RFKILL: allow one to specify led trigger name
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob0d520dce6aeaca13c1c9456c3bbe89770468dc3d
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 void *pc = page_get_page_cgroup(page);
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 static void prep_compound_page(struct page *page, unsigned long order)
269 int i;
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
278 __SetPageTail(p);
279 p->first_page = page;
283 static void destroy_compound_page(struct page *page, unsigned long order)
285 int i;
286 int nr_pages = 1 << order;
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
306 int i;
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
317 static inline void set_page_order(struct page *page, int order)
319 set_page_private(page, order);
320 __SetPageBuddy(page);
323 static inline void rmv_page_order(struct page *page)
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 unsigned long buddy_idx = page_idx ^ (1 << order);
351 return page + (buddy_idx - page_idx);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
357 return (page_idx & ~(1 << order));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
386 return 0;
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
410 * -- wli
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break; /* Move the buddy up one level. */
437 list_del(&buddy->lru);
438 zone->free_area[order].nr_free--;
439 rmv_page_order(buddy);
440 combined_idx = __find_combined_index(page_idx, order);
441 page = page + (combined_idx - page_idx);
442 page_idx = combined_idx;
443 order++;
445 set_page_order(page, order);
446 list_add(&page->lru,
447 &zone->free_area[order].free_list[migratetype]);
448 zone->free_area[order].nr_free++;
451 static inline int free_pages_check(struct page *page)
453 if (unlikely(page_mapcount(page) |
454 (page->mapping != NULL) |
455 (page_get_page_cgroup(page) != NULL) |
456 (page_count(page) != 0) |
457 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
458 bad_page(page);
459 if (PageDirty(page))
460 __ClearPageDirty(page);
462 * For now, we report if PG_reserved was found set, but do not
463 * clear it, and do not free the page. But we shall soon need
464 * to do more, for when the ZERO_PAGE count wraps negative.
466 return PageReserved(page);
470 * Frees a list of pages.
471 * Assumes all pages on list are in same zone, and of same order.
472 * count is the number of pages to free.
474 * If the zone was previously in an "all pages pinned" state then look to
475 * see if this freeing clears that state.
477 * And clear the zone's pages_scanned counter, to hold off the "all pages are
478 * pinned" detection logic.
480 static void free_pages_bulk(struct zone *zone, int count,
481 struct list_head *list, int order)
483 spin_lock(&zone->lock);
484 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
485 zone->pages_scanned = 0;
486 while (count--) {
487 struct page *page;
489 VM_BUG_ON(list_empty(list));
490 page = list_entry(list->prev, struct page, lru);
491 /* have to delete it as __free_one_page list manipulates */
492 list_del(&page->lru);
493 __free_one_page(page, zone, order);
495 spin_unlock(&zone->lock);
498 static void free_one_page(struct zone *zone, struct page *page, int order)
500 spin_lock(&zone->lock);
501 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502 zone->pages_scanned = 0;
503 __free_one_page(page, zone, order);
504 spin_unlock(&zone->lock);
507 static void __free_pages_ok(struct page *page, unsigned int order)
509 unsigned long flags;
510 int i;
511 int reserved = 0;
513 for (i = 0 ; i < (1 << order) ; ++i)
514 reserved += free_pages_check(page + i);
515 if (reserved)
516 return;
518 if (!PageHighMem(page)) {
519 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
520 debug_check_no_obj_freed(page_address(page),
521 PAGE_SIZE << order);
523 arch_free_page(page, order);
524 kernel_map_pages(page, 1 << order, 0);
526 local_irq_save(flags);
527 __count_vm_events(PGFREE, 1 << order);
528 free_one_page(page_zone(page), page, order);
529 local_irq_restore(flags);
533 * permit the bootmem allocator to evade page validation on high-order frees
535 void __free_pages_bootmem(struct page *page, unsigned int order)
537 if (order == 0) {
538 __ClearPageReserved(page);
539 set_page_count(page, 0);
540 set_page_refcounted(page);
541 __free_page(page);
542 } else {
543 int loop;
545 prefetchw(page);
546 for (loop = 0; loop < BITS_PER_LONG; loop++) {
547 struct page *p = &page[loop];
549 if (loop + 1 < BITS_PER_LONG)
550 prefetchw(p + 1);
551 __ClearPageReserved(p);
552 set_page_count(p, 0);
555 set_page_refcounted(page);
556 __free_pages(page, order);
562 * The order of subdivision here is critical for the IO subsystem.
563 * Please do not alter this order without good reasons and regression
564 * testing. Specifically, as large blocks of memory are subdivided,
565 * the order in which smaller blocks are delivered depends on the order
566 * they're subdivided in this function. This is the primary factor
567 * influencing the order in which pages are delivered to the IO
568 * subsystem according to empirical testing, and this is also justified
569 * by considering the behavior of a buddy system containing a single
570 * large block of memory acted on by a series of small allocations.
571 * This behavior is a critical factor in sglist merging's success.
573 * -- wli
575 static inline void expand(struct zone *zone, struct page *page,
576 int low, int high, struct free_area *area,
577 int migratetype)
579 unsigned long size = 1 << high;
581 while (high > low) {
582 area--;
583 high--;
584 size >>= 1;
585 VM_BUG_ON(bad_range(zone, &page[size]));
586 list_add(&page[size].lru, &area->free_list[migratetype]);
587 area->nr_free++;
588 set_page_order(&page[size], high);
593 * This page is about to be returned from the page allocator
595 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597 if (unlikely(page_mapcount(page) |
598 (page->mapping != NULL) |
599 (page_get_page_cgroup(page) != NULL) |
600 (page_count(page) != 0) |
601 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
602 bad_page(page);
605 * For now, we report if PG_reserved was found set, but do not
606 * clear it, and do not allocate the page: as a safety net.
608 if (PageReserved(page))
609 return 1;
611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
612 1 << PG_referenced | 1 << PG_arch_1 |
613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614 set_page_private(page, 0);
615 set_page_refcounted(page);
617 arch_alloc_page(page, order);
618 kernel_map_pages(page, 1 << order, 1);
620 if (gfp_flags & __GFP_ZERO)
621 prep_zero_page(page, order, gfp_flags);
623 if (order && (gfp_flags & __GFP_COMP))
624 prep_compound_page(page, order);
626 return 0;
630 * Go through the free lists for the given migratetype and remove
631 * the smallest available page from the freelists
633 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
634 int migratetype)
636 unsigned int current_order;
637 struct free_area * area;
638 struct page *page;
640 /* Find a page of the appropriate size in the preferred list */
641 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 area = &(zone->free_area[current_order]);
643 if (list_empty(&area->free_list[migratetype]))
644 continue;
646 page = list_entry(area->free_list[migratetype].next,
647 struct page, lru);
648 list_del(&page->lru);
649 rmv_page_order(page);
650 area->nr_free--;
651 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
652 expand(zone, page, order, current_order, area, migratetype);
653 return page;
656 return NULL;
661 * This array describes the order lists are fallen back to when
662 * the free lists for the desirable migrate type are depleted
664 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
665 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
666 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
672 * Move the free pages in a range to the free lists of the requested type.
673 * Note that start_page and end_pages are not aligned on a pageblock
674 * boundary. If alignment is required, use move_freepages_block()
676 int move_freepages(struct zone *zone,
677 struct page *start_page, struct page *end_page,
678 int migratetype)
680 struct page *page;
681 unsigned long order;
682 int pages_moved = 0;
684 #ifndef CONFIG_HOLES_IN_ZONE
686 * page_zone is not safe to call in this context when
687 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
688 * anyway as we check zone boundaries in move_freepages_block().
689 * Remove at a later date when no bug reports exist related to
690 * grouping pages by mobility
692 BUG_ON(page_zone(start_page) != page_zone(end_page));
693 #endif
695 for (page = start_page; page <= end_page;) {
696 /* Make sure we are not inadvertently changing nodes */
697 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
699 if (!pfn_valid_within(page_to_pfn(page))) {
700 page++;
701 continue;
704 if (!PageBuddy(page)) {
705 page++;
706 continue;
709 order = page_order(page);
710 list_del(&page->lru);
711 list_add(&page->lru,
712 &zone->free_area[order].free_list[migratetype]);
713 page += 1 << order;
714 pages_moved += 1 << order;
717 return pages_moved;
720 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
722 unsigned long start_pfn, end_pfn;
723 struct page *start_page, *end_page;
725 start_pfn = page_to_pfn(page);
726 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
727 start_page = pfn_to_page(start_pfn);
728 end_page = start_page + pageblock_nr_pages - 1;
729 end_pfn = start_pfn + pageblock_nr_pages - 1;
731 /* Do not cross zone boundaries */
732 if (start_pfn < zone->zone_start_pfn)
733 start_page = page;
734 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
735 return 0;
737 return move_freepages(zone, start_page, end_page, migratetype);
740 /* Remove an element from the buddy allocator from the fallback list */
741 static struct page *__rmqueue_fallback(struct zone *zone, int order,
742 int start_migratetype)
744 struct free_area * area;
745 int current_order;
746 struct page *page;
747 int migratetype, i;
749 /* Find the largest possible block of pages in the other list */
750 for (current_order = MAX_ORDER-1; current_order >= order;
751 --current_order) {
752 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
753 migratetype = fallbacks[start_migratetype][i];
755 /* MIGRATE_RESERVE handled later if necessary */
756 if (migratetype == MIGRATE_RESERVE)
757 continue;
759 area = &(zone->free_area[current_order]);
760 if (list_empty(&area->free_list[migratetype]))
761 continue;
763 page = list_entry(area->free_list[migratetype].next,
764 struct page, lru);
765 area->nr_free--;
768 * If breaking a large block of pages, move all free
769 * pages to the preferred allocation list. If falling
770 * back for a reclaimable kernel allocation, be more
771 * agressive about taking ownership of free pages
773 if (unlikely(current_order >= (pageblock_order >> 1)) ||
774 start_migratetype == MIGRATE_RECLAIMABLE) {
775 unsigned long pages;
776 pages = move_freepages_block(zone, page,
777 start_migratetype);
779 /* Claim the whole block if over half of it is free */
780 if (pages >= (1 << (pageblock_order-1)))
781 set_pageblock_migratetype(page,
782 start_migratetype);
784 migratetype = start_migratetype;
787 /* Remove the page from the freelists */
788 list_del(&page->lru);
789 rmv_page_order(page);
790 __mod_zone_page_state(zone, NR_FREE_PAGES,
791 -(1UL << order));
793 if (current_order == pageblock_order)
794 set_pageblock_migratetype(page,
795 start_migratetype);
797 expand(zone, page, order, current_order, area, migratetype);
798 return page;
802 /* Use MIGRATE_RESERVE rather than fail an allocation */
803 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
807 * Do the hard work of removing an element from the buddy allocator.
808 * Call me with the zone->lock already held.
810 static struct page *__rmqueue(struct zone *zone, unsigned int order,
811 int migratetype)
813 struct page *page;
815 page = __rmqueue_smallest(zone, order, migratetype);
817 if (unlikely(!page))
818 page = __rmqueue_fallback(zone, order, migratetype);
820 return page;
824 * Obtain a specified number of elements from the buddy allocator, all under
825 * a single hold of the lock, for efficiency. Add them to the supplied list.
826 * Returns the number of new pages which were placed at *list.
828 static int rmqueue_bulk(struct zone *zone, unsigned int order,
829 unsigned long count, struct list_head *list,
830 int migratetype)
832 int i;
834 spin_lock(&zone->lock);
835 for (i = 0; i < count; ++i) {
836 struct page *page = __rmqueue(zone, order, migratetype);
837 if (unlikely(page == NULL))
838 break;
841 * Split buddy pages returned by expand() are received here
842 * in physical page order. The page is added to the callers and
843 * list and the list head then moves forward. From the callers
844 * perspective, the linked list is ordered by page number in
845 * some conditions. This is useful for IO devices that can
846 * merge IO requests if the physical pages are ordered
847 * properly.
849 list_add(&page->lru, list);
850 set_page_private(page, migratetype);
851 list = &page->lru;
853 spin_unlock(&zone->lock);
854 return i;
857 #ifdef CONFIG_NUMA
859 * Called from the vmstat counter updater to drain pagesets of this
860 * currently executing processor on remote nodes after they have
861 * expired.
863 * Note that this function must be called with the thread pinned to
864 * a single processor.
866 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
868 unsigned long flags;
869 int to_drain;
871 local_irq_save(flags);
872 if (pcp->count >= pcp->batch)
873 to_drain = pcp->batch;
874 else
875 to_drain = pcp->count;
876 free_pages_bulk(zone, to_drain, &pcp->list, 0);
877 pcp->count -= to_drain;
878 local_irq_restore(flags);
880 #endif
883 * Drain pages of the indicated processor.
885 * The processor must either be the current processor and the
886 * thread pinned to the current processor or a processor that
887 * is not online.
889 static void drain_pages(unsigned int cpu)
891 unsigned long flags;
892 struct zone *zone;
894 for_each_zone(zone) {
895 struct per_cpu_pageset *pset;
896 struct per_cpu_pages *pcp;
898 if (!populated_zone(zone))
899 continue;
901 pset = zone_pcp(zone, cpu);
903 pcp = &pset->pcp;
904 local_irq_save(flags);
905 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
906 pcp->count = 0;
907 local_irq_restore(flags);
912 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
914 void drain_local_pages(void *arg)
916 drain_pages(smp_processor_id());
920 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
922 void drain_all_pages(void)
924 on_each_cpu(drain_local_pages, NULL, 0, 1);
927 #ifdef CONFIG_HIBERNATION
929 void mark_free_pages(struct zone *zone)
931 unsigned long pfn, max_zone_pfn;
932 unsigned long flags;
933 int order, t;
934 struct list_head *curr;
936 if (!zone->spanned_pages)
937 return;
939 spin_lock_irqsave(&zone->lock, flags);
941 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
942 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
943 if (pfn_valid(pfn)) {
944 struct page *page = pfn_to_page(pfn);
946 if (!swsusp_page_is_forbidden(page))
947 swsusp_unset_page_free(page);
950 for_each_migratetype_order(order, t) {
951 list_for_each(curr, &zone->free_area[order].free_list[t]) {
952 unsigned long i;
954 pfn = page_to_pfn(list_entry(curr, struct page, lru));
955 for (i = 0; i < (1UL << order); i++)
956 swsusp_set_page_free(pfn_to_page(pfn + i));
959 spin_unlock_irqrestore(&zone->lock, flags);
961 #endif /* CONFIG_PM */
964 * Free a 0-order page
966 static void free_hot_cold_page(struct page *page, int cold)
968 struct zone *zone = page_zone(page);
969 struct per_cpu_pages *pcp;
970 unsigned long flags;
972 if (PageAnon(page))
973 page->mapping = NULL;
974 if (free_pages_check(page))
975 return;
977 if (!PageHighMem(page)) {
978 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
979 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
981 arch_free_page(page, 0);
982 kernel_map_pages(page, 1, 0);
984 pcp = &zone_pcp(zone, get_cpu())->pcp;
985 local_irq_save(flags);
986 __count_vm_event(PGFREE);
987 if (cold)
988 list_add_tail(&page->lru, &pcp->list);
989 else
990 list_add(&page->lru, &pcp->list);
991 set_page_private(page, get_pageblock_migratetype(page));
992 pcp->count++;
993 if (pcp->count >= pcp->high) {
994 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
995 pcp->count -= pcp->batch;
997 local_irq_restore(flags);
998 put_cpu();
1001 void free_hot_page(struct page *page)
1003 free_hot_cold_page(page, 0);
1006 void free_cold_page(struct page *page)
1008 free_hot_cold_page(page, 1);
1012 * split_page takes a non-compound higher-order page, and splits it into
1013 * n (1<<order) sub-pages: page[0..n]
1014 * Each sub-page must be freed individually.
1016 * Note: this is probably too low level an operation for use in drivers.
1017 * Please consult with lkml before using this in your driver.
1019 void split_page(struct page *page, unsigned int order)
1021 int i;
1023 VM_BUG_ON(PageCompound(page));
1024 VM_BUG_ON(!page_count(page));
1025 for (i = 1; i < (1 << order); i++)
1026 set_page_refcounted(page + i);
1030 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1031 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1032 * or two.
1034 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1035 struct zone *zone, int order, gfp_t gfp_flags)
1037 unsigned long flags;
1038 struct page *page;
1039 int cold = !!(gfp_flags & __GFP_COLD);
1040 int cpu;
1041 int migratetype = allocflags_to_migratetype(gfp_flags);
1043 again:
1044 cpu = get_cpu();
1045 if (likely(order == 0)) {
1046 struct per_cpu_pages *pcp;
1048 pcp = &zone_pcp(zone, cpu)->pcp;
1049 local_irq_save(flags);
1050 if (!pcp->count) {
1051 pcp->count = rmqueue_bulk(zone, 0,
1052 pcp->batch, &pcp->list, migratetype);
1053 if (unlikely(!pcp->count))
1054 goto failed;
1057 /* Find a page of the appropriate migrate type */
1058 if (cold) {
1059 list_for_each_entry_reverse(page, &pcp->list, lru)
1060 if (page_private(page) == migratetype)
1061 break;
1062 } else {
1063 list_for_each_entry(page, &pcp->list, lru)
1064 if (page_private(page) == migratetype)
1065 break;
1068 /* Allocate more to the pcp list if necessary */
1069 if (unlikely(&page->lru == &pcp->list)) {
1070 pcp->count += rmqueue_bulk(zone, 0,
1071 pcp->batch, &pcp->list, migratetype);
1072 page = list_entry(pcp->list.next, struct page, lru);
1075 list_del(&page->lru);
1076 pcp->count--;
1077 } else {
1078 spin_lock_irqsave(&zone->lock, flags);
1079 page = __rmqueue(zone, order, migratetype);
1080 spin_unlock(&zone->lock);
1081 if (!page)
1082 goto failed;
1085 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1086 zone_statistics(preferred_zone, zone);
1087 local_irq_restore(flags);
1088 put_cpu();
1090 VM_BUG_ON(bad_range(zone, page));
1091 if (prep_new_page(page, order, gfp_flags))
1092 goto again;
1093 return page;
1095 failed:
1096 local_irq_restore(flags);
1097 put_cpu();
1098 return NULL;
1101 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1102 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1103 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1104 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1105 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1106 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1107 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1109 #ifdef CONFIG_FAIL_PAGE_ALLOC
1111 static struct fail_page_alloc_attr {
1112 struct fault_attr attr;
1114 u32 ignore_gfp_highmem;
1115 u32 ignore_gfp_wait;
1116 u32 min_order;
1118 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1120 struct dentry *ignore_gfp_highmem_file;
1121 struct dentry *ignore_gfp_wait_file;
1122 struct dentry *min_order_file;
1124 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1126 } fail_page_alloc = {
1127 .attr = FAULT_ATTR_INITIALIZER,
1128 .ignore_gfp_wait = 1,
1129 .ignore_gfp_highmem = 1,
1130 .min_order = 1,
1133 static int __init setup_fail_page_alloc(char *str)
1135 return setup_fault_attr(&fail_page_alloc.attr, str);
1137 __setup("fail_page_alloc=", setup_fail_page_alloc);
1139 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1141 if (order < fail_page_alloc.min_order)
1142 return 0;
1143 if (gfp_mask & __GFP_NOFAIL)
1144 return 0;
1145 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1146 return 0;
1147 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1148 return 0;
1150 return should_fail(&fail_page_alloc.attr, 1 << order);
1153 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1155 static int __init fail_page_alloc_debugfs(void)
1157 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1158 struct dentry *dir;
1159 int err;
1161 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1162 "fail_page_alloc");
1163 if (err)
1164 return err;
1165 dir = fail_page_alloc.attr.dentries.dir;
1167 fail_page_alloc.ignore_gfp_wait_file =
1168 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1169 &fail_page_alloc.ignore_gfp_wait);
1171 fail_page_alloc.ignore_gfp_highmem_file =
1172 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1173 &fail_page_alloc.ignore_gfp_highmem);
1174 fail_page_alloc.min_order_file =
1175 debugfs_create_u32("min-order", mode, dir,
1176 &fail_page_alloc.min_order);
1178 if (!fail_page_alloc.ignore_gfp_wait_file ||
1179 !fail_page_alloc.ignore_gfp_highmem_file ||
1180 !fail_page_alloc.min_order_file) {
1181 err = -ENOMEM;
1182 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1183 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1184 debugfs_remove(fail_page_alloc.min_order_file);
1185 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1188 return err;
1191 late_initcall(fail_page_alloc_debugfs);
1193 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1195 #else /* CONFIG_FAIL_PAGE_ALLOC */
1197 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1199 return 0;
1202 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1205 * Return 1 if free pages are above 'mark'. This takes into account the order
1206 * of the allocation.
1208 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1209 int classzone_idx, int alloc_flags)
1211 /* free_pages my go negative - that's OK */
1212 long min = mark;
1213 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1214 int o;
1216 if (alloc_flags & ALLOC_HIGH)
1217 min -= min / 2;
1218 if (alloc_flags & ALLOC_HARDER)
1219 min -= min / 4;
1221 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1222 return 0;
1223 for (o = 0; o < order; o++) {
1224 /* At the next order, this order's pages become unavailable */
1225 free_pages -= z->free_area[o].nr_free << o;
1227 /* Require fewer higher order pages to be free */
1228 min >>= 1;
1230 if (free_pages <= min)
1231 return 0;
1233 return 1;
1236 #ifdef CONFIG_NUMA
1238 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1239 * skip over zones that are not allowed by the cpuset, or that have
1240 * been recently (in last second) found to be nearly full. See further
1241 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1242 * that have to skip over a lot of full or unallowed zones.
1244 * If the zonelist cache is present in the passed in zonelist, then
1245 * returns a pointer to the allowed node mask (either the current
1246 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1248 * If the zonelist cache is not available for this zonelist, does
1249 * nothing and returns NULL.
1251 * If the fullzones BITMAP in the zonelist cache is stale (more than
1252 * a second since last zap'd) then we zap it out (clear its bits.)
1254 * We hold off even calling zlc_setup, until after we've checked the
1255 * first zone in the zonelist, on the theory that most allocations will
1256 * be satisfied from that first zone, so best to examine that zone as
1257 * quickly as we can.
1259 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1261 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1262 nodemask_t *allowednodes; /* zonelist_cache approximation */
1264 zlc = zonelist->zlcache_ptr;
1265 if (!zlc)
1266 return NULL;
1268 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1269 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1270 zlc->last_full_zap = jiffies;
1273 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1274 &cpuset_current_mems_allowed :
1275 &node_states[N_HIGH_MEMORY];
1276 return allowednodes;
1280 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1281 * if it is worth looking at further for free memory:
1282 * 1) Check that the zone isn't thought to be full (doesn't have its
1283 * bit set in the zonelist_cache fullzones BITMAP).
1284 * 2) Check that the zones node (obtained from the zonelist_cache
1285 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1286 * Return true (non-zero) if zone is worth looking at further, or
1287 * else return false (zero) if it is not.
1289 * This check -ignores- the distinction between various watermarks,
1290 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1291 * found to be full for any variation of these watermarks, it will
1292 * be considered full for up to one second by all requests, unless
1293 * we are so low on memory on all allowed nodes that we are forced
1294 * into the second scan of the zonelist.
1296 * In the second scan we ignore this zonelist cache and exactly
1297 * apply the watermarks to all zones, even it is slower to do so.
1298 * We are low on memory in the second scan, and should leave no stone
1299 * unturned looking for a free page.
1301 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1302 nodemask_t *allowednodes)
1304 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1305 int i; /* index of *z in zonelist zones */
1306 int n; /* node that zone *z is on */
1308 zlc = zonelist->zlcache_ptr;
1309 if (!zlc)
1310 return 1;
1312 i = z - zonelist->_zonerefs;
1313 n = zlc->z_to_n[i];
1315 /* This zone is worth trying if it is allowed but not full */
1316 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1320 * Given 'z' scanning a zonelist, set the corresponding bit in
1321 * zlc->fullzones, so that subsequent attempts to allocate a page
1322 * from that zone don't waste time re-examining it.
1324 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1326 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1327 int i; /* index of *z in zonelist zones */
1329 zlc = zonelist->zlcache_ptr;
1330 if (!zlc)
1331 return;
1333 i = z - zonelist->_zonerefs;
1335 set_bit(i, zlc->fullzones);
1338 #else /* CONFIG_NUMA */
1340 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1342 return NULL;
1345 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1346 nodemask_t *allowednodes)
1348 return 1;
1351 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1354 #endif /* CONFIG_NUMA */
1357 * get_page_from_freelist goes through the zonelist trying to allocate
1358 * a page.
1360 static struct page *
1361 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1362 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1364 struct zoneref *z;
1365 struct page *page = NULL;
1366 int classzone_idx;
1367 struct zone *zone, *preferred_zone;
1368 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1369 int zlc_active = 0; /* set if using zonelist_cache */
1370 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1372 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1373 &preferred_zone);
1374 if (!preferred_zone)
1375 return NULL;
1377 classzone_idx = zone_idx(preferred_zone);
1379 zonelist_scan:
1381 * Scan zonelist, looking for a zone with enough free.
1382 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1384 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1385 high_zoneidx, nodemask) {
1386 if (NUMA_BUILD && zlc_active &&
1387 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1388 continue;
1389 if ((alloc_flags & ALLOC_CPUSET) &&
1390 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1391 goto try_next_zone;
1393 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1394 unsigned long mark;
1395 if (alloc_flags & ALLOC_WMARK_MIN)
1396 mark = zone->pages_min;
1397 else if (alloc_flags & ALLOC_WMARK_LOW)
1398 mark = zone->pages_low;
1399 else
1400 mark = zone->pages_high;
1401 if (!zone_watermark_ok(zone, order, mark,
1402 classzone_idx, alloc_flags)) {
1403 if (!zone_reclaim_mode ||
1404 !zone_reclaim(zone, gfp_mask, order))
1405 goto this_zone_full;
1409 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1410 if (page)
1411 break;
1412 this_zone_full:
1413 if (NUMA_BUILD)
1414 zlc_mark_zone_full(zonelist, z);
1415 try_next_zone:
1416 if (NUMA_BUILD && !did_zlc_setup) {
1417 /* we do zlc_setup after the first zone is tried */
1418 allowednodes = zlc_setup(zonelist, alloc_flags);
1419 zlc_active = 1;
1420 did_zlc_setup = 1;
1424 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1425 /* Disable zlc cache for second zonelist scan */
1426 zlc_active = 0;
1427 goto zonelist_scan;
1429 return page;
1433 * This is the 'heart' of the zoned buddy allocator.
1435 static struct page *
1436 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1437 struct zonelist *zonelist, nodemask_t *nodemask)
1439 const gfp_t wait = gfp_mask & __GFP_WAIT;
1440 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1441 struct zoneref *z;
1442 struct zone *zone;
1443 struct page *page;
1444 struct reclaim_state reclaim_state;
1445 struct task_struct *p = current;
1446 int do_retry;
1447 int alloc_flags;
1448 unsigned long did_some_progress;
1449 unsigned long pages_reclaimed = 0;
1451 might_sleep_if(wait);
1453 if (should_fail_alloc_page(gfp_mask, order))
1454 return NULL;
1456 restart:
1457 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1459 if (unlikely(!z->zone)) {
1461 * Happens if we have an empty zonelist as a result of
1462 * GFP_THISNODE being used on a memoryless node
1464 return NULL;
1467 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1468 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1469 if (page)
1470 goto got_pg;
1473 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1474 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1475 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1476 * using a larger set of nodes after it has established that the
1477 * allowed per node queues are empty and that nodes are
1478 * over allocated.
1480 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1481 goto nopage;
1483 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1484 wakeup_kswapd(zone, order);
1487 * OK, we're below the kswapd watermark and have kicked background
1488 * reclaim. Now things get more complex, so set up alloc_flags according
1489 * to how we want to proceed.
1491 * The caller may dip into page reserves a bit more if the caller
1492 * cannot run direct reclaim, or if the caller has realtime scheduling
1493 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1494 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1496 alloc_flags = ALLOC_WMARK_MIN;
1497 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1498 alloc_flags |= ALLOC_HARDER;
1499 if (gfp_mask & __GFP_HIGH)
1500 alloc_flags |= ALLOC_HIGH;
1501 if (wait)
1502 alloc_flags |= ALLOC_CPUSET;
1505 * Go through the zonelist again. Let __GFP_HIGH and allocations
1506 * coming from realtime tasks go deeper into reserves.
1508 * This is the last chance, in general, before the goto nopage.
1509 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1510 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1512 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1513 high_zoneidx, alloc_flags);
1514 if (page)
1515 goto got_pg;
1517 /* This allocation should allow future memory freeing. */
1519 rebalance:
1520 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1521 && !in_interrupt()) {
1522 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1523 nofail_alloc:
1524 /* go through the zonelist yet again, ignoring mins */
1525 page = get_page_from_freelist(gfp_mask, nodemask, order,
1526 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1527 if (page)
1528 goto got_pg;
1529 if (gfp_mask & __GFP_NOFAIL) {
1530 congestion_wait(WRITE, HZ/50);
1531 goto nofail_alloc;
1534 goto nopage;
1537 /* Atomic allocations - we can't balance anything */
1538 if (!wait)
1539 goto nopage;
1541 cond_resched();
1543 /* We now go into synchronous reclaim */
1544 cpuset_memory_pressure_bump();
1545 p->flags |= PF_MEMALLOC;
1546 reclaim_state.reclaimed_slab = 0;
1547 p->reclaim_state = &reclaim_state;
1549 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1551 p->reclaim_state = NULL;
1552 p->flags &= ~PF_MEMALLOC;
1554 cond_resched();
1556 if (order != 0)
1557 drain_all_pages();
1559 if (likely(did_some_progress)) {
1560 page = get_page_from_freelist(gfp_mask, nodemask, order,
1561 zonelist, high_zoneidx, alloc_flags);
1562 if (page)
1563 goto got_pg;
1564 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1565 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1566 schedule_timeout_uninterruptible(1);
1567 goto restart;
1571 * Go through the zonelist yet one more time, keep
1572 * very high watermark here, this is only to catch
1573 * a parallel oom killing, we must fail if we're still
1574 * under heavy pressure.
1576 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1577 order, zonelist, high_zoneidx,
1578 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1579 if (page) {
1580 clear_zonelist_oom(zonelist, gfp_mask);
1581 goto got_pg;
1584 /* The OOM killer will not help higher order allocs so fail */
1585 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1586 clear_zonelist_oom(zonelist, gfp_mask);
1587 goto nopage;
1590 out_of_memory(zonelist, gfp_mask, order);
1591 clear_zonelist_oom(zonelist, gfp_mask);
1592 goto restart;
1596 * Don't let big-order allocations loop unless the caller explicitly
1597 * requests that. Wait for some write requests to complete then retry.
1599 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1600 * means __GFP_NOFAIL, but that may not be true in other
1601 * implementations.
1603 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1604 * specified, then we retry until we no longer reclaim any pages
1605 * (above), or we've reclaimed an order of pages at least as
1606 * large as the allocation's order. In both cases, if the
1607 * allocation still fails, we stop retrying.
1609 pages_reclaimed += did_some_progress;
1610 do_retry = 0;
1611 if (!(gfp_mask & __GFP_NORETRY)) {
1612 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1613 do_retry = 1;
1614 } else {
1615 if (gfp_mask & __GFP_REPEAT &&
1616 pages_reclaimed < (1 << order))
1617 do_retry = 1;
1619 if (gfp_mask & __GFP_NOFAIL)
1620 do_retry = 1;
1622 if (do_retry) {
1623 congestion_wait(WRITE, HZ/50);
1624 goto rebalance;
1627 nopage:
1628 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1629 printk(KERN_WARNING "%s: page allocation failure."
1630 " order:%d, mode:0x%x\n",
1631 p->comm, order, gfp_mask);
1632 dump_stack();
1633 show_mem();
1635 got_pg:
1636 return page;
1639 struct page *
1640 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1641 struct zonelist *zonelist)
1643 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1646 struct page *
1647 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1648 struct zonelist *zonelist, nodemask_t *nodemask)
1650 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1653 EXPORT_SYMBOL(__alloc_pages);
1656 * Common helper functions.
1658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1660 struct page * page;
1661 page = alloc_pages(gfp_mask, order);
1662 if (!page)
1663 return 0;
1664 return (unsigned long) page_address(page);
1667 EXPORT_SYMBOL(__get_free_pages);
1669 unsigned long get_zeroed_page(gfp_t gfp_mask)
1671 struct page * page;
1674 * get_zeroed_page() returns a 32-bit address, which cannot represent
1675 * a highmem page
1677 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1679 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1680 if (page)
1681 return (unsigned long) page_address(page);
1682 return 0;
1685 EXPORT_SYMBOL(get_zeroed_page);
1687 void __pagevec_free(struct pagevec *pvec)
1689 int i = pagevec_count(pvec);
1691 while (--i >= 0)
1692 free_hot_cold_page(pvec->pages[i], pvec->cold);
1695 void __free_pages(struct page *page, unsigned int order)
1697 if (put_page_testzero(page)) {
1698 if (order == 0)
1699 free_hot_page(page);
1700 else
1701 __free_pages_ok(page, order);
1705 EXPORT_SYMBOL(__free_pages);
1707 void free_pages(unsigned long addr, unsigned int order)
1709 if (addr != 0) {
1710 VM_BUG_ON(!virt_addr_valid((void *)addr));
1711 __free_pages(virt_to_page((void *)addr), order);
1715 EXPORT_SYMBOL(free_pages);
1717 static unsigned int nr_free_zone_pages(int offset)
1719 struct zoneref *z;
1720 struct zone *zone;
1722 /* Just pick one node, since fallback list is circular */
1723 unsigned int sum = 0;
1725 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1727 for_each_zone_zonelist(zone, z, zonelist, offset) {
1728 unsigned long size = zone->present_pages;
1729 unsigned long high = zone->pages_high;
1730 if (size > high)
1731 sum += size - high;
1734 return sum;
1738 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1740 unsigned int nr_free_buffer_pages(void)
1742 return nr_free_zone_pages(gfp_zone(GFP_USER));
1744 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1747 * Amount of free RAM allocatable within all zones
1749 unsigned int nr_free_pagecache_pages(void)
1751 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1754 static inline void show_node(struct zone *zone)
1756 if (NUMA_BUILD)
1757 printk("Node %d ", zone_to_nid(zone));
1760 void si_meminfo(struct sysinfo *val)
1762 val->totalram = totalram_pages;
1763 val->sharedram = 0;
1764 val->freeram = global_page_state(NR_FREE_PAGES);
1765 val->bufferram = nr_blockdev_pages();
1766 val->totalhigh = totalhigh_pages;
1767 val->freehigh = nr_free_highpages();
1768 val->mem_unit = PAGE_SIZE;
1771 EXPORT_SYMBOL(si_meminfo);
1773 #ifdef CONFIG_NUMA
1774 void si_meminfo_node(struct sysinfo *val, int nid)
1776 pg_data_t *pgdat = NODE_DATA(nid);
1778 val->totalram = pgdat->node_present_pages;
1779 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1780 #ifdef CONFIG_HIGHMEM
1781 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1782 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1783 NR_FREE_PAGES);
1784 #else
1785 val->totalhigh = 0;
1786 val->freehigh = 0;
1787 #endif
1788 val->mem_unit = PAGE_SIZE;
1790 #endif
1792 #define K(x) ((x) << (PAGE_SHIFT-10))
1795 * Show free area list (used inside shift_scroll-lock stuff)
1796 * We also calculate the percentage fragmentation. We do this by counting the
1797 * memory on each free list with the exception of the first item on the list.
1799 void show_free_areas(void)
1801 int cpu;
1802 struct zone *zone;
1804 for_each_zone(zone) {
1805 if (!populated_zone(zone))
1806 continue;
1808 show_node(zone);
1809 printk("%s per-cpu:\n", zone->name);
1811 for_each_online_cpu(cpu) {
1812 struct per_cpu_pageset *pageset;
1814 pageset = zone_pcp(zone, cpu);
1816 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1817 cpu, pageset->pcp.high,
1818 pageset->pcp.batch, pageset->pcp.count);
1822 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1823 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1824 global_page_state(NR_ACTIVE),
1825 global_page_state(NR_INACTIVE),
1826 global_page_state(NR_FILE_DIRTY),
1827 global_page_state(NR_WRITEBACK),
1828 global_page_state(NR_UNSTABLE_NFS),
1829 global_page_state(NR_FREE_PAGES),
1830 global_page_state(NR_SLAB_RECLAIMABLE) +
1831 global_page_state(NR_SLAB_UNRECLAIMABLE),
1832 global_page_state(NR_FILE_MAPPED),
1833 global_page_state(NR_PAGETABLE),
1834 global_page_state(NR_BOUNCE));
1836 for_each_zone(zone) {
1837 int i;
1839 if (!populated_zone(zone))
1840 continue;
1842 show_node(zone);
1843 printk("%s"
1844 " free:%lukB"
1845 " min:%lukB"
1846 " low:%lukB"
1847 " high:%lukB"
1848 " active:%lukB"
1849 " inactive:%lukB"
1850 " present:%lukB"
1851 " pages_scanned:%lu"
1852 " all_unreclaimable? %s"
1853 "\n",
1854 zone->name,
1855 K(zone_page_state(zone, NR_FREE_PAGES)),
1856 K(zone->pages_min),
1857 K(zone->pages_low),
1858 K(zone->pages_high),
1859 K(zone_page_state(zone, NR_ACTIVE)),
1860 K(zone_page_state(zone, NR_INACTIVE)),
1861 K(zone->present_pages),
1862 zone->pages_scanned,
1863 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1865 printk("lowmem_reserve[]:");
1866 for (i = 0; i < MAX_NR_ZONES; i++)
1867 printk(" %lu", zone->lowmem_reserve[i]);
1868 printk("\n");
1871 for_each_zone(zone) {
1872 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1874 if (!populated_zone(zone))
1875 continue;
1877 show_node(zone);
1878 printk("%s: ", zone->name);
1880 spin_lock_irqsave(&zone->lock, flags);
1881 for (order = 0; order < MAX_ORDER; order++) {
1882 nr[order] = zone->free_area[order].nr_free;
1883 total += nr[order] << order;
1885 spin_unlock_irqrestore(&zone->lock, flags);
1886 for (order = 0; order < MAX_ORDER; order++)
1887 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1888 printk("= %lukB\n", K(total));
1891 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1893 show_swap_cache_info();
1896 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1898 zoneref->zone = zone;
1899 zoneref->zone_idx = zone_idx(zone);
1903 * Builds allocation fallback zone lists.
1905 * Add all populated zones of a node to the zonelist.
1907 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1908 int nr_zones, enum zone_type zone_type)
1910 struct zone *zone;
1912 BUG_ON(zone_type >= MAX_NR_ZONES);
1913 zone_type++;
1915 do {
1916 zone_type--;
1917 zone = pgdat->node_zones + zone_type;
1918 if (populated_zone(zone)) {
1919 zoneref_set_zone(zone,
1920 &zonelist->_zonerefs[nr_zones++]);
1921 check_highest_zone(zone_type);
1924 } while (zone_type);
1925 return nr_zones;
1930 * zonelist_order:
1931 * 0 = automatic detection of better ordering.
1932 * 1 = order by ([node] distance, -zonetype)
1933 * 2 = order by (-zonetype, [node] distance)
1935 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1936 * the same zonelist. So only NUMA can configure this param.
1938 #define ZONELIST_ORDER_DEFAULT 0
1939 #define ZONELIST_ORDER_NODE 1
1940 #define ZONELIST_ORDER_ZONE 2
1942 /* zonelist order in the kernel.
1943 * set_zonelist_order() will set this to NODE or ZONE.
1945 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1946 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1949 #ifdef CONFIG_NUMA
1950 /* The value user specified ....changed by config */
1951 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1952 /* string for sysctl */
1953 #define NUMA_ZONELIST_ORDER_LEN 16
1954 char numa_zonelist_order[16] = "default";
1957 * interface for configure zonelist ordering.
1958 * command line option "numa_zonelist_order"
1959 * = "[dD]efault - default, automatic configuration.
1960 * = "[nN]ode - order by node locality, then by zone within node
1961 * = "[zZ]one - order by zone, then by locality within zone
1964 static int __parse_numa_zonelist_order(char *s)
1966 if (*s == 'd' || *s == 'D') {
1967 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1968 } else if (*s == 'n' || *s == 'N') {
1969 user_zonelist_order = ZONELIST_ORDER_NODE;
1970 } else if (*s == 'z' || *s == 'Z') {
1971 user_zonelist_order = ZONELIST_ORDER_ZONE;
1972 } else {
1973 printk(KERN_WARNING
1974 "Ignoring invalid numa_zonelist_order value: "
1975 "%s\n", s);
1976 return -EINVAL;
1978 return 0;
1981 static __init int setup_numa_zonelist_order(char *s)
1983 if (s)
1984 return __parse_numa_zonelist_order(s);
1985 return 0;
1987 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1990 * sysctl handler for numa_zonelist_order
1992 int numa_zonelist_order_handler(ctl_table *table, int write,
1993 struct file *file, void __user *buffer, size_t *length,
1994 loff_t *ppos)
1996 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1997 int ret;
1999 if (write)
2000 strncpy(saved_string, (char*)table->data,
2001 NUMA_ZONELIST_ORDER_LEN);
2002 ret = proc_dostring(table, write, file, buffer, length, ppos);
2003 if (ret)
2004 return ret;
2005 if (write) {
2006 int oldval = user_zonelist_order;
2007 if (__parse_numa_zonelist_order((char*)table->data)) {
2009 * bogus value. restore saved string
2011 strncpy((char*)table->data, saved_string,
2012 NUMA_ZONELIST_ORDER_LEN);
2013 user_zonelist_order = oldval;
2014 } else if (oldval != user_zonelist_order)
2015 build_all_zonelists();
2017 return 0;
2021 #define MAX_NODE_LOAD (num_online_nodes())
2022 static int node_load[MAX_NUMNODES];
2025 * find_next_best_node - find the next node that should appear in a given node's fallback list
2026 * @node: node whose fallback list we're appending
2027 * @used_node_mask: nodemask_t of already used nodes
2029 * We use a number of factors to determine which is the next node that should
2030 * appear on a given node's fallback list. The node should not have appeared
2031 * already in @node's fallback list, and it should be the next closest node
2032 * according to the distance array (which contains arbitrary distance values
2033 * from each node to each node in the system), and should also prefer nodes
2034 * with no CPUs, since presumably they'll have very little allocation pressure
2035 * on them otherwise.
2036 * It returns -1 if no node is found.
2038 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2040 int n, val;
2041 int min_val = INT_MAX;
2042 int best_node = -1;
2043 node_to_cpumask_ptr(tmp, 0);
2045 /* Use the local node if we haven't already */
2046 if (!node_isset(node, *used_node_mask)) {
2047 node_set(node, *used_node_mask);
2048 return node;
2051 for_each_node_state(n, N_HIGH_MEMORY) {
2053 /* Don't want a node to appear more than once */
2054 if (node_isset(n, *used_node_mask))
2055 continue;
2057 /* Use the distance array to find the distance */
2058 val = node_distance(node, n);
2060 /* Penalize nodes under us ("prefer the next node") */
2061 val += (n < node);
2063 /* Give preference to headless and unused nodes */
2064 node_to_cpumask_ptr_next(tmp, n);
2065 if (!cpus_empty(*tmp))
2066 val += PENALTY_FOR_NODE_WITH_CPUS;
2068 /* Slight preference for less loaded node */
2069 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2070 val += node_load[n];
2072 if (val < min_val) {
2073 min_val = val;
2074 best_node = n;
2078 if (best_node >= 0)
2079 node_set(best_node, *used_node_mask);
2081 return best_node;
2086 * Build zonelists ordered by node and zones within node.
2087 * This results in maximum locality--normal zone overflows into local
2088 * DMA zone, if any--but risks exhausting DMA zone.
2090 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2092 int j;
2093 struct zonelist *zonelist;
2095 zonelist = &pgdat->node_zonelists[0];
2096 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2098 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2099 MAX_NR_ZONES - 1);
2100 zonelist->_zonerefs[j].zone = NULL;
2101 zonelist->_zonerefs[j].zone_idx = 0;
2105 * Build gfp_thisnode zonelists
2107 static void build_thisnode_zonelists(pg_data_t *pgdat)
2109 int j;
2110 struct zonelist *zonelist;
2112 zonelist = &pgdat->node_zonelists[1];
2113 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2114 zonelist->_zonerefs[j].zone = NULL;
2115 zonelist->_zonerefs[j].zone_idx = 0;
2119 * Build zonelists ordered by zone and nodes within zones.
2120 * This results in conserving DMA zone[s] until all Normal memory is
2121 * exhausted, but results in overflowing to remote node while memory
2122 * may still exist in local DMA zone.
2124 static int node_order[MAX_NUMNODES];
2126 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2128 int pos, j, node;
2129 int zone_type; /* needs to be signed */
2130 struct zone *z;
2131 struct zonelist *zonelist;
2133 zonelist = &pgdat->node_zonelists[0];
2134 pos = 0;
2135 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2136 for (j = 0; j < nr_nodes; j++) {
2137 node = node_order[j];
2138 z = &NODE_DATA(node)->node_zones[zone_type];
2139 if (populated_zone(z)) {
2140 zoneref_set_zone(z,
2141 &zonelist->_zonerefs[pos++]);
2142 check_highest_zone(zone_type);
2146 zonelist->_zonerefs[pos].zone = NULL;
2147 zonelist->_zonerefs[pos].zone_idx = 0;
2150 static int default_zonelist_order(void)
2152 int nid, zone_type;
2153 unsigned long low_kmem_size,total_size;
2154 struct zone *z;
2155 int average_size;
2157 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2158 * If they are really small and used heavily, the system can fall
2159 * into OOM very easily.
2160 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2162 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2163 low_kmem_size = 0;
2164 total_size = 0;
2165 for_each_online_node(nid) {
2166 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2167 z = &NODE_DATA(nid)->node_zones[zone_type];
2168 if (populated_zone(z)) {
2169 if (zone_type < ZONE_NORMAL)
2170 low_kmem_size += z->present_pages;
2171 total_size += z->present_pages;
2175 if (!low_kmem_size || /* there are no DMA area. */
2176 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2177 return ZONELIST_ORDER_NODE;
2179 * look into each node's config.
2180 * If there is a node whose DMA/DMA32 memory is very big area on
2181 * local memory, NODE_ORDER may be suitable.
2183 average_size = total_size /
2184 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2185 for_each_online_node(nid) {
2186 low_kmem_size = 0;
2187 total_size = 0;
2188 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2189 z = &NODE_DATA(nid)->node_zones[zone_type];
2190 if (populated_zone(z)) {
2191 if (zone_type < ZONE_NORMAL)
2192 low_kmem_size += z->present_pages;
2193 total_size += z->present_pages;
2196 if (low_kmem_size &&
2197 total_size > average_size && /* ignore small node */
2198 low_kmem_size > total_size * 70/100)
2199 return ZONELIST_ORDER_NODE;
2201 return ZONELIST_ORDER_ZONE;
2204 static void set_zonelist_order(void)
2206 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2207 current_zonelist_order = default_zonelist_order();
2208 else
2209 current_zonelist_order = user_zonelist_order;
2212 static void build_zonelists(pg_data_t *pgdat)
2214 int j, node, load;
2215 enum zone_type i;
2216 nodemask_t used_mask;
2217 int local_node, prev_node;
2218 struct zonelist *zonelist;
2219 int order = current_zonelist_order;
2221 /* initialize zonelists */
2222 for (i = 0; i < MAX_ZONELISTS; i++) {
2223 zonelist = pgdat->node_zonelists + i;
2224 zonelist->_zonerefs[0].zone = NULL;
2225 zonelist->_zonerefs[0].zone_idx = 0;
2228 /* NUMA-aware ordering of nodes */
2229 local_node = pgdat->node_id;
2230 load = num_online_nodes();
2231 prev_node = local_node;
2232 nodes_clear(used_mask);
2234 memset(node_load, 0, sizeof(node_load));
2235 memset(node_order, 0, sizeof(node_order));
2236 j = 0;
2238 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2239 int distance = node_distance(local_node, node);
2242 * If another node is sufficiently far away then it is better
2243 * to reclaim pages in a zone before going off node.
2245 if (distance > RECLAIM_DISTANCE)
2246 zone_reclaim_mode = 1;
2249 * We don't want to pressure a particular node.
2250 * So adding penalty to the first node in same
2251 * distance group to make it round-robin.
2253 if (distance != node_distance(local_node, prev_node))
2254 node_load[node] = load;
2256 prev_node = node;
2257 load--;
2258 if (order == ZONELIST_ORDER_NODE)
2259 build_zonelists_in_node_order(pgdat, node);
2260 else
2261 node_order[j++] = node; /* remember order */
2264 if (order == ZONELIST_ORDER_ZONE) {
2265 /* calculate node order -- i.e., DMA last! */
2266 build_zonelists_in_zone_order(pgdat, j);
2269 build_thisnode_zonelists(pgdat);
2272 /* Construct the zonelist performance cache - see further mmzone.h */
2273 static void build_zonelist_cache(pg_data_t *pgdat)
2275 struct zonelist *zonelist;
2276 struct zonelist_cache *zlc;
2277 struct zoneref *z;
2279 zonelist = &pgdat->node_zonelists[0];
2280 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2281 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2282 for (z = zonelist->_zonerefs; z->zone; z++)
2283 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2287 #else /* CONFIG_NUMA */
2289 static void set_zonelist_order(void)
2291 current_zonelist_order = ZONELIST_ORDER_ZONE;
2294 static void build_zonelists(pg_data_t *pgdat)
2296 int node, local_node;
2297 enum zone_type j;
2298 struct zonelist *zonelist;
2300 local_node = pgdat->node_id;
2302 zonelist = &pgdat->node_zonelists[0];
2303 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2306 * Now we build the zonelist so that it contains the zones
2307 * of all the other nodes.
2308 * We don't want to pressure a particular node, so when
2309 * building the zones for node N, we make sure that the
2310 * zones coming right after the local ones are those from
2311 * node N+1 (modulo N)
2313 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2314 if (!node_online(node))
2315 continue;
2316 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2317 MAX_NR_ZONES - 1);
2319 for (node = 0; node < local_node; node++) {
2320 if (!node_online(node))
2321 continue;
2322 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2323 MAX_NR_ZONES - 1);
2326 zonelist->_zonerefs[j].zone = NULL;
2327 zonelist->_zonerefs[j].zone_idx = 0;
2330 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2331 static void build_zonelist_cache(pg_data_t *pgdat)
2333 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2336 #endif /* CONFIG_NUMA */
2338 /* return values int ....just for stop_machine_run() */
2339 static int __build_all_zonelists(void *dummy)
2341 int nid;
2343 for_each_online_node(nid) {
2344 pg_data_t *pgdat = NODE_DATA(nid);
2346 build_zonelists(pgdat);
2347 build_zonelist_cache(pgdat);
2349 return 0;
2352 void build_all_zonelists(void)
2354 set_zonelist_order();
2356 if (system_state == SYSTEM_BOOTING) {
2357 __build_all_zonelists(NULL);
2358 cpuset_init_current_mems_allowed();
2359 } else {
2360 /* we have to stop all cpus to guarantee there is no user
2361 of zonelist */
2362 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2363 /* cpuset refresh routine should be here */
2365 vm_total_pages = nr_free_pagecache_pages();
2367 * Disable grouping by mobility if the number of pages in the
2368 * system is too low to allow the mechanism to work. It would be
2369 * more accurate, but expensive to check per-zone. This check is
2370 * made on memory-hotadd so a system can start with mobility
2371 * disabled and enable it later
2373 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2374 page_group_by_mobility_disabled = 1;
2375 else
2376 page_group_by_mobility_disabled = 0;
2378 printk("Built %i zonelists in %s order, mobility grouping %s. "
2379 "Total pages: %ld\n",
2380 num_online_nodes(),
2381 zonelist_order_name[current_zonelist_order],
2382 page_group_by_mobility_disabled ? "off" : "on",
2383 vm_total_pages);
2384 #ifdef CONFIG_NUMA
2385 printk("Policy zone: %s\n", zone_names[policy_zone]);
2386 #endif
2390 * Helper functions to size the waitqueue hash table.
2391 * Essentially these want to choose hash table sizes sufficiently
2392 * large so that collisions trying to wait on pages are rare.
2393 * But in fact, the number of active page waitqueues on typical
2394 * systems is ridiculously low, less than 200. So this is even
2395 * conservative, even though it seems large.
2397 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2398 * waitqueues, i.e. the size of the waitq table given the number of pages.
2400 #define PAGES_PER_WAITQUEUE 256
2402 #ifndef CONFIG_MEMORY_HOTPLUG
2403 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2405 unsigned long size = 1;
2407 pages /= PAGES_PER_WAITQUEUE;
2409 while (size < pages)
2410 size <<= 1;
2413 * Once we have dozens or even hundreds of threads sleeping
2414 * on IO we've got bigger problems than wait queue collision.
2415 * Limit the size of the wait table to a reasonable size.
2417 size = min(size, 4096UL);
2419 return max(size, 4UL);
2421 #else
2423 * A zone's size might be changed by hot-add, so it is not possible to determine
2424 * a suitable size for its wait_table. So we use the maximum size now.
2426 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2428 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2429 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2430 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2432 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2433 * or more by the traditional way. (See above). It equals:
2435 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2436 * ia64(16K page size) : = ( 8G + 4M)byte.
2437 * powerpc (64K page size) : = (32G +16M)byte.
2439 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2441 return 4096UL;
2443 #endif
2446 * This is an integer logarithm so that shifts can be used later
2447 * to extract the more random high bits from the multiplicative
2448 * hash function before the remainder is taken.
2450 static inline unsigned long wait_table_bits(unsigned long size)
2452 return ffz(~size);
2455 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2458 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2459 * of blocks reserved is based on zone->pages_min. The memory within the
2460 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2461 * higher will lead to a bigger reserve which will get freed as contiguous
2462 * blocks as reclaim kicks in
2464 static void setup_zone_migrate_reserve(struct zone *zone)
2466 unsigned long start_pfn, pfn, end_pfn;
2467 struct page *page;
2468 unsigned long reserve, block_migratetype;
2470 /* Get the start pfn, end pfn and the number of blocks to reserve */
2471 start_pfn = zone->zone_start_pfn;
2472 end_pfn = start_pfn + zone->spanned_pages;
2473 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2474 pageblock_order;
2476 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2477 if (!pfn_valid(pfn))
2478 continue;
2479 page = pfn_to_page(pfn);
2481 /* Watch out for overlapping nodes */
2482 if (page_to_nid(page) != zone_to_nid(zone))
2483 continue;
2485 /* Blocks with reserved pages will never free, skip them. */
2486 if (PageReserved(page))
2487 continue;
2489 block_migratetype = get_pageblock_migratetype(page);
2491 /* If this block is reserved, account for it */
2492 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2493 reserve--;
2494 continue;
2497 /* Suitable for reserving if this block is movable */
2498 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2499 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2500 move_freepages_block(zone, page, MIGRATE_RESERVE);
2501 reserve--;
2502 continue;
2506 * If the reserve is met and this is a previous reserved block,
2507 * take it back
2509 if (block_migratetype == MIGRATE_RESERVE) {
2510 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2511 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2517 * Initially all pages are reserved - free ones are freed
2518 * up by free_all_bootmem() once the early boot process is
2519 * done. Non-atomic initialization, single-pass.
2521 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2522 unsigned long start_pfn, enum memmap_context context)
2524 struct page *page;
2525 unsigned long end_pfn = start_pfn + size;
2526 unsigned long pfn;
2527 struct zone *z;
2529 z = &NODE_DATA(nid)->node_zones[zone];
2530 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2532 * There can be holes in boot-time mem_map[]s
2533 * handed to this function. They do not
2534 * exist on hotplugged memory.
2536 if (context == MEMMAP_EARLY) {
2537 if (!early_pfn_valid(pfn))
2538 continue;
2539 if (!early_pfn_in_nid(pfn, nid))
2540 continue;
2542 page = pfn_to_page(pfn);
2543 set_page_links(page, zone, nid, pfn);
2544 init_page_count(page);
2545 reset_page_mapcount(page);
2546 SetPageReserved(page);
2548 * Mark the block movable so that blocks are reserved for
2549 * movable at startup. This will force kernel allocations
2550 * to reserve their blocks rather than leaking throughout
2551 * the address space during boot when many long-lived
2552 * kernel allocations are made. Later some blocks near
2553 * the start are marked MIGRATE_RESERVE by
2554 * setup_zone_migrate_reserve()
2556 * bitmap is created for zone's valid pfn range. but memmap
2557 * can be created for invalid pages (for alignment)
2558 * check here not to call set_pageblock_migratetype() against
2559 * pfn out of zone.
2561 if ((z->zone_start_pfn <= pfn)
2562 && (pfn < z->zone_start_pfn + z->spanned_pages)
2563 && !(pfn & (pageblock_nr_pages - 1)))
2564 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2566 INIT_LIST_HEAD(&page->lru);
2567 #ifdef WANT_PAGE_VIRTUAL
2568 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2569 if (!is_highmem_idx(zone))
2570 set_page_address(page, __va(pfn << PAGE_SHIFT));
2571 #endif
2575 static void __meminit zone_init_free_lists(struct zone *zone)
2577 int order, t;
2578 for_each_migratetype_order(order, t) {
2579 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2580 zone->free_area[order].nr_free = 0;
2584 #ifndef __HAVE_ARCH_MEMMAP_INIT
2585 #define memmap_init(size, nid, zone, start_pfn) \
2586 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2587 #endif
2589 static int zone_batchsize(struct zone *zone)
2591 int batch;
2594 * The per-cpu-pages pools are set to around 1000th of the
2595 * size of the zone. But no more than 1/2 of a meg.
2597 * OK, so we don't know how big the cache is. So guess.
2599 batch = zone->present_pages / 1024;
2600 if (batch * PAGE_SIZE > 512 * 1024)
2601 batch = (512 * 1024) / PAGE_SIZE;
2602 batch /= 4; /* We effectively *= 4 below */
2603 if (batch < 1)
2604 batch = 1;
2607 * Clamp the batch to a 2^n - 1 value. Having a power
2608 * of 2 value was found to be more likely to have
2609 * suboptimal cache aliasing properties in some cases.
2611 * For example if 2 tasks are alternately allocating
2612 * batches of pages, one task can end up with a lot
2613 * of pages of one half of the possible page colors
2614 * and the other with pages of the other colors.
2616 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2618 return batch;
2621 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2623 struct per_cpu_pages *pcp;
2625 memset(p, 0, sizeof(*p));
2627 pcp = &p->pcp;
2628 pcp->count = 0;
2629 pcp->high = 6 * batch;
2630 pcp->batch = max(1UL, 1 * batch);
2631 INIT_LIST_HEAD(&pcp->list);
2635 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2636 * to the value high for the pageset p.
2639 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2640 unsigned long high)
2642 struct per_cpu_pages *pcp;
2644 pcp = &p->pcp;
2645 pcp->high = high;
2646 pcp->batch = max(1UL, high/4);
2647 if ((high/4) > (PAGE_SHIFT * 8))
2648 pcp->batch = PAGE_SHIFT * 8;
2652 #ifdef CONFIG_NUMA
2654 * Boot pageset table. One per cpu which is going to be used for all
2655 * zones and all nodes. The parameters will be set in such a way
2656 * that an item put on a list will immediately be handed over to
2657 * the buddy list. This is safe since pageset manipulation is done
2658 * with interrupts disabled.
2660 * Some NUMA counter updates may also be caught by the boot pagesets.
2662 * The boot_pagesets must be kept even after bootup is complete for
2663 * unused processors and/or zones. They do play a role for bootstrapping
2664 * hotplugged processors.
2666 * zoneinfo_show() and maybe other functions do
2667 * not check if the processor is online before following the pageset pointer.
2668 * Other parts of the kernel may not check if the zone is available.
2670 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2673 * Dynamically allocate memory for the
2674 * per cpu pageset array in struct zone.
2676 static int __cpuinit process_zones(int cpu)
2678 struct zone *zone, *dzone;
2679 int node = cpu_to_node(cpu);
2681 node_set_state(node, N_CPU); /* this node has a cpu */
2683 for_each_zone(zone) {
2685 if (!populated_zone(zone))
2686 continue;
2688 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2689 GFP_KERNEL, node);
2690 if (!zone_pcp(zone, cpu))
2691 goto bad;
2693 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2695 if (percpu_pagelist_fraction)
2696 setup_pagelist_highmark(zone_pcp(zone, cpu),
2697 (zone->present_pages / percpu_pagelist_fraction));
2700 return 0;
2701 bad:
2702 for_each_zone(dzone) {
2703 if (!populated_zone(dzone))
2704 continue;
2705 if (dzone == zone)
2706 break;
2707 kfree(zone_pcp(dzone, cpu));
2708 zone_pcp(dzone, cpu) = NULL;
2710 return -ENOMEM;
2713 static inline void free_zone_pagesets(int cpu)
2715 struct zone *zone;
2717 for_each_zone(zone) {
2718 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2720 /* Free per_cpu_pageset if it is slab allocated */
2721 if (pset != &boot_pageset[cpu])
2722 kfree(pset);
2723 zone_pcp(zone, cpu) = NULL;
2727 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2728 unsigned long action,
2729 void *hcpu)
2731 int cpu = (long)hcpu;
2732 int ret = NOTIFY_OK;
2734 switch (action) {
2735 case CPU_UP_PREPARE:
2736 case CPU_UP_PREPARE_FROZEN:
2737 if (process_zones(cpu))
2738 ret = NOTIFY_BAD;
2739 break;
2740 case CPU_UP_CANCELED:
2741 case CPU_UP_CANCELED_FROZEN:
2742 case CPU_DEAD:
2743 case CPU_DEAD_FROZEN:
2744 free_zone_pagesets(cpu);
2745 break;
2746 default:
2747 break;
2749 return ret;
2752 static struct notifier_block __cpuinitdata pageset_notifier =
2753 { &pageset_cpuup_callback, NULL, 0 };
2755 void __init setup_per_cpu_pageset(void)
2757 int err;
2759 /* Initialize per_cpu_pageset for cpu 0.
2760 * A cpuup callback will do this for every cpu
2761 * as it comes online
2763 err = process_zones(smp_processor_id());
2764 BUG_ON(err);
2765 register_cpu_notifier(&pageset_notifier);
2768 #endif
2770 static noinline __init_refok
2771 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2773 int i;
2774 struct pglist_data *pgdat = zone->zone_pgdat;
2775 size_t alloc_size;
2778 * The per-page waitqueue mechanism uses hashed waitqueues
2779 * per zone.
2781 zone->wait_table_hash_nr_entries =
2782 wait_table_hash_nr_entries(zone_size_pages);
2783 zone->wait_table_bits =
2784 wait_table_bits(zone->wait_table_hash_nr_entries);
2785 alloc_size = zone->wait_table_hash_nr_entries
2786 * sizeof(wait_queue_head_t);
2788 if (!slab_is_available()) {
2789 zone->wait_table = (wait_queue_head_t *)
2790 alloc_bootmem_node(pgdat, alloc_size);
2791 } else {
2793 * This case means that a zone whose size was 0 gets new memory
2794 * via memory hot-add.
2795 * But it may be the case that a new node was hot-added. In
2796 * this case vmalloc() will not be able to use this new node's
2797 * memory - this wait_table must be initialized to use this new
2798 * node itself as well.
2799 * To use this new node's memory, further consideration will be
2800 * necessary.
2802 zone->wait_table = vmalloc(alloc_size);
2804 if (!zone->wait_table)
2805 return -ENOMEM;
2807 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2808 init_waitqueue_head(zone->wait_table + i);
2810 return 0;
2813 static __meminit void zone_pcp_init(struct zone *zone)
2815 int cpu;
2816 unsigned long batch = zone_batchsize(zone);
2818 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2819 #ifdef CONFIG_NUMA
2820 /* Early boot. Slab allocator not functional yet */
2821 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2822 setup_pageset(&boot_pageset[cpu],0);
2823 #else
2824 setup_pageset(zone_pcp(zone,cpu), batch);
2825 #endif
2827 if (zone->present_pages)
2828 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2829 zone->name, zone->present_pages, batch);
2832 __meminit int init_currently_empty_zone(struct zone *zone,
2833 unsigned long zone_start_pfn,
2834 unsigned long size,
2835 enum memmap_context context)
2837 struct pglist_data *pgdat = zone->zone_pgdat;
2838 int ret;
2839 ret = zone_wait_table_init(zone, size);
2840 if (ret)
2841 return ret;
2842 pgdat->nr_zones = zone_idx(zone) + 1;
2844 zone->zone_start_pfn = zone_start_pfn;
2846 zone_init_free_lists(zone);
2848 return 0;
2851 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2853 * Basic iterator support. Return the first range of PFNs for a node
2854 * Note: nid == MAX_NUMNODES returns first region regardless of node
2856 static int __meminit first_active_region_index_in_nid(int nid)
2858 int i;
2860 for (i = 0; i < nr_nodemap_entries; i++)
2861 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2862 return i;
2864 return -1;
2868 * Basic iterator support. Return the next active range of PFNs for a node
2869 * Note: nid == MAX_NUMNODES returns next region regardless of node
2871 static int __meminit next_active_region_index_in_nid(int index, int nid)
2873 for (index = index + 1; index < nr_nodemap_entries; index++)
2874 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2875 return index;
2877 return -1;
2880 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2882 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2883 * Architectures may implement their own version but if add_active_range()
2884 * was used and there are no special requirements, this is a convenient
2885 * alternative
2887 int __meminit early_pfn_to_nid(unsigned long pfn)
2889 int i;
2891 for (i = 0; i < nr_nodemap_entries; i++) {
2892 unsigned long start_pfn = early_node_map[i].start_pfn;
2893 unsigned long end_pfn = early_node_map[i].end_pfn;
2895 if (start_pfn <= pfn && pfn < end_pfn)
2896 return early_node_map[i].nid;
2899 return 0;
2901 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2903 /* Basic iterator support to walk early_node_map[] */
2904 #define for_each_active_range_index_in_nid(i, nid) \
2905 for (i = first_active_region_index_in_nid(nid); i != -1; \
2906 i = next_active_region_index_in_nid(i, nid))
2909 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2910 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2911 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2913 * If an architecture guarantees that all ranges registered with
2914 * add_active_ranges() contain no holes and may be freed, this
2915 * this function may be used instead of calling free_bootmem() manually.
2917 void __init free_bootmem_with_active_regions(int nid,
2918 unsigned long max_low_pfn)
2920 int i;
2922 for_each_active_range_index_in_nid(i, nid) {
2923 unsigned long size_pages = 0;
2924 unsigned long end_pfn = early_node_map[i].end_pfn;
2926 if (early_node_map[i].start_pfn >= max_low_pfn)
2927 continue;
2929 if (end_pfn > max_low_pfn)
2930 end_pfn = max_low_pfn;
2932 size_pages = end_pfn - early_node_map[i].start_pfn;
2933 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2934 PFN_PHYS(early_node_map[i].start_pfn),
2935 size_pages << PAGE_SHIFT);
2940 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2941 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2943 * If an architecture guarantees that all ranges registered with
2944 * add_active_ranges() contain no holes and may be freed, this
2945 * function may be used instead of calling memory_present() manually.
2947 void __init sparse_memory_present_with_active_regions(int nid)
2949 int i;
2951 for_each_active_range_index_in_nid(i, nid)
2952 memory_present(early_node_map[i].nid,
2953 early_node_map[i].start_pfn,
2954 early_node_map[i].end_pfn);
2958 * push_node_boundaries - Push node boundaries to at least the requested boundary
2959 * @nid: The nid of the node to push the boundary for
2960 * @start_pfn: The start pfn of the node
2961 * @end_pfn: The end pfn of the node
2963 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2964 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2965 * be hotplugged even though no physical memory exists. This function allows
2966 * an arch to push out the node boundaries so mem_map is allocated that can
2967 * be used later.
2969 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2970 void __init push_node_boundaries(unsigned int nid,
2971 unsigned long start_pfn, unsigned long end_pfn)
2973 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2974 nid, start_pfn, end_pfn);
2976 /* Initialise the boundary for this node if necessary */
2977 if (node_boundary_end_pfn[nid] == 0)
2978 node_boundary_start_pfn[nid] = -1UL;
2980 /* Update the boundaries */
2981 if (node_boundary_start_pfn[nid] > start_pfn)
2982 node_boundary_start_pfn[nid] = start_pfn;
2983 if (node_boundary_end_pfn[nid] < end_pfn)
2984 node_boundary_end_pfn[nid] = end_pfn;
2987 /* If necessary, push the node boundary out for reserve hotadd */
2988 static void __meminit account_node_boundary(unsigned int nid,
2989 unsigned long *start_pfn, unsigned long *end_pfn)
2991 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2992 nid, *start_pfn, *end_pfn);
2994 /* Return if boundary information has not been provided */
2995 if (node_boundary_end_pfn[nid] == 0)
2996 return;
2998 /* Check the boundaries and update if necessary */
2999 if (node_boundary_start_pfn[nid] < *start_pfn)
3000 *start_pfn = node_boundary_start_pfn[nid];
3001 if (node_boundary_end_pfn[nid] > *end_pfn)
3002 *end_pfn = node_boundary_end_pfn[nid];
3004 #else
3005 void __init push_node_boundaries(unsigned int nid,
3006 unsigned long start_pfn, unsigned long end_pfn) {}
3008 static void __meminit account_node_boundary(unsigned int nid,
3009 unsigned long *start_pfn, unsigned long *end_pfn) {}
3010 #endif
3014 * get_pfn_range_for_nid - Return the start and end page frames for a node
3015 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3016 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3017 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3019 * It returns the start and end page frame of a node based on information
3020 * provided by an arch calling add_active_range(). If called for a node
3021 * with no available memory, a warning is printed and the start and end
3022 * PFNs will be 0.
3024 void __meminit get_pfn_range_for_nid(unsigned int nid,
3025 unsigned long *start_pfn, unsigned long *end_pfn)
3027 int i;
3028 *start_pfn = -1UL;
3029 *end_pfn = 0;
3031 for_each_active_range_index_in_nid(i, nid) {
3032 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3033 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3036 if (*start_pfn == -1UL)
3037 *start_pfn = 0;
3039 /* Push the node boundaries out if requested */
3040 account_node_boundary(nid, start_pfn, end_pfn);
3044 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3045 * assumption is made that zones within a node are ordered in monotonic
3046 * increasing memory addresses so that the "highest" populated zone is used
3048 void __init find_usable_zone_for_movable(void)
3050 int zone_index;
3051 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3052 if (zone_index == ZONE_MOVABLE)
3053 continue;
3055 if (arch_zone_highest_possible_pfn[zone_index] >
3056 arch_zone_lowest_possible_pfn[zone_index])
3057 break;
3060 VM_BUG_ON(zone_index == -1);
3061 movable_zone = zone_index;
3065 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3066 * because it is sized independant of architecture. Unlike the other zones,
3067 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3068 * in each node depending on the size of each node and how evenly kernelcore
3069 * is distributed. This helper function adjusts the zone ranges
3070 * provided by the architecture for a given node by using the end of the
3071 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3072 * zones within a node are in order of monotonic increases memory addresses
3074 void __meminit adjust_zone_range_for_zone_movable(int nid,
3075 unsigned long zone_type,
3076 unsigned long node_start_pfn,
3077 unsigned long node_end_pfn,
3078 unsigned long *zone_start_pfn,
3079 unsigned long *zone_end_pfn)
3081 /* Only adjust if ZONE_MOVABLE is on this node */
3082 if (zone_movable_pfn[nid]) {
3083 /* Size ZONE_MOVABLE */
3084 if (zone_type == ZONE_MOVABLE) {
3085 *zone_start_pfn = zone_movable_pfn[nid];
3086 *zone_end_pfn = min(node_end_pfn,
3087 arch_zone_highest_possible_pfn[movable_zone]);
3089 /* Adjust for ZONE_MOVABLE starting within this range */
3090 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3091 *zone_end_pfn > zone_movable_pfn[nid]) {
3092 *zone_end_pfn = zone_movable_pfn[nid];
3094 /* Check if this whole range is within ZONE_MOVABLE */
3095 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3096 *zone_start_pfn = *zone_end_pfn;
3101 * Return the number of pages a zone spans in a node, including holes
3102 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3104 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3105 unsigned long zone_type,
3106 unsigned long *ignored)
3108 unsigned long node_start_pfn, node_end_pfn;
3109 unsigned long zone_start_pfn, zone_end_pfn;
3111 /* Get the start and end of the node and zone */
3112 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3113 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3114 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3115 adjust_zone_range_for_zone_movable(nid, zone_type,
3116 node_start_pfn, node_end_pfn,
3117 &zone_start_pfn, &zone_end_pfn);
3119 /* Check that this node has pages within the zone's required range */
3120 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3121 return 0;
3123 /* Move the zone boundaries inside the node if necessary */
3124 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3125 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3127 /* Return the spanned pages */
3128 return zone_end_pfn - zone_start_pfn;
3132 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3133 * then all holes in the requested range will be accounted for.
3135 unsigned long __meminit __absent_pages_in_range(int nid,
3136 unsigned long range_start_pfn,
3137 unsigned long range_end_pfn)
3139 int i = 0;
3140 unsigned long prev_end_pfn = 0, hole_pages = 0;
3141 unsigned long start_pfn;
3143 /* Find the end_pfn of the first active range of pfns in the node */
3144 i = first_active_region_index_in_nid(nid);
3145 if (i == -1)
3146 return 0;
3148 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3150 /* Account for ranges before physical memory on this node */
3151 if (early_node_map[i].start_pfn > range_start_pfn)
3152 hole_pages = prev_end_pfn - range_start_pfn;
3154 /* Find all holes for the zone within the node */
3155 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3157 /* No need to continue if prev_end_pfn is outside the zone */
3158 if (prev_end_pfn >= range_end_pfn)
3159 break;
3161 /* Make sure the end of the zone is not within the hole */
3162 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3163 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3165 /* Update the hole size cound and move on */
3166 if (start_pfn > range_start_pfn) {
3167 BUG_ON(prev_end_pfn > start_pfn);
3168 hole_pages += start_pfn - prev_end_pfn;
3170 prev_end_pfn = early_node_map[i].end_pfn;
3173 /* Account for ranges past physical memory on this node */
3174 if (range_end_pfn > prev_end_pfn)
3175 hole_pages += range_end_pfn -
3176 max(range_start_pfn, prev_end_pfn);
3178 return hole_pages;
3182 * absent_pages_in_range - Return number of page frames in holes within a range
3183 * @start_pfn: The start PFN to start searching for holes
3184 * @end_pfn: The end PFN to stop searching for holes
3186 * It returns the number of pages frames in memory holes within a range.
3188 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3189 unsigned long end_pfn)
3191 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3194 /* Return the number of page frames in holes in a zone on a node */
3195 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3196 unsigned long zone_type,
3197 unsigned long *ignored)
3199 unsigned long node_start_pfn, node_end_pfn;
3200 unsigned long zone_start_pfn, zone_end_pfn;
3202 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3203 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3204 node_start_pfn);
3205 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3206 node_end_pfn);
3208 adjust_zone_range_for_zone_movable(nid, zone_type,
3209 node_start_pfn, node_end_pfn,
3210 &zone_start_pfn, &zone_end_pfn);
3211 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3214 #else
3215 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3216 unsigned long zone_type,
3217 unsigned long *zones_size)
3219 return zones_size[zone_type];
3222 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3223 unsigned long zone_type,
3224 unsigned long *zholes_size)
3226 if (!zholes_size)
3227 return 0;
3229 return zholes_size[zone_type];
3232 #endif
3234 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3235 unsigned long *zones_size, unsigned long *zholes_size)
3237 unsigned long realtotalpages, totalpages = 0;
3238 enum zone_type i;
3240 for (i = 0; i < MAX_NR_ZONES; i++)
3241 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3242 zones_size);
3243 pgdat->node_spanned_pages = totalpages;
3245 realtotalpages = totalpages;
3246 for (i = 0; i < MAX_NR_ZONES; i++)
3247 realtotalpages -=
3248 zone_absent_pages_in_node(pgdat->node_id, i,
3249 zholes_size);
3250 pgdat->node_present_pages = realtotalpages;
3251 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3252 realtotalpages);
3255 #ifndef CONFIG_SPARSEMEM
3257 * Calculate the size of the zone->blockflags rounded to an unsigned long
3258 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3259 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3260 * round what is now in bits to nearest long in bits, then return it in
3261 * bytes.
3263 static unsigned long __init usemap_size(unsigned long zonesize)
3265 unsigned long usemapsize;
3267 usemapsize = roundup(zonesize, pageblock_nr_pages);
3268 usemapsize = usemapsize >> pageblock_order;
3269 usemapsize *= NR_PAGEBLOCK_BITS;
3270 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3272 return usemapsize / 8;
3275 static void __init setup_usemap(struct pglist_data *pgdat,
3276 struct zone *zone, unsigned long zonesize)
3278 unsigned long usemapsize = usemap_size(zonesize);
3279 zone->pageblock_flags = NULL;
3280 if (usemapsize) {
3281 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3282 memset(zone->pageblock_flags, 0, usemapsize);
3285 #else
3286 static void inline setup_usemap(struct pglist_data *pgdat,
3287 struct zone *zone, unsigned long zonesize) {}
3288 #endif /* CONFIG_SPARSEMEM */
3290 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3292 /* Return a sensible default order for the pageblock size. */
3293 static inline int pageblock_default_order(void)
3295 if (HPAGE_SHIFT > PAGE_SHIFT)
3296 return HUGETLB_PAGE_ORDER;
3298 return MAX_ORDER-1;
3301 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3302 static inline void __init set_pageblock_order(unsigned int order)
3304 /* Check that pageblock_nr_pages has not already been setup */
3305 if (pageblock_order)
3306 return;
3309 * Assume the largest contiguous order of interest is a huge page.
3310 * This value may be variable depending on boot parameters on IA64
3312 pageblock_order = order;
3314 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3317 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3318 * and pageblock_default_order() are unused as pageblock_order is set
3319 * at compile-time. See include/linux/pageblock-flags.h for the values of
3320 * pageblock_order based on the kernel config
3322 static inline int pageblock_default_order(unsigned int order)
3324 return MAX_ORDER-1;
3326 #define set_pageblock_order(x) do {} while (0)
3328 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3331 * Set up the zone data structures:
3332 * - mark all pages reserved
3333 * - mark all memory queues empty
3334 * - clear the memory bitmaps
3336 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3337 unsigned long *zones_size, unsigned long *zholes_size)
3339 enum zone_type j;
3340 int nid = pgdat->node_id;
3341 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3342 int ret;
3344 pgdat_resize_init(pgdat);
3345 pgdat->nr_zones = 0;
3346 init_waitqueue_head(&pgdat->kswapd_wait);
3347 pgdat->kswapd_max_order = 0;
3349 for (j = 0; j < MAX_NR_ZONES; j++) {
3350 struct zone *zone = pgdat->node_zones + j;
3351 unsigned long size, realsize, memmap_pages;
3353 size = zone_spanned_pages_in_node(nid, j, zones_size);
3354 realsize = size - zone_absent_pages_in_node(nid, j,
3355 zholes_size);
3358 * Adjust realsize so that it accounts for how much memory
3359 * is used by this zone for memmap. This affects the watermark
3360 * and per-cpu initialisations
3362 memmap_pages =
3363 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3364 if (realsize >= memmap_pages) {
3365 realsize -= memmap_pages;
3366 printk(KERN_DEBUG
3367 " %s zone: %lu pages used for memmap\n",
3368 zone_names[j], memmap_pages);
3369 } else
3370 printk(KERN_WARNING
3371 " %s zone: %lu pages exceeds realsize %lu\n",
3372 zone_names[j], memmap_pages, realsize);
3374 /* Account for reserved pages */
3375 if (j == 0 && realsize > dma_reserve) {
3376 realsize -= dma_reserve;
3377 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3378 zone_names[0], dma_reserve);
3381 if (!is_highmem_idx(j))
3382 nr_kernel_pages += realsize;
3383 nr_all_pages += realsize;
3385 zone->spanned_pages = size;
3386 zone->present_pages = realsize;
3387 #ifdef CONFIG_NUMA
3388 zone->node = nid;
3389 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3390 / 100;
3391 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3392 #endif
3393 zone->name = zone_names[j];
3394 spin_lock_init(&zone->lock);
3395 spin_lock_init(&zone->lru_lock);
3396 zone_seqlock_init(zone);
3397 zone->zone_pgdat = pgdat;
3399 zone->prev_priority = DEF_PRIORITY;
3401 zone_pcp_init(zone);
3402 INIT_LIST_HEAD(&zone->active_list);
3403 INIT_LIST_HEAD(&zone->inactive_list);
3404 zone->nr_scan_active = 0;
3405 zone->nr_scan_inactive = 0;
3406 zap_zone_vm_stats(zone);
3407 zone->flags = 0;
3408 if (!size)
3409 continue;
3411 set_pageblock_order(pageblock_default_order());
3412 setup_usemap(pgdat, zone, size);
3413 ret = init_currently_empty_zone(zone, zone_start_pfn,
3414 size, MEMMAP_EARLY);
3415 BUG_ON(ret);
3416 memmap_init(size, nid, j, zone_start_pfn);
3417 zone_start_pfn += size;
3421 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3423 /* Skip empty nodes */
3424 if (!pgdat->node_spanned_pages)
3425 return;
3427 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3428 /* ia64 gets its own node_mem_map, before this, without bootmem */
3429 if (!pgdat->node_mem_map) {
3430 unsigned long size, start, end;
3431 struct page *map;
3434 * The zone's endpoints aren't required to be MAX_ORDER
3435 * aligned but the node_mem_map endpoints must be in order
3436 * for the buddy allocator to function correctly.
3438 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3439 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3440 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3441 size = (end - start) * sizeof(struct page);
3442 map = alloc_remap(pgdat->node_id, size);
3443 if (!map)
3444 map = alloc_bootmem_node(pgdat, size);
3445 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3447 #ifndef CONFIG_NEED_MULTIPLE_NODES
3449 * With no DISCONTIG, the global mem_map is just set as node 0's
3451 if (pgdat == NODE_DATA(0)) {
3452 mem_map = NODE_DATA(0)->node_mem_map;
3453 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3454 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3455 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3456 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3458 #endif
3459 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3462 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3463 unsigned long *zones_size, unsigned long node_start_pfn,
3464 unsigned long *zholes_size)
3466 pgdat->node_id = nid;
3467 pgdat->node_start_pfn = node_start_pfn;
3468 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3470 alloc_node_mem_map(pgdat);
3472 free_area_init_core(pgdat, zones_size, zholes_size);
3475 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3477 #if MAX_NUMNODES > 1
3479 * Figure out the number of possible node ids.
3481 static void __init setup_nr_node_ids(void)
3483 unsigned int node;
3484 unsigned int highest = 0;
3486 for_each_node_mask(node, node_possible_map)
3487 highest = node;
3488 nr_node_ids = highest + 1;
3490 #else
3491 static inline void setup_nr_node_ids(void)
3494 #endif
3497 * add_active_range - Register a range of PFNs backed by physical memory
3498 * @nid: The node ID the range resides on
3499 * @start_pfn: The start PFN of the available physical memory
3500 * @end_pfn: The end PFN of the available physical memory
3502 * These ranges are stored in an early_node_map[] and later used by
3503 * free_area_init_nodes() to calculate zone sizes and holes. If the
3504 * range spans a memory hole, it is up to the architecture to ensure
3505 * the memory is not freed by the bootmem allocator. If possible
3506 * the range being registered will be merged with existing ranges.
3508 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3509 unsigned long end_pfn)
3511 int i;
3513 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3514 "%d entries of %d used\n",
3515 nid, start_pfn, end_pfn,
3516 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3518 /* Merge with existing active regions if possible */
3519 for (i = 0; i < nr_nodemap_entries; i++) {
3520 if (early_node_map[i].nid != nid)
3521 continue;
3523 /* Skip if an existing region covers this new one */
3524 if (start_pfn >= early_node_map[i].start_pfn &&
3525 end_pfn <= early_node_map[i].end_pfn)
3526 return;
3528 /* Merge forward if suitable */
3529 if (start_pfn <= early_node_map[i].end_pfn &&
3530 end_pfn > early_node_map[i].end_pfn) {
3531 early_node_map[i].end_pfn = end_pfn;
3532 return;
3535 /* Merge backward if suitable */
3536 if (start_pfn < early_node_map[i].end_pfn &&
3537 end_pfn >= early_node_map[i].start_pfn) {
3538 early_node_map[i].start_pfn = start_pfn;
3539 return;
3543 /* Check that early_node_map is large enough */
3544 if (i >= MAX_ACTIVE_REGIONS) {
3545 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3546 MAX_ACTIVE_REGIONS);
3547 return;
3550 early_node_map[i].nid = nid;
3551 early_node_map[i].start_pfn = start_pfn;
3552 early_node_map[i].end_pfn = end_pfn;
3553 nr_nodemap_entries = i + 1;
3557 * shrink_active_range - Shrink an existing registered range of PFNs
3558 * @nid: The node id the range is on that should be shrunk
3559 * @old_end_pfn: The old end PFN of the range
3560 * @new_end_pfn: The new PFN of the range
3562 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3563 * The map is kept at the end physical page range that has already been
3564 * registered with add_active_range(). This function allows an arch to shrink
3565 * an existing registered range.
3567 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3568 unsigned long new_end_pfn)
3570 int i;
3572 /* Find the old active region end and shrink */
3573 for_each_active_range_index_in_nid(i, nid)
3574 if (early_node_map[i].end_pfn == old_end_pfn) {
3575 early_node_map[i].end_pfn = new_end_pfn;
3576 break;
3581 * remove_all_active_ranges - Remove all currently registered regions
3583 * During discovery, it may be found that a table like SRAT is invalid
3584 * and an alternative discovery method must be used. This function removes
3585 * all currently registered regions.
3587 void __init remove_all_active_ranges(void)
3589 memset(early_node_map, 0, sizeof(early_node_map));
3590 nr_nodemap_entries = 0;
3591 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3592 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3593 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3594 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3597 /* Compare two active node_active_regions */
3598 static int __init cmp_node_active_region(const void *a, const void *b)
3600 struct node_active_region *arange = (struct node_active_region *)a;
3601 struct node_active_region *brange = (struct node_active_region *)b;
3603 /* Done this way to avoid overflows */
3604 if (arange->start_pfn > brange->start_pfn)
3605 return 1;
3606 if (arange->start_pfn < brange->start_pfn)
3607 return -1;
3609 return 0;
3612 /* sort the node_map by start_pfn */
3613 static void __init sort_node_map(void)
3615 sort(early_node_map, (size_t)nr_nodemap_entries,
3616 sizeof(struct node_active_region),
3617 cmp_node_active_region, NULL);
3620 /* Find the lowest pfn for a node */
3621 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3623 int i;
3624 unsigned long min_pfn = ULONG_MAX;
3626 /* Assuming a sorted map, the first range found has the starting pfn */
3627 for_each_active_range_index_in_nid(i, nid)
3628 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3630 if (min_pfn == ULONG_MAX) {
3631 printk(KERN_WARNING
3632 "Could not find start_pfn for node %lu\n", nid);
3633 return 0;
3636 return min_pfn;
3640 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3642 * It returns the minimum PFN based on information provided via
3643 * add_active_range().
3645 unsigned long __init find_min_pfn_with_active_regions(void)
3647 return find_min_pfn_for_node(MAX_NUMNODES);
3651 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3653 * It returns the maximum PFN based on information provided via
3654 * add_active_range().
3656 unsigned long __init find_max_pfn_with_active_regions(void)
3658 int i;
3659 unsigned long max_pfn = 0;
3661 for (i = 0; i < nr_nodemap_entries; i++)
3662 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3664 return max_pfn;
3668 * early_calculate_totalpages()
3669 * Sum pages in active regions for movable zone.
3670 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3672 static unsigned long __init early_calculate_totalpages(void)
3674 int i;
3675 unsigned long totalpages = 0;
3677 for (i = 0; i < nr_nodemap_entries; i++) {
3678 unsigned long pages = early_node_map[i].end_pfn -
3679 early_node_map[i].start_pfn;
3680 totalpages += pages;
3681 if (pages)
3682 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3684 return totalpages;
3688 * Find the PFN the Movable zone begins in each node. Kernel memory
3689 * is spread evenly between nodes as long as the nodes have enough
3690 * memory. When they don't, some nodes will have more kernelcore than
3691 * others
3693 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3695 int i, nid;
3696 unsigned long usable_startpfn;
3697 unsigned long kernelcore_node, kernelcore_remaining;
3698 unsigned long totalpages = early_calculate_totalpages();
3699 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3702 * If movablecore was specified, calculate what size of
3703 * kernelcore that corresponds so that memory usable for
3704 * any allocation type is evenly spread. If both kernelcore
3705 * and movablecore are specified, then the value of kernelcore
3706 * will be used for required_kernelcore if it's greater than
3707 * what movablecore would have allowed.
3709 if (required_movablecore) {
3710 unsigned long corepages;
3713 * Round-up so that ZONE_MOVABLE is at least as large as what
3714 * was requested by the user
3716 required_movablecore =
3717 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3718 corepages = totalpages - required_movablecore;
3720 required_kernelcore = max(required_kernelcore, corepages);
3723 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3724 if (!required_kernelcore)
3725 return;
3727 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3728 find_usable_zone_for_movable();
3729 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3731 restart:
3732 /* Spread kernelcore memory as evenly as possible throughout nodes */
3733 kernelcore_node = required_kernelcore / usable_nodes;
3734 for_each_node_state(nid, N_HIGH_MEMORY) {
3736 * Recalculate kernelcore_node if the division per node
3737 * now exceeds what is necessary to satisfy the requested
3738 * amount of memory for the kernel
3740 if (required_kernelcore < kernelcore_node)
3741 kernelcore_node = required_kernelcore / usable_nodes;
3744 * As the map is walked, we track how much memory is usable
3745 * by the kernel using kernelcore_remaining. When it is
3746 * 0, the rest of the node is usable by ZONE_MOVABLE
3748 kernelcore_remaining = kernelcore_node;
3750 /* Go through each range of PFNs within this node */
3751 for_each_active_range_index_in_nid(i, nid) {
3752 unsigned long start_pfn, end_pfn;
3753 unsigned long size_pages;
3755 start_pfn = max(early_node_map[i].start_pfn,
3756 zone_movable_pfn[nid]);
3757 end_pfn = early_node_map[i].end_pfn;
3758 if (start_pfn >= end_pfn)
3759 continue;
3761 /* Account for what is only usable for kernelcore */
3762 if (start_pfn < usable_startpfn) {
3763 unsigned long kernel_pages;
3764 kernel_pages = min(end_pfn, usable_startpfn)
3765 - start_pfn;
3767 kernelcore_remaining -= min(kernel_pages,
3768 kernelcore_remaining);
3769 required_kernelcore -= min(kernel_pages,
3770 required_kernelcore);
3772 /* Continue if range is now fully accounted */
3773 if (end_pfn <= usable_startpfn) {
3776 * Push zone_movable_pfn to the end so
3777 * that if we have to rebalance
3778 * kernelcore across nodes, we will
3779 * not double account here
3781 zone_movable_pfn[nid] = end_pfn;
3782 continue;
3784 start_pfn = usable_startpfn;
3788 * The usable PFN range for ZONE_MOVABLE is from
3789 * start_pfn->end_pfn. Calculate size_pages as the
3790 * number of pages used as kernelcore
3792 size_pages = end_pfn - start_pfn;
3793 if (size_pages > kernelcore_remaining)
3794 size_pages = kernelcore_remaining;
3795 zone_movable_pfn[nid] = start_pfn + size_pages;
3798 * Some kernelcore has been met, update counts and
3799 * break if the kernelcore for this node has been
3800 * satisified
3802 required_kernelcore -= min(required_kernelcore,
3803 size_pages);
3804 kernelcore_remaining -= size_pages;
3805 if (!kernelcore_remaining)
3806 break;
3811 * If there is still required_kernelcore, we do another pass with one
3812 * less node in the count. This will push zone_movable_pfn[nid] further
3813 * along on the nodes that still have memory until kernelcore is
3814 * satisified
3816 usable_nodes--;
3817 if (usable_nodes && required_kernelcore > usable_nodes)
3818 goto restart;
3820 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3821 for (nid = 0; nid < MAX_NUMNODES; nid++)
3822 zone_movable_pfn[nid] =
3823 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3826 /* Any regular memory on that node ? */
3827 static void check_for_regular_memory(pg_data_t *pgdat)
3829 #ifdef CONFIG_HIGHMEM
3830 enum zone_type zone_type;
3832 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3833 struct zone *zone = &pgdat->node_zones[zone_type];
3834 if (zone->present_pages)
3835 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3837 #endif
3841 * free_area_init_nodes - Initialise all pg_data_t and zone data
3842 * @max_zone_pfn: an array of max PFNs for each zone
3844 * This will call free_area_init_node() for each active node in the system.
3845 * Using the page ranges provided by add_active_range(), the size of each
3846 * zone in each node and their holes is calculated. If the maximum PFN
3847 * between two adjacent zones match, it is assumed that the zone is empty.
3848 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3849 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3850 * starts where the previous one ended. For example, ZONE_DMA32 starts
3851 * at arch_max_dma_pfn.
3853 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3855 unsigned long nid;
3856 enum zone_type i;
3858 /* Sort early_node_map as initialisation assumes it is sorted */
3859 sort_node_map();
3861 /* Record where the zone boundaries are */
3862 memset(arch_zone_lowest_possible_pfn, 0,
3863 sizeof(arch_zone_lowest_possible_pfn));
3864 memset(arch_zone_highest_possible_pfn, 0,
3865 sizeof(arch_zone_highest_possible_pfn));
3866 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3867 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3868 for (i = 1; i < MAX_NR_ZONES; i++) {
3869 if (i == ZONE_MOVABLE)
3870 continue;
3871 arch_zone_lowest_possible_pfn[i] =
3872 arch_zone_highest_possible_pfn[i-1];
3873 arch_zone_highest_possible_pfn[i] =
3874 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3876 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3877 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3879 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3880 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3881 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3883 /* Print out the zone ranges */
3884 printk("Zone PFN ranges:\n");
3885 for (i = 0; i < MAX_NR_ZONES; i++) {
3886 if (i == ZONE_MOVABLE)
3887 continue;
3888 printk(" %-8s %8lu -> %8lu\n",
3889 zone_names[i],
3890 arch_zone_lowest_possible_pfn[i],
3891 arch_zone_highest_possible_pfn[i]);
3894 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3895 printk("Movable zone start PFN for each node\n");
3896 for (i = 0; i < MAX_NUMNODES; i++) {
3897 if (zone_movable_pfn[i])
3898 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3901 /* Print out the early_node_map[] */
3902 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3903 for (i = 0; i < nr_nodemap_entries; i++)
3904 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3905 early_node_map[i].start_pfn,
3906 early_node_map[i].end_pfn);
3908 /* Initialise every node */
3909 setup_nr_node_ids();
3910 for_each_online_node(nid) {
3911 pg_data_t *pgdat = NODE_DATA(nid);
3912 free_area_init_node(nid, pgdat, NULL,
3913 find_min_pfn_for_node(nid), NULL);
3915 /* Any memory on that node */
3916 if (pgdat->node_present_pages)
3917 node_set_state(nid, N_HIGH_MEMORY);
3918 check_for_regular_memory(pgdat);
3922 static int __init cmdline_parse_core(char *p, unsigned long *core)
3924 unsigned long long coremem;
3925 if (!p)
3926 return -EINVAL;
3928 coremem = memparse(p, &p);
3929 *core = coremem >> PAGE_SHIFT;
3931 /* Paranoid check that UL is enough for the coremem value */
3932 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3934 return 0;
3938 * kernelcore=size sets the amount of memory for use for allocations that
3939 * cannot be reclaimed or migrated.
3941 static int __init cmdline_parse_kernelcore(char *p)
3943 return cmdline_parse_core(p, &required_kernelcore);
3947 * movablecore=size sets the amount of memory for use for allocations that
3948 * can be reclaimed or migrated.
3950 static int __init cmdline_parse_movablecore(char *p)
3952 return cmdline_parse_core(p, &required_movablecore);
3955 early_param("kernelcore", cmdline_parse_kernelcore);
3956 early_param("movablecore", cmdline_parse_movablecore);
3958 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3961 * set_dma_reserve - set the specified number of pages reserved in the first zone
3962 * @new_dma_reserve: The number of pages to mark reserved
3964 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3965 * In the DMA zone, a significant percentage may be consumed by kernel image
3966 * and other unfreeable allocations which can skew the watermarks badly. This
3967 * function may optionally be used to account for unfreeable pages in the
3968 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3969 * smaller per-cpu batchsize.
3971 void __init set_dma_reserve(unsigned long new_dma_reserve)
3973 dma_reserve = new_dma_reserve;
3976 #ifndef CONFIG_NEED_MULTIPLE_NODES
3977 static bootmem_data_t contig_bootmem_data;
3978 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3980 EXPORT_SYMBOL(contig_page_data);
3981 #endif
3983 void __init free_area_init(unsigned long *zones_size)
3985 free_area_init_node(0, NODE_DATA(0), zones_size,
3986 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3989 static int page_alloc_cpu_notify(struct notifier_block *self,
3990 unsigned long action, void *hcpu)
3992 int cpu = (unsigned long)hcpu;
3994 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3995 drain_pages(cpu);
3998 * Spill the event counters of the dead processor
3999 * into the current processors event counters.
4000 * This artificially elevates the count of the current
4001 * processor.
4003 vm_events_fold_cpu(cpu);
4006 * Zero the differential counters of the dead processor
4007 * so that the vm statistics are consistent.
4009 * This is only okay since the processor is dead and cannot
4010 * race with what we are doing.
4012 refresh_cpu_vm_stats(cpu);
4014 return NOTIFY_OK;
4017 void __init page_alloc_init(void)
4019 hotcpu_notifier(page_alloc_cpu_notify, 0);
4023 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4024 * or min_free_kbytes changes.
4026 static void calculate_totalreserve_pages(void)
4028 struct pglist_data *pgdat;
4029 unsigned long reserve_pages = 0;
4030 enum zone_type i, j;
4032 for_each_online_pgdat(pgdat) {
4033 for (i = 0; i < MAX_NR_ZONES; i++) {
4034 struct zone *zone = pgdat->node_zones + i;
4035 unsigned long max = 0;
4037 /* Find valid and maximum lowmem_reserve in the zone */
4038 for (j = i; j < MAX_NR_ZONES; j++) {
4039 if (zone->lowmem_reserve[j] > max)
4040 max = zone->lowmem_reserve[j];
4043 /* we treat pages_high as reserved pages. */
4044 max += zone->pages_high;
4046 if (max > zone->present_pages)
4047 max = zone->present_pages;
4048 reserve_pages += max;
4051 totalreserve_pages = reserve_pages;
4055 * setup_per_zone_lowmem_reserve - called whenever
4056 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4057 * has a correct pages reserved value, so an adequate number of
4058 * pages are left in the zone after a successful __alloc_pages().
4060 static void setup_per_zone_lowmem_reserve(void)
4062 struct pglist_data *pgdat;
4063 enum zone_type j, idx;
4065 for_each_online_pgdat(pgdat) {
4066 for (j = 0; j < MAX_NR_ZONES; j++) {
4067 struct zone *zone = pgdat->node_zones + j;
4068 unsigned long present_pages = zone->present_pages;
4070 zone->lowmem_reserve[j] = 0;
4072 idx = j;
4073 while (idx) {
4074 struct zone *lower_zone;
4076 idx--;
4078 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4079 sysctl_lowmem_reserve_ratio[idx] = 1;
4081 lower_zone = pgdat->node_zones + idx;
4082 lower_zone->lowmem_reserve[j] = present_pages /
4083 sysctl_lowmem_reserve_ratio[idx];
4084 present_pages += lower_zone->present_pages;
4089 /* update totalreserve_pages */
4090 calculate_totalreserve_pages();
4094 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4096 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4097 * with respect to min_free_kbytes.
4099 void setup_per_zone_pages_min(void)
4101 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4102 unsigned long lowmem_pages = 0;
4103 struct zone *zone;
4104 unsigned long flags;
4106 /* Calculate total number of !ZONE_HIGHMEM pages */
4107 for_each_zone(zone) {
4108 if (!is_highmem(zone))
4109 lowmem_pages += zone->present_pages;
4112 for_each_zone(zone) {
4113 u64 tmp;
4115 spin_lock_irqsave(&zone->lru_lock, flags);
4116 tmp = (u64)pages_min * zone->present_pages;
4117 do_div(tmp, lowmem_pages);
4118 if (is_highmem(zone)) {
4120 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4121 * need highmem pages, so cap pages_min to a small
4122 * value here.
4124 * The (pages_high-pages_low) and (pages_low-pages_min)
4125 * deltas controls asynch page reclaim, and so should
4126 * not be capped for highmem.
4128 int min_pages;
4130 min_pages = zone->present_pages / 1024;
4131 if (min_pages < SWAP_CLUSTER_MAX)
4132 min_pages = SWAP_CLUSTER_MAX;
4133 if (min_pages > 128)
4134 min_pages = 128;
4135 zone->pages_min = min_pages;
4136 } else {
4138 * If it's a lowmem zone, reserve a number of pages
4139 * proportionate to the zone's size.
4141 zone->pages_min = tmp;
4144 zone->pages_low = zone->pages_min + (tmp >> 2);
4145 zone->pages_high = zone->pages_min + (tmp >> 1);
4146 setup_zone_migrate_reserve(zone);
4147 spin_unlock_irqrestore(&zone->lru_lock, flags);
4150 /* update totalreserve_pages */
4151 calculate_totalreserve_pages();
4155 * Initialise min_free_kbytes.
4157 * For small machines we want it small (128k min). For large machines
4158 * we want it large (64MB max). But it is not linear, because network
4159 * bandwidth does not increase linearly with machine size. We use
4161 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4162 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4164 * which yields
4166 * 16MB: 512k
4167 * 32MB: 724k
4168 * 64MB: 1024k
4169 * 128MB: 1448k
4170 * 256MB: 2048k
4171 * 512MB: 2896k
4172 * 1024MB: 4096k
4173 * 2048MB: 5792k
4174 * 4096MB: 8192k
4175 * 8192MB: 11584k
4176 * 16384MB: 16384k
4178 static int __init init_per_zone_pages_min(void)
4180 unsigned long lowmem_kbytes;
4182 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4184 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4185 if (min_free_kbytes < 128)
4186 min_free_kbytes = 128;
4187 if (min_free_kbytes > 65536)
4188 min_free_kbytes = 65536;
4189 setup_per_zone_pages_min();
4190 setup_per_zone_lowmem_reserve();
4191 return 0;
4193 module_init(init_per_zone_pages_min)
4196 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4197 * that we can call two helper functions whenever min_free_kbytes
4198 * changes.
4200 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4201 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4203 proc_dointvec(table, write, file, buffer, length, ppos);
4204 if (write)
4205 setup_per_zone_pages_min();
4206 return 0;
4209 #ifdef CONFIG_NUMA
4210 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4211 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4213 struct zone *zone;
4214 int rc;
4216 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4217 if (rc)
4218 return rc;
4220 for_each_zone(zone)
4221 zone->min_unmapped_pages = (zone->present_pages *
4222 sysctl_min_unmapped_ratio) / 100;
4223 return 0;
4226 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4227 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4229 struct zone *zone;
4230 int rc;
4232 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4233 if (rc)
4234 return rc;
4236 for_each_zone(zone)
4237 zone->min_slab_pages = (zone->present_pages *
4238 sysctl_min_slab_ratio) / 100;
4239 return 0;
4241 #endif
4244 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4245 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4246 * whenever sysctl_lowmem_reserve_ratio changes.
4248 * The reserve ratio obviously has absolutely no relation with the
4249 * pages_min watermarks. The lowmem reserve ratio can only make sense
4250 * if in function of the boot time zone sizes.
4252 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4253 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4255 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4256 setup_per_zone_lowmem_reserve();
4257 return 0;
4261 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4262 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4263 * can have before it gets flushed back to buddy allocator.
4266 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4267 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4269 struct zone *zone;
4270 unsigned int cpu;
4271 int ret;
4273 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4274 if (!write || (ret == -EINVAL))
4275 return ret;
4276 for_each_zone(zone) {
4277 for_each_online_cpu(cpu) {
4278 unsigned long high;
4279 high = zone->present_pages / percpu_pagelist_fraction;
4280 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4283 return 0;
4286 int hashdist = HASHDIST_DEFAULT;
4288 #ifdef CONFIG_NUMA
4289 static int __init set_hashdist(char *str)
4291 if (!str)
4292 return 0;
4293 hashdist = simple_strtoul(str, &str, 0);
4294 return 1;
4296 __setup("hashdist=", set_hashdist);
4297 #endif
4300 * allocate a large system hash table from bootmem
4301 * - it is assumed that the hash table must contain an exact power-of-2
4302 * quantity of entries
4303 * - limit is the number of hash buckets, not the total allocation size
4305 void *__init alloc_large_system_hash(const char *tablename,
4306 unsigned long bucketsize,
4307 unsigned long numentries,
4308 int scale,
4309 int flags,
4310 unsigned int *_hash_shift,
4311 unsigned int *_hash_mask,
4312 unsigned long limit)
4314 unsigned long long max = limit;
4315 unsigned long log2qty, size;
4316 void *table = NULL;
4318 /* allow the kernel cmdline to have a say */
4319 if (!numentries) {
4320 /* round applicable memory size up to nearest megabyte */
4321 numentries = nr_kernel_pages;
4322 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4323 numentries >>= 20 - PAGE_SHIFT;
4324 numentries <<= 20 - PAGE_SHIFT;
4326 /* limit to 1 bucket per 2^scale bytes of low memory */
4327 if (scale > PAGE_SHIFT)
4328 numentries >>= (scale - PAGE_SHIFT);
4329 else
4330 numentries <<= (PAGE_SHIFT - scale);
4332 /* Make sure we've got at least a 0-order allocation.. */
4333 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4334 numentries = PAGE_SIZE / bucketsize;
4336 numentries = roundup_pow_of_two(numentries);
4338 /* limit allocation size to 1/16 total memory by default */
4339 if (max == 0) {
4340 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4341 do_div(max, bucketsize);
4344 if (numentries > max)
4345 numentries = max;
4347 log2qty = ilog2(numentries);
4349 do {
4350 size = bucketsize << log2qty;
4351 if (flags & HASH_EARLY)
4352 table = alloc_bootmem(size);
4353 else if (hashdist)
4354 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4355 else {
4356 unsigned long order = get_order(size);
4357 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4359 * If bucketsize is not a power-of-two, we may free
4360 * some pages at the end of hash table.
4362 if (table) {
4363 unsigned long alloc_end = (unsigned long)table +
4364 (PAGE_SIZE << order);
4365 unsigned long used = (unsigned long)table +
4366 PAGE_ALIGN(size);
4367 split_page(virt_to_page(table), order);
4368 while (used < alloc_end) {
4369 free_page(used);
4370 used += PAGE_SIZE;
4374 } while (!table && size > PAGE_SIZE && --log2qty);
4376 if (!table)
4377 panic("Failed to allocate %s hash table\n", tablename);
4379 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4380 tablename,
4381 (1U << log2qty),
4382 ilog2(size) - PAGE_SHIFT,
4383 size);
4385 if (_hash_shift)
4386 *_hash_shift = log2qty;
4387 if (_hash_mask)
4388 *_hash_mask = (1 << log2qty) - 1;
4390 return table;
4393 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4394 struct page *pfn_to_page(unsigned long pfn)
4396 return __pfn_to_page(pfn);
4398 unsigned long page_to_pfn(struct page *page)
4400 return __page_to_pfn(page);
4402 EXPORT_SYMBOL(pfn_to_page);
4403 EXPORT_SYMBOL(page_to_pfn);
4404 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4406 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4407 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4408 unsigned long pfn)
4410 #ifdef CONFIG_SPARSEMEM
4411 return __pfn_to_section(pfn)->pageblock_flags;
4412 #else
4413 return zone->pageblock_flags;
4414 #endif /* CONFIG_SPARSEMEM */
4417 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4419 #ifdef CONFIG_SPARSEMEM
4420 pfn &= (PAGES_PER_SECTION-1);
4421 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4422 #else
4423 pfn = pfn - zone->zone_start_pfn;
4424 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4425 #endif /* CONFIG_SPARSEMEM */
4429 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4430 * @page: The page within the block of interest
4431 * @start_bitidx: The first bit of interest to retrieve
4432 * @end_bitidx: The last bit of interest
4433 * returns pageblock_bits flags
4435 unsigned long get_pageblock_flags_group(struct page *page,
4436 int start_bitidx, int end_bitidx)
4438 struct zone *zone;
4439 unsigned long *bitmap;
4440 unsigned long pfn, bitidx;
4441 unsigned long flags = 0;
4442 unsigned long value = 1;
4444 zone = page_zone(page);
4445 pfn = page_to_pfn(page);
4446 bitmap = get_pageblock_bitmap(zone, pfn);
4447 bitidx = pfn_to_bitidx(zone, pfn);
4449 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4450 if (test_bit(bitidx + start_bitidx, bitmap))
4451 flags |= value;
4453 return flags;
4457 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4458 * @page: The page within the block of interest
4459 * @start_bitidx: The first bit of interest
4460 * @end_bitidx: The last bit of interest
4461 * @flags: The flags to set
4463 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4464 int start_bitidx, int end_bitidx)
4466 struct zone *zone;
4467 unsigned long *bitmap;
4468 unsigned long pfn, bitidx;
4469 unsigned long value = 1;
4471 zone = page_zone(page);
4472 pfn = page_to_pfn(page);
4473 bitmap = get_pageblock_bitmap(zone, pfn);
4474 bitidx = pfn_to_bitidx(zone, pfn);
4475 VM_BUG_ON(pfn < zone->zone_start_pfn);
4476 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4478 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4479 if (flags & value)
4480 __set_bit(bitidx + start_bitidx, bitmap);
4481 else
4482 __clear_bit(bitidx + start_bitidx, bitmap);
4486 * This is designed as sub function...plz see page_isolation.c also.
4487 * set/clear page block's type to be ISOLATE.
4488 * page allocater never alloc memory from ISOLATE block.
4491 int set_migratetype_isolate(struct page *page)
4493 struct zone *zone;
4494 unsigned long flags;
4495 int ret = -EBUSY;
4497 zone = page_zone(page);
4498 spin_lock_irqsave(&zone->lock, flags);
4500 * In future, more migrate types will be able to be isolation target.
4502 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4503 goto out;
4504 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4505 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4506 ret = 0;
4507 out:
4508 spin_unlock_irqrestore(&zone->lock, flags);
4509 if (!ret)
4510 drain_all_pages();
4511 return ret;
4514 void unset_migratetype_isolate(struct page *page)
4516 struct zone *zone;
4517 unsigned long flags;
4518 zone = page_zone(page);
4519 spin_lock_irqsave(&zone->lock, flags);
4520 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4521 goto out;
4522 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4523 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4524 out:
4525 spin_unlock_irqrestore(&zone->lock, flags);
4528 #ifdef CONFIG_MEMORY_HOTREMOVE
4530 * All pages in the range must be isolated before calling this.
4532 void
4533 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4535 struct page *page;
4536 struct zone *zone;
4537 int order, i;
4538 unsigned long pfn;
4539 unsigned long flags;
4540 /* find the first valid pfn */
4541 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4542 if (pfn_valid(pfn))
4543 break;
4544 if (pfn == end_pfn)
4545 return;
4546 zone = page_zone(pfn_to_page(pfn));
4547 spin_lock_irqsave(&zone->lock, flags);
4548 pfn = start_pfn;
4549 while (pfn < end_pfn) {
4550 if (!pfn_valid(pfn)) {
4551 pfn++;
4552 continue;
4554 page = pfn_to_page(pfn);
4555 BUG_ON(page_count(page));
4556 BUG_ON(!PageBuddy(page));
4557 order = page_order(page);
4558 #ifdef CONFIG_DEBUG_VM
4559 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4560 pfn, 1 << order, end_pfn);
4561 #endif
4562 list_del(&page->lru);
4563 rmv_page_order(page);
4564 zone->free_area[order].nr_free--;
4565 __mod_zone_page_state(zone, NR_FREE_PAGES,
4566 - (1UL << order));
4567 for (i = 0; i < (1 << order); i++)
4568 SetPageReserved((page+i));
4569 pfn += (1 << order);
4571 spin_unlock_irqrestore(&zone->lock, flags);
4573 #endif