sure the inode
1014 * is removed from the orphan list in that case.
1016 if (inode->i_nlink)
1017 ext4_orphan_del(NULL, inode);
1020 return ret ? ret : copied;
1023 static int ext4_journalled_write_end(struct file *file,
1024 struct address_space *mapping,
1025 loff_t pos, unsigned len, unsigned copied,
1026 struct page *page, void *fsdata)
1028 handle_t *handle = ext4_journal_current_handle();
1029 struct inode *inode = mapping->host;
1030 int ret = 0, ret2;
1031 int partial = 0;
1032 unsigned from, to;
1033 loff_t new_i_size;
1035 trace_ext4_journalled_write_end(inode, pos, len, copied);
1036 from = pos & (PAGE_CACHE_SIZE - 1);
1037 to = from + len;
1039 BUG_ON(!ext4_handle_valid(handle));
1041 if (copied < len) {
1042 if (!PageUptodate(page))
1043 copied = 0;
1044 page_zero_new_buffers(page, from+copied, to);
1047 ret = walk_page_buffers(handle, page_buffers(page), from,
1048 to, &partial, write_end_fn);
1049 if (!partial)
1050 SetPageUptodate(page);
1051 new_i_size = pos + copied;
1052 if (new_i_size > inode->i_size)
1053 i_size_write(inode, pos+copied);
1054 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1055 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1056 if (new_i_size > EXT4_I(inode)->i_disksize) {
1057 ext4_update_i_disksize(inode, new_i_size);
1058 ret2 = ext4_mark_inode_dirty(handle, inode);
1059 if (!ret)
1060 ret = ret2;
1063 unlock_page(page);
1064 page_cache_release(page);
1065 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066 /* if we have allocated more blocks and copied
1067 * less. We will have blocks allocated outside
1068 * inode->i_size. So truncate them
1070 ext4_orphan_add(handle, inode);
1072 ret2 = ext4_journal_stop(handle);
1073 if (!ret)
1074 ret = ret2;
1075 if (pos + len > inode->i_size) {
1076 ext4_truncate_failed_write(inode);
1078 * If truncate failed early the inode might still be
1079 * on the orphan list; we need to make sure the inode
1080 * is removed from the orphan list in that case.
1082 if (inode->i_nlink)
1083 ext4_orphan_del(NULL, inode);
1086 return ret ? ret : copied;
1090 * Reserve a single cluster located at lblock
1092 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1094 int retries = 0;
1095 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096 struct ext4_inode_info *ei = EXT4_I(inode);
1097 unsigned int md_needed;
1098 int ret;
1101 * recalculate the amount of metadata blocks to reserve
1102 * in order to allocate nrblocks
1103 * worse case is one extent per block
1105 repeat:
1106 spin_lock(&ei->i_block_reservation_lock);
1107 md_needed = EXT4_NUM_B2C(sbi,
1108 ext4_calc_metadata_amount(inode, lblock));
1109 trace_ext4_da_reserve_space(inode, md_needed);
1110 spin_unlock(&ei->i_block_reservation_lock);
1113 * We will charge metadata quota at writeout time; this saves
1114 * us from metadata over-estimation, though we may go over by
1115 * a small amount in the end. Here we just reserve for data.
1117 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1118 if (ret)
1119 return ret;
1121 * We do still charge estimated metadata to the sb though;
1122 * we cannot afford to run out of free blocks.
1124 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1125 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1126 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1127 yield();
1128 goto repeat;
1130 return -ENOSPC;
1132 spin_lock(&ei->i_block_reservation_lock);
1133 ei->i_reserved_data_blocks++;
1134 ei->i_reserved_meta_blocks += md_needed;
1135 spin_unlock(&ei->i_block_reservation_lock);
1137 return 0; /* success */
1140 static void ext4_da_release_space(struct inode *inode, int to_free)
1142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1143 struct ext4_inode_info *ei = EXT4_I(inode);
1145 if (!to_free)
1146 return; /* Nothing to release, exit */
1148 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1150 trace_ext4_da_release_space(inode, to_free);
1151 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1153 * if there aren't enough reserved blocks, then the
1154 * counter is messed up somewhere. Since this
1155 * function is called from invalidate page, it's
1156 * harmless to return without any action.
1158 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1159 "ino %lu, to_free %d with only %d reserved "
1160 "data blocks\n", inode->i_ino, to_free,
1161 ei->i_reserved_data_blocks);
1162 WARN_ON(1);
1163 to_free = ei->i_reserved_data_blocks;
1165 ei->i_reserved_data_blocks -= to_free;
1167 if (ei->i_reserved_data_blocks == 0) {
1169 * We can release all of the reserved metadata blocks
1170 * only when we have written all of the delayed
1171 * allocation blocks.
1172 * Note that in case of bigalloc, i_reserved_meta_blocks,
1173 * i_reserved_data_blocks, etc. refer to number of clusters.
1175 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1176 ei->i_reserved_meta_blocks);
1177 ei->i_reserved_meta_blocks = 0;
1178 ei->i_da_metadata_calc_len = 0;
1181 /* update fs dirty data blocks counter */
1182 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1184 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1186 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1189 static void ext4_da_page_release_reservation(struct page *page,
1190 unsigned long offset)
1192 int to_release = 0;
1193 struct buffer_head *head, *bh;
1194 unsigned int curr_off = 0;
1195 struct inode *inode = page->mapping->host;
1196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197 int num_clusters;
1199 head = page_buffers(page);
1200 bh = head;
1201 do {
1202 unsigned int next_off = curr_off + bh->b_size;
1204 if ((offset <= curr_off) && (buffer_delay(bh))) {
1205 to_release++;
1206 clear_buffer_delay(bh);
1207 clear_buffer_da_mapped(bh);
1209 curr_off = next_off;
1210 } while ((bh = bh->b_this_page) != head);
1212 /* If we have released all the blocks belonging to a cluster, then we
1213 * need to release the reserved space for that cluster. */
1214 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1215 while (num_clusters > 0) {
1216 ext4_fsblk_t lblk;
1217 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1218 ((num_clusters - 1) << sbi->s_cluster_bits);
1219 if (sbi->s_cluster_ratio == 1 ||
1220 !ext4_find_delalloc_cluster(inode, lblk, 1))
1221 ext4_da_release_space(inode, 1);
1223 num_clusters--;
1228 * Delayed allocation stuff
1232 * mpage_da_submit_io - walks through extent of pages and try to write
1233 * them with writepage() call back
1235 * @mpd->inode: inode
1236 * @mpd->first_page: first page of the extent
1237 * @mpd->next_page: page after the last page of the extent
1239 * By the time mpage_da_submit_io() is called we expect all blocks
1240 * to be allocated. this may be wrong if allocation failed.
1242 * As pages are already locked by write_cache_pages(), we can't use it
1244 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1245 struct ext4_map_blocks *map)
1247 struct pagevec pvec;
1248 unsigned long index, end;
1249 int ret = 0, err, nr_pages, i;
1250 struct inode *inode = mpd->inode;
1251 struct address_space *mapping = inode->i_mapping;
1252 loff_t size = i_size_read(inode);
1253 unsigned int len, block_start;
1254 struct buffer_head *bh, *page_bufs = NULL;
1255 int journal_data = ext4_should_journal_data(inode);
1256 sector_t pblock = 0, cur_logical = 0;
1257 struct ext4_io_submit io_submit;
1259 BUG_ON(mpd->next_page <= mpd->first_page);
1260 memset(&io_submit, 0, sizeof(io_submit));
1262 * We need to start from the first_page to the next_page - 1
1263 * to make sure we also write the mapped dirty buffer_heads.
1264 * If we look at mpd->b_blocknr we would only be looking
1265 * at the currently mapped buffer_heads.
1267 index = mpd->first_page;
1268 end = mpd->next_page - 1;
1270 pagevec_init(&pvec, 0);
1271 while (index <= end) {
1272 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1273 if (nr_pages == 0)
1274 break;
1275 for (i = 0; i < nr_pages; i++) {
1276 int commit_write = 0, skip_page = 0;
1277 struct page *page = pvec.pages[i];
1279 index = page->index;
1280 if (index > end)
1281 break;
1283 if (index == size >> PAGE_CACHE_SHIFT)
1284 len = size & ~PAGE_CACHE_MASK;
1285 else
1286 len = PAGE_CACHE_SIZE;
1287 if (map) {
1288 cur_logical = index << (PAGE_CACHE_SHIFT -
1289 inode->i_blkbits);
1290 pblock = map->m_pblk + (cur_logical -
1291 map->m_lblk);
1293 index++;
1295 BUG_ON(!PageLocked(page));
1296 BUG_ON(PageWriteback(page));
1299 * If the page does not have buffers (for
1300 * whatever reason), try to create them using
1301 * __block_write_begin. If this fails,
1302 * skip the page and move on.
1304 if (!page_has_buffers(page)) {
1305 if (__block_write_begin(page, 0, len,
1306 noalloc_get_block_write)) {
1307 skip_page:
1308 unlock_page(page);
1309 continue;
1311 commit_write = 1;
1314 bh = page_bufs = page_buffers(page);
1315 block_start = 0;
1316 do {
1317 if (!bh)
1318 goto skip_page;
1319 if (map && (cur_logical >= map->m_lblk) &&
1320 (cur_logical <= (map->m_lblk +
1321 (map->m_len - 1)))) {
1322 if (buffer_delay(bh)) {
1323 clear_buffer_delay(bh);
1324 bh->b_blocknr = pblock;
1326 if (buffer_da_mapped(bh))
1327 clear_buffer_da_mapped(bh);
1328 if (buffer_unwritten(bh) ||
1329 buffer_mapped(bh))
1330 BUG_ON(bh->b_blocknr != pblock);
1331 if (map->m_flags & EXT4_MAP_UNINIT)
1332 set_buffer_uninit(bh);
1333 clear_buffer_unwritten(bh);
1336 /* skip page if block allocation undone */
1337 if (buffer_delay(bh) || buffer_unwritten(bh))
1338 skip_page = 1;
1339 bh = bh->b_this_page;
1340 block_start += bh->b_size;
1341 cur_logical++;
1342 pblock++;
1343 } while (bh != page_bufs);
1345 if (skip_page)
1346 goto skip_page;
1348 if (commit_write)
1349 /* mark the buffer_heads as dirty & uptodate */
1350 block_commit_write(page, 0, len);
1352 clear_page_dirty_for_io(page);
1354 * Delalloc doesn't support data journalling,
1355 * but eventually maybe we'll lift this
1356 * restriction.
1358 if (unlikely(journal_data && PageChecked(page)))
1359 err = __ext4_journalled_writepage(page, len);
1360 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1361 err = ext4_bio_write_page(&io_submit, page,
1362 len, mpd->wbc);
1363 else if (buffer_uninit(page_bufs)) {
1364 ext4_set_bh_endio(page_bufs, inode);
1365 err = block_write_full_page_endio(page,
1366 noalloc_get_block_write,
1367 mpd->wbc, ext4_end_io_buffer_write);
1368 } else
1369 err = block_write_full_page(page,
1370 noalloc_get_block_write, mpd->wbc);
1372 if (!err)
1373 mpd->pages_written++;
1375 * In error case, we have to continue because
1376 * remaining pages are still locked
1378 if (ret == 0)
1379 ret = err;
1381 pagevec_release(&pvec);
1383 ext4_io_submit(&io_submit);
1384 return ret;
1387 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1389 int nr_pages, i;
1390 pgoff_t index, end;
1391 struct pagevec pvec;
1392 struct inode *inode = mpd->inode;
1393 struct address_space *mapping = inode->i_mapping;
1395 index = mpd->first_page;
1396 end = mpd->next_page - 1;
1397 while (index <= end) {
1398 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1399 if (nr_pages == 0)
1400 break;
1401 for (i = 0; i < nr_pages; i++) {
1402 struct page *page = pvec.pages[i];
1403 if (page->index > end)
1404 break;
1405 BUG_ON(!PageLocked(page));
1406 BUG_ON(PageWriteback(page));
1407 block_invalidatepage(page, 0);
1408 ClearPageUptodate(page);
1409 unlock_page(page);
1411 index = pvec.pages[nr_pages - 1]->index + 1;
1412 pagevec_release(&pvec);
1414 return;
1417 static void ext4_print_free_blocks(struct inode *inode)
1419 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420 printk(KERN_CRIT "Total free blocks count %lld\n",
1421 EXT4_C2B(EXT4_SB(inode->i_sb),
1422 ext4_count_free_clusters(inode->i_sb)));
1423 printk(KERN_CRIT "Free/Dirty block details\n");
1424 printk(KERN_CRIT "free_blocks=%lld\n",
1425 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1426 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1427 printk(KERN_CRIT "dirty_blocks=%lld\n",
1428 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1429 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1430 printk(KERN_CRIT "Block reservation details\n");
1431 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1432 EXT4_I(inode)->i_reserved_data_blocks);
1433 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1434 EXT4_I(inode)->i_reserved_meta_blocks);
1435 return;
1439 * mpage_da_map_and_submit - go through given space, map them
1440 * if necessary, and then submit them for I/O
1442 * @mpd - bh describing space
1444 * The function skips space we know is already mapped to disk blocks.
1447 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1449 int err, blks, get_blocks_flags;
1450 struct ext4_map_blocks map, *mapp = NULL;
1451 sector_t next = mpd->b_blocknr;
1452 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1453 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1454 handle_t *handle = NULL;
1457 * If the blocks are mapped already, or we couldn't accumulate
1458 * any blocks, then proceed immediately to the submission stage.
1460 if ((mpd->b_size == 0) ||
1461 ((mpd->b_state & (1 << BH_Mapped)) &&
1462 !(mpd->b_state & (1 << BH_Delay)) &&
1463 !(mpd->b_state & (1 << BH_Unwritten))))
1464 goto submit_io;
1466 handle = ext4_journal_current_handle();
1467 BUG_ON(!handle);
1470 * Call ext4_map_blocks() to allocate any delayed allocation
1471 * blocks, or to convert an uninitialized extent to be
1472 * initialized (in the case where we have written into
1473 * one or more preallocated blocks).
1475 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1476 * indicate that we are on the delayed allocation path. This
1477 * affects functions in many different parts of the allocation
1478 * call path. This flag exists primarily because we don't
1479 * want to change *many* call functions, so ext4_map_blocks()
1480 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1481 * inode's allocation semaphore is taken.
1483 * If the blocks in questions were delalloc blocks, set
1484 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1485 * variables are updated after the blocks have been allocated.
1487 map.m_lblk = next;
1488 map.m_len = max_blocks;
1489 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1490 if (ext4_should_dioread_nolock(mpd->inode))
1491 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1492 if (mpd->b_state & (1 << BH_Delay))
1493 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1495 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1496 if (blks < 0) {
1497 struct super_block *sb = mpd->inode->i_sb;
1499 err = blks;
1501 * If get block returns EAGAIN or ENOSPC and there
1502 * appears to be free blocks we will just let
1503 * mpage_da_submit_io() unlock all of the pages.
1505 if (err == -EAGAIN)
1506 goto submit_io;
1508 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1509 mpd->retval = err;
1510 goto submit_io;
1514 * get block failure will cause us to loop in
1515 * writepages, because a_ops->writepage won't be able
1516 * to make progress. The page will be redirtied by
1517 * writepage and writepages will again try to write
1518 * the same.
1520 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1521 ext4_msg(sb, KERN_CRIT,
1522 "delayed block allocation failed for inode %lu "
1523 "at logical offset %llu with max blocks %zd "
1524 "with error %d", mpd->inode->i_ino,
1525 (unsigned long long) next,
1526 mpd->b_size >> mpd->inode->i_blkbits, err);
1527 ext4_msg(sb, KERN_CRIT,
1528 "This should not happen!! Data will be lost\n");
1529 if (err == -ENOSPC)
1530 ext4_print_free_blocks(mpd->inode);
1532 /* invalidate all the pages */
1533 ext4_da_block_invalidatepages(mpd);
1535 /* Mark this page range as having been completed */
1536 mpd->io_done = 1;
1537 return;
1539 BUG_ON(blks == 0);
1541 mapp = &map;
1542 if (map.m_flags & EXT4_MAP_NEW) {
1543 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1544 int i;
1546 for (i = 0; i < map.m_len; i++)
1547 unmap_underlying_metadata(bdev, map.m_pblk + i);
1549 if (ext4_should_order_data(mpd->inode)) {
1550 err = ext4_jbd2_file_inode(handle, mpd->inode);
1551 if (err)
1552 /* Only if the journal is aborted */
1553 return;
1558 * Update on-disk size along with block allocation.
1560 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1561 if (disksize > i_size_read(mpd->inode))
1562 disksize = i_size_read(mpd->inode);
1563 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1564 ext4_update_i_disksize(mpd->inode, disksize);
1565 err = ext4_mark_inode_dirty(handle, mpd->inode);
1566 if (err)
1567 ext4_error(mpd->inode->i_sb,
1568 "Failed to mark inode %lu dirty",
1569 mpd->inode->i_ino);
1572 submit_io:
1573 mpage_da_submit_io(mpd, mapp);
1574 mpd->io_done = 1;
1577 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1578 (1 << BH_Delay) | (1 << BH_Unwritten))
1581 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1583 * @mpd->lbh - extent of blocks
1584 * @logical - logical number of the block in the file
1585 * @bh - bh of the block (used to access block's state)
1587 * the function is used to collect contig. blocks in same state
1589 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1590 sector_t logical, size_t b_size,
1591 unsigned long b_state)
1593 sector_t next;
1594 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1597 * XXX Don't go larger than mballoc is willing to allocate
1598 * This is a stopgap solution. We eventually need to fold
1599 * mpage_da_submit_io() into this function and then call
1600 * ext4_map_blocks() multiple times in a loop
1602 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1603 goto flush_it;
1605 /* check if thereserved journal credits might overflow */
1606 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1607 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1609 * With non-extent format we are limited by the journal
1610 * credit available. Total credit needed to insert
1611 * nrblocks contiguous blocks is dependent on the
1612 * nrblocks. So limit nrblocks.
1614 goto flush_it;
1615 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1616 EXT4_MAX_TRANS_DATA) {
1618 * Adding the new buffer_head would make it cross the
1619 * allowed limit for which we have journal credit
1620 * reserved. So limit the new bh->b_size
1622 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1623 mpd->inode->i_blkbits;
1624 /* we will do mpage_da_submit_io in the next loop */
1628 * First block in the extent
1630 if (mpd->b_size == 0) {
1631 mpd->b_blocknr = logical;
1632 mpd->b_size = b_size;
1633 mpd->b_state = b_state & BH_FLAGS;
1634 return;
1637 next = mpd->b_blocknr + nrblocks;
1639 * Can we merge the block to our big extent?
1641 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1642 mpd->b_size += b_size;
1643 return;
1646 flush_it:
1648 * We couldn't merge the block to our extent, so we
1649 * need to flush current extent and start new one
1651 mpage_da_map_and_submit(mpd);
1652 return;
1655 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1657 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1661 * This function is grabs code from the very beginning of
1662 * ext4_map_blocks, but assumes that the caller is from delayed write
1663 * time. This function looks up the requested blocks and sets the
1664 * buffer delay bit under the protection of i_data_sem.
1666 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1667 struct ext4_map_blocks *map,
1668 struct buffer_head *bh)
1670 int retval;
1671 sector_t invalid_block = ~((sector_t) 0xffff);
1673 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1674 invalid_block = ~0;
1676 map->m_flags = 0;
1677 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1678 "logical block %lu\n", inode->i_ino, map->m_len,
1679 (unsigned long) map->m_lblk);
1681 * Try to see if we can get the block without requesting a new
1682 * file system block.
1684 down_read((&EXT4_I(inode)->i_data_sem));
1685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1686 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1687 else
1688 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1690 if (retval == 0) {
1692 * XXX: __block_prepare_write() unmaps passed block,
1693 * is it OK?
1695 /* If the block was allocated from previously allocated cluster,
1696 * then we dont need to reserve it again. */
1697 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1698 retval = ext4_da_reserve_space(inode, iblock);
1699 if (retval)
1700 /* not enough space to reserve */
1701 goto out_unlock;
1704 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1705 * and it should not appear on the bh->b_state.
1707 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1709 map_bh(bh, inode->i_sb, invalid_block);
1710 set_buffer_new(bh);
1711 set_buffer_delay(bh);
1714 out_unlock:
1715 up_read((&EXT4_I(inode)->i_data_sem));
1717 return retval;
1721 * This is a special get_blocks_t callback which is used by
1722 * ext4_da_write_begin(). It will either return mapped block or
1723 * reserve space for a single block.
1725 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1726 * We also have b_blocknr = -1 and b_bdev initialized properly
1728 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1729 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1730 * initialized properly.
1732 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1733 struct buffer_head *bh, int create)
1735 struct ext4_map_blocks map;
1736 int ret = 0;
1738 BUG_ON(create == 0);
1739 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1741 map.m_lblk = iblock;
1742 map.m_len = 1;
1745 * first, we need to know whether the block is allocated already
1746 * preallocated blocks are unmapped but should treated
1747 * the same as allocated blocks.
1749 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1750 if (ret <= 0)
1751 return ret;
1753 map_bh(bh, inode->i_sb, map.m_pblk);
1754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1756 if (buffer_unwritten(bh)) {
1757 /* A delayed write to unwritten bh should be marked
1758 * new and mapped. Mapped ensures that we don't do
1759 * get_block multiple times when we write to the same
1760 * offset and new ensures that we do proper zero out
1761 * for partial write.
1763 set_buffer_new(bh);
1764 set_buffer_mapped(bh);
1766 return 0;
1770 * This function is used as a standard get_block_t calback function
1771 * when there is no desire to allocate any blocks. It is used as a
1772 * callback function for block_write_begin() and block_write_full_page().
1773 * These functions should only try to map a single block at a time.
1775 * Since this function doesn't do block allocations even if the caller
1776 * requests it by passing in create=1, it is critically important that
1777 * any caller checks to make sure that any buffer heads are returned
1778 * by this function are either all already mapped or marked for
1779 * delayed allocation before calling block_write_full_page(). Otherwise,
1780 * b_blocknr could be left unitialized, and the page write functions will
1781 * be taken by surprise.
1783 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1784 struct buffer_head *bh_result, int create)
1786 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1787 return _ext4_get_block(inode, iblock, bh_result, 0);
1790 static int bget_one(handle_t *handle, struct buffer_head *bh)
1792 get_bh(bh);
1793 return 0;
1796 static int bput_one(handle_t *handle, struct buffer_head *bh)
1798 put_bh(bh);
1799 return 0;
1802 static int __ext4_journalled_writepage(struct page *page,
1803 unsigned int len)
1805 struct address_space *mapping = page->mapping;
1806 struct inode *inode = mapping->host;
1807 struct buffer_head *page_bufs;
1808 handle_t *handle = NULL;
1809 int ret = 0;
1810 int err;
1812 ClearPageChecked(page);
1813 page_bufs = page_buffers(page);
1814 BUG_ON(!page_bufs);
1815 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1816 /* As soon as we unlock the page, it can go away, but we have
1817 * references to buffers so we are safe */
1818 unlock_page(page);
1820 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1821 if (IS_ERR(handle)) {
1822 ret = PTR_ERR(handle);
1823 goto out;
1826 BUG_ON(!ext4_handle_valid(handle));
1828 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1829 do_journal_get_write_access);
1831 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1832 write_end_fn);
1833 if (ret == 0)
1834 ret = err;
1835 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1836 err = ext4_journal_stop(handle);
1837 if (!ret)
1838 ret = err;
1840 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1841 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1842 out:
1843 return ret;
1846 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1847 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1850 * Note that we don't need to start a transaction unless we're journaling data
1851 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1852 * need to file the inode to the transaction's list in ordered mode because if
1853 * we are writing back data added by write(), the inode is already there and if
1854 * we are writing back data modified via mmap(), no one guarantees in which
1855 * transaction the data will hit the disk. In case we are journaling data, we
1856 * cannot start transaction directly because transaction start ranks above page
1857 * lock so we have to do some magic.
1859 * This function can get called via...
1860 * - ext4_da_writepages after taking page lock (have journal handle)
1861 * - journal_submit_inode_data_buffers (no journal handle)
1862 * - shrink_page_list via pdflush (no journal handle)
1863 * - grab_page_cache when doing write_begin (have journal handle)
1865 * We don't do any block allocation in this function. If we have page with
1866 * multiple blocks we need to write those buffer_heads that are mapped. This
1867 * is important for mmaped based write. So if we do with blocksize 1K
1868 * truncate(f, 1024);
1869 * a = mmap(f, 0, 4096);
1870 * a[0] = 'a';
1871 * truncate(f, 4096);
1872 * we have in the page first buffer_head mapped via page_mkwrite call back
1873 * but other bufer_heads would be unmapped but dirty(dirty done via the
1874 * do_wp_page). So writepage should write the first block. If we modify
1875 * the mmap area beyond 1024 we will again get a page_fault and the
1876 * page_mkwrite callback will do the block allocation and mark the
1877 * buffer_heads mapped.
1879 * We redirty the page if we have any buffer_heads that is either delay or
1880 * unwritten in the page.
1882 * We can get recursively called as show below.
1884 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1885 * ext4_writepage()
1887 * But since we don't do any block allocation we should not deadlock.
1888 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1890 static int ext4_writepage(struct page *page,
1891 struct writeback_control *wbc)
1893 int ret = 0, commit_write = 0;
1894 loff_t size;
1895 unsigned int len;
1896 struct buffer_head *page_bufs = NULL;
1897 struct inode *inode = page->mapping->host;
1899 trace_ext4_writepage(page);
1900 size = i_size_read(inode);
1901 if (page->index == size >> PAGE_CACHE_SHIFT)
1902 len = size & ~PAGE_CACHE_MASK;
1903 else
1904 len = PAGE_CACHE_SIZE;
1907 * If the page does not have buffers (for whatever reason),
1908 * try to create them using __block_write_begin. If this
1909 * fails, redirty the page and move on.
1911 if (!page_has_buffers(page)) {
1912 if (__block_write_begin(page, 0, len,
1913 noalloc_get_block_write)) {
1914 redirty_page:
1915 redirty_page_for_writepage(wbc, page);
1916 unlock_page(page);
1917 return 0;
1919 commit_write = 1;
1921 page_bufs = page_buffers(page);
1922 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1923 ext4_bh_delay_or_unwritten)) {
1925 * We don't want to do block allocation, so redirty
1926 * the page and return. We may reach here when we do
1927 * a journal commit via journal_submit_inode_data_buffers.
1928 * We can also reach here via shrink_page_list
1930 goto redirty_page;
1932 if (commit_write)
1933 /* now mark the buffer_heads as dirty and uptodate */
1934 block_commit_write(page, 0, len);
1936 if (PageChecked(page) && ext4_should_journal_data(inode))
1938 * It's mmapped pagecache. Add buffers and journal it. There
1939 * doesn't seem much point in redirtying the page here.
1941 return __ext4_journalled_writepage(page, len);
1943 if (buffer_uninit(page_bufs)) {
1944 ext4_set_bh_endio(page_bufs, inode);
1945 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1946 wbc, ext4_end_io_buffer_write);
1947 } else
1948 ret = block_write_full_page(page, noalloc_get_block_write,
1949 wbc);
1951 return ret;
1955 * This is called via ext4_da_writepages() to
1956 * calculate the total number of credits to reserve to fit
1957 * a single extent allocation into a single transaction,
1958 * ext4_da_writpeages() will loop calling this before
1959 * the block allocation.
1962 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1964 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1967 * With non-extent format the journal credit needed to
1968 * insert nrblocks contiguous block is dependent on
1969 * number of contiguous block. So we will limit
1970 * number of contiguous block to a sane value
1972 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1973 (max_blocks > EXT4_MAX_TRANS_DATA))
1974 max_blocks = EXT4_MAX_TRANS_DATA;
1976 return ext4_chunk_trans_blocks(inode, max_blocks);
1980 * write_cache_pages_da - walk the list of dirty pages of the given
1981 * address space and accumulate pages that need writing, and call
1982 * mpage_da_map_and_submit to map a single contiguous memory region
1983 * and then write them.
1985 static int write_cache_pages_da(struct address_space *mapping,
1986 struct writeback_control *wbc,
1987 struct mpage_da_data *mpd,
1988 pgoff_t *done_index)
1990 struct buffer_head *bh, *head;
1991 struct inode *inode = mapping->host;
1992 struct pagevec pvec;
1993 unsigned int nr_pages;
1994 sector_t logical;
1995 pgoff_t index, end;
1996 long nr_to_write = wbc->nr_to_write;
1997 int i, tag, ret = 0;
1999 memset(mpd, 0, sizeof(struct mpage_da_data));
2000 mpd->wbc = wbc;
2001 mpd->inode = inode;
2002 pagevec_init(&pvec, 0);
2003 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2004 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2007 tag = PAGECACHE_TAG_TOWRITE;
2008 else
2009 tag = PAGECACHE_TAG_DIRTY;
2011 *done_index = index;
2012 while (index <= end) {
2013 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2014 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2015 if (nr_pages == 0)
2016 return 0;
2018 for (i = 0; i < nr_pages; i++) {
2019 struct page *page = pvec.pages[i];
2022 * At this point, the page may be truncated or
2023 * invalidated (changing page->mapping to NULL), or
2024 * even swizzled back from swapper_space to tmpfs file
2025 * mapping. However, page->index will not change
2026 * because we have a reference on the page.
2028 if (page->index > end)
2029 goto out;
2031 *done_index = page->index + 1;
2034 * If we can't merge this page, and we have
2035 * accumulated an contiguous region, write it
2037 if ((mpd->next_page != page->index) &&
2038 (mpd->next_page != mpd->first_page)) {
2039 mpage_da_map_and_submit(mpd);
2040 goto ret_extent_tail;
2043 lock_page(page);
2046 * If the page is no longer dirty, or its
2047 * mapping no longer corresponds to inode we
2048 * are writing (which means it has been
2049 * truncated or invalidated), or the page is
2050 * already under writeback and we are not
2051 * doing a data integrity writeback, skip the page
2053 if (!PageDirty(page) ||
2054 (PageWriteback(page) &&
2055 (wbc->sync_mode == WB_SYNC_NONE)) ||
2056 unlikely(page->mapping != mapping)) {
2057 unlock_page(page);
2058 continue;
2061 wait_on_page_writeback(page);
2062 BUG_ON(PageWriteback(page));
2064 if (mpd->next_page != page->index)
2065 mpd->first_page = page->index;
2066 mpd->next_page = page->index + 1;
2067 logical = (sector_t) page->index <<
2068 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2070 if (!page_has_buffers(page)) {
2071 mpage_add_bh_to_extent(mpd, logical,
2072 PAGE_CACHE_SIZE,
2073 (1 << BH_Dirty) | (1 << BH_Uptodate));
2074 if (mpd->io_done)
2075 goto ret_extent_tail;
2076 } else {
2078 * Page with regular buffer heads,
2079 * just add all dirty ones
2081 head = page_buffers(page);
2082 bh = head;
2083 do {
2084 BUG_ON(buffer_locked(bh));
2086 * We need to try to allocate
2087 * unmapped blocks in the same page.
2088 * Otherwise we won't make progress
2089 * with the page in ext4_writepage
2091 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2092 mpage_add_bh_to_extent(mpd, logical,
2093 bh->b_size,
2094 bh->b_state);
2095 if (mpd->io_done)
2096 goto ret_extent_tail;
2097 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2099 * mapped dirty buffer. We need
2100 * to update the b_state
2101 * because we look at b_state
2102 * in mpage_da_map_blocks. We
2103 * don't update b_size because
2104 * if we find an unmapped
2105 * buffer_head later we need to
2106 * use the b_state flag of that
2107 * buffer_head.
2109 if (mpd->b_size == 0)
2110 mpd->b_state = bh->b_state & BH_FLAGS;
2112 logical++;
2113 } while ((bh = bh->b_this_page) != head);
2116 if (nr_to_write > 0) {
2117 nr_to_write--;
2118 if (nr_to_write == 0 &&
2119 wbc->sync_mode == WB_SYNC_NONE)
2121 * We stop writing back only if we are
2122 * not doing integrity sync. In case of
2123 * integrity sync we have to keep going
2124 * because someone may be concurrently
2125 * dirtying pages, and we might have
2126 * synced a lot of newly appeared dirty
2127 * pages, but have not synced all of the
2128 * old dirty pages.
2130 goto out;
2133 pagevec_release(&pvec);
2134 cond_resched();
2136 return 0;
2137 ret_extent_tail:
2138 ret = MPAGE_DA_EXTENT_TAIL;
2139 out:
2140 pagevec_release(&pvec);
2141 cond_resched();
2142 return ret;
2146 static int ext4_da_writepages(struct address_space *mapping,
2147 struct writeback_control *wbc)
2149 pgoff_t index;
2150 int range_whole = 0;
2151 handle_t *handle = NULL;
2152 struct mpage_da_data mpd;
2153 struct inode *inode = mapping->host;
2154 int pages_written = 0;
2155 unsigned int max_pages;
2156 int range_cyclic, cycled = 1, io_done = 0;
2157 int needed_blocks, ret = 0;
2158 long desired_nr_to_write, nr_to_writebump = 0;
2159 loff_t range_start = wbc->range_start;
2160 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2161 pgoff_t done_index = 0;
2162 pgoff_t end;
2163 struct blk_plug plug;
2165 trace_ext4_da_writepages(inode, wbc);
2168 * No pages to write? This is mainly a kludge to avoid starting
2169 * a transaction for special inodes like journal inode on last iput()
2170 * because that could violate lock ordering on umount
2172 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2173 return 0;
2176 * If the filesystem has aborted, it is read-only, so return
2177 * right away instead of dumping stack traces later on that
2178 * will obscure the real source of the problem. We test
2179 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2180 * the latter could be true if the filesystem is mounted
2181 * read-only, and in that case, ext4_da_writepages should
2182 * *never* be called, so if that ever happens, we would want
2183 * the stack trace.
2185 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2186 return -EROFS;
2188 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2189 range_whole = 1;
2191 range_cyclic = wbc->range_cyclic;
2192 if (wbc->range_cyclic) {
2193 index = mapping->writeback_index;
2194 if (index)
2195 cycled = 0;
2196 wbc->range_start = index << PAGE_CACHE_SHIFT;
2197 wbc->range_end = LLONG_MAX;
2198 wbc->range_cyclic = 0;
2199 end = -1;
2200 } else {
2201 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2202 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2206 * This works around two forms of stupidity. The first is in
2207 * the writeback code, which caps the maximum number of pages
2208 * written to be 1024 pages. This is wrong on multiple
2209 * levels; different architectues have a different page size,
2210 * which changes the maximum amount of data which gets
2211 * written. Secondly, 4 megabytes is way too small. XFS
2212 * forces this value to be 16 megabytes by multiplying
2213 * nr_to_write parameter by four, and then relies on its
2214 * allocator to allocate larger extents to make them
2215 * contiguous. Unfortunately this brings us to the second
2216 * stupidity, which is that ext4's mballoc code only allocates
2217 * at most 2048 blocks. So we force contiguous writes up to
2218 * the number of dirty blocks in the inode, or
2219 * sbi->max_writeback_mb_bump whichever is smaller.
2221 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2222 if (!range_cyclic && range_whole) {
2223 if (wbc->nr_to_write == LONG_MAX)
2224 desired_nr_to_write = wbc->nr_to_write;
2225 else
2226 desired_nr_to_write = wbc->nr_to_write * 8;
2227 } else
2228 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2229 max_pages);
2230 if (desired_nr_to_write > max_pages)
2231 desired_nr_to_write = max_pages;
2233 if (wbc->nr_to_write < desired_nr_to_write) {
2234 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2235 wbc->nr_to_write = desired_nr_to_write;
2238 retry:
2239 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2240 tag_pages_for_writeback(mapping, index, end);
2242 blk_start_plug(&plug);
2243 while (!ret && wbc->nr_to_write > 0) {
2246 * we insert one extent at a time. So we need
2247 * credit needed for single extent allocation.
2248 * journalled mode is currently not supported
2249 * by delalloc
2251 BUG_ON(ext4_should_journal_data(inode));
2252 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2254 /* start a new transaction*/
2255 handle = ext4_journal_start(inode, needed_blocks);
2256 if (IS_ERR(handle)) {
2257 ret = PTR_ERR(handle);
2258 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2259 "%ld pages, ino %lu; err %d", __func__,
2260 wbc->nr_to_write, inode->i_ino, ret);
2261 goto out_writepages;
2265 * Now call write_cache_pages_da() to find the next
2266 * contiguous region of logical blocks that need
2267 * blocks to be allocated by ext4 and submit them.
2269 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2271 * If we have a contiguous extent of pages and we
2272 * haven't done the I/O yet, map the blocks and submit
2273 * them for I/O.
2275 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2276 mpage_da_map_and_submit(&mpd);
2277 ret = MPAGE_DA_EXTENT_TAIL;
2279 trace_ext4_da_write_pages(inode, &mpd);
2280 wbc->nr_to_write -= mpd.pages_written;
2282 ext4_journal_stop(handle);
2284 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2285 /* commit the transaction which would
2286 * free blocks released in the transaction
2287 * and try again
2289 jbd2_journal_force_commit_nested(sbi->s_journal);
2290 ret = 0;
2291 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2293 * got one extent now try with
2294 * rest of the pages
2296 pages_written += mpd.pages_written;
2297 ret = 0;
2298 io_done = 1;
2299 } else if (wbc->nr_to_write)
2301 * There is no more writeout needed
2302 * or we requested for a noblocking writeout
2303 * and we found the device congested
2305 break;
2307 blk_finish_plug(&plug);
2308 if (!io_done && !cycled) {
2309 cycled = 1;
2310 index = 0;
2311 wbc->range_start = index << PAGE_CACHE_SHIFT;
2312 wbc->range_end = mapping->writeback_index - 1;
2313 goto retry;
2316 /* Update index */
2317 wbc->range_cyclic = range_cyclic;
2318 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2320 * set the writeback_index so that range_cyclic
2321 * mode will write it back later
2323 mapping->writeback_index = done_index;
2325 out_writepages:
2326 wbc->nr_to_write -= nr_to_writebump;
2327 wbc->range_start = range_start;
2328 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2329 return ret;
2332 #define FALL_BACK_TO_NONDELALLOC 1
2333 static int ext4_nonda_switch(struct super_block *sb)
2335 s64 free_blocks, dirty_blocks;
2336 struct ext4_sb_info *sbi = EXT4_SB(sb);
2339 * switch to non delalloc mode if we are running low
2340 * on free block. The free block accounting via percpu
2341 * counters can get slightly wrong with percpu_counter_batch getting
2342 * accumulated on each CPU without updating global counters
2343 * Delalloc need an accurate free block accounting. So switch
2344 * to non delalloc when we are near to error range.
2346 free_blocks = EXT4_C2B(sbi,
2347 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2348 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2349 if (2 * free_blocks < 3 * dirty_blocks ||
2350 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2352 * free block count is less than 150% of dirty blocks
2353 * or free blocks is less than watermark
2355 return 1;
2358 * Even if we don't switch but are nearing capacity,
2359 * start pushing delalloc when 1/2 of free blocks are dirty.
2361 if (free_blocks < 2 * dirty_blocks)
2362 writeback_inodes_sb_if_idle(sb);
2364 return 0;
2367 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2368 loff_t pos, unsigned len, unsigned flags,
2369 struct page **pagep, void **fsdata)
2371 int ret, retries = 0;
2372 struct page *page;
2373 pgoff_t index;
2374 struct inode *inode = mapping->host;
2375 handle_t *handle;
2376 loff_t page_len;
2378 index = pos >> PAGE_CACHE_SHIFT;
2380 if (ext4_nonda_switch(inode->i_sb)) {
2381 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2382 return ext4_write_begin(file, mapping, pos,
2383 len, flags, pagep, fsdata);
2385 *fsdata = (void *)0;
2386 trace_ext4_da_write_begin(inode, pos, len, flags);
2387 retry:
2389 * With delayed allocation, we don't log the i_disksize update
2390 * if there is delayed block allocation. But we still need
2391 * to journalling the i_disksize update if writes to the end
2392 * of file which has an already mapped buffer.
2394 handle = ext4_journal_start(inode, 1);
2395 if (IS_ERR(handle)) {
2396 ret = PTR_ERR(handle);
2397 goto out;
2399 /* We cannot recurse into the filesystem as the transaction is already
2400 * started */
2401 flags |= AOP_FLAG_NOFS;
2403 page = grab_cache_page_write_begin(mapping, index, flags);
2404 if (!page) {
2405 ext4_journal_stop(handle);
2406 ret = -ENOMEM;
2407 goto out;
2409 *pagep = page;
2411 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2412 if (ret < 0) {
2413 unlock_page(page);
2414 ext4_journal_stop(handle);
2415 page_cache_release(page);
2417 * block_write_begin may have instantiated a few blocks
2418 * outside i_size. Trim these off again. Don't need
2419 * i_size_read because we hold i_mutex.
2421 if (pos + len > inode->i_size)
2422 ext4_truncate_failed_write(inode);
2423 } else {
2424 page_len = pos & (PAGE_CACHE_SIZE - 1);
2425 if (page_len > 0) {
2426 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2427 inode, page, pos - page_len, page_len,
2428 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2432 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2433 goto retry;
2434 out:
2435 return ret;
2439 * Check if we should update i_disksize
2440 * when write to the end of file but not require block allocation
2442 static int ext4_da_should_update_i_disksize(struct page *page,
2443 unsigned long offset)
2445 struct buffer_head *bh;
2446 struct inode *inode = page->mapping->host;
2447 unsigned int idx;
2448 int i;
2450 bh = page_buffers(page);
2451 idx = offset >> inode->i_blkbits;
2453 for (i = 0; i < idx; i++)
2454 bh = bh->b_this_page;
2456 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2457 return 0;
2458 return 1;
2461 static int ext4_da_write_end(struct file *file,
2462 struct address_space *mapping,
2463 loff_t pos, unsigned len, unsigned copied,
2464 struct page *page, void *fsdata)
2466 struct inode *inode = mapping->host;
2467 int ret = 0, ret2;
2468 handle_t *handle = ext4_journal_current_handle();
2469 loff_t new_i_size;
2470 unsigned long start, end;
2471 int write_mode = (int)(unsigned long)fsdata;
2472 loff_t page_len;
2474 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2475 if (ext4_should_order_data(inode)) {
2476 return ext4_ordered_write_end(file, mapping, pos,
2477 len, copied, page, fsdata);
2478 } else if (ext4_should_writeback_data(inode)) {
2479 return ext4_writeback_write_end(file, mapping, pos,
2480 len, copied, page, fsdata);
2481 } else {
2482 BUG();
2486 trace_ext4_da_write_end(inode, pos, len, copied);
2487 start = pos & (PAGE_CACHE_SIZE - 1);
2488 end = start + copied - 1;
2491 * generic_write_end() will run mark_inode_dirty() if i_size
2492 * changes. So let's piggyback the i_disksize mark_inode_dirty
2493 * into that.
2496 new_i_size = pos + copied;
2497 if (new_i_size > EXT4_I(inode)->i_disksize) {
2498 if (ext4_da_should_update_i_disksize(page, end)) {
2499 down_write(&EXT4_I(inode)->i_data_sem);
2500 if (new_i_size > EXT4_I(inode)->i_disksize) {
2502 * Updating i_disksize when extending file
2503 * without needing block allocation
2505 if (ext4_should_order_data(inode))
2506 ret = ext4_jbd2_file_inode(handle,
2507 inode);
2509 EXT4_I(inode)->i_disksize = new_i_size;
2511 up_write(&EXT4_I(inode)->i_data_sem);
2512 /* We need to mark inode dirty even if
2513 * new_i_size is less that inode->i_size
2514 * bu greater than i_disksize.(hint delalloc)
2516 ext4_mark_inode_dirty(handle, inode);
2519 ret2 = generic_write_end(file, mapping, pos, len, copied,
2520 page, fsdata);
2522 page_len = PAGE_CACHE_SIZE -
2523 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2525 if (page_len > 0) {
2526 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2527 inode, page, pos + copied - 1, page_len,
2528 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2531 copied = ret2;
2532 if (ret2 < 0)
2533 ret = ret2;
2534 ret2 = ext4_journal_stop(handle);
2535 if (!ret)
2536 ret = ret2;
2538 return ret ? ret : copied;
2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2544 * Drop reserved blocks
2546 BUG_ON(!PageLocked(page));
2547 if (!page_has_buffers(page))
2548 goto out;
2550 ext4_da_page_release_reservation(page, offset);
2552 out:
2553 ext4_invalidatepage(page, offset);
2555 return;
2559 * Force all delayed allocation blocks to be allocated for a given inode.
2561 int ext4_alloc_da_blocks(struct inode *inode)
2563 trace_ext4_alloc_da_blocks(inode);
2565 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2566 !EXT4_I(inode)->i_reserved_meta_blocks)
2567 return 0;
2570 * We do something simple for now. The filemap_flush() will
2571 * also start triggering a write of the data blocks, which is
2572 * not strictly speaking necessary (and for users of
2573 * laptop_mode, not even desirable). However, to do otherwise
2574 * would require replicating code paths in:
2576 * ext4_da_writepages() ->
2577 * write_cache_pages() ---> (via passed in callback function)
2578 * __mpage_da_writepage() -->
2579 * mpage_add_bh_to_extent()
2580 * mpage_da_map_blocks()
2582 * The problem is that write_cache_pages(), located in
2583 * mm/page-writeback.c, marks pages clean in preparation for
2584 * doing I/O, which is not desirable if we're not planning on
2585 * doing I/O at all.
2587 * We could call write_cache_pages(), and then redirty all of
2588 * the pages by calling redirty_page_for_writepage() but that
2589 * would be ugly in the extreme. So instead we would need to
2590 * replicate parts of the code in the above functions,
2591 * simplifying them because we wouldn't actually intend to
2592 * write out the pages, but rather only collect contiguous
2593 * logical block extents, call the multi-block allocator, and
2594 * then update the buffer heads with the block allocations.
2596 * For now, though, we'll cheat by calling filemap_flush(),
2597 * which will map the blocks, and start the I/O, but not
2598 * actually wait for the I/O to complete.
2600 return filemap_flush(inode->i_mapping);
2604 * bmap() is special. It gets used by applications such as lilo and by
2605 * the swapper to find the on-disk block of a specific piece of data.
2607 * Naturally, this is dangerous if the block concerned is still in the
2608 * journal. If somebody makes a swapfile on an ext4 data-journaling
2609 * filesystem and enables swap, then they may get a nasty shock when the
2610 * data getting swapped to that swapfile suddenly gets overwritten by
2611 * the original zero's written out previously to the journal and
2612 * awaiting writeback in the kernel's buffer cache.
2614 * So, if we see any bmap calls here on a modified, data-journaled file,
2615 * take extra steps to flush any blocks which might be in the cache.
2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2619 struct inode *inode = mapping->host;
2620 journal_t *journal;
2621 int err;
2623 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2624 test_opt(inode->i_sb, DELALLOC)) {
2626 * With delalloc we want to sync the file
2627 * so that we can make sure we allocate
2628 * blocks for file
2630 filemap_write_and_wait(mapping);
2633 if (EXT4_JOURNAL(inode) &&
2634 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2636 * This is a REALLY heavyweight approach, but the use of
2637 * bmap on dirty files is expected to be extremely rare:
2638 * only if we run lilo or swapon on a freshly made file
2639 * do we expect this to happen.
2641 * (bmap requires CAP_SYS_RAWIO so this does not
2642 * represent an unprivileged user DOS attack --- we'd be
2643 * in trouble if mortal users could trigger this path at
2644 * will.)
2646 * NB. EXT4_STATE_JDATA is not set on files other than
2647 * regular files. If somebody wants to bmap a directory
2648 * or symlink and gets confused because the buffer
2649 * hasn't yet been flushed to disk, they deserve
2650 * everything they get.
2653 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2654 journal = EXT4_JOURNAL(inode);
2655 jbd2_journal_lock_updates(journal);
2656 err = jbd2_journal_flush(journal);
2657 jbd2_journal_unlock_updates(journal);
2659 if (err)
2660 return 0;
2663 return generic_block_bmap(mapping, block, ext4_get_block);
2666 static int ext4_readpage(struct file *file, struct page *page)
2668 trace_ext4_readpage(page);
2669 return mpage_readpage(page, ext4_get_block);
2672 static int
2673 ext4_readpages(struct file *file, struct address_space *mapping,
2674 struct list_head *pages, unsigned nr_pages)
2676 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2681 struct buffer_head *head, *bh;
2682 unsigned int curr_off = 0;
2684 if (!page_has_buffers(page))
2685 return;
2686 head = bh = page_buffers(page);
2687 do {
2688 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2689 && bh->b_private) {
2690 ext4_free_io_end(bh->b_private);
2691 bh->b_private = NULL;
2692 bh->b_end_io = NULL;
2694 curr_off = curr_off + bh->b_size;
2695 bh = bh->b_this_page;
2696 } while (bh != head);
2699 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2701 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2703 trace_ext4_invalidatepage(page, offset);
2706 * free any io_end structure allocated for buffers to be discarded
2708 if (ext4_should_dioread_nolock(page->mapping->host))
2709 ext4_invalidatepage_free_endio(page, offset);
2711 * If it's a full truncate we just forget about the pending dirtying
2713 if (offset == 0)
2714 ClearPageChecked(page);
2716 if (journal)
2717 jbd2_journal_invalidatepage(journal, page, offset);
2718 else
2719 block_invalidatepage(page, offset);
2722 static int ext4_releasepage(struct page *page, gfp_t wait)
2724 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2726 trace_ext4_releasepage(page);
2728 WARN_ON(PageChecked(page));
2729 if (!page_has_buffers(page))
2730 return 0;
2731 if (journal)
2732 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2733 else
2734 return try_to_free_buffers(page);
2738 * ext4_get_block used when preparing for a DIO write or buffer write.
2739 * We allocate an uinitialized extent if blocks haven't been allocated.
2740 * The extent will be converted to initialized after the IO is complete.
2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2743 struct buffer_head *bh_result, int create)
2745 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2746 inode->i_ino, create);
2747 return _ext4_get_block(inode, iblock, bh_result,
2748 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2752 ssize_t size, void *private, int ret,
2753 bool is_async)
2755 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2756 ext4_io_end_t *io_end = iocb->private;
2757 struct workqueue_struct *wq;
2758 unsigned long flags;
2759 struct ext4_inode_info *ei;
2761 /* if not async direct IO or dio with 0 bytes write, just return */
2762 if (!io_end || !size)
2763 goto out;
2765 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2767 iocb->private, io_end->inode->i_ino, iocb, offset,
2768 size);
2770 /* if not aio dio with unwritten extents, just free io and return */
2771 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2772 ext4_free_io_end(io_end);
2773 iocb->private = NULL;
2774 out:
2775 if (is_async)
2776 aio_complete(iocb, ret, 0);
2777 inode_dio_done(inode);
2778 return;
2781 io_end->offset = offset;
2782 io_end->size = size;
2783 if (is_async) {
2784 io_end->iocb = iocb;
2785 io_end->result = ret;
2787 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2789 /* Add the io_end to per-inode completed aio dio list*/
2790 ei = EXT4_I(io_end->inode);
2791 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2792 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2793 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2795 /* queue the work to convert unwritten extents to written */
2796 queue_work(wq, &io_end->work);
2797 iocb->private = NULL;
2799 /* XXX: probably should move into the real I/O completion handler */
2800 inode_dio_done(inode);
2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2805 ext4_io_end_t *io_end = bh->b_private;
2806 struct workqueue_struct *wq;
2807 struct inode *inode;
2808 unsigned long flags;
2810 if (!test_clear_buffer_uninit(bh) || !io_end)
2811 goto out;
2813 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 printk("sb umounted, discard end_io request for inode %lu\n",
2815 io_end->inode->i_ino);
2816 ext4_free_io_end(io_end);
2817 goto out;
2821 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2822 * but being more careful is always safe for the future change.
2824 inode = io_end->inode;
2825 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2826 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2827 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2830 /* Add the io_end to per-inode completed io list*/
2831 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2832 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2833 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2835 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2836 /* queue the work to convert unwritten extents to written */
2837 queue_work(wq, &io_end->work);
2838 out:
2839 bh->b_private = NULL;
2840 bh->b_end_io = NULL;
2841 clear_buffer_uninit(bh);
2842 end_buffer_async_write(bh, uptodate);
2845 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2847 ext4_io_end_t *io_end;
2848 struct page *page = bh->b_page;
2849 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2850 size_t size = bh->b_size;
2852 retry:
2853 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2854 if (!io_end) {
2855 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2856 schedule();
2857 goto retry;
2859 io_end->offset = offset;
2860 io_end->size = size;
2862 * We need to hold a reference to the page to make sure it
2863 * doesn't get evicted before ext4_end_io_work() has a chance
2864 * to convert the extent from written to unwritten.
2866 io_end->page = page;
2867 get_page(io_end->page);
2869 bh->b_private = io_end;
2870 bh->b_end_io = ext4_end_io_buffer_write;
2871 return 0;
2875 * For ext4 extent files, ext4 will do direct-io write to holes,
2876 * preallocated extents, and those write extend the file, no need to
2877 * fall back to buffered IO.
2879 * For holes, we fallocate those blocks, mark them as uninitialized
2880 * If those blocks were preallocated, we mark sure they are splited, but
2881 * still keep the range to write as uninitialized.
2883 * The unwrritten extents will be converted to written when DIO is completed.
2884 * For async direct IO, since the IO may still pending when return, we
2885 * set up an end_io call back function, which will do the conversion
2886 * when async direct IO completed.
2888 * If the O_DIRECT write will extend the file then add this inode to the
2889 * orphan list. So recovery will truncate it back to the original size
2890 * if the machine crashes during the write.
2893 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2894 const struct iovec *iov, loff_t offset,
2895 unsigned long nr_segs)
2897 struct file *file = iocb->ki_filp;
2898 struct inode *inode = file->f_mapping->host;
2899 ssize_t ret;
2900 size_t count = iov_length(iov, nr_segs);
2902 loff_t final_size = offset + count;
2903 if (rw == WRITE && final_size <= inode->i_size) {
2905 * We could direct write to holes and fallocate.
2907 * Allocated blocks to fill the hole are marked as uninitialized
2908 * to prevent parallel buffered read to expose the stale data
2909 * before DIO complete the data IO.
2911 * As to previously fallocated extents, ext4 get_block
2912 * will just simply mark the buffer mapped but still
2913 * keep the extents uninitialized.
2915 * for non AIO case, we will convert those unwritten extents
2916 * to written after return back from blockdev_direct_IO.
2918 * for async DIO, the conversion needs to be defered when
2919 * the IO is completed. The ext4 end_io callback function
2920 * will be called to take care of the conversion work.
2921 * Here for async case, we allocate an io_end structure to
2922 * hook to the iocb.
2924 iocb->private = NULL;
2925 EXT4_I(inode)->cur_aio_dio = NULL;
2926 if (!is_sync_kiocb(iocb)) {
2927 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2928 if (!iocb->private)
2929 return -ENOMEM;
2931 * we save the io structure for current async
2932 * direct IO, so that later ext4_map_blocks()
2933 * could flag the io structure whether there
2934 * is a unwritten extents needs to be converted
2935 * when IO is completed.
2937 EXT4_I(inode)->cur_aio_dio = iocb->private;
2940 ret = __blockdev_direct_IO(rw, iocb, inode,
2941 inode->i_sb->s_bdev, iov,
2942 offset, nr_segs,
2943 ext4_get_block_write,
2944 ext4_end_io_dio,
2945 NULL,
2946 DIO_LOCKING | DIO_SKIP_HOLES);
2947 if (iocb->private)
2948 EXT4_I(inode)->cur_aio_dio = NULL;
2950 * The io_end structure takes a reference to the inode,
2951 * that structure needs to be destroyed and the
2952 * reference to the inode need to be dropped, when IO is
2953 * complete, even with 0 byte write, or failed.
2955 * In the successful AIO DIO case, the io_end structure will be
2956 * desctroyed and the reference to the inode will be dropped
2957 * after the end_io call back function is called.
2959 * In the case there is 0 byte write, or error case, since
2960 * VFS direct IO won't invoke the end_io call back function,
2961 * we need to free the end_io structure here.
2963 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2964 ext4_free_io_end(iocb->private);
2965 iocb->private = NULL;
2966 } else if (ret > 0 && ext4_test_inode_state(inode,
2967 EXT4_STATE_DIO_UNWRITTEN)) {
2968 int err;
2970 * for non AIO case, since the IO is already
2971 * completed, we could do the conversion right here
2973 err = ext4_convert_unwritten_extents(inode,
2974 offset, ret);
2975 if (err < 0)
2976 ret = err;
2977 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2979 return ret;
2982 /* for write the the end of file case, we fall back to old way */
2983 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2986 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2987 const struct iovec *iov, loff_t offset,
2988 unsigned long nr_segs)
2990 struct file *file = iocb->ki_filp;
2991 struct inode *inode = file->f_mapping->host;
2992 ssize_t ret;
2995 * If we are doing data journalling we don't support O_DIRECT
2997 if (ext4_should_journal_data(inode))
2998 return 0;
3000 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3001 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3002 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3003 else
3004 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3005 trace_ext4_direct_IO_exit(inode, offset,
3006 iov_length(iov, nr_segs), rw, ret);
3007 return ret;
3011 * Pages can be marked dirty completely asynchronously from ext4's journalling
3012 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3013 * much here because ->set_page_dirty is called under VFS locks. The page is
3014 * not necessarily locked.
3016 * We cannot just dirty the page and leave attached buffers clean, because the
3017 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3018 * or jbddirty because all the journalling code will explode.
3020 * So what we do is to mark the page "pending dirty" and next time writepage
3021 * is called, propagate that into the buffers appropriately.
3023 static int ext4_journalled_set_page_dirty(struct page *page)
3025 SetPageChecked(page);
3026 return __set_page_dirty_nobuffers(page);
3029 static const struct address_space_operations ext4_ordered_aops = {
3030 .readpage = ext4_readpage,
3031 .readpages = ext4_readpages,
3032 .writepage = ext4_writepage,
3033 .write_begin = ext4_write_begin,
3034 .write_end = ext4_ordered_write_end,
3035 .bmap = ext4_bmap,
3036 .invalidatepage = ext4_invalidatepage,
3037 .releasepage = ext4_releasepage,
3038 .direct_IO = ext4_direct_IO,
3039 .migratepage = buffer_migrate_page,
3040 .is_partially_uptodate = block_is_partially_uptodate,
3041 .error_remove_page = generic_error_remove_page,
3044 static const struct address_space_operations ext4_writeback_aops = {
3045 .readpage = ext4_readpage,
3046 .readpages = ext4_readpages,
3047 .writepage = ext4_writepage,
3048 .write_begin = ext4_write_begin,
3049 .write_end = ext4_writeback_write_end,
3050 .bmap = ext4_bmap,
3051 .invalidatepage = ext4_invalidatepage,
3052 .releasepage = ext4_releasepage,
3053 .direct_IO = ext4_direct_IO,
3054 .migratepage = buffer_migrate_page,
3055 .is_partially_uptodate = block_is_partially_uptodate,
3056 .error_remove_page = generic_error_remove_page,
3059 static const struct address_space_operations ext4_journalled_aops = {
3060 .readpage = ext4_readpage,
3061 .readpages = ext4_readpages,
3062 .writepage = ext4_writepage,
3063 .write_begin = ext4_write_begin,
3064 .write_end = ext4_journalled_write_end,
3065 .set_page_dirty = ext4_journalled_set_page_dirty,
3066 .bmap = ext4_bmap,
3067 .invalidatepage = ext4_invalidatepage,
3068 .releasepage = ext4_releasepage,
3069 .direct_IO = ext4_direct_IO,
3070 .is_partially_uptodate = block_is_partially_uptodate,
3071 .error_remove_page = generic_error_remove_page,
3074 static const struct address_space_operations ext4_da_aops = {
3075 .readpage = ext4_readpage,
3076 .readpages = ext4_readpages,
3077 .writepage = ext4_writepage,
3078 .writepages = ext4_da_writepages,
3079 .write_begin = ext4_da_write_begin,
3080 .write_end = ext4_da_write_end,
3081 .bmap = ext4_bmap,
3082 .invalidatepage = ext4_da_invalidatepage,
3083 .releasepage = ext4_releasepage,
3084 .direct_IO = ext4_direct_IO,
3085 .migratepage = buffer_migrate_page,
3086 .is_partially_uptodate = block_is_partially_uptodate,
3087 .error_remove_page = generic_error_remove_page,
3090 void ext4_set_aops(struct inode *inode)
3092 if (ext4_should_order_data(inode) &&
3093 test_opt(inode->i_sb, DELALLOC))
3094 inode->i_mapping->a_ops = &ext4_da_aops;
3095 else if (ext4_should_order_data(inode))
3096 inode->i_mapping->a_ops = &ext4_ordered_aops;
3097 else if (ext4_should_writeback_data(inode) &&
3098 test_opt(inode->i_sb, DELALLOC))
3099 inode->i_mapping->a_ops = &ext4_da_aops;
3100 else if (ext4_should_writeback_data(inode))
3101 inode->i_mapping->a_ops = &ext4_writeback_aops;
3102 else
3103 inode->i_mapping->a_ops = &ext4_journalled_aops;
3108 * ext4_discard_partial_page_buffers()
3109 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3110 * This function finds and locks the page containing the offset
3111 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3112 * Calling functions that already have the page locked should call
3113 * ext4_discard_partial_page_buffers_no_lock directly.
3115 int ext4_discard_partial_page_buffers(handle_t *handle,
3116 struct address_space *mapping, loff_t from,
3117 loff_t length, int flags)
3119 struct inode *inode = mapping->host;
3120 struct page *page;
3121 int err = 0;
3123 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3124 mapping_gfp_mask(mapping) & ~__GFP_FS);
3125 if (!page)
3126 return -EINVAL;
3128 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3129 from, length, flags);
3131 unlock_page(page);
3132 page_cache_release(page);
3133 return err;
3137 * ext4_discard_partial_page_buffers_no_lock()
3138 * Zeros a page range of length 'length' starting from offset 'from'.
3139 * Buffer heads that correspond to the block aligned regions of the
3140 * zeroed range will be unmapped. Unblock aligned regions
3141 * will have the corresponding buffer head mapped if needed so that
3142 * that region of the page can be updated with the partial zero out.
3144 * This function assumes that the page has already been locked. The
3145 * The range to be discarded must be contained with in the given page.
3146 * If the specified range exceeds the end of the page it will be shortened
3147 * to the end of the page that corresponds to 'from'. This function is
3148 * appropriate for updating a page and it buffer heads to be unmapped and
3149 * zeroed for blocks that have been either released, or are going to be
3150 * released.
3152 * handle: The journal handle
3153 * inode: The files inode
3154 * page: A locked page that contains the offset "from"
3155 * from: The starting byte offset (from the begining of the file)
3156 * to begin discarding
3157 * len: The length of bytes to discard
3158 * flags: Optional flags that may be used:
3160 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3161 * Only zero the regions of the page whose buffer heads
3162 * have already been unmapped. This flag is appropriate
3163 * for updateing the contents of a page whose blocks may
3164 * have already been released, and we only want to zero
3165 * out the regions that correspond to those released blocks.
3167 * Returns zero on sucess or negative on failure.
3169 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3170 struct inode *inode, struct page *page, loff_t from,
3171 loff_t length, int flags)
3173 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3174 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3175 unsigned int blocksize, max, pos;
3176 unsigned int end_of_block, range_to_discard;
3177 ext4_lblk_t iblock;
3178 struct buffer_head *bh;
3179 int err = 0;
3181 blocksize = inode->i_sb->s_blocksize;
3182 max = PAGE_CACHE_SIZE - offset;
3184 if (index != page->index)
3185 return -EINVAL;
3188 * correct length if it does not fall between
3189 * 'from' and the end of the page
3191 if (length > max || length < 0)
3192 length = max;
3194 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3196 if (!page_has_buffers(page)) {
3198 * If the range to be discarded covers a partial block
3199 * we need to get the page buffers. This is because
3200 * partial blocks cannot be released and the page needs
3201 * to be updated with the contents of the block before
3202 * we write the zeros on top of it.
3204 if (!(from & (blocksize - 1)) ||
3205 !((from + length) & (blocksize - 1))) {
3206 create_empty_buffers(page, blocksize, 0);
3207 } else {
3209 * If there are no partial blocks,
3210 * there is nothing to update,
3211 * so we can return now
3213 return 0;
3217 /* Find the buffer that contains "offset" */
3218 bh = page_buffers(page);
3219 pos = blocksize;
3220 while (offset >= pos) {
3221 bh = bh->b_this_page;
3222 iblock++;
3223 pos += blocksize;
3226 pos = offset;
3227 while (pos < offset + length) {
3228 err = 0;
3230 /* The length of space left to zero and unmap */
3231 range_to_discard = offset + length - pos;
3233 /* The length of space until the end of the block */
3234 end_of_block = blocksize - (pos & (blocksize-1));
3237 * Do not unmap or zero past end of block
3238 * for this buffer head
3240 if (range_to_discard > end_of_block)
3241 range_to_discard = end_of_block;
3245 * Skip this buffer head if we are only zeroing unampped
3246 * regions of the page
3248 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3249 buffer_mapped(bh))
3250 goto next;
3252 /* If the range is block aligned, unmap */
3253 if (range_to_discard == blocksize) {
3254 clear_buffer_dirty(bh);
3255 bh->b_bdev = NULL;
3256 clear_buffer_mapped(bh);
3257 clear_buffer_req(bh);
3258 clear_buffer_new(bh);
3259 clear_buffer_delay(bh);
3260 clear_buffer_unwritten(bh);
3261 clear_buffer_uptodate(bh);
3262 zero_user(page, pos, range_to_discard);
3263 BUFFER_TRACE(bh, "Buffer discarded");
3264 goto next;
3268 * If this block is not completely contained in the range
3269 * to be discarded, then it is not going to be released. Because
3270 * we need to keep this block, we need to make sure this part
3271 * of the page is uptodate before we modify it by writeing
3272 * partial zeros on it.
3274 if (!buffer_mapped(bh)) {
3276 * Buffer head must be mapped before we can read
3277 * from the block
3279 BUFFER_TRACE(bh, "unmapped");
3280 ext4_get_block(inode, iblock, bh, 0);
3281 /* unmapped? It's a hole - nothing to do */
3282 if (!buffer_mapped(bh)) {
3283 BUFFER_TRACE(bh, "still unmapped");
3284 goto next;
3288 /* Ok, it's mapped. Make sure it's up-to-date */
3289 if (PageUptodate(page))
3290 set_buffer_uptodate(bh);
3292 if (!buffer_uptodate(bh)) {
3293 err = -EIO;
3294 ll_rw_block(READ, 1, &bh);
3295 wait_on_buffer(bh);
3296 /* Uhhuh. Read error. Complain and punt.*/
3297 if (!buffer_uptodate(bh))
3298 goto next;
3301 if (ext4_should_journal_data(inode)) {
3302 BUFFER_TRACE(bh, "get write access");
3303 err = ext4_journal_get_write_access(handle, bh);
3304 if (err)
3305 goto next;
3308 zero_user(page, pos, range_to_discard);
3310 err = 0;
3311 if (ext4_should_journal_data(inode)) {
3312 err = ext4_handle_dirty_metadata(handle, inode, bh);
3313 } else
3314 mark_buffer_dirty(bh);
3316 BUFFER_TRACE(bh, "Partial buffer zeroed");
3317 next:
3318 bh = bh->b_this_page;
3319 iblock++;
3320 pos += range_to_discard;
3323 return err;
3327 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3328 * up to the end of the block which corresponds to `from'.
3329 * This required during truncate. We need to physically zero the tail end
3330 * of that block so it doesn't yield old data if the file is later grown.
3332 int ext4_block_truncate_page(handle_t *handle,
3333 struct address_space *mapping, loff_t from)
3335 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336 unsigned length;
3337 unsigned blocksize;
3338 struct inode *inode = mapping->host;
3340 blocksize = inode->i_sb->s_blocksize;
3341 length = blocksize - (offset & (blocksize - 1));
3343 return ext4_block_zero_page_range(handle, mapping, from, length);
3347 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3348 * starting from file offset 'from'. The range to be zero'd must
3349 * be contained with in one block. If the specified range exceeds
3350 * the end of the block it will be shortened to end of the block
3351 * that cooresponds to 'from'
3353 int ext4_block_zero_page_range(handle_t *handle,
3354 struct address_space *mapping, loff_t from, loff_t length)
3356 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3357 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3358 unsigned blocksize, max, pos;
3359 ext4_lblk_t iblock;
3360 struct inode *inode = mapping->host;
3361 struct buffer_head *bh;
3362 struct page *page;
3363 int err = 0;
3365 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3366 mapping_gfp_mask(mapping) & ~__GFP_FS);
3367 if (!page)
3368 return -EINVAL;
3370 blocksize = inode->i_sb->s_blocksize;
3371 max = blocksize - (offset & (blocksize - 1));
3374 * correct length if it does not fall between
3375 * 'from' and the end of the block
3377 if (length > max || length < 0)
3378 length = max;
3380 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3382 if (!page_has_buffers(page))
3383 create_empty_buffers(page, blocksize, 0);
3385 /* Find the buffer that contains "offset" */
3386 bh = page_buffers(page);
3387 pos = blocksize;
3388 while (offset >= pos) {
3389 bh = bh->b_this_page;
3390 iblock++;
3391 pos += blocksize;
3394 err = 0;
3395 if (buffer_freed(bh)) {
3396 BUFFER_TRACE(bh, "freed: skip");
3397 goto unlock;
3400 if (!buffer_mapped(bh)) {
3401 BUFFER_TRACE(bh, "unmapped");
3402 ext4_get_block(inode, iblock, bh, 0);
3403 /* unmapped? It's a hole - nothing to do */
3404 if (!buffer_mapped(bh)) {
3405 BUFFER_TRACE(bh, "still unmapped");
3406 goto unlock;
3410 /* Ok, it's mapped. Make sure it's up-to-date */
3411 if (PageUptodate(page))
3412 set_buffer_uptodate(bh);
3414 if (!buffer_uptodate(bh)) {
3415 err = -EIO;
3416 ll_rw_block(READ, 1, &bh);
3417 wait_on_buffer(bh);
3418 /* Uhhuh. Read error. Complain and punt. */
3419 if (!buffer_uptodate(bh))
3420 goto unlock;
3423 if (ext4_should_journal_data(inode)) {
3424 BUFFER_TRACE(bh, "get write access");
3425 err = ext4_journal_get_write_access(handle, bh);
3426 if (err)
3427 goto unlock;
3430 zero_user(page, offset, length);
3432 BUFFER_TRACE(bh, "zeroed end of block");
3434 err = 0;
3435 if (ext4_should_journal_data(inode)) {
3436 err = ext4_handle_dirty_metadata(handle, inode, bh);
3437 } else
3438 mark_buffer_dirty(bh);
3440 unlock:
3441 unlock_page(page);
3442 page_cache_release(page);
3443 return err;
3446 int ext4_can_truncate(struct inode *inode)
3448 if (S_ISREG(inode->i_mode))
3449 return 1;
3450 if (S_ISDIR(inode->i_mode))
3451 return 1;
3452 if (S_ISLNK(inode->i_mode))
3453 return !ext4_inode_is_fast_symlink(inode);
3454 return 0;
3458 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3459 * associated with the given offset and length
3461 * @inode: File inode
3462 * @offset: The offset where the hole will begin
3463 * @len: The length of the hole
3465 * Returns: 0 on sucess or negative on failure
3468 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3470 struct inode *inode = file->f_path.dentry->d_inode;
3471 if (!S_ISREG(inode->i_mode))
3472 return -ENOTSUPP;
3474 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3475 /* TODO: Add support for non extent hole punching */
3476 return -ENOTSUPP;
3479 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3480 /* TODO: Add support for bigalloc file systems */
3481 return -ENOTSUPP;
3484 return ext4_ext_punch_hole(file, offset, length);
3488 * ext4_truncate()
3490 * We block out ext4_get_block() block instantiations across the entire
3491 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3492 * simultaneously on behalf of the same inode.
3494 * As we work through the truncate and commmit bits of it to the journal there
3495 * is one core, guiding principle: the file's tree must always be consistent on
3496 * disk. We must be able to restart the truncate after a crash.
3498 * The file's tree may be transiently inconsistent in memory (although it
3499 * probably isn't), but whenever we close off and commit a journal transaction,
3500 * the contents of (the filesystem + the journal) must be consistent and
3501 * restartable. It's pretty simple, really: bottom up, right to left (although
3502 * left-to-right works OK too).
3504 * Note that at recovery time, journal replay occurs *before* the restart of
3505 * truncate against the orphan inode list.
3507 * The committed inode has the new, desired i_size (which is the same as
3508 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3509 * that this inode's truncate did not complete and it will again call
3510 * ext4_truncate() to have another go. So there will be instantiated blocks
3511 * to the right of the truncation point in a crashed ext4 filesystem. But
3512 * that's fine - as long as they are linked from the inode, the post-crash
3513 * ext4_truncate() run will find them and release them.
3515 void ext4_truncate(struct inode *inode)
3517 trace_ext4_truncate_enter(inode);
3519 if (!ext4_can_truncate(inode))
3520 return;
3522 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3524 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3525 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3527 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3528 ext4_ext_truncate(inode);
3529 else
3530 ext4_ind_truncate(inode);
3532 trace_ext4_truncate_exit(inode);
3536 * ext4_get_inode_loc returns with an extra refcount against the inode's
3537 * underlying buffer_head on success. If 'in_mem' is true, we have all
3538 * data in memory that is needed to recreate the on-disk version of this
3539 * inode.
3541 static int __ext4_get_inode_loc(struct inode *inode,
3542 struct ext4_iloc *iloc, int in_mem)
3544 struct ext4_group_desc *gdp;
3545 struct buffer_head *bh;
3546 struct super_block *sb = inode->i_sb;
3547 ext4_fsblk_t block;
3548 int inodes_per_block, inode_offset;
3550 iloc->bh = NULL;
3551 if (!ext4_valid_inum(sb, inode->i_ino))
3552 return -EIO;
3554 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3555 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3556 if (!gdp)
3557 return -EIO;
3560 * Figure out the offset within the block group inode table
3562 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3563 inode_offset = ((inode->i_ino - 1) %
3564 EXT4_INODES_PER_GROUP(sb));
3565 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3566 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3568 bh = sb_getblk(sb, block);
3569 if (!bh) {
3570 EXT4_ERROR_INODE_BLOCK(inode, block,
3571 "unable to read itable block");
3572 return -EIO;
3574 if (!buffer_uptodate(bh)) {
3575 lock_buffer(bh);
3578 * If the buffer has the write error flag, we have failed
3579 * to write out another inode in the same block. In this
3580 * case, we don't have to read the block because we may
3581 * read the old inode data successfully.
3583 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3584 set_buffer_uptodate(bh);
3586 if (buffer_uptodate(bh)) {
3587 /* someone brought it uptodate while we waited */
3588 unlock_buffer(bh);
3589 goto has_buffer;
3593 * If we have all information of the inode in memory and this
3594 * is the only valid inode in the block, we need not read the
3595 * block.
3597 if (in_mem) {
3598 struct buffer_head *bitmap_bh;
3599 int i, start;
3601 start = inode_offset & ~(inodes_per_block - 1);
3603 /* Is the inode bitmap in cache? */
3604 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3605 if (!bitmap_bh)
3606 goto make_io;
3609 * If the inode bitmap isn't in cache then the
3610 * optimisation may end up performing two reads instead
3611 * of one, so skip it.
3613 if (!buffer_uptodate(bitmap_bh)) {
3614 brelse(bitmap_bh);
3615 goto make_io;
3617 for (i = start; i < start + inodes_per_block; i++) {
3618 if (i == inode_offset)
3619 continue;
3620 if (ext4_test_bit(i, bitmap_bh->b_data))
3621 break;
3623 brelse(bitmap_bh);
3624 if (i == start + inodes_per_block) {
3625 /* all other inodes are free, so skip I/O */
3626 memset(bh->b_data, 0, bh->b_size);
3627 set_buffer_uptodate(bh);
3628 unlock_buffer(bh);
3629 goto has_buffer;
3633 make_io:
3635 * If we need to do any I/O, try to pre-readahead extra
3636 * blocks from the inode table.
3638 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3639 ext4_fsblk_t b, end, table;
3640 unsigned num;
3642 table = ext4_inode_table(sb, gdp);
3643 /* s_inode_readahead_blks is always a power of 2 */
3644 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3645 if (table > b)
3646 b = table;
3647 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3648 num = EXT4_INODES_PER_GROUP(sb);
3649 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3650 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3651 num -= ext4_itable_unused_count(sb, gdp);
3652 table += num / inodes_per_block;
3653 if (end > table)
3654 end = table;
3655 while (b <= end)
3656 sb_breadahead(sb, b++);
3660 * There are other valid inodes in the buffer, this inode
3661 * has in-inode xattrs, or we don't have this inode in memory.
3662 * Read the block from disk.
3664 trace_ext4_load_inode(inode);
3665 get_bh(bh);
3666 bh->b_end_io = end_buffer_read_sync;
3667 submit_bh(READ_META, bh);
3668 wait_on_buffer(bh);
3669 if (!buffer_uptodate(bh)) {
3670 EXT4_ERROR_INODE_BLOCK(inode, block,
3671 "unable to read itable block");
3672 brelse(bh);
3673 return -EIO;
3676 has_buffer:
3677 iloc->bh = bh;
3678 return 0;
3681 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3683 /* We have all inode data except xattrs in memory here. */
3684 return __ext4_get_inode_loc(inode, iloc,
3685 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3688 void ext4_set_inode_flags(struct inode *inode)
3690 unsigned int flags = EXT4_I(inode)->i_flags;
3692 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3693 if (flags & EXT4_SYNC_FL)
3694 inode->i_flags |= S_SYNC;
3695 if (flags & EXT4_APPEND_FL)
3696 inode->i_flags |= S_APPEND;
3697 if (flags & EXT4_IMMUTABLE_FL)
3698 inode->i_flags |= S_IMMUTABLE;
3699 if (flags & EXT4_NOATIME_FL)
3700 inode->i_flags |= S_NOATIME;
3701 if (flags & EXT4_DIRSYNC_FL)
3702 inode->i_flags |= S_DIRSYNC;
3705 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3706 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3708 unsigned int vfs_fl;
3709 unsigned long old_fl, new_fl;
3711 do {
3712 vfs_fl = ei->vfs_inode.i_flags;
3713 old_fl = ei->i_flags;
3714 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3715 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3716 EXT4_DIRSYNC_FL);
3717 if (vfs_fl & S_SYNC)
3718 new_fl |= EXT4_SYNC_FL;
3719 if (vfs_fl & S_APPEND)
3720 new_fl |= EXT4_APPEND_FL;
3721 if (vfs_fl & S_IMMUTABLE)
3722 new_fl |= EXT4_IMMUTABLE_FL;
3723 if (vfs_fl & S_NOATIME)
3724 new_fl |= EXT4_NOATIME_FL;
3725 if (vfs_fl & S_DIRSYNC)
3726 new_fl |= EXT4_DIRSYNC_FL;
3727 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3730 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3731 struct ext4_inode_info *ei)
3733 blkcnt_t i_blocks ;
3734 struct inode *inode = &(ei->vfs_inode);
3735 struct super_block *sb = inode->i_sb;
3737 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3738 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3739 /* we are using combined 48 bit field */
3740 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3741 le32_to_cpu(raw_inode->i_blocks_lo);
3742 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3743 /* i_blocks represent file system block size */
3744 return i_blocks << (inode->i_blkbits - 9);
3745 } else {
3746 return i_blocks;
3748 } else {
3749 return le32_to_cpu(raw_inode->i_blocks_lo);
3753 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3755 struct ext4_iloc iloc;
3756 struct ext4_inode *raw_inode;
3757 struct ext4_inode_info *ei;
3758 struct inode *inode;
3759 journal_t *journal = EXT4_SB(sb)->s_journal;
3760 long ret;
3761 int block;
3763 inode = iget_locked(sb, ino);
3764 if (!inode)
3765 return ERR_PTR(-ENOMEM);
3766 if (!(inode->i_state & I_NEW))
3767 return inode;
3769 ei = EXT4_I(inode);
3770 iloc.bh = NULL;
3772 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3773 if (ret < 0)
3774 goto bad_inode;
3775 raw_inode = ext4_raw_inode(&iloc);
3776 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3777 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3778 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3779 if (!(test_opt(inode->i_sb, NO_UID32))) {
3780 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3781 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3783 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3785 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3786 ei->i_dir_start_lookup = 0;
3787 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3788 /* We now have enough fields to check if the inode was active or not.
3789 * This is needed because nfsd might try to access dead inodes
3790 * the test is that same one that e2fsck uses
3791 * NeilBrown 1999oct15
3793 if (inode->i_nlink == 0) {
3794 if (inode->i_mode == 0 ||
3795 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3796 /* this inode is deleted */
3797 ret = -ESTALE;
3798 goto bad_inode;
3800 /* The only unlinked inodes we let through here have
3801 * valid i_mode and are being read by the orphan
3802 * recovery code: that's fine, we're about to complete
3803 * the process of deleting those. */
3805 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3806 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3807 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3808 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3809 ei->i_file_acl |=
3810 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3811 inode->i_size = ext4_isize(raw_inode);
3812 ei->i_disksize = inode->i_size;
3813 #ifdef CONFIG_QUOTA
3814 ei->i_reserved_quota = 0;
3815 #endif
3816 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3817 ei->i_block_group = iloc.block_group;
3818 ei->i_last_alloc_group = ~0;
3820 * NOTE! The in-memory inode i_data array is in little-endian order
3821 * even on big-endian machines: we do NOT byteswap the block numbers!
3823 for (block = 0; block < EXT4_N_BLOCKS; block++)
3824 ei->i_data[block] = raw_inode->i_block[block];
3825 INIT_LIST_HEAD(&ei->i_orphan);
3828 * Set transaction id's of transactions that have to be committed
3829 * to finish f[data]sync. We set them to currently running transaction
3830 * as we cannot be sure that the inode or some of its metadata isn't
3831 * part of the transaction - the inode could have been reclaimed and
3832 * now it is reread from disk.
3834 if (journal) {
3835 transaction_t *transaction;
3836 tid_t tid;
3838 read_lock(&journal->j_state_lock);
3839 if (journal->j_running_transaction)
3840 transaction = journal->j_running_transaction;
3841 else
3842 transaction = journal->j_committing_transaction;
3843 if (transaction)
3844 tid = transaction->t_tid;
3845 else
3846 tid = journal->j_commit_sequence;
3847 read_unlock(&journal->j_state_lock);
3848 ei->i_sync_tid = tid;
3849 ei->i_datasync_tid = tid;
3852 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3853 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3854 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3855 EXT4_INODE_SIZE(inode->i_sb)) {
3856 ret = -EIO;
3857 goto bad_inode;
3859 if (ei->i_extra_isize == 0) {
3860 /* The extra space is currently unused. Use it. */
3861 ei->i_extra_isize = sizeof(struct ext4_inode) -
3862 EXT4_GOOD_OLD_INODE_SIZE;
3863 } else {
3864 __le32 *magic = (void *)raw_inode +
3865 EXT4_GOOD_OLD_INODE_SIZE +
3866 ei->i_extra_isize;
3867 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3868 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3870 } else
3871 ei->i_extra_isize = 0;
3873 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3874 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3875 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3876 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3878 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3879 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3880 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3881 inode->i_version |=
3882 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3885 ret = 0;
3886 if (ei->i_file_acl &&
3887 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3888 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3889 ei->i_file_acl);
3890 ret = -EIO;
3891 goto bad_inode;
3892 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3893 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3894 (S_ISLNK(inode->i_mode) &&
3895 !ext4_inode_is_fast_symlink(inode)))
3896 /* Validate extent which is part of inode */
3897 ret = ext4_ext_check_inode(inode);
3898 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3899 (S_ISLNK(inode->i_mode) &&
3900 !ext4_inode_is_fast_symlink(inode))) {
3901 /* Validate block references which are part of inode */
3902 ret = ext4_ind_check_inode(inode);
3904 if (ret)
3905 goto bad_inode;
3907 if (S_ISREG(inode->i_mode)) {
3908 inode->i_op = &ext4_file_inode_operations;
3909 inode->i_fop = &ext4_file_operations;
3910 ext4_set_aops(inode);
3911 } else if (S_ISDIR(inode->i_mode)) {
3912 inode->i_op = &ext4_dir_inode_operations;
3913 inode->i_fop = &ext4_dir_operations;
3914 } else if (S_ISLNK(inode->i_mode)) {
3915 if (ext4_inode_is_fast_symlink(inode)) {
3916 inode->i_op = &ext4_fast_symlink_inode_operations;
3917 nd_terminate_link(ei->i_data, inode->i_size,
3918 sizeof(ei->i_data) - 1);
3919 } else {
3920 inode->i_op = &ext4_symlink_inode_operations;
3921 ext4_set_aops(inode);
3923 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3924 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3925 inode->i_op = &ext4_special_inode_operations;
3926 if (raw_inode->i_block[0])
3927 init_special_inode(inode, inode->i_mode,
3928 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3929 else
3930 init_special_inode(inode, inode->i_mode,
3931 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3932 } else {
3933 ret = -EIO;
3934 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3935 goto bad_inode;
3937 brelse(iloc.bh);
3938 ext4_set_inode_flags(inode);
3939 unlock_new_inode(inode);
3940 return inode;
3942 bad_inode:
3943 brelse(iloc.bh);
3944 iget_failed(inode);
3945 return ERR_PTR(ret);
3948 static int ext4_inode_blocks_set(handle_t *handle,
3949 struct ext4_inode *raw_inode,
3950 struct ext4_inode_info *ei)
3952 struct inode *inode = &(ei->vfs_inode);
3953 u64 i_blocks = inode->i_blocks;
3954 struct super_block *sb = inode->i_sb;
3956 if (i_blocks <= ~0U) {
3958 * i_blocks can be represnted in a 32 bit variable
3959 * as multiple of 512 bytes
3961 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3962 raw_inode->i_blocks_high = 0;
3963 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3964 return 0;
3966 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3967 return -EFBIG;
3969 if (i_blocks <= 0xffffffffffffULL) {
3971 * i_blocks can be represented in a 48 bit variable
3972 * as multiple of 512 bytes
3974 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3975 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3976 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3977 } else {
3978 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3979 /* i_block is stored in file system block size */
3980 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3981 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3982 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3984 return 0;
3988 * Post the struct inode info into an on-disk inode location in the
3989 * buffer-cache. This gobbles the caller's reference to the
3990 * buffer_head in the inode location struct.
3992 * The caller must have write access to iloc->bh.
3994 static int ext4_do_update_inode(handle_t *handle,
3995 struct inode *inode,
3996 struct ext4_iloc *iloc)
3998 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3999 struct ext4_inode_info *ei = EXT4_I(inode);
4000 struct buffer_head *bh = iloc->bh;
4001 int err = 0, rc, block;
4003 /* For fields not not tracking in the in-memory inode,
4004 * initialise them to zero for new inodes. */
4005 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4006 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4008 ext4_get_inode_flags(ei);
4009 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4010 if (!(test_opt(inode->i_sb, NO_UID32))) {
4011 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4012 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4014 * Fix up interoperability with old kernels. Otherwise, old inodes get
4015 * re-used with the upper 16 bits of the uid/gid intact
4017 if (!ei->i_dtime) {
4018 raw_inode->i_uid_high =
4019 cpu_to_le16(high_16_bits(inode->i_uid));
4020 raw_inode->i_gid_high =
4021 cpu_to_le16(high_16_bits(inode->i_gid));
4022 } else {
4023 raw_inode->i_uid_high = 0;
4024 raw_inode->i_gid_high = 0;
4026 } else {
4027 raw_inode->i_uid_low =
4028 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4029 raw_inode->i_gid_low =
4030 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4031 raw_inode->i_uid_high = 0;
4032 raw_inode->i_gid_high = 0;
4034 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4036 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4037 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4038 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4039 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4041 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4042 goto out_brelse;
4043 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4044 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4045 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4046 cpu_to_le32(EXT4_OS_HURD))
4047 raw_inode->i_file_acl_high =
4048 cpu_to_le16(ei->i_file_acl >> 32);
4049 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4050 ext4_isize_set(raw_inode, ei->i_disksize);
4051 if (ei->i_disksize > 0x7fffffffULL) {
4052 struct super_block *sb = inode->i_sb;
4053 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4054 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4055 EXT4_SB(sb)->s_es->s_rev_level ==
4056 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4057 /* If this is the first large file
4058 * created, add a flag to the superblock.
4060 err = ext4_journal_get_write_access(handle,
4061 EXT4_SB(sb)->s_sbh);
4062 if (err)
4063 goto out_brelse;
4064 ext4_update_dynamic_rev(sb);
4065 EXT4_SET_RO_COMPAT_FEATURE(sb,
4066 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4067 sb->s_dirt = 1;
4068 ext4_handle_sync(handle);
4069 err = ext4_handle_dirty_metadata(handle, NULL,
4070 EXT4_SB(sb)->s_sbh);
4073 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4074 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4075 if (old_valid_dev(inode->i_rdev)) {
4076 raw_inode->i_block[0] =
4077 cpu_to_le32(old_encode_dev(inode->i_rdev));
4078 raw_inode->i_block[1] = 0;
4079 } else {
4080 raw_inode->i_block[0] = 0;
4081 raw_inode->i_block[1] =
4082 cpu_to_le32(new_encode_dev(inode->i_rdev));
4083 raw_inode->i_block[2] = 0;
4085 } else
4086 for (block = 0; block < EXT4_N_BLOCKS; block++)
4087 raw_inode->i_block[block] = ei->i_data[block];
4089 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4090 if (ei->i_extra_isize) {
4091 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4092 raw_inode->i_version_hi =
4093 cpu_to_le32(inode->i_version >> 32);
4094 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4097 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4098 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4099 if (!err)
4100 err = rc;
4101 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4103 ext4_update_inode_fsync_trans(handle, inode, 0);
4104 out_brelse:
4105 brelse(bh);
4106 ext4_std_error(inode->i_sb, err);
4107 return err;
4111 * ext4_write_inode()
4113 * We are called from a few places:
4115 * - Within generic_file_write() for O_SYNC files.
4116 * Here, there will be no transaction running. We wait for any running
4117 * trasnaction to commit.
4119 * - Within sys_sync(), kupdate and such.
4120 * We wait on commit, if tol to.
4122 * - Within prune_icache() (PF_MEMALLOC == true)
4123 * Here we simply return. We can't afford to block kswapd on the
4124 * journal commit.
4126 * In all cases it is actually safe for us to return without doing anything,
4127 * because the inode has been copied into a raw inode buffer in
4128 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4129 * knfsd.
4131 * Note that we are absolutely dependent upon all inode dirtiers doing the
4132 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4133 * which we are interested.
4135 * It would be a bug for them to not do this. The code:
4137 * mark_inode_dirty(inode)
4138 * stuff();
4139 * inode->i_size = expr;
4141 * is in error because a kswapd-driven write_inode() could occur while
4142 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4143 * will no longer be on the superblock's dirty inode list.
4145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4147 int err;
4149 if (current->flags & PF_MEMALLOC)
4150 return 0;
4152 if (EXT4_SB(inode->i_sb)->s_journal) {
4153 if (ext4_journal_current_handle()) {
4154 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4155 dump_stack();
4156 return -EIO;
4159 if (wbc->sync_mode != WB_SYNC_ALL)
4160 return 0;
4162 err = ext4_force_commit(inode->i_sb);
4163 } else {
4164 struct ext4_iloc iloc;
4166 err = __ext4_get_inode_loc(inode, &iloc, 0);
4167 if (err)
4168 return err;
4169 if (wbc->sync_mode == WB_SYNC_ALL)
4170 sync_dirty_buffer(iloc.bh);
4171 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4172 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4173 "IO error syncing inode");
4174 err = -EIO;
4176 brelse(iloc.bh);
4178 return err;
4182 * ext4_setattr()
4184 * Called from notify_change.
4186 * We want to trap VFS attempts to truncate the file as soon as
4187 * possible. In particular, we want to make sure that when the VFS
4188 * shrinks i_size, we put the inode on the orphan list and modify
4189 * i_disksize immediately, so that during the subsequent flushing of
4190 * dirty pages and freeing of disk blocks, we can guarantee that any
4191 * commit will leave the blocks being flushed in an unused state on
4192 * disk. (On recovery, the inode will get truncated and the blocks will
4193 * be freed, so we have a strong guarantee that no future commit will
4194 * leave these blocks visible to the user.)
4196 * Another thing we have to assure is that if we are in ordered mode
4197 * and inode is still attached to the committing transaction, we must
4198 * we start writeout of all the dirty pages which are being truncated.
4199 * This way we are sure that all the data written in the previous
4200 * transaction are already on disk (truncate waits for pages under
4201 * writeback).
4203 * Called with inode->i_mutex down.
4205 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4207 struct inode *inode = dentry->d_inode;
4208 int error, rc = 0;
4209 int orphan = 0;
4210 const unsigned int ia_valid = attr->ia_valid;
4212 error = inode_change_ok(inode, attr);
4213 if (error)
4214 return error;
4216 if (is_quota_modification(inode, attr))
4217 dquot_initialize(inode);
4218 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4219 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4220 handle_t *handle;
4222 /* (user+group)*(old+new) structure, inode write (sb,
4223 * inode block, ? - but truncate inode update has it) */
4224 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4225 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4226 if (IS_ERR(handle)) {
4227 error = PTR_ERR(handle);
4228 goto err_out;
4230 error = dquot_transfer(inode, attr);
4231 if (error) {
4232 ext4_journal_stop(handle);
4233 return error;
4235 /* Update corresponding info in inode so that everything is in
4236 * one transaction */
4237 if (attr->ia_valid & ATTR_UID)
4238 inode->i_uid = attr->ia_uid;
4239 if (attr->ia_valid & ATTR_GID)
4240 inode->i_gid = attr->ia_gid;
4241 error = ext4_mark_inode_dirty(handle, inode);
4242 ext4_journal_stop(handle);
4245 if (attr->ia_valid & ATTR_SIZE) {
4246 inode_dio_wait(inode);
4248 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4249 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4251 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4252 return -EFBIG;
4256 if (S_ISREG(inode->i_mode) &&
4257 attr->ia_valid & ATTR_SIZE &&
4258 (attr->ia_size < inode->i_size)) {
4259 handle_t *handle;
4261 handle = ext4_journal_start(inode, 3);
4262 if (IS_ERR(handle)) {
4263 error = PTR_ERR(handle);
4264 goto err_out;
4266 if (ext4_handle_valid(handle)) {
4267 error = ext4_orphan_add(handle, inode);
4268 orphan = 1;
4270 EXT4_I(inode)->i_disksize = attr->ia_size;
4271 rc = ext4_mark_inode_dirty(handle, inode);
4272 if (!error)
4273 error = rc;
4274 ext4_journal_stop(handle);
4276 if (ext4_should_order_data(inode)) {
4277 error = ext4_begin_ordered_truncate(inode,
4278 attr->ia_size);
4279 if (error) {
4280 /* Do as much error cleanup as possible */
4281 handle = ext4_journal_start(inode, 3);
4282 if (IS_ERR(handle)) {
4283 ext4_orphan_del(NULL, inode);
4284 goto err_out;
4286 ext4_orphan_del(handle, inode);
4287 orphan = 0;
4288 ext4_journal_stop(handle);
4289 goto err_out;
4294 if (attr->ia_valid & ATTR_SIZE) {
4295 if (attr->ia_size != i_size_read(inode)) {
4296 truncate_setsize(inode, attr->ia_size);
4297 ext4_truncate(inode);
4298 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4299 ext4_truncate(inode);
4302 if (!rc) {
4303 setattr_copy(inode, attr);
4304 mark_inode_dirty(inode);
4308 * If the call to ext4_truncate failed to get a transaction handle at
4309 * all, we need to clean up the in-core orphan list manually.
4311 if (orphan && inode->i_nlink)
4312 ext4_orphan_del(NULL, inode);
4314 if (!rc && (ia_valid & ATTR_MODE))
4315 rc = ext4_acl_chmod(inode);
4317 err_out:
4318 ext4_std_error(inode->i_sb, error);
4319 if (!error)
4320 error = rc;
4321 return error;
4324 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4325 struct kstat *stat)
4327 struct inode *inode;
4328 unsigned long delalloc_blocks;
4330 inode = dentry->d_inode;
4331 generic_fillattr(inode, stat);
4334 * We can't update i_blocks if the block allocation is delayed
4335 * otherwise in the case of system crash before the real block
4336 * allocation is done, we will have i_blocks inconsistent with
4337 * on-disk file blocks.
4338 * We always keep i_blocks updated together with real
4339 * allocation. But to not confuse with user, stat
4340 * will return the blocks that include the delayed allocation
4341 * blocks for this file.
4343 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4345 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4346 return 0;
4349 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4351 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4352 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4353 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4357 * Account for index blocks, block groups bitmaps and block group
4358 * descriptor blocks if modify datablocks and index blocks
4359 * worse case, the indexs blocks spread over different block groups
4361 * If datablocks are discontiguous, they are possible to spread over
4362 * different block groups too. If they are contiuguous, with flexbg,
4363 * they could still across block group boundary.
4365 * Also account for superblock, inode, quota and xattr blocks
4367 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4369 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4370 int gdpblocks;
4371 int idxblocks;
4372 int ret = 0;
4375 * How many index blocks need to touch to modify nrblocks?
4376 * The "Chunk" flag indicating whether the nrblocks is
4377 * physically contiguous on disk
4379 * For Direct IO and fallocate, they calls get_block to allocate
4380 * one single extent at a time, so they could set the "Chunk" flag
4382 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4384 ret = idxblocks;
4387 * Now let's see how many group bitmaps and group descriptors need
4388 * to account
4390 groups = idxblocks;
4391 if (chunk)
4392 groups += 1;
4393 else
4394 groups += nrblocks;
4396 gdpblocks = groups;
4397 if (groups > ngroups)
4398 groups = ngroups;
4399 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4400 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4402 /* bitmaps and block group descriptor blocks */
4403 ret += groups + gdpblocks;
4405 /* Blocks for super block, inode, quota and xattr blocks */
4406 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4408 return ret;
4412 * Calculate the total number of credits to reserve to fit
4413 * the modification of a single pages into a single transaction,
4414 * which may include multiple chunks of block allocations.
4416 * This could be called via ext4_write_begin()
4418 * We need to consider the worse case, when
4419 * one new block per extent.
4421 int ext4_writepage_trans_blocks(struct inode *inode)
4423 int bpp = ext4_journal_blocks_per_page(inode);
4424 int ret;
4426 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4428 /* Account for data blocks for journalled mode */
4429 if (ext4_should_journal_data(inode))
4430 ret += bpp;
4431 return ret;
4435 * Calculate the journal credits for a chunk of data modification.
4437 * This is called from DIO, fallocate or whoever calling
4438 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4440 * journal buffers for data blocks are not included here, as DIO
4441 * and fallocate do no need to journal data buffers.
4443 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4445 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4449 * The caller must have previously called ext4_reserve_inode_write().
4450 * Give this, we know that the caller already has write access to iloc->bh.
4452 int ext4_mark_iloc_dirty(handle_t *handle,
4453 struct inode *inode, struct ext4_iloc *iloc)
4455 int err = 0;
4457 if (test_opt(inode->i_sb, I_VERSION))
4458 inode_inc_iversion(inode);
4460 /* the do_update_inode consumes one bh->b_count */
4461 get_bh(iloc->bh);
4463 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4464 err = ext4_do_update_inode(handle, inode, iloc);
4465 put_bh(iloc->bh);
4466 return err;
4470 * On success, We end up with an outstanding reference count against
4471 * iloc->bh. This _must_ be cleaned up later.
4475 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4476 struct ext4_iloc *iloc)
4478 int err;
4480 err = ext4_get_inode_loc(inode, iloc);
4481 if (!err) {
4482 BUFFER_TRACE(iloc->bh, "get_write_access");
4483 err = ext4_journal_get_write_access(handle, iloc->bh);
4484 if (err) {
4485 brelse(iloc->bh);
4486 iloc->bh = NULL;
4489 ext4_std_error(inode->i_sb, err);
4490 return err;
4494 * Expand an inode by new_extra_isize bytes.
4495 * Returns 0 on success or negative error number on failure.
4497 static int ext4_expand_extra_isize(struct inode *inode,
4498 unsigned int new_extra_isize,
4499 struct ext4_iloc iloc,
4500 handle_t *handle)
4502 struct ext4_inode *raw_inode;
4503 struct ext4_xattr_ibody_header *header;
4505 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4506 return 0;
4508 raw_inode = ext4_raw_inode(&iloc);
4510 header = IHDR(inode, raw_inode);
4512 /* No extended attributes present */
4513 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4514 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4515 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4516 new_extra_isize);
4517 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4518 return 0;
4521 /* try to expand with EAs present */
4522 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4523 raw_inode, handle);
4527 * What we do here is to mark the in-core inode as clean with respect to inode
4528 * dirtiness (it may still be data-dirty).
4529 * This means that the in-core inode may be reaped by prune_icache
4530 * without having to perform any I/O. This is a very good thing,
4531 * because *any* task may call prune_icache - even ones which
4532 * have a transaction open against a different journal.
4534 * Is this cheating? Not really. Sure, we haven't written the
4535 * inode out, but prune_icache isn't a user-visible syncing function.
4536 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4537 * we start and wait on commits.
4539 * Is this efficient/effective? Well, we're being nice to the system
4540 * by cleaning up our inodes proactively so they can be reaped
4541 * without I/O. But we are potentially leaving up to five seconds'
4542 * worth of inodes floating about which prune_icache wants us to
4543 * write out. One way to fix that would be to get prune_icache()
4544 * to do a write_super() to free up some memory. It has the desired
4545 * effect.
4547 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4549 struct ext4_iloc iloc;
4550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4551 static unsigned int mnt_count;
4552 int err, ret;
4554 might_sleep();
4555 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4556 err = ext4_reserve_inode_write(handle, inode, &iloc);
4557 if (ext4_handle_valid(handle) &&
4558 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4559 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4561 * We need extra buffer credits since we may write into EA block
4562 * with this same handle. If journal_extend fails, then it will
4563 * only result in a minor loss of functionality for that inode.
4564 * If this is felt to be critical, then e2fsck should be run to
4565 * force a large enough s_min_extra_isize.
4567 if ((jbd2_journal_extend(handle,
4568 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4569 ret = ext4_expand_extra_isize(inode,
4570 sbi->s_want_extra_isize,
4571 iloc, handle);
4572 if (ret) {
4573 ext4_set_inode_state(inode,
4574 EXT4_STATE_NO_EXPAND);
4575 if (mnt_count !=
4576 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4577 ext4_warning(inode->i_sb,
4578 "Unable to expand inode %lu. Delete"
4579 " some EAs or run e2fsck.",
4580 inode->i_ino);
4581 mnt_count =
4582 le16_to_cpu(sbi->s_es->s_mnt_count);
4587 if (!err)
4588 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4589 return err;
4593 * ext4_dirty_inode() is called from __mark_inode_dirty()
4595 * We're really interested in the case where a file is being extended.
4596 * i_size has been changed by generic_commit_write() and we thus need
4597 * to include the updated inode in the current transaction.
4599 * Also, dquot_alloc_block() will always dirty the inode when blocks
4600 * are allocated to the file.
4602 * If the inode is marked synchronous, we don't honour that here - doing
4603 * so would cause a commit on atime updates, which we don't bother doing.
4604 * We handle synchronous inodes at the highest possible level.
4606 void ext4_dirty_inode(struct inode *inode, int flags)
4608 handle_t *handle;
4610 handle = ext4_journal_start(inode, 2);
4611 if (IS_ERR(handle))
4612 goto out;
4614 ext4_mark_inode_dirty(handle, inode);
4616 ext4_journal_stop(handle);
4617 out:
4618 return;
4621 #if 0
4623 * Bind an inode's backing buffer_head into this transaction, to prevent
4624 * it from being flushed to disk early. Unlike
4625 * ext4_reserve_inode_write, this leaves behind no bh reference and
4626 * returns no iloc structure, so the caller needs to repeat the iloc
4627 * lookup to mark the inode dirty later.
4629 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4631 struct ext4_iloc iloc;
4633 int err = 0;
4634 if (handle) {
4635 err = ext4_get_inode_loc(inode, &iloc);
4636 if (!err) {
4637 BUFFER_TRACE(iloc.bh, "get_write_access");
4638 err = jbd2_journal_get_write_access(handle, iloc.bh);
4639 if (!err)
4640 err = ext4_handle_dirty_metadata(handle,
4641 NULL,
4642 iloc.bh);
4643 brelse(iloc.bh);
4646 ext4_std_error(inode->i_sb, err);
4647 return err;
4649 #endif
4651 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4653 journal_t *journal;
4654 handle_t *handle;
4655 int err;
4658 * We have to be very careful here: changing a data block's
4659 * journaling status dynamically is dangerous. If we write a
4660 * data block to the journal, change the status and then delete
4661 * that block, we risk forgetting to revoke the old log record
4662 * from the journal and so a subsequent replay can corrupt data.
4663 * So, first we make sure that the journal is empty and that
4664 * nobody is changing anything.
4667 journal = EXT4_JOURNAL(inode);
4668 if (!journal)
4669 return 0;
4670 if (is_journal_aborted(journal))
4671 return -EROFS;
4673 jbd2_journal_lock_updates(journal);
4674 jbd2_journal_flush(journal);
4677 * OK, there are no updates running now, and all cached data is
4678 * synced to disk. We are now in a completely consistent state
4679 * which doesn't have anything in the journal, and we know that
4680 * no filesystem updates are running, so it is safe to modify
4681 * the inode's in-core data-journaling state flag now.
4684 if (val)
4685 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686 else
4687 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4688 ext4_set_aops(inode);
4690 jbd2_journal_unlock_updates(journal);
4692 /* Finally we can mark the inode as dirty. */
4694 handle = ext4_journal_start(inode, 1);
4695 if (IS_ERR(handle))
4696 return PTR_ERR(handle);
4698 err = ext4_mark_inode_dirty(handle, inode);
4699 ext4_handle_sync(handle);
4700 ext4_journal_stop(handle);
4701 ext4_std_error(inode->i_sb, err);
4703 return err;
4706 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4708 return !buffer_mapped(bh);
4711 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4713 struct page *page = vmf->page;
4714 loff_t size;
4715 unsigned long len;
4716 int ret;
4717 struct file *file = vma->vm_file;
4718 struct inode *inode = file->f_path.dentry->d_inode;
4719 struct address_space *mapping = inode->i_mapping;
4720 handle_t *handle;
4721 get_block_t *get_block;
4722 int retries = 0;
4725 * This check is racy but catches the common case. We rely on
4726 * __block_page_mkwrite() to do a reliable check.
4728 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4729 /* Delalloc case is easy... */
4730 if (test_opt(inode->i_sb, DELALLOC) &&
4731 !ext4_should_journal_data(inode) &&
4732 !ext4_nonda_switch(inode->i_sb)) {
4733 do {
4734 ret = __block_page_mkwrite(vma, vmf,
4735 ext4_da_get_block_prep);
4736 } while (ret == -ENOSPC &&
4737 ext4_should_retry_alloc(inode->i_sb, &retries));
4738 goto out_ret;
4741 lock_page(page);
4742 size = i_size_read(inode);
4743 /* Page got truncated from under us? */
4744 if (page->mapping != mapping || page_offset(page) > size) {
4745 unlock_page(page);
4746 ret = VM_FAULT_NOPAGE;
4747 goto out;
4750 if (page->index == size >> PAGE_CACHE_SHIFT)
4751 len = size & ~PAGE_CACHE_MASK;
4752 else
4753 len = PAGE_CACHE_SIZE;
4755 * Return if we have all the buffers mapped. This avoids the need to do
4756 * journal_start/journal_stop which can block and take a long time
4758 if (page_has_buffers(page)) {
4759 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4760 ext4_bh_unmapped)) {
4761 /* Wait so that we don't change page under IO */
4762 wait_on_page_writeback(page);
4763 ret = VM_FAULT_LOCKED;
4764 goto out;
4767 unlock_page(page);
4768 /* OK, we need to fill the hole... */
4769 if (ext4_should_dioread_nolock(inode))
4770 get_block = ext4_get_block_write;
4771 else
4772 get_block = ext4_get_block;
4773 retry_alloc:
4774 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4775 if (IS_ERR(handle)) {
4776 ret = VM_FAULT_SIGBUS;
4777 goto out;
4779 ret = __block_page_mkwrite(vma, vmf, get_block);
4780 if (!ret && ext4_should_journal_data(inode)) {
4781 if (walk_page_buffers(handle, page_buffers(page), 0,
4782 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4783 unlock_page(page);
4784 ret = VM_FAULT_SIGBUS;
4785 goto out;
4787 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4789 ext4_journal_stop(handle);
4790 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791 goto retry_alloc;
4792 out_ret:
4793 ret = block_page_mkwrite_return(ret);
4794 out:
4795 return ret;