ftrace: Correct a text align for event format output
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob859879d0a0bfb07433e3fab3801beb5ee3a7350b
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
33 #include "blk.h"
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
48 static int __make_request(struct request_queue *q, struct bio *bio);
51 * For the allocated request tables
53 static struct kmem_cache *request_cachep;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 static void drive_stat_acct(struct request *rq, int new_io)
67 struct gendisk *disk = rq->rq_disk;
68 struct hd_struct *part;
69 int rw = rq_data_dir(rq);
70 int cpu;
72 if (!blk_fs_request(rq) || !disk || !blk_do_io_stat(disk->queue))
73 return;
75 cpu = part_stat_lock();
76 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
78 if (!new_io)
79 part_stat_inc(cpu, part, merges[rw]);
80 else {
81 part_round_stats(cpu, part);
82 part_inc_in_flight(part);
85 part_stat_unlock();
88 void blk_queue_congestion_threshold(struct request_queue *q)
90 int nr;
92 nr = q->nr_requests - (q->nr_requests / 8) + 1;
93 if (nr > q->nr_requests)
94 nr = q->nr_requests;
95 q->nr_congestion_on = nr;
97 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
98 if (nr < 1)
99 nr = 1;
100 q->nr_congestion_off = nr;
104 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
105 * @bdev: device
107 * Locates the passed device's request queue and returns the address of its
108 * backing_dev_info
110 * Will return NULL if the request queue cannot be located.
112 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
114 struct backing_dev_info *ret = NULL;
115 struct request_queue *q = bdev_get_queue(bdev);
117 if (q)
118 ret = &q->backing_dev_info;
119 return ret;
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
123 void blk_rq_init(struct request_queue *q, struct request *rq)
125 memset(rq, 0, sizeof(*rq));
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
129 rq->cpu = -1;
130 rq->q = q;
131 rq->sector = rq->hard_sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd = rq->__cmd;
135 rq->cmd_len = BLK_MAX_CDB;
136 rq->tag = -1;
137 rq->ref_count = 1;
139 EXPORT_SYMBOL(blk_rq_init);
141 static void req_bio_endio(struct request *rq, struct bio *bio,
142 unsigned int nbytes, int error)
144 struct request_queue *q = rq->q;
146 if (&q->bar_rq != rq) {
147 if (error)
148 clear_bit(BIO_UPTODATE, &bio->bi_flags);
149 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
150 error = -EIO;
152 if (unlikely(nbytes > bio->bi_size)) {
153 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
154 __func__, nbytes, bio->bi_size);
155 nbytes = bio->bi_size;
158 if (unlikely(rq->cmd_flags & REQ_QUIET))
159 set_bit(BIO_QUIET, &bio->bi_flags);
161 bio->bi_size -= nbytes;
162 bio->bi_sector += (nbytes >> 9);
164 if (bio_integrity(bio))
165 bio_integrity_advance(bio, nbytes);
167 if (bio->bi_size == 0)
168 bio_endio(bio, error);
169 } else {
172 * Okay, this is the barrier request in progress, just
173 * record the error;
175 if (error && !q->orderr)
176 q->orderr = error;
180 void blk_dump_rq_flags(struct request *rq, char *msg)
182 int bit;
184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
188 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
189 (unsigned long long)rq->sector,
190 rq->nr_sectors,
191 rq->current_nr_sectors);
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
193 rq->bio, rq->biotail,
194 rq->buffer, rq->data,
195 rq->data_len);
197 if (blk_pc_request(rq)) {
198 printk(KERN_INFO " cdb: ");
199 for (bit = 0; bit < BLK_MAX_CDB; bit++)
200 printk("%02x ", rq->cmd[bit]);
201 printk("\n");
204 EXPORT_SYMBOL(blk_dump_rq_flags);
207 * "plug" the device if there are no outstanding requests: this will
208 * force the transfer to start only after we have put all the requests
209 * on the list.
211 * This is called with interrupts off and no requests on the queue and
212 * with the queue lock held.
214 void blk_plug_device(struct request_queue *q)
216 WARN_ON(!irqs_disabled());
219 * don't plug a stopped queue, it must be paired with blk_start_queue()
220 * which will restart the queueing
222 if (blk_queue_stopped(q))
223 return;
225 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
226 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
227 trace_block_plug(q);
230 EXPORT_SYMBOL(blk_plug_device);
233 * blk_plug_device_unlocked - plug a device without queue lock held
234 * @q: The &struct request_queue to plug
236 * Description:
237 * Like @blk_plug_device(), but grabs the queue lock and disables
238 * interrupts.
240 void blk_plug_device_unlocked(struct request_queue *q)
242 unsigned long flags;
244 spin_lock_irqsave(q->queue_lock, flags);
245 blk_plug_device(q);
246 spin_unlock_irqrestore(q->queue_lock, flags);
248 EXPORT_SYMBOL(blk_plug_device_unlocked);
251 * remove the queue from the plugged list, if present. called with
252 * queue lock held and interrupts disabled.
254 int blk_remove_plug(struct request_queue *q)
256 WARN_ON(!irqs_disabled());
258 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
259 return 0;
261 del_timer(&q->unplug_timer);
262 return 1;
264 EXPORT_SYMBOL(blk_remove_plug);
267 * remove the plug and let it rip..
269 void __generic_unplug_device(struct request_queue *q)
271 if (unlikely(blk_queue_stopped(q)))
272 return;
273 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
274 return;
276 q->request_fn(q);
280 * generic_unplug_device - fire a request queue
281 * @q: The &struct request_queue in question
283 * Description:
284 * Linux uses plugging to build bigger requests queues before letting
285 * the device have at them. If a queue is plugged, the I/O scheduler
286 * is still adding and merging requests on the queue. Once the queue
287 * gets unplugged, the request_fn defined for the queue is invoked and
288 * transfers started.
290 void generic_unplug_device(struct request_queue *q)
292 if (blk_queue_plugged(q)) {
293 spin_lock_irq(q->queue_lock);
294 __generic_unplug_device(q);
295 spin_unlock_irq(q->queue_lock);
298 EXPORT_SYMBOL(generic_unplug_device);
300 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
301 struct page *page)
303 struct request_queue *q = bdi->unplug_io_data;
305 blk_unplug(q);
308 void blk_unplug_work(struct work_struct *work)
310 struct request_queue *q =
311 container_of(work, struct request_queue, unplug_work);
313 trace_block_unplug_io(q);
314 q->unplug_fn(q);
317 void blk_unplug_timeout(unsigned long data)
319 struct request_queue *q = (struct request_queue *)data;
321 trace_block_unplug_timer(q);
322 kblockd_schedule_work(q, &q->unplug_work);
325 void blk_unplug(struct request_queue *q)
328 * devices don't necessarily have an ->unplug_fn defined
330 if (q->unplug_fn) {
331 trace_block_unplug_io(q);
332 q->unplug_fn(q);
335 EXPORT_SYMBOL(blk_unplug);
337 static void blk_invoke_request_fn(struct request_queue *q)
339 if (unlikely(blk_queue_stopped(q)))
340 return;
343 * one level of recursion is ok and is much faster than kicking
344 * the unplug handling
346 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
347 q->request_fn(q);
348 queue_flag_clear(QUEUE_FLAG_REENTER, q);
349 } else {
350 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
351 kblockd_schedule_work(q, &q->unplug_work);
356 * blk_start_queue - restart a previously stopped queue
357 * @q: The &struct request_queue in question
359 * Description:
360 * blk_start_queue() will clear the stop flag on the queue, and call
361 * the request_fn for the queue if it was in a stopped state when
362 * entered. Also see blk_stop_queue(). Queue lock must be held.
364 void blk_start_queue(struct request_queue *q)
366 WARN_ON(!irqs_disabled());
368 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
369 blk_invoke_request_fn(q);
371 EXPORT_SYMBOL(blk_start_queue);
374 * blk_stop_queue - stop a queue
375 * @q: The &struct request_queue in question
377 * Description:
378 * The Linux block layer assumes that a block driver will consume all
379 * entries on the request queue when the request_fn strategy is called.
380 * Often this will not happen, because of hardware limitations (queue
381 * depth settings). If a device driver gets a 'queue full' response,
382 * or if it simply chooses not to queue more I/O at one point, it can
383 * call this function to prevent the request_fn from being called until
384 * the driver has signalled it's ready to go again. This happens by calling
385 * blk_start_queue() to restart queue operations. Queue lock must be held.
387 void blk_stop_queue(struct request_queue *q)
389 blk_remove_plug(q);
390 queue_flag_set(QUEUE_FLAG_STOPPED, q);
392 EXPORT_SYMBOL(blk_stop_queue);
395 * blk_sync_queue - cancel any pending callbacks on a queue
396 * @q: the queue
398 * Description:
399 * The block layer may perform asynchronous callback activity
400 * on a queue, such as calling the unplug function after a timeout.
401 * A block device may call blk_sync_queue to ensure that any
402 * such activity is cancelled, thus allowing it to release resources
403 * that the callbacks might use. The caller must already have made sure
404 * that its ->make_request_fn will not re-add plugging prior to calling
405 * this function.
408 void blk_sync_queue(struct request_queue *q)
410 del_timer_sync(&q->unplug_timer);
411 del_timer_sync(&q->timeout);
412 cancel_work_sync(&q->unplug_work);
414 EXPORT_SYMBOL(blk_sync_queue);
417 * __blk_run_queue - run a single device queue
418 * @q: The queue to run
420 * Description:
421 * See @blk_run_queue. This variant must be called with the queue lock
422 * held and interrupts disabled.
425 void __blk_run_queue(struct request_queue *q)
427 blk_remove_plug(q);
430 * Only recurse once to avoid overrunning the stack, let the unplug
431 * handling reinvoke the handler shortly if we already got there.
433 if (!elv_queue_empty(q))
434 blk_invoke_request_fn(q);
436 EXPORT_SYMBOL(__blk_run_queue);
439 * blk_run_queue - run a single device queue
440 * @q: The queue to run
442 * Description:
443 * Invoke request handling on this queue, if it has pending work to do.
444 * May be used to restart queueing when a request has completed. Also
445 * See @blk_start_queueing.
448 void blk_run_queue(struct request_queue *q)
450 unsigned long flags;
452 spin_lock_irqsave(q->queue_lock, flags);
453 __blk_run_queue(q);
454 spin_unlock_irqrestore(q->queue_lock, flags);
456 EXPORT_SYMBOL(blk_run_queue);
458 void blk_put_queue(struct request_queue *q)
460 kobject_put(&q->kobj);
463 void blk_cleanup_queue(struct request_queue *q)
466 * We know we have process context here, so we can be a little
467 * cautious and ensure that pending block actions on this device
468 * are done before moving on. Going into this function, we should
469 * not have processes doing IO to this device.
471 blk_sync_queue(q);
473 mutex_lock(&q->sysfs_lock);
474 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
475 mutex_unlock(&q->sysfs_lock);
477 if (q->elevator)
478 elevator_exit(q->elevator);
480 blk_put_queue(q);
482 EXPORT_SYMBOL(blk_cleanup_queue);
484 static int blk_init_free_list(struct request_queue *q)
486 struct request_list *rl = &q->rq;
488 rl->count[READ] = rl->count[WRITE] = 0;
489 rl->starved[READ] = rl->starved[WRITE] = 0;
490 rl->elvpriv = 0;
491 init_waitqueue_head(&rl->wait[READ]);
492 init_waitqueue_head(&rl->wait[WRITE]);
494 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
495 mempool_free_slab, request_cachep, q->node);
497 if (!rl->rq_pool)
498 return -ENOMEM;
500 return 0;
503 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
505 return blk_alloc_queue_node(gfp_mask, -1);
507 EXPORT_SYMBOL(blk_alloc_queue);
509 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
511 struct request_queue *q;
512 int err;
514 q = kmem_cache_alloc_node(blk_requestq_cachep,
515 gfp_mask | __GFP_ZERO, node_id);
516 if (!q)
517 return NULL;
519 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
520 q->backing_dev_info.unplug_io_data = q;
521 err = bdi_init(&q->backing_dev_info);
522 if (err) {
523 kmem_cache_free(blk_requestq_cachep, q);
524 return NULL;
527 init_timer(&q->unplug_timer);
528 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
529 INIT_LIST_HEAD(&q->timeout_list);
530 INIT_WORK(&q->unplug_work, blk_unplug_work);
532 kobject_init(&q->kobj, &blk_queue_ktype);
534 mutex_init(&q->sysfs_lock);
535 spin_lock_init(&q->__queue_lock);
537 return q;
539 EXPORT_SYMBOL(blk_alloc_queue_node);
542 * blk_init_queue - prepare a request queue for use with a block device
543 * @rfn: The function to be called to process requests that have been
544 * placed on the queue.
545 * @lock: Request queue spin lock
547 * Description:
548 * If a block device wishes to use the standard request handling procedures,
549 * which sorts requests and coalesces adjacent requests, then it must
550 * call blk_init_queue(). The function @rfn will be called when there
551 * are requests on the queue that need to be processed. If the device
552 * supports plugging, then @rfn may not be called immediately when requests
553 * are available on the queue, but may be called at some time later instead.
554 * Plugged queues are generally unplugged when a buffer belonging to one
555 * of the requests on the queue is needed, or due to memory pressure.
557 * @rfn is not required, or even expected, to remove all requests off the
558 * queue, but only as many as it can handle at a time. If it does leave
559 * requests on the queue, it is responsible for arranging that the requests
560 * get dealt with eventually.
562 * The queue spin lock must be held while manipulating the requests on the
563 * request queue; this lock will be taken also from interrupt context, so irq
564 * disabling is needed for it.
566 * Function returns a pointer to the initialized request queue, or %NULL if
567 * it didn't succeed.
569 * Note:
570 * blk_init_queue() must be paired with a blk_cleanup_queue() call
571 * when the block device is deactivated (such as at module unload).
574 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
576 return blk_init_queue_node(rfn, lock, -1);
578 EXPORT_SYMBOL(blk_init_queue);
580 struct request_queue *
581 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
583 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
585 if (!q)
586 return NULL;
588 q->node = node_id;
589 if (blk_init_free_list(q)) {
590 kmem_cache_free(blk_requestq_cachep, q);
591 return NULL;
595 * if caller didn't supply a lock, they get per-queue locking with
596 * our embedded lock
598 if (!lock)
599 lock = &q->__queue_lock;
601 q->request_fn = rfn;
602 q->prep_rq_fn = NULL;
603 q->unplug_fn = generic_unplug_device;
604 q->queue_flags = QUEUE_FLAG_DEFAULT;
605 q->queue_lock = lock;
607 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
609 blk_queue_make_request(q, __make_request);
610 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
612 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
613 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
615 q->sg_reserved_size = INT_MAX;
617 blk_set_cmd_filter_defaults(&q->cmd_filter);
620 * all done
622 if (!elevator_init(q, NULL)) {
623 blk_queue_congestion_threshold(q);
624 return q;
627 blk_put_queue(q);
628 return NULL;
630 EXPORT_SYMBOL(blk_init_queue_node);
632 int blk_get_queue(struct request_queue *q)
634 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
635 kobject_get(&q->kobj);
636 return 0;
639 return 1;
642 static inline void blk_free_request(struct request_queue *q, struct request *rq)
644 if (rq->cmd_flags & REQ_ELVPRIV)
645 elv_put_request(q, rq);
646 mempool_free(rq, q->rq.rq_pool);
649 static struct request *
650 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
652 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
654 if (!rq)
655 return NULL;
657 blk_rq_init(q, rq);
659 rq->cmd_flags = rw | REQ_ALLOCED;
661 if (priv) {
662 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
663 mempool_free(rq, q->rq.rq_pool);
664 return NULL;
666 rq->cmd_flags |= REQ_ELVPRIV;
669 return rq;
673 * ioc_batching returns true if the ioc is a valid batching request and
674 * should be given priority access to a request.
676 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
678 if (!ioc)
679 return 0;
682 * Make sure the process is able to allocate at least 1 request
683 * even if the batch times out, otherwise we could theoretically
684 * lose wakeups.
686 return ioc->nr_batch_requests == q->nr_batching ||
687 (ioc->nr_batch_requests > 0
688 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
692 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
693 * will cause the process to be a "batcher" on all queues in the system. This
694 * is the behaviour we want though - once it gets a wakeup it should be given
695 * a nice run.
697 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
699 if (!ioc || ioc_batching(q, ioc))
700 return;
702 ioc->nr_batch_requests = q->nr_batching;
703 ioc->last_waited = jiffies;
706 static void __freed_request(struct request_queue *q, int rw)
708 struct request_list *rl = &q->rq;
710 if (rl->count[rw] < queue_congestion_off_threshold(q))
711 blk_clear_queue_congested(q, rw);
713 if (rl->count[rw] + 1 <= q->nr_requests) {
714 if (waitqueue_active(&rl->wait[rw]))
715 wake_up(&rl->wait[rw]);
717 blk_clear_queue_full(q, rw);
722 * A request has just been released. Account for it, update the full and
723 * congestion status, wake up any waiters. Called under q->queue_lock.
725 static void freed_request(struct request_queue *q, int rw, int priv)
727 struct request_list *rl = &q->rq;
729 rl->count[rw]--;
730 if (priv)
731 rl->elvpriv--;
733 __freed_request(q, rw);
735 if (unlikely(rl->starved[rw ^ 1]))
736 __freed_request(q, rw ^ 1);
739 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
741 * Get a free request, queue_lock must be held.
742 * Returns NULL on failure, with queue_lock held.
743 * Returns !NULL on success, with queue_lock *not held*.
745 static struct request *get_request(struct request_queue *q, int rw_flags,
746 struct bio *bio, gfp_t gfp_mask)
748 struct request *rq = NULL;
749 struct request_list *rl = &q->rq;
750 struct io_context *ioc = NULL;
751 const int rw = rw_flags & 0x01;
752 int may_queue, priv;
754 may_queue = elv_may_queue(q, rw_flags);
755 if (may_queue == ELV_MQUEUE_NO)
756 goto rq_starved;
758 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
759 if (rl->count[rw]+1 >= q->nr_requests) {
760 ioc = current_io_context(GFP_ATOMIC, q->node);
762 * The queue will fill after this allocation, so set
763 * it as full, and mark this process as "batching".
764 * This process will be allowed to complete a batch of
765 * requests, others will be blocked.
767 if (!blk_queue_full(q, rw)) {
768 ioc_set_batching(q, ioc);
769 blk_set_queue_full(q, rw);
770 } else {
771 if (may_queue != ELV_MQUEUE_MUST
772 && !ioc_batching(q, ioc)) {
774 * The queue is full and the allocating
775 * process is not a "batcher", and not
776 * exempted by the IO scheduler
778 goto out;
782 blk_set_queue_congested(q, rw);
786 * Only allow batching queuers to allocate up to 50% over the defined
787 * limit of requests, otherwise we could have thousands of requests
788 * allocated with any setting of ->nr_requests
790 if (rl->count[rw] >= (3 * q->nr_requests / 2))
791 goto out;
793 rl->count[rw]++;
794 rl->starved[rw] = 0;
796 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
797 if (priv)
798 rl->elvpriv++;
800 spin_unlock_irq(q->queue_lock);
802 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
803 if (unlikely(!rq)) {
805 * Allocation failed presumably due to memory. Undo anything
806 * we might have messed up.
808 * Allocating task should really be put onto the front of the
809 * wait queue, but this is pretty rare.
811 spin_lock_irq(q->queue_lock);
812 freed_request(q, rw, priv);
815 * in the very unlikely event that allocation failed and no
816 * requests for this direction was pending, mark us starved
817 * so that freeing of a request in the other direction will
818 * notice us. another possible fix would be to split the
819 * rq mempool into READ and WRITE
821 rq_starved:
822 if (unlikely(rl->count[rw] == 0))
823 rl->starved[rw] = 1;
825 goto out;
829 * ioc may be NULL here, and ioc_batching will be false. That's
830 * OK, if the queue is under the request limit then requests need
831 * not count toward the nr_batch_requests limit. There will always
832 * be some limit enforced by BLK_BATCH_TIME.
834 if (ioc_batching(q, ioc))
835 ioc->nr_batch_requests--;
837 trace_block_getrq(q, bio, rw);
838 out:
839 return rq;
843 * No available requests for this queue, unplug the device and wait for some
844 * requests to become available.
846 * Called with q->queue_lock held, and returns with it unlocked.
848 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
849 struct bio *bio)
851 const int rw = rw_flags & 0x01;
852 struct request *rq;
854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
855 while (!rq) {
856 DEFINE_WAIT(wait);
857 struct io_context *ioc;
858 struct request_list *rl = &q->rq;
860 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
861 TASK_UNINTERRUPTIBLE);
863 trace_block_sleeprq(q, bio, rw);
865 __generic_unplug_device(q);
866 spin_unlock_irq(q->queue_lock);
867 io_schedule();
870 * After sleeping, we become a "batching" process and
871 * will be able to allocate at least one request, and
872 * up to a big batch of them for a small period time.
873 * See ioc_batching, ioc_set_batching
875 ioc = current_io_context(GFP_NOIO, q->node);
876 ioc_set_batching(q, ioc);
878 spin_lock_irq(q->queue_lock);
879 finish_wait(&rl->wait[rw], &wait);
881 rq = get_request(q, rw_flags, bio, GFP_NOIO);
884 return rq;
887 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
889 struct request *rq;
891 BUG_ON(rw != READ && rw != WRITE);
893 spin_lock_irq(q->queue_lock);
894 if (gfp_mask & __GFP_WAIT) {
895 rq = get_request_wait(q, rw, NULL);
896 } else {
897 rq = get_request(q, rw, NULL, gfp_mask);
898 if (!rq)
899 spin_unlock_irq(q->queue_lock);
901 /* q->queue_lock is unlocked at this point */
903 return rq;
905 EXPORT_SYMBOL(blk_get_request);
908 * blk_start_queueing - initiate dispatch of requests to device
909 * @q: request queue to kick into gear
911 * This is basically a helper to remove the need to know whether a queue
912 * is plugged or not if someone just wants to initiate dispatch of requests
913 * for this queue. Should be used to start queueing on a device outside
914 * of ->request_fn() context. Also see @blk_run_queue.
916 * The queue lock must be held with interrupts disabled.
918 void blk_start_queueing(struct request_queue *q)
920 if (!blk_queue_plugged(q)) {
921 if (unlikely(blk_queue_stopped(q)))
922 return;
923 q->request_fn(q);
924 } else
925 __generic_unplug_device(q);
927 EXPORT_SYMBOL(blk_start_queueing);
930 * blk_requeue_request - put a request back on queue
931 * @q: request queue where request should be inserted
932 * @rq: request to be inserted
934 * Description:
935 * Drivers often keep queueing requests until the hardware cannot accept
936 * more, when that condition happens we need to put the request back
937 * on the queue. Must be called with queue lock held.
939 void blk_requeue_request(struct request_queue *q, struct request *rq)
941 blk_delete_timer(rq);
942 blk_clear_rq_complete(rq);
943 trace_block_rq_requeue(q, rq);
945 if (blk_rq_tagged(rq))
946 blk_queue_end_tag(q, rq);
948 elv_requeue_request(q, rq);
950 EXPORT_SYMBOL(blk_requeue_request);
953 * blk_insert_request - insert a special request into a request queue
954 * @q: request queue where request should be inserted
955 * @rq: request to be inserted
956 * @at_head: insert request at head or tail of queue
957 * @data: private data
959 * Description:
960 * Many block devices need to execute commands asynchronously, so they don't
961 * block the whole kernel from preemption during request execution. This is
962 * accomplished normally by inserting aritficial requests tagged as
963 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
964 * be scheduled for actual execution by the request queue.
966 * We have the option of inserting the head or the tail of the queue.
967 * Typically we use the tail for new ioctls and so forth. We use the head
968 * of the queue for things like a QUEUE_FULL message from a device, or a
969 * host that is unable to accept a particular command.
971 void blk_insert_request(struct request_queue *q, struct request *rq,
972 int at_head, void *data)
974 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
975 unsigned long flags;
978 * tell I/O scheduler that this isn't a regular read/write (ie it
979 * must not attempt merges on this) and that it acts as a soft
980 * barrier
982 rq->cmd_type = REQ_TYPE_SPECIAL;
983 rq->cmd_flags |= REQ_SOFTBARRIER;
985 rq->special = data;
987 spin_lock_irqsave(q->queue_lock, flags);
990 * If command is tagged, release the tag
992 if (blk_rq_tagged(rq))
993 blk_queue_end_tag(q, rq);
995 drive_stat_acct(rq, 1);
996 __elv_add_request(q, rq, where, 0);
997 blk_start_queueing(q);
998 spin_unlock_irqrestore(q->queue_lock, flags);
1000 EXPORT_SYMBOL(blk_insert_request);
1003 * add-request adds a request to the linked list.
1004 * queue lock is held and interrupts disabled, as we muck with the
1005 * request queue list.
1007 static inline void add_request(struct request_queue *q, struct request *req)
1009 drive_stat_acct(req, 1);
1012 * elevator indicated where it wants this request to be
1013 * inserted at elevator_merge time
1015 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1018 static void part_round_stats_single(int cpu, struct hd_struct *part,
1019 unsigned long now)
1021 if (now == part->stamp)
1022 return;
1024 if (part->in_flight) {
1025 __part_stat_add(cpu, part, time_in_queue,
1026 part->in_flight * (now - part->stamp));
1027 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1029 part->stamp = now;
1033 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1034 * @cpu: cpu number for stats access
1035 * @part: target partition
1037 * The average IO queue length and utilisation statistics are maintained
1038 * by observing the current state of the queue length and the amount of
1039 * time it has been in this state for.
1041 * Normally, that accounting is done on IO completion, but that can result
1042 * in more than a second's worth of IO being accounted for within any one
1043 * second, leading to >100% utilisation. To deal with that, we call this
1044 * function to do a round-off before returning the results when reading
1045 * /proc/diskstats. This accounts immediately for all queue usage up to
1046 * the current jiffies and restarts the counters again.
1048 void part_round_stats(int cpu, struct hd_struct *part)
1050 unsigned long now = jiffies;
1052 if (part->partno)
1053 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1054 part_round_stats_single(cpu, part, now);
1056 EXPORT_SYMBOL_GPL(part_round_stats);
1059 * queue lock must be held
1061 void __blk_put_request(struct request_queue *q, struct request *req)
1063 if (unlikely(!q))
1064 return;
1065 if (unlikely(--req->ref_count))
1066 return;
1068 elv_completed_request(q, req);
1071 * Request may not have originated from ll_rw_blk. if not,
1072 * it didn't come out of our reserved rq pools
1074 if (req->cmd_flags & REQ_ALLOCED) {
1075 int rw = rq_data_dir(req);
1076 int priv = req->cmd_flags & REQ_ELVPRIV;
1078 BUG_ON(!list_empty(&req->queuelist));
1079 BUG_ON(!hlist_unhashed(&req->hash));
1081 blk_free_request(q, req);
1082 freed_request(q, rw, priv);
1085 EXPORT_SYMBOL_GPL(__blk_put_request);
1087 void blk_put_request(struct request *req)
1089 unsigned long flags;
1090 struct request_queue *q = req->q;
1092 spin_lock_irqsave(q->queue_lock, flags);
1093 __blk_put_request(q, req);
1094 spin_unlock_irqrestore(q->queue_lock, flags);
1096 EXPORT_SYMBOL(blk_put_request);
1098 void init_request_from_bio(struct request *req, struct bio *bio)
1100 req->cpu = bio->bi_comp_cpu;
1101 req->cmd_type = REQ_TYPE_FS;
1104 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1106 if (bio_rw_ahead(bio))
1107 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1108 REQ_FAILFAST_DRIVER);
1109 if (bio_failfast_dev(bio))
1110 req->cmd_flags |= REQ_FAILFAST_DEV;
1111 if (bio_failfast_transport(bio))
1112 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1113 if (bio_failfast_driver(bio))
1114 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1117 * REQ_BARRIER implies no merging, but lets make it explicit
1119 if (unlikely(bio_discard(bio))) {
1120 req->cmd_flags |= REQ_DISCARD;
1121 if (bio_barrier(bio))
1122 req->cmd_flags |= REQ_SOFTBARRIER;
1123 req->q->prepare_discard_fn(req->q, req);
1124 } else if (unlikely(bio_barrier(bio)))
1125 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1127 if (bio_sync(bio))
1128 req->cmd_flags |= REQ_RW_SYNC;
1129 if (bio_unplug(bio))
1130 req->cmd_flags |= REQ_UNPLUG;
1131 if (bio_rw_meta(bio))
1132 req->cmd_flags |= REQ_RW_META;
1134 req->errors = 0;
1135 req->hard_sector = req->sector = bio->bi_sector;
1136 req->ioprio = bio_prio(bio);
1137 req->start_time = jiffies;
1138 blk_rq_bio_prep(req->q, req, bio);
1141 static int __make_request(struct request_queue *q, struct bio *bio)
1143 struct request *req;
1144 int el_ret, nr_sectors;
1145 const unsigned short prio = bio_prio(bio);
1146 const int sync = bio_sync(bio);
1147 const int unplug = bio_unplug(bio);
1148 int rw_flags;
1150 nr_sectors = bio_sectors(bio);
1153 * low level driver can indicate that it wants pages above a
1154 * certain limit bounced to low memory (ie for highmem, or even
1155 * ISA dma in theory)
1157 blk_queue_bounce(q, &bio);
1159 spin_lock_irq(q->queue_lock);
1161 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1162 goto get_rq;
1164 el_ret = elv_merge(q, &req, bio);
1165 switch (el_ret) {
1166 case ELEVATOR_BACK_MERGE:
1167 BUG_ON(!rq_mergeable(req));
1169 if (!ll_back_merge_fn(q, req, bio))
1170 break;
1172 trace_block_bio_backmerge(q, bio);
1174 req->biotail->bi_next = bio;
1175 req->biotail = bio;
1176 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1177 req->ioprio = ioprio_best(req->ioprio, prio);
1178 if (!blk_rq_cpu_valid(req))
1179 req->cpu = bio->bi_comp_cpu;
1180 drive_stat_acct(req, 0);
1181 if (!attempt_back_merge(q, req))
1182 elv_merged_request(q, req, el_ret);
1183 goto out;
1185 case ELEVATOR_FRONT_MERGE:
1186 BUG_ON(!rq_mergeable(req));
1188 if (!ll_front_merge_fn(q, req, bio))
1189 break;
1191 trace_block_bio_frontmerge(q, bio);
1193 bio->bi_next = req->bio;
1194 req->bio = bio;
1197 * may not be valid. if the low level driver said
1198 * it didn't need a bounce buffer then it better
1199 * not touch req->buffer either...
1201 req->buffer = bio_data(bio);
1202 req->current_nr_sectors = bio_cur_sectors(bio);
1203 req->hard_cur_sectors = req->current_nr_sectors;
1204 req->sector = req->hard_sector = bio->bi_sector;
1205 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1206 req->ioprio = ioprio_best(req->ioprio, prio);
1207 if (!blk_rq_cpu_valid(req))
1208 req->cpu = bio->bi_comp_cpu;
1209 drive_stat_acct(req, 0);
1210 if (!attempt_front_merge(q, req))
1211 elv_merged_request(q, req, el_ret);
1212 goto out;
1214 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1215 default:
1219 get_rq:
1221 * This sync check and mask will be re-done in init_request_from_bio(),
1222 * but we need to set it earlier to expose the sync flag to the
1223 * rq allocator and io schedulers.
1225 rw_flags = bio_data_dir(bio);
1226 if (sync)
1227 rw_flags |= REQ_RW_SYNC;
1230 * Grab a free request. This is might sleep but can not fail.
1231 * Returns with the queue unlocked.
1233 req = get_request_wait(q, rw_flags, bio);
1236 * After dropping the lock and possibly sleeping here, our request
1237 * may now be mergeable after it had proven unmergeable (above).
1238 * We don't worry about that case for efficiency. It won't happen
1239 * often, and the elevators are able to handle it.
1241 init_request_from_bio(req, bio);
1243 spin_lock_irq(q->queue_lock);
1244 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1245 bio_flagged(bio, BIO_CPU_AFFINE))
1246 req->cpu = blk_cpu_to_group(smp_processor_id());
1247 if (!blk_queue_nonrot(q) && elv_queue_empty(q))
1248 blk_plug_device(q);
1249 add_request(q, req);
1250 out:
1251 if (unplug || blk_queue_nonrot(q))
1252 __generic_unplug_device(q);
1253 spin_unlock_irq(q->queue_lock);
1254 return 0;
1258 * If bio->bi_dev is a partition, remap the location
1260 static inline void blk_partition_remap(struct bio *bio)
1262 struct block_device *bdev = bio->bi_bdev;
1264 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1265 struct hd_struct *p = bdev->bd_part;
1267 bio->bi_sector += p->start_sect;
1268 bio->bi_bdev = bdev->bd_contains;
1270 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1271 bdev->bd_dev, bio->bi_sector,
1272 bio->bi_sector - p->start_sect);
1276 static void handle_bad_sector(struct bio *bio)
1278 char b[BDEVNAME_SIZE];
1280 printk(KERN_INFO "attempt to access beyond end of device\n");
1281 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1282 bdevname(bio->bi_bdev, b),
1283 bio->bi_rw,
1284 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1285 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1287 set_bit(BIO_EOF, &bio->bi_flags);
1290 #ifdef CONFIG_FAIL_MAKE_REQUEST
1292 static DECLARE_FAULT_ATTR(fail_make_request);
1294 static int __init setup_fail_make_request(char *str)
1296 return setup_fault_attr(&fail_make_request, str);
1298 __setup("fail_make_request=", setup_fail_make_request);
1300 static int should_fail_request(struct bio *bio)
1302 struct hd_struct *part = bio->bi_bdev->bd_part;
1304 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1305 return should_fail(&fail_make_request, bio->bi_size);
1307 return 0;
1310 static int __init fail_make_request_debugfs(void)
1312 return init_fault_attr_dentries(&fail_make_request,
1313 "fail_make_request");
1316 late_initcall(fail_make_request_debugfs);
1318 #else /* CONFIG_FAIL_MAKE_REQUEST */
1320 static inline int should_fail_request(struct bio *bio)
1322 return 0;
1325 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1328 * Check whether this bio extends beyond the end of the device.
1330 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1332 sector_t maxsector;
1334 if (!nr_sectors)
1335 return 0;
1337 /* Test device or partition size, when known. */
1338 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1339 if (maxsector) {
1340 sector_t sector = bio->bi_sector;
1342 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1344 * This may well happen - the kernel calls bread()
1345 * without checking the size of the device, e.g., when
1346 * mounting a device.
1348 handle_bad_sector(bio);
1349 return 1;
1353 return 0;
1357 * generic_make_request - hand a buffer to its device driver for I/O
1358 * @bio: The bio describing the location in memory and on the device.
1360 * generic_make_request() is used to make I/O requests of block
1361 * devices. It is passed a &struct bio, which describes the I/O that needs
1362 * to be done.
1364 * generic_make_request() does not return any status. The
1365 * success/failure status of the request, along with notification of
1366 * completion, is delivered asynchronously through the bio->bi_end_io
1367 * function described (one day) else where.
1369 * The caller of generic_make_request must make sure that bi_io_vec
1370 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1371 * set to describe the device address, and the
1372 * bi_end_io and optionally bi_private are set to describe how
1373 * completion notification should be signaled.
1375 * generic_make_request and the drivers it calls may use bi_next if this
1376 * bio happens to be merged with someone else, and may change bi_dev and
1377 * bi_sector for remaps as it sees fit. So the values of these fields
1378 * should NOT be depended on after the call to generic_make_request.
1380 static inline void __generic_make_request(struct bio *bio)
1382 struct request_queue *q;
1383 sector_t old_sector;
1384 int ret, nr_sectors = bio_sectors(bio);
1385 dev_t old_dev;
1386 int err = -EIO;
1388 might_sleep();
1390 if (bio_check_eod(bio, nr_sectors))
1391 goto end_io;
1394 * Resolve the mapping until finished. (drivers are
1395 * still free to implement/resolve their own stacking
1396 * by explicitly returning 0)
1398 * NOTE: we don't repeat the blk_size check for each new device.
1399 * Stacking drivers are expected to know what they are doing.
1401 old_sector = -1;
1402 old_dev = 0;
1403 do {
1404 char b[BDEVNAME_SIZE];
1406 q = bdev_get_queue(bio->bi_bdev);
1407 if (unlikely(!q)) {
1408 printk(KERN_ERR
1409 "generic_make_request: Trying to access "
1410 "nonexistent block-device %s (%Lu)\n",
1411 bdevname(bio->bi_bdev, b),
1412 (long long) bio->bi_sector);
1413 goto end_io;
1416 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1417 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1418 bdevname(bio->bi_bdev, b),
1419 bio_sectors(bio),
1420 q->max_hw_sectors);
1421 goto end_io;
1424 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1425 goto end_io;
1427 if (should_fail_request(bio))
1428 goto end_io;
1431 * If this device has partitions, remap block n
1432 * of partition p to block n+start(p) of the disk.
1434 blk_partition_remap(bio);
1436 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1437 goto end_io;
1439 if (old_sector != -1)
1440 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1441 old_sector);
1443 trace_block_bio_queue(q, bio);
1445 old_sector = bio->bi_sector;
1446 old_dev = bio->bi_bdev->bd_dev;
1448 if (bio_check_eod(bio, nr_sectors))
1449 goto end_io;
1451 if (bio_discard(bio) && !q->prepare_discard_fn) {
1452 err = -EOPNOTSUPP;
1453 goto end_io;
1455 if (bio_barrier(bio) && bio_has_data(bio) &&
1456 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1457 err = -EOPNOTSUPP;
1458 goto end_io;
1461 ret = q->make_request_fn(q, bio);
1462 } while (ret);
1464 return;
1466 end_io:
1467 bio_endio(bio, err);
1471 * We only want one ->make_request_fn to be active at a time,
1472 * else stack usage with stacked devices could be a problem.
1473 * So use current->bio_{list,tail} to keep a list of requests
1474 * submited by a make_request_fn function.
1475 * current->bio_tail is also used as a flag to say if
1476 * generic_make_request is currently active in this task or not.
1477 * If it is NULL, then no make_request is active. If it is non-NULL,
1478 * then a make_request is active, and new requests should be added
1479 * at the tail
1481 void generic_make_request(struct bio *bio)
1483 if (current->bio_tail) {
1484 /* make_request is active */
1485 *(current->bio_tail) = bio;
1486 bio->bi_next = NULL;
1487 current->bio_tail = &bio->bi_next;
1488 return;
1490 /* following loop may be a bit non-obvious, and so deserves some
1491 * explanation.
1492 * Before entering the loop, bio->bi_next is NULL (as all callers
1493 * ensure that) so we have a list with a single bio.
1494 * We pretend that we have just taken it off a longer list, so
1495 * we assign bio_list to the next (which is NULL) and bio_tail
1496 * to &bio_list, thus initialising the bio_list of new bios to be
1497 * added. __generic_make_request may indeed add some more bios
1498 * through a recursive call to generic_make_request. If it
1499 * did, we find a non-NULL value in bio_list and re-enter the loop
1500 * from the top. In this case we really did just take the bio
1501 * of the top of the list (no pretending) and so fixup bio_list and
1502 * bio_tail or bi_next, and call into __generic_make_request again.
1504 * The loop was structured like this to make only one call to
1505 * __generic_make_request (which is important as it is large and
1506 * inlined) and to keep the structure simple.
1508 BUG_ON(bio->bi_next);
1509 do {
1510 current->bio_list = bio->bi_next;
1511 if (bio->bi_next == NULL)
1512 current->bio_tail = &current->bio_list;
1513 else
1514 bio->bi_next = NULL;
1515 __generic_make_request(bio);
1516 bio = current->bio_list;
1517 } while (bio);
1518 current->bio_tail = NULL; /* deactivate */
1520 EXPORT_SYMBOL(generic_make_request);
1523 * submit_bio - submit a bio to the block device layer for I/O
1524 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1525 * @bio: The &struct bio which describes the I/O
1527 * submit_bio() is very similar in purpose to generic_make_request(), and
1528 * uses that function to do most of the work. Both are fairly rough
1529 * interfaces; @bio must be presetup and ready for I/O.
1532 void submit_bio(int rw, struct bio *bio)
1534 int count = bio_sectors(bio);
1536 bio->bi_rw |= rw;
1539 * If it's a regular read/write or a barrier with data attached,
1540 * go through the normal accounting stuff before submission.
1542 if (bio_has_data(bio)) {
1543 if (rw & WRITE) {
1544 count_vm_events(PGPGOUT, count);
1545 } else {
1546 task_io_account_read(bio->bi_size);
1547 count_vm_events(PGPGIN, count);
1550 if (unlikely(block_dump)) {
1551 char b[BDEVNAME_SIZE];
1552 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1553 current->comm, task_pid_nr(current),
1554 (rw & WRITE) ? "WRITE" : "READ",
1555 (unsigned long long)bio->bi_sector,
1556 bdevname(bio->bi_bdev, b));
1560 generic_make_request(bio);
1562 EXPORT_SYMBOL(submit_bio);
1565 * blk_rq_check_limits - Helper function to check a request for the queue limit
1566 * @q: the queue
1567 * @rq: the request being checked
1569 * Description:
1570 * @rq may have been made based on weaker limitations of upper-level queues
1571 * in request stacking drivers, and it may violate the limitation of @q.
1572 * Since the block layer and the underlying device driver trust @rq
1573 * after it is inserted to @q, it should be checked against @q before
1574 * the insertion using this generic function.
1576 * This function should also be useful for request stacking drivers
1577 * in some cases below, so export this fuction.
1578 * Request stacking drivers like request-based dm may change the queue
1579 * limits while requests are in the queue (e.g. dm's table swapping).
1580 * Such request stacking drivers should check those requests agaist
1581 * the new queue limits again when they dispatch those requests,
1582 * although such checkings are also done against the old queue limits
1583 * when submitting requests.
1585 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1587 if (rq->nr_sectors > q->max_sectors ||
1588 rq->data_len > q->max_hw_sectors << 9) {
1589 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1590 return -EIO;
1594 * queue's settings related to segment counting like q->bounce_pfn
1595 * may differ from that of other stacking queues.
1596 * Recalculate it to check the request correctly on this queue's
1597 * limitation.
1599 blk_recalc_rq_segments(rq);
1600 if (rq->nr_phys_segments > q->max_phys_segments ||
1601 rq->nr_phys_segments > q->max_hw_segments) {
1602 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1603 return -EIO;
1606 return 0;
1608 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1611 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1612 * @q: the queue to submit the request
1613 * @rq: the request being queued
1615 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1617 unsigned long flags;
1619 if (blk_rq_check_limits(q, rq))
1620 return -EIO;
1622 #ifdef CONFIG_FAIL_MAKE_REQUEST
1623 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1624 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1625 return -EIO;
1626 #endif
1628 spin_lock_irqsave(q->queue_lock, flags);
1631 * Submitting request must be dequeued before calling this function
1632 * because it will be linked to another request_queue
1634 BUG_ON(blk_queued_rq(rq));
1636 drive_stat_acct(rq, 1);
1637 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1639 spin_unlock_irqrestore(q->queue_lock, flags);
1641 return 0;
1643 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1646 * blkdev_dequeue_request - dequeue request and start timeout timer
1647 * @req: request to dequeue
1649 * Dequeue @req and start timeout timer on it. This hands off the
1650 * request to the driver.
1652 * Block internal functions which don't want to start timer should
1653 * call elv_dequeue_request().
1655 void blkdev_dequeue_request(struct request *req)
1657 elv_dequeue_request(req->q, req);
1660 * We are now handing the request to the hardware, add the
1661 * timeout handler.
1663 blk_add_timer(req);
1665 EXPORT_SYMBOL(blkdev_dequeue_request);
1667 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1669 struct gendisk *disk = req->rq_disk;
1671 if (!disk || !blk_do_io_stat(disk->queue))
1672 return;
1674 if (blk_fs_request(req)) {
1675 const int rw = rq_data_dir(req);
1676 struct hd_struct *part;
1677 int cpu;
1679 cpu = part_stat_lock();
1680 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1681 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1682 part_stat_unlock();
1686 static void blk_account_io_done(struct request *req)
1688 struct gendisk *disk = req->rq_disk;
1690 if (!disk || !blk_do_io_stat(disk->queue))
1691 return;
1694 * Account IO completion. bar_rq isn't accounted as a normal
1695 * IO on queueing nor completion. Accounting the containing
1696 * request is enough.
1698 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1699 unsigned long duration = jiffies - req->start_time;
1700 const int rw = rq_data_dir(req);
1701 struct hd_struct *part;
1702 int cpu;
1704 cpu = part_stat_lock();
1705 part = disk_map_sector_rcu(disk, req->sector);
1707 part_stat_inc(cpu, part, ios[rw]);
1708 part_stat_add(cpu, part, ticks[rw], duration);
1709 part_round_stats(cpu, part);
1710 part_dec_in_flight(part);
1712 part_stat_unlock();
1717 * __end_that_request_first - end I/O on a request
1718 * @req: the request being processed
1719 * @error: %0 for success, < %0 for error
1720 * @nr_bytes: number of bytes to complete
1722 * Description:
1723 * Ends I/O on a number of bytes attached to @req, and sets it up
1724 * for the next range of segments (if any) in the cluster.
1726 * Return:
1727 * %0 - we are done with this request, call end_that_request_last()
1728 * %1 - still buffers pending for this request
1730 static int __end_that_request_first(struct request *req, int error,
1731 int nr_bytes)
1733 int total_bytes, bio_nbytes, next_idx = 0;
1734 struct bio *bio;
1736 trace_block_rq_complete(req->q, req);
1739 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1740 * sense key with us all the way through
1742 if (!blk_pc_request(req))
1743 req->errors = 0;
1745 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1746 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1747 req->rq_disk ? req->rq_disk->disk_name : "?",
1748 (unsigned long long)req->sector);
1751 blk_account_io_completion(req, nr_bytes);
1753 total_bytes = bio_nbytes = 0;
1754 while ((bio = req->bio) != NULL) {
1755 int nbytes;
1757 if (nr_bytes >= bio->bi_size) {
1758 req->bio = bio->bi_next;
1759 nbytes = bio->bi_size;
1760 req_bio_endio(req, bio, nbytes, error);
1761 next_idx = 0;
1762 bio_nbytes = 0;
1763 } else {
1764 int idx = bio->bi_idx + next_idx;
1766 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1767 blk_dump_rq_flags(req, "__end_that");
1768 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1769 __func__, bio->bi_idx, bio->bi_vcnt);
1770 break;
1773 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1774 BIO_BUG_ON(nbytes > bio->bi_size);
1777 * not a complete bvec done
1779 if (unlikely(nbytes > nr_bytes)) {
1780 bio_nbytes += nr_bytes;
1781 total_bytes += nr_bytes;
1782 break;
1786 * advance to the next vector
1788 next_idx++;
1789 bio_nbytes += nbytes;
1792 total_bytes += nbytes;
1793 nr_bytes -= nbytes;
1795 bio = req->bio;
1796 if (bio) {
1798 * end more in this run, or just return 'not-done'
1800 if (unlikely(nr_bytes <= 0))
1801 break;
1806 * completely done
1808 if (!req->bio)
1809 return 0;
1812 * if the request wasn't completed, update state
1814 if (bio_nbytes) {
1815 req_bio_endio(req, bio, bio_nbytes, error);
1816 bio->bi_idx += next_idx;
1817 bio_iovec(bio)->bv_offset += nr_bytes;
1818 bio_iovec(bio)->bv_len -= nr_bytes;
1821 blk_recalc_rq_sectors(req, total_bytes >> 9);
1822 blk_recalc_rq_segments(req);
1823 return 1;
1827 * queue lock must be held
1829 static void end_that_request_last(struct request *req, int error)
1831 if (blk_rq_tagged(req))
1832 blk_queue_end_tag(req->q, req);
1834 if (blk_queued_rq(req))
1835 elv_dequeue_request(req->q, req);
1837 if (unlikely(laptop_mode) && blk_fs_request(req))
1838 laptop_io_completion();
1840 blk_delete_timer(req);
1842 blk_account_io_done(req);
1844 if (req->end_io)
1845 req->end_io(req, error);
1846 else {
1847 if (blk_bidi_rq(req))
1848 __blk_put_request(req->next_rq->q, req->next_rq);
1850 __blk_put_request(req->q, req);
1855 * blk_rq_bytes - Returns bytes left to complete in the entire request
1856 * @rq: the request being processed
1858 unsigned int blk_rq_bytes(struct request *rq)
1860 if (blk_fs_request(rq))
1861 return rq->hard_nr_sectors << 9;
1863 return rq->data_len;
1865 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1868 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1869 * @rq: the request being processed
1871 unsigned int blk_rq_cur_bytes(struct request *rq)
1873 if (blk_fs_request(rq))
1874 return rq->current_nr_sectors << 9;
1876 if (rq->bio)
1877 return rq->bio->bi_size;
1879 return rq->data_len;
1881 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1884 * end_request - end I/O on the current segment of the request
1885 * @req: the request being processed
1886 * @uptodate: error value or %0/%1 uptodate flag
1888 * Description:
1889 * Ends I/O on the current segment of a request. If that is the only
1890 * remaining segment, the request is also completed and freed.
1892 * This is a remnant of how older block drivers handled I/O completions.
1893 * Modern drivers typically end I/O on the full request in one go, unless
1894 * they have a residual value to account for. For that case this function
1895 * isn't really useful, unless the residual just happens to be the
1896 * full current segment. In other words, don't use this function in new
1897 * code. Use blk_end_request() or __blk_end_request() to end a request.
1899 void end_request(struct request *req, int uptodate)
1901 int error = 0;
1903 if (uptodate <= 0)
1904 error = uptodate ? uptodate : -EIO;
1906 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1908 EXPORT_SYMBOL(end_request);
1910 static int end_that_request_data(struct request *rq, int error,
1911 unsigned int nr_bytes, unsigned int bidi_bytes)
1913 if (rq->bio) {
1914 if (__end_that_request_first(rq, error, nr_bytes))
1915 return 1;
1917 /* Bidi request must be completed as a whole */
1918 if (blk_bidi_rq(rq) &&
1919 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1920 return 1;
1923 return 0;
1927 * blk_end_io - Generic end_io function to complete a request.
1928 * @rq: the request being processed
1929 * @error: %0 for success, < %0 for error
1930 * @nr_bytes: number of bytes to complete @rq
1931 * @bidi_bytes: number of bytes to complete @rq->next_rq
1932 * @drv_callback: function called between completion of bios in the request
1933 * and completion of the request.
1934 * If the callback returns non %0, this helper returns without
1935 * completion of the request.
1937 * Description:
1938 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1939 * If @rq has leftover, sets it up for the next range of segments.
1941 * Return:
1942 * %0 - we are done with this request
1943 * %1 - this request is not freed yet, it still has pending buffers.
1945 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1946 unsigned int bidi_bytes,
1947 int (drv_callback)(struct request *))
1949 struct request_queue *q = rq->q;
1950 unsigned long flags = 0UL;
1952 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1953 return 1;
1955 /* Special feature for tricky drivers */
1956 if (drv_callback && drv_callback(rq))
1957 return 1;
1959 add_disk_randomness(rq->rq_disk);
1961 spin_lock_irqsave(q->queue_lock, flags);
1962 end_that_request_last(rq, error);
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1965 return 0;
1969 * blk_end_request - Helper function for drivers to complete the request.
1970 * @rq: the request being processed
1971 * @error: %0 for success, < %0 for error
1972 * @nr_bytes: number of bytes to complete
1974 * Description:
1975 * Ends I/O on a number of bytes attached to @rq.
1976 * If @rq has leftover, sets it up for the next range of segments.
1978 * Return:
1979 * %0 - we are done with this request
1980 * %1 - still buffers pending for this request
1982 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1984 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1986 EXPORT_SYMBOL_GPL(blk_end_request);
1989 * __blk_end_request - Helper function for drivers to complete the request.
1990 * @rq: the request being processed
1991 * @error: %0 for success, < %0 for error
1992 * @nr_bytes: number of bytes to complete
1994 * Description:
1995 * Must be called with queue lock held unlike blk_end_request().
1997 * Return:
1998 * %0 - we are done with this request
1999 * %1 - still buffers pending for this request
2001 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2003 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
2004 return 1;
2006 add_disk_randomness(rq->rq_disk);
2008 end_that_request_last(rq, error);
2010 return 0;
2012 EXPORT_SYMBOL_GPL(__blk_end_request);
2015 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2016 * @rq: the bidi request being processed
2017 * @error: %0 for success, < %0 for error
2018 * @nr_bytes: number of bytes to complete @rq
2019 * @bidi_bytes: number of bytes to complete @rq->next_rq
2021 * Description:
2022 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2024 * Return:
2025 * %0 - we are done with this request
2026 * %1 - still buffers pending for this request
2028 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2029 unsigned int bidi_bytes)
2031 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2033 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2036 * blk_update_request - Special helper function for request stacking drivers
2037 * @rq: the request being processed
2038 * @error: %0 for success, < %0 for error
2039 * @nr_bytes: number of bytes to complete @rq
2041 * Description:
2042 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2043 * the request structure even if @rq doesn't have leftover.
2044 * If @rq has leftover, sets it up for the next range of segments.
2046 * This special helper function is only for request stacking drivers
2047 * (e.g. request-based dm) so that they can handle partial completion.
2048 * Actual device drivers should use blk_end_request instead.
2050 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2052 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2054 * These members are not updated in end_that_request_data()
2055 * when all bios are completed.
2056 * Update them so that the request stacking driver can find
2057 * how many bytes remain in the request later.
2059 rq->nr_sectors = rq->hard_nr_sectors = 0;
2060 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2063 EXPORT_SYMBOL_GPL(blk_update_request);
2066 * blk_end_request_callback - Special helper function for tricky drivers
2067 * @rq: the request being processed
2068 * @error: %0 for success, < %0 for error
2069 * @nr_bytes: number of bytes to complete
2070 * @drv_callback: function called between completion of bios in the request
2071 * and completion of the request.
2072 * If the callback returns non %0, this helper returns without
2073 * completion of the request.
2075 * Description:
2076 * Ends I/O on a number of bytes attached to @rq.
2077 * If @rq has leftover, sets it up for the next range of segments.
2079 * This special helper function is used only for existing tricky drivers.
2080 * (e.g. cdrom_newpc_intr() of ide-cd)
2081 * This interface will be removed when such drivers are rewritten.
2082 * Don't use this interface in other places anymore.
2084 * Return:
2085 * %0 - we are done with this request
2086 * %1 - this request is not freed yet.
2087 * this request still has pending buffers or
2088 * the driver doesn't want to finish this request yet.
2090 int blk_end_request_callback(struct request *rq, int error,
2091 unsigned int nr_bytes,
2092 int (drv_callback)(struct request *))
2094 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2096 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2098 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2099 struct bio *bio)
2101 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2102 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2103 rq->cmd_flags |= (bio->bi_rw & 3);
2105 if (bio_has_data(bio)) {
2106 rq->nr_phys_segments = bio_phys_segments(q, bio);
2107 rq->buffer = bio_data(bio);
2109 rq->current_nr_sectors = bio_cur_sectors(bio);
2110 rq->hard_cur_sectors = rq->current_nr_sectors;
2111 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2112 rq->data_len = bio->bi_size;
2114 rq->bio = rq->biotail = bio;
2116 if (bio->bi_bdev)
2117 rq->rq_disk = bio->bi_bdev->bd_disk;
2121 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2122 * @q : the queue of the device being checked
2124 * Description:
2125 * Check if underlying low-level drivers of a device are busy.
2126 * If the drivers want to export their busy state, they must set own
2127 * exporting function using blk_queue_lld_busy() first.
2129 * Basically, this function is used only by request stacking drivers
2130 * to stop dispatching requests to underlying devices when underlying
2131 * devices are busy. This behavior helps more I/O merging on the queue
2132 * of the request stacking driver and prevents I/O throughput regression
2133 * on burst I/O load.
2135 * Return:
2136 * 0 - Not busy (The request stacking driver should dispatch request)
2137 * 1 - Busy (The request stacking driver should stop dispatching request)
2139 int blk_lld_busy(struct request_queue *q)
2141 if (q->lld_busy_fn)
2142 return q->lld_busy_fn(q);
2144 return 0;
2146 EXPORT_SYMBOL_GPL(blk_lld_busy);
2148 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2150 return queue_work(kblockd_workqueue, work);
2152 EXPORT_SYMBOL(kblockd_schedule_work);
2154 int __init blk_dev_init(void)
2156 kblockd_workqueue = create_workqueue("kblockd");
2157 if (!kblockd_workqueue)
2158 panic("Failed to create kblockd\n");
2160 request_cachep = kmem_cache_create("blkdev_requests",
2161 sizeof(struct request), 0, SLAB_PANIC, NULL);
2163 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2164 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2166 return 0;