1 /*********************************************************************
5 * Description: Tiny Transport Protocol (TTP) implementation
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Aug 31 20:14:31 1997
9 * Modified at: Wed Jan 5 11:31:27 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
12 * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13 * All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
21 * Neither Dag Brattli nor University of Tromsø admit liability nor
22 * provide warranty for any of this software. This material is
23 * provided "AS-IS" and at no charge.
25 ********************************************************************/
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
33 #include <asm/byteorder.h>
34 #include <asm/unaligned.h>
36 #include <net/irda/irda.h>
37 #include <net/irda/irlap.h>
38 #include <net/irda/irlmp.h>
39 #include <net/irda/parameters.h>
40 #include <net/irda/irttp.h>
42 static struct irttp_cb
*irttp
;
44 static void __irttp_close_tsap(struct tsap_cb
*self
);
46 static int irttp_data_indication(void *instance
, void *sap
,
48 static int irttp_udata_indication(void *instance
, void *sap
,
50 static void irttp_disconnect_indication(void *instance
, void *sap
,
51 LM_REASON reason
, struct sk_buff
*);
52 static void irttp_connect_indication(void *instance
, void *sap
,
53 struct qos_info
*qos
, __u32 max_sdu_size
,
54 __u8 header_size
, struct sk_buff
*skb
);
55 static void irttp_connect_confirm(void *instance
, void *sap
,
56 struct qos_info
*qos
, __u32 max_sdu_size
,
57 __u8 header_size
, struct sk_buff
*skb
);
58 static void irttp_run_tx_queue(struct tsap_cb
*self
);
59 static void irttp_run_rx_queue(struct tsap_cb
*self
);
61 static void irttp_flush_queues(struct tsap_cb
*self
);
62 static void irttp_fragment_skb(struct tsap_cb
*self
, struct sk_buff
*skb
);
63 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
);
64 static void irttp_todo_expired(unsigned long data
);
65 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
68 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
);
69 static void irttp_status_indication(void *instance
,
70 LINK_STATUS link
, LOCK_STATUS lock
);
72 /* Information for parsing parameters in IrTTP */
73 static pi_minor_info_t pi_minor_call_table
[] = {
74 { NULL
, 0 }, /* 0x00 */
75 { irttp_param_max_sdu_size
, PV_INTEGER
| PV_BIG_ENDIAN
} /* 0x01 */
77 static pi_major_info_t pi_major_call_table
[] = {{ pi_minor_call_table
, 2 }};
78 static pi_param_info_t param_info
= { pi_major_call_table
, 1, 0x0f, 4 };
80 /************************ GLOBAL PROCEDURES ************************/
83 * Function irttp_init (void)
85 * Initialize the IrTTP layer. Called by module initialization code
88 int __init
irttp_init(void)
90 irttp
= kzalloc(sizeof(struct irttp_cb
), GFP_KERNEL
);
94 irttp
->magic
= TTP_MAGIC
;
96 irttp
->tsaps
= hashbin_new(HB_LOCK
);
98 IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
108 * Function irttp_cleanup (void)
110 * Called by module destruction/cleanup code
113 void irttp_cleanup(void)
115 /* Check for main structure */
116 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return;);
119 * Delete hashbin and close all TSAP instances in it
121 hashbin_delete(irttp
->tsaps
, (FREE_FUNC
) __irttp_close_tsap
);
125 /* De-allocate main structure */
131 /*************************** SUBROUTINES ***************************/
134 * Function irttp_start_todo_timer (self, timeout)
138 * Made it more effient and unsensitive to race conditions - Jean II
140 static inline void irttp_start_todo_timer(struct tsap_cb
*self
, int timeout
)
142 /* Set new value for timer */
143 mod_timer(&self
->todo_timer
, jiffies
+ timeout
);
147 * Function irttp_todo_expired (data)
149 * Todo timer has expired!
151 * One of the restriction of the timer is that it is run only on the timer
152 * interrupt which run every 10ms. This mean that even if you set the timer
153 * with a delay of 0, it may take up to 10ms before it's run.
154 * So, to minimise latency and keep cache fresh, we try to avoid using
155 * it as much as possible.
156 * Note : we can't use tasklets, because they can't be asynchronously
157 * killed (need user context), and we can't guarantee that here...
160 static void irttp_todo_expired(unsigned long data
)
162 struct tsap_cb
*self
= (struct tsap_cb
*) data
;
164 /* Check that we still exist */
165 if (!self
|| self
->magic
!= TTP_TSAP_MAGIC
)
168 IRDA_DEBUG(4, "%s(instance=%p)\n", __func__
, self
);
170 /* Try to make some progress, especially on Tx side - Jean II */
171 irttp_run_rx_queue(self
);
172 irttp_run_tx_queue(self
);
174 /* Check if time for disconnect */
175 if (test_bit(0, &self
->disconnect_pend
)) {
176 /* Check if it's possible to disconnect yet */
177 if (skb_queue_empty(&self
->tx_queue
)) {
178 /* Make sure disconnect is not pending anymore */
179 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
181 /* Note : self->disconnect_skb may be NULL */
182 irttp_disconnect_request(self
, self
->disconnect_skb
,
184 self
->disconnect_skb
= NULL
;
186 /* Try again later */
187 irttp_start_todo_timer(self
, HZ
/10);
189 /* No reason to try and close now */
194 /* Check if it's closing time */
195 if (self
->close_pend
)
197 irttp_close_tsap(self
);
201 * Function irttp_flush_queues (self)
203 * Flushes (removes all frames) in transitt-buffer (tx_list)
205 static void irttp_flush_queues(struct tsap_cb
*self
)
209 IRDA_DEBUG(4, "%s()\n", __func__
);
211 IRDA_ASSERT(self
!= NULL
, return;);
212 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
214 /* Deallocate frames waiting to be sent */
215 while ((skb
= skb_dequeue(&self
->tx_queue
)) != NULL
)
218 /* Deallocate received frames */
219 while ((skb
= skb_dequeue(&self
->rx_queue
)) != NULL
)
222 /* Deallocate received fragments */
223 while ((skb
= skb_dequeue(&self
->rx_fragments
)) != NULL
)
228 * Function irttp_reassemble (self)
230 * Makes a new (continuous) skb of all the fragments in the fragment
234 static struct sk_buff
*irttp_reassemble_skb(struct tsap_cb
*self
)
236 struct sk_buff
*skb
, *frag
;
237 int n
= 0; /* Fragment index */
239 IRDA_ASSERT(self
!= NULL
, return NULL
;);
240 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return NULL
;);
242 IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__
,
245 skb
= dev_alloc_skb(TTP_HEADER
+ self
->rx_sdu_size
);
250 * Need to reserve space for TTP header in case this skb needs to
251 * be requeued in case delivery failes
253 skb_reserve(skb
, TTP_HEADER
);
254 skb_put(skb
, self
->rx_sdu_size
);
257 * Copy all fragments to a new buffer
259 while ((frag
= skb_dequeue(&self
->rx_fragments
)) != NULL
) {
260 skb_copy_to_linear_data_offset(skb
, n
, frag
->data
, frag
->len
);
267 "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
268 __func__
, n
, self
->rx_sdu_size
, self
->rx_max_sdu_size
);
269 /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
270 * by summing the size of all fragments, so we should always
271 * have n == self->rx_sdu_size, except in cases where we
272 * droped the last fragment (when self->rx_sdu_size exceed
273 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
275 IRDA_ASSERT(n
<= self
->rx_sdu_size
, n
= self
->rx_sdu_size
;);
277 /* Set the new length */
280 self
->rx_sdu_size
= 0;
286 * Function irttp_fragment_skb (skb)
288 * Fragments a frame and queues all the fragments for transmission
291 static inline void irttp_fragment_skb(struct tsap_cb
*self
,
294 struct sk_buff
*frag
;
297 IRDA_DEBUG(2, "%s()\n", __func__
);
299 IRDA_ASSERT(self
!= NULL
, return;);
300 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
301 IRDA_ASSERT(skb
!= NULL
, return;);
304 * Split frame into a number of segments
306 while (skb
->len
> self
->max_seg_size
) {
307 IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__
);
309 /* Make new segment */
310 frag
= alloc_skb(self
->max_seg_size
+self
->max_header_size
,
315 skb_reserve(frag
, self
->max_header_size
);
317 /* Copy data from the original skb into this fragment. */
318 skb_copy_from_linear_data(skb
, skb_put(frag
, self
->max_seg_size
),
321 /* Insert TTP header, with the more bit set */
322 frame
= skb_push(frag
, TTP_HEADER
);
325 /* Hide the copied data from the original skb */
326 skb_pull(skb
, self
->max_seg_size
);
329 skb_queue_tail(&self
->tx_queue
, frag
);
331 /* Queue what is left of the original skb */
332 IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__
);
334 frame
= skb_push(skb
, TTP_HEADER
);
335 frame
[0] = 0x00; /* Clear more bit */
338 skb_queue_tail(&self
->tx_queue
, skb
);
342 * Function irttp_param_max_sdu_size (self, param)
344 * Handle the MaxSduSize parameter in the connect frames, this function
345 * will be called both when this parameter needs to be inserted into, and
346 * extracted from the connect frames
348 static int irttp_param_max_sdu_size(void *instance
, irda_param_t
*param
,
351 struct tsap_cb
*self
;
353 self
= (struct tsap_cb
*) instance
;
355 IRDA_ASSERT(self
!= NULL
, return -1;);
356 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
359 param
->pv
.i
= self
->tx_max_sdu_size
;
361 self
->tx_max_sdu_size
= param
->pv
.i
;
363 IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__
, param
->pv
.i
);
368 /*************************** CLIENT CALLS ***************************/
369 /************************** LMP CALLBACKS **************************/
370 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
373 * Initialization, that has to be done on new tsap
374 * instance allocation and on duplication
376 static void irttp_init_tsap(struct tsap_cb
*tsap
)
378 spin_lock_init(&tsap
->lock
);
379 init_timer(&tsap
->todo_timer
);
381 skb_queue_head_init(&tsap
->rx_queue
);
382 skb_queue_head_init(&tsap
->tx_queue
);
383 skb_queue_head_init(&tsap
->rx_fragments
);
387 * Function irttp_open_tsap (stsap, notify)
389 * Create TSAP connection endpoint,
391 struct tsap_cb
*irttp_open_tsap(__u8 stsap_sel
, int credit
, notify_t
*notify
)
393 struct tsap_cb
*self
;
394 struct lsap_cb
*lsap
;
397 IRDA_ASSERT(irttp
->magic
== TTP_MAGIC
, return NULL
;);
399 /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
400 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
402 if((stsap_sel
!= LSAP_ANY
) &&
403 ((stsap_sel
< 0x01) || (stsap_sel
>= 0x70))) {
404 IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__
);
408 self
= kzalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
410 IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__
);
414 /* Initialize internal objects */
415 irttp_init_tsap(self
);
417 /* Initialise todo timer */
418 self
->todo_timer
.data
= (unsigned long) self
;
419 self
->todo_timer
.function
= &irttp_todo_expired
;
421 /* Initialize callbacks for IrLMP to use */
422 irda_notify_init(&ttp_notify
);
423 ttp_notify
.connect_confirm
= irttp_connect_confirm
;
424 ttp_notify
.connect_indication
= irttp_connect_indication
;
425 ttp_notify
.disconnect_indication
= irttp_disconnect_indication
;
426 ttp_notify
.data_indication
= irttp_data_indication
;
427 ttp_notify
.udata_indication
= irttp_udata_indication
;
428 ttp_notify
.flow_indication
= irttp_flow_indication
;
429 if(notify
->status_indication
!= NULL
)
430 ttp_notify
.status_indication
= irttp_status_indication
;
431 ttp_notify
.instance
= self
;
432 strncpy(ttp_notify
.name
, notify
->name
, NOTIFY_MAX_NAME
);
434 self
->magic
= TTP_TSAP_MAGIC
;
435 self
->connected
= FALSE
;
438 * Create LSAP at IrLMP layer
440 lsap
= irlmp_open_lsap(stsap_sel
, &ttp_notify
, 0);
442 IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__
);
447 * If user specified LSAP_ANY as source TSAP selector, then IrLMP
448 * will replace it with whatever source selector which is free, so
449 * the stsap_sel we have might not be valid anymore
451 self
->stsap_sel
= lsap
->slsap_sel
;
452 IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__
, self
->stsap_sel
);
454 self
->notify
= *notify
;
457 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) self
, (long) self
, NULL
);
459 if (credit
> TTP_RX_MAX_CREDIT
)
460 self
->initial_credit
= TTP_RX_MAX_CREDIT
;
462 self
->initial_credit
= credit
;
466 EXPORT_SYMBOL(irttp_open_tsap
);
469 * Function irttp_close (handle)
471 * Remove an instance of a TSAP. This function should only deal with the
472 * deallocation of the TSAP, and resetting of the TSAPs values;
475 static void __irttp_close_tsap(struct tsap_cb
*self
)
477 /* First make sure we're connected. */
478 IRDA_ASSERT(self
!= NULL
, return;);
479 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
481 irttp_flush_queues(self
);
483 del_timer(&self
->todo_timer
);
485 /* This one won't be cleaned up if we are disconnect_pend + close_pend
486 * and we receive a disconnect_indication */
487 if (self
->disconnect_skb
)
488 dev_kfree_skb(self
->disconnect_skb
);
490 self
->connected
= FALSE
;
491 self
->magic
= ~TTP_TSAP_MAGIC
;
497 * Function irttp_close (self)
499 * Remove TSAP from list of all TSAPs and then deallocate all resources
500 * associated with this TSAP
502 * Note : because we *free* the tsap structure, it is the responsibility
503 * of the caller to make sure we are called only once and to deal with
504 * possible race conditions. - Jean II
506 int irttp_close_tsap(struct tsap_cb
*self
)
508 struct tsap_cb
*tsap
;
510 IRDA_DEBUG(4, "%s()\n", __func__
);
512 IRDA_ASSERT(self
!= NULL
, return -1;);
513 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
515 /* Make sure tsap has been disconnected */
516 if (self
->connected
) {
517 /* Check if disconnect is not pending */
518 if (!test_bit(0, &self
->disconnect_pend
)) {
519 IRDA_WARNING("%s: TSAP still connected!\n",
521 irttp_disconnect_request(self
, NULL
, P_NORMAL
);
523 self
->close_pend
= TRUE
;
524 irttp_start_todo_timer(self
, HZ
/10);
526 return 0; /* Will be back! */
529 tsap
= hashbin_remove(irttp
->tsaps
, (long) self
, NULL
);
531 IRDA_ASSERT(tsap
== self
, return -1;);
533 /* Close corresponding LSAP */
535 irlmp_close_lsap(self
->lsap
);
539 __irttp_close_tsap(self
);
543 EXPORT_SYMBOL(irttp_close_tsap
);
546 * Function irttp_udata_request (self, skb)
548 * Send unreliable data on this TSAP
551 int irttp_udata_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
555 IRDA_ASSERT(self
!= NULL
, return -1;);
556 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
557 IRDA_ASSERT(skb
!= NULL
, return -1;);
559 IRDA_DEBUG(4, "%s()\n", __func__
);
561 /* Take shortcut on zero byte packets */
567 /* Check that nothing bad happens */
568 if (!self
->connected
) {
569 IRDA_WARNING("%s(), Not connected\n", __func__
);
574 if (skb
->len
> self
->max_seg_size
) {
575 IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__
);
580 irlmp_udata_request(self
->lsap
, skb
);
581 self
->stats
.tx_packets
++;
589 EXPORT_SYMBOL(irttp_udata_request
);
593 * Function irttp_data_request (handle, skb)
595 * Queue frame for transmission. If SAR is enabled, fragement the frame
596 * and queue the fragments for transmission
598 int irttp_data_request(struct tsap_cb
*self
, struct sk_buff
*skb
)
603 IRDA_ASSERT(self
!= NULL
, return -1;);
604 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
605 IRDA_ASSERT(skb
!= NULL
, return -1;);
607 IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__
,
608 skb_queue_len(&self
->tx_queue
));
610 /* Take shortcut on zero byte packets */
616 /* Check that nothing bad happens */
617 if (!self
->connected
) {
618 IRDA_WARNING("%s: Not connected\n", __func__
);
624 * Check if SAR is disabled, and the frame is larger than what fits
625 * inside an IrLAP frame
627 if ((self
->tx_max_sdu_size
== 0) && (skb
->len
> self
->max_seg_size
)) {
628 IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
635 * Check if SAR is enabled, and the frame is larger than the
638 if ((self
->tx_max_sdu_size
!= 0) &&
639 (self
->tx_max_sdu_size
!= TTP_SAR_UNBOUND
) &&
640 (skb
->len
> self
->tx_max_sdu_size
))
642 IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
648 * Check if transmit queue is full
650 if (skb_queue_len(&self
->tx_queue
) >= TTP_TX_MAX_QUEUE
) {
652 * Give it a chance to empty itself
654 irttp_run_tx_queue(self
);
656 /* Drop packet. This error code should trigger the caller
657 * to resend the data in the client code - Jean II */
662 /* Queue frame, or queue frame segments */
663 if ((self
->tx_max_sdu_size
== 0) || (skb
->len
< self
->max_seg_size
)) {
665 IRDA_ASSERT(skb_headroom(skb
) >= TTP_HEADER
, return -1;);
666 frame
= skb_push(skb
, TTP_HEADER
);
667 frame
[0] = 0x00; /* Clear more bit */
669 skb_queue_tail(&self
->tx_queue
, skb
);
672 * Fragment the frame, this function will also queue the
673 * fragments, we don't care about the fact the transmit
674 * queue may be overfilled by all the segments for a little
677 irttp_fragment_skb(self
, skb
);
680 /* Check if we can accept more data from client */
681 if ((!self
->tx_sdu_busy
) &&
682 (skb_queue_len(&self
->tx_queue
) > TTP_TX_HIGH_THRESHOLD
)) {
683 /* Tx queue filling up, so stop client. */
684 if (self
->notify
.flow_indication
) {
685 self
->notify
.flow_indication(self
->notify
.instance
,
688 /* self->tx_sdu_busy is the state of the client.
689 * Update state after notifying client to avoid
690 * race condition with irttp_flow_indication().
691 * If the queue empty itself after our test but before
692 * we set the flag, we will fix ourselves below in
693 * irttp_run_tx_queue().
695 self
->tx_sdu_busy
= TRUE
;
698 /* Try to make some progress */
699 irttp_run_tx_queue(self
);
707 EXPORT_SYMBOL(irttp_data_request
);
710 * Function irttp_run_tx_queue (self)
712 * Transmit packets queued for transmission (if possible)
715 static void irttp_run_tx_queue(struct tsap_cb
*self
)
721 IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
723 self
->send_credit
, skb_queue_len(&self
->tx_queue
));
725 /* Get exclusive access to the tx queue, otherwise don't touch it */
726 if (irda_lock(&self
->tx_queue_lock
) == FALSE
)
729 /* Try to send out frames as long as we have credits
730 * and as long as LAP is not full. If LAP is full, it will
731 * poll us through irttp_flow_indication() - Jean II */
732 while ((self
->send_credit
> 0) &&
733 (!irlmp_lap_tx_queue_full(self
->lsap
)) &&
734 (skb
= skb_dequeue(&self
->tx_queue
)))
737 * Since we can transmit and receive frames concurrently,
738 * the code below is a critical region and we must assure that
739 * nobody messes with the credits while we update them.
741 spin_lock_irqsave(&self
->lock
, flags
);
743 n
= self
->avail_credit
;
744 self
->avail_credit
= 0;
746 /* Only room for 127 credits in frame */
748 self
->avail_credit
= n
-127;
751 self
->remote_credit
+= n
;
754 spin_unlock_irqrestore(&self
->lock
, flags
);
757 * More bit must be set by the data_request() or fragment()
760 skb
->data
[0] |= (n
& 0x7f);
762 /* Detach from socket.
763 * The current skb has a reference to the socket that sent
764 * it (skb->sk). When we pass it to IrLMP, the skb will be
765 * stored in in IrLAP (self->wx_list). When we are within
766 * IrLAP, we lose the notion of socket, so we should not
767 * have a reference to a socket. So, we drop it here.
769 * Why does it matter ?
770 * When the skb is freed (kfree_skb), if it is associated
771 * with a socket, it release buffer space on the socket
772 * (through sock_wfree() and sock_def_write_space()).
773 * If the socket no longer exist, we may crash. Hard.
774 * When we close a socket, we make sure that associated packets
775 * in IrTTP are freed. However, we have no way to cancel
776 * the packet that we have passed to IrLAP. So, if a packet
777 * remains in IrLAP (retry on the link or else) after we
778 * close the socket, we are dead !
780 if (skb
->sk
!= NULL
) {
781 /* IrSOCK application, IrOBEX, ... */
784 /* IrCOMM over IrTTP, IrLAN, ... */
786 /* Pass the skb to IrLMP - done */
787 irlmp_data_request(self
->lsap
, skb
);
788 self
->stats
.tx_packets
++;
791 /* Check if we can accept more frames from client.
792 * We don't want to wait until the todo timer to do that, and we
793 * can't use tasklets (grr...), so we are obliged to give control
794 * to client. That's ok, this test will be true not too often
795 * (max once per LAP window) and we are called from places
796 * where we can spend a bit of time doing stuff. - Jean II */
797 if ((self
->tx_sdu_busy
) &&
798 (skb_queue_len(&self
->tx_queue
) < TTP_TX_LOW_THRESHOLD
) &&
801 if (self
->notify
.flow_indication
)
802 self
->notify
.flow_indication(self
->notify
.instance
,
805 /* self->tx_sdu_busy is the state of the client.
806 * We don't really have a race here, but it's always safer
807 * to update our state after the client - Jean II */
808 self
->tx_sdu_busy
= FALSE
;
812 self
->tx_queue_lock
= 0;
816 * Function irttp_give_credit (self)
818 * Send a dataless flowdata TTP-PDU and give available credit to peer
821 static inline void irttp_give_credit(struct tsap_cb
*self
)
823 struct sk_buff
*tx_skb
= NULL
;
827 IRDA_ASSERT(self
!= NULL
, return;);
828 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
830 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
832 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
834 /* Give credit to peer */
835 tx_skb
= alloc_skb(TTP_MAX_HEADER
, GFP_ATOMIC
);
839 /* Reserve space for LMP, and LAP header */
840 skb_reserve(tx_skb
, LMP_MAX_HEADER
);
843 * Since we can transmit and receive frames concurrently,
844 * the code below is a critical region and we must assure that
845 * nobody messes with the credits while we update them.
847 spin_lock_irqsave(&self
->lock
, flags
);
849 n
= self
->avail_credit
;
850 self
->avail_credit
= 0;
852 /* Only space for 127 credits in frame */
854 self
->avail_credit
= n
- 127;
857 self
->remote_credit
+= n
;
859 spin_unlock_irqrestore(&self
->lock
, flags
);
862 tx_skb
->data
[0] = (__u8
) (n
& 0x7f);
864 irlmp_data_request(self
->lsap
, tx_skb
);
865 self
->stats
.tx_packets
++;
869 * Function irttp_udata_indication (instance, sap, skb)
871 * Received some unit-data (unreliable)
874 static int irttp_udata_indication(void *instance
, void *sap
,
877 struct tsap_cb
*self
;
880 IRDA_DEBUG(4, "%s()\n", __func__
);
882 self
= (struct tsap_cb
*) instance
;
884 IRDA_ASSERT(self
!= NULL
, return -1;);
885 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
886 IRDA_ASSERT(skb
!= NULL
, return -1;);
888 self
->stats
.rx_packets
++;
890 /* Just pass data to layer above */
891 if (self
->notify
.udata_indication
) {
892 err
= self
->notify
.udata_indication(self
->notify
.instance
,
894 /* Same comment as in irttp_do_data_indication() */
898 /* Either no handler, or handler returns an error */
905 * Function irttp_data_indication (instance, sap, skb)
907 * Receive segment from IrLMP.
910 static int irttp_data_indication(void *instance
, void *sap
,
913 struct tsap_cb
*self
;
917 self
= (struct tsap_cb
*) instance
;
919 n
= skb
->data
[0] & 0x7f; /* Extract the credits */
921 self
->stats
.rx_packets
++;
923 /* Deal with inbound credit
924 * Since we can transmit and receive frames concurrently,
925 * the code below is a critical region and we must assure that
926 * nobody messes with the credits while we update them.
928 spin_lock_irqsave(&self
->lock
, flags
);
929 self
->send_credit
+= n
;
931 self
->remote_credit
--;
932 spin_unlock_irqrestore(&self
->lock
, flags
);
935 * Data or dataless packet? Dataless frames contains only the
940 * We don't remove the TTP header, since we must preserve the
941 * more bit, so the defragment routing knows what to do
943 skb_queue_tail(&self
->rx_queue
, skb
);
945 /* Dataless flowdata TTP-PDU */
950 /* Push data to the higher layer.
951 * We do it synchronously because running the todo timer for each
952 * receive packet would be too much overhead and latency.
953 * By passing control to the higher layer, we run the risk that
954 * it may take time or grab a lock. Most often, the higher layer
955 * will only put packet in a queue.
956 * Anyway, packets are only dripping through the IrDA, so we can
957 * have time before the next packet.
958 * Further, we are run from NET_BH, so the worse that can happen is
959 * us missing the optimal time to send back the PF bit in LAP.
961 irttp_run_rx_queue(self
);
963 /* We now give credits to peer in irttp_run_rx_queue().
964 * We need to send credit *NOW*, otherwise we are going
965 * to miss the next Tx window. The todo timer may take
966 * a while before it's run... - Jean II */
969 * If the peer device has given us some credits and we didn't have
970 * anyone from before, then we need to shedule the tx queue.
971 * We need to do that because our Tx have stopped (so we may not
972 * get any LAP flow indication) and the user may be stopped as
975 if (self
->send_credit
== n
) {
976 /* Restart pushing stuff to LAP */
977 irttp_run_tx_queue(self
);
978 /* Note : we don't want to schedule the todo timer
979 * because it has horrible latency. No tasklets
980 * because the tasklet API is broken. - Jean II */
987 * Function irttp_status_indication (self, reason)
989 * Status_indication, just pass to the higher layer...
992 static void irttp_status_indication(void *instance
,
993 LINK_STATUS link
, LOCK_STATUS lock
)
995 struct tsap_cb
*self
;
997 IRDA_DEBUG(4, "%s()\n", __func__
);
999 self
= (struct tsap_cb
*) instance
;
1001 IRDA_ASSERT(self
!= NULL
, return;);
1002 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1004 /* Check if client has already closed the TSAP and gone away */
1005 if (self
->close_pend
)
1009 * Inform service user if he has requested it
1011 if (self
->notify
.status_indication
!= NULL
)
1012 self
->notify
.status_indication(self
->notify
.instance
,
1015 IRDA_DEBUG(2, "%s(), no handler\n", __func__
);
1019 * Function irttp_flow_indication (self, reason)
1021 * Flow_indication : IrLAP tells us to send more data.
1024 static void irttp_flow_indication(void *instance
, void *sap
, LOCAL_FLOW flow
)
1026 struct tsap_cb
*self
;
1028 self
= (struct tsap_cb
*) instance
;
1030 IRDA_ASSERT(self
!= NULL
, return;);
1031 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1033 IRDA_DEBUG(4, "%s(instance=%p)\n", __func__
, self
);
1035 /* We are "polled" directly from LAP, and the LAP want to fill
1036 * its Tx window. We want to do our best to send it data, so that
1037 * we maximise the window. On the other hand, we want to limit the
1038 * amount of work here so that LAP doesn't hang forever waiting
1039 * for packets. - Jean II */
1041 /* Try to send some packets. Currently, LAP calls us every time
1042 * there is one free slot, so we will send only one packet.
1043 * This allow the scheduler to do its round robin - Jean II */
1044 irttp_run_tx_queue(self
);
1046 /* Note regarding the interraction with higher layer.
1047 * irttp_run_tx_queue() may call the client when its queue
1048 * start to empty, via notify.flow_indication(). Initially.
1049 * I wanted this to happen in a tasklet, to avoid client
1050 * grabbing the CPU, but we can't use tasklets safely. And timer
1051 * is definitely too slow.
1052 * This will happen only once per LAP window, and usually at
1053 * the third packet (unless window is smaller). LAP is still
1054 * doing mtt and sending first packet so it's sort of OK
1055 * to do that. Jean II */
1057 /* If we need to send disconnect. try to do it now */
1058 if(self
->disconnect_pend
)
1059 irttp_start_todo_timer(self
, 0);
1063 * Function irttp_flow_request (self, command)
1065 * This function could be used by the upper layers to tell IrTTP to stop
1066 * delivering frames if the receive queues are starting to get full, or
1067 * to tell IrTTP to start delivering frames again.
1069 void irttp_flow_request(struct tsap_cb
*self
, LOCAL_FLOW flow
)
1071 IRDA_DEBUG(1, "%s()\n", __func__
);
1073 IRDA_ASSERT(self
!= NULL
, return;);
1074 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1078 IRDA_DEBUG(1, "%s(), flow stop\n", __func__
);
1079 self
->rx_sdu_busy
= TRUE
;
1082 IRDA_DEBUG(1, "%s(), flow start\n", __func__
);
1083 self
->rx_sdu_busy
= FALSE
;
1085 /* Client say he can accept more data, try to free our
1086 * queues ASAP - Jean II */
1087 irttp_run_rx_queue(self
);
1091 IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__
);
1094 EXPORT_SYMBOL(irttp_flow_request
);
1097 * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1099 * Try to connect to remote destination TSAP selector
1102 int irttp_connect_request(struct tsap_cb
*self
, __u8 dtsap_sel
,
1103 __u32 saddr
, __u32 daddr
,
1104 struct qos_info
*qos
, __u32 max_sdu_size
,
1105 struct sk_buff
*userdata
)
1107 struct sk_buff
*tx_skb
;
1111 IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__
, max_sdu_size
);
1113 IRDA_ASSERT(self
!= NULL
, return -EBADR
;);
1114 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -EBADR
;);
1116 if (self
->connected
) {
1118 dev_kfree_skb(userdata
);
1122 /* Any userdata supplied? */
1123 if (userdata
== NULL
) {
1124 tx_skb
= alloc_skb(TTP_MAX_HEADER
+ TTP_SAR_HEADER
,
1129 /* Reserve space for MUX_CONTROL and LAP header */
1130 skb_reserve(tx_skb
, TTP_MAX_HEADER
+ TTP_SAR_HEADER
);
1134 * Check that the client has reserved enough space for
1137 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1138 { dev_kfree_skb(userdata
); return -1; } );
1141 /* Initialize connection parameters */
1142 self
->connected
= FALSE
;
1143 self
->avail_credit
= 0;
1144 self
->rx_max_sdu_size
= max_sdu_size
;
1145 self
->rx_sdu_size
= 0;
1146 self
->rx_sdu_busy
= FALSE
;
1147 self
->dtsap_sel
= dtsap_sel
;
1149 n
= self
->initial_credit
;
1151 self
->remote_credit
= 0;
1152 self
->send_credit
= 0;
1155 * Give away max 127 credits for now
1158 self
->avail_credit
=n
-127;
1162 self
->remote_credit
= n
;
1165 if (max_sdu_size
> 0) {
1166 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1167 { dev_kfree_skb(tx_skb
); return -1; } );
1169 /* Insert SAR parameters */
1170 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1172 frame
[0] = TTP_PARAMETERS
| n
;
1173 frame
[1] = 0x04; /* Length */
1174 frame
[2] = 0x01; /* MaxSduSize */
1175 frame
[3] = 0x02; /* Value length */
1177 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1178 (__be16
*)(frame
+4));
1180 /* Insert plain TTP header */
1181 frame
= skb_push(tx_skb
, TTP_HEADER
);
1183 /* Insert initial credit in frame */
1184 frame
[0] = n
& 0x7f;
1187 /* Connect with IrLMP. No QoS parameters for now */
1188 return irlmp_connect_request(self
->lsap
, dtsap_sel
, saddr
, daddr
, qos
,
1191 EXPORT_SYMBOL(irttp_connect_request
);
1194 * Function irttp_connect_confirm (handle, qos, skb)
1196 * Sevice user confirms TSAP connection with peer.
1199 static void irttp_connect_confirm(void *instance
, void *sap
,
1200 struct qos_info
*qos
, __u32 max_seg_size
,
1201 __u8 max_header_size
, struct sk_buff
*skb
)
1203 struct tsap_cb
*self
;
1209 IRDA_DEBUG(4, "%s()\n", __func__
);
1211 self
= (struct tsap_cb
*) instance
;
1213 IRDA_ASSERT(self
!= NULL
, return;);
1214 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1215 IRDA_ASSERT(skb
!= NULL
, return;);
1217 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1218 self
->max_header_size
= max_header_size
+ TTP_HEADER
;
1221 * Check if we have got some QoS parameters back! This should be the
1222 * negotiated QoS for the link.
1225 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1226 qos
->baud_rate
.bits
);
1227 IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1228 qos
->baud_rate
.value
);
1231 n
= skb
->data
[0] & 0x7f;
1233 IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__
, n
);
1235 self
->send_credit
= n
;
1236 self
->tx_max_sdu_size
= 0;
1237 self
->connected
= TRUE
;
1239 parameters
= skb
->data
[0] & 0x80;
1241 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1242 skb_pull(skb
, TTP_HEADER
);
1245 plen
= skb
->data
[0];
1247 ret
= irda_param_extract_all(self
, skb
->data
+1,
1248 IRDA_MIN(skb
->len
-1, plen
),
1251 /* Any errors in the parameter list? */
1253 IRDA_WARNING("%s: error extracting parameters\n",
1257 /* Do not accept this connection attempt */
1260 /* Remove parameters */
1261 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1264 IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__
,
1265 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1267 IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__
,
1268 self
->tx_max_sdu_size
);
1270 if (self
->notify
.connect_confirm
) {
1271 self
->notify
.connect_confirm(self
->notify
.instance
, self
, qos
,
1272 self
->tx_max_sdu_size
,
1273 self
->max_header_size
, skb
);
1279 * Function irttp_connect_indication (handle, skb)
1281 * Some other device is connecting to this TSAP
1284 static void irttp_connect_indication(void *instance
, void *sap
,
1285 struct qos_info
*qos
, __u32 max_seg_size
, __u8 max_header_size
,
1286 struct sk_buff
*skb
)
1288 struct tsap_cb
*self
;
1289 struct lsap_cb
*lsap
;
1295 self
= (struct tsap_cb
*) instance
;
1297 IRDA_ASSERT(self
!= NULL
, return;);
1298 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1299 IRDA_ASSERT(skb
!= NULL
, return;);
1301 lsap
= (struct lsap_cb
*) sap
;
1303 self
->max_seg_size
= max_seg_size
- TTP_HEADER
;
1304 self
->max_header_size
= max_header_size
+TTP_HEADER
;
1306 IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__
, self
->stsap_sel
);
1308 /* Need to update dtsap_sel if its equal to LSAP_ANY */
1309 self
->dtsap_sel
= lsap
->dlsap_sel
;
1311 n
= skb
->data
[0] & 0x7f;
1313 self
->send_credit
= n
;
1314 self
->tx_max_sdu_size
= 0;
1316 parameters
= skb
->data
[0] & 0x80;
1318 IRDA_ASSERT(skb
->len
>= TTP_HEADER
, return;);
1319 skb_pull(skb
, TTP_HEADER
);
1322 plen
= skb
->data
[0];
1324 ret
= irda_param_extract_all(self
, skb
->data
+1,
1325 IRDA_MIN(skb
->len
-1, plen
),
1328 /* Any errors in the parameter list? */
1330 IRDA_WARNING("%s: error extracting parameters\n",
1334 /* Do not accept this connection attempt */
1338 /* Remove parameters */
1339 skb_pull(skb
, IRDA_MIN(skb
->len
, plen
+1));
1342 if (self
->notify
.connect_indication
) {
1343 self
->notify
.connect_indication(self
->notify
.instance
, self
,
1344 qos
, self
->tx_max_sdu_size
,
1345 self
->max_header_size
, skb
);
1351 * Function irttp_connect_response (handle, userdata)
1353 * Service user is accepting the connection, just pass it down to
1357 int irttp_connect_response(struct tsap_cb
*self
, __u32 max_sdu_size
,
1358 struct sk_buff
*userdata
)
1360 struct sk_buff
*tx_skb
;
1365 IRDA_ASSERT(self
!= NULL
, return -1;);
1366 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1368 IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__
,
1371 /* Any userdata supplied? */
1372 if (userdata
== NULL
) {
1373 tx_skb
= alloc_skb(TTP_MAX_HEADER
+ TTP_SAR_HEADER
,
1378 /* Reserve space for MUX_CONTROL and LAP header */
1379 skb_reserve(tx_skb
, TTP_MAX_HEADER
+ TTP_SAR_HEADER
);
1383 * Check that the client has reserved enough space for
1386 IRDA_ASSERT(skb_headroom(userdata
) >= TTP_MAX_HEADER
,
1387 { dev_kfree_skb(userdata
); return -1; } );
1390 self
->avail_credit
= 0;
1391 self
->remote_credit
= 0;
1392 self
->rx_max_sdu_size
= max_sdu_size
;
1393 self
->rx_sdu_size
= 0;
1394 self
->rx_sdu_busy
= FALSE
;
1396 n
= self
->initial_credit
;
1398 /* Frame has only space for max 127 credits (7 bits) */
1400 self
->avail_credit
= n
- 127;
1404 self
->remote_credit
= n
;
1405 self
->connected
= TRUE
;
1408 if (max_sdu_size
> 0) {
1409 IRDA_ASSERT(skb_headroom(tx_skb
) >= (TTP_MAX_HEADER
+ TTP_SAR_HEADER
),
1410 { dev_kfree_skb(tx_skb
); return -1; } );
1412 /* Insert TTP header with SAR parameters */
1413 frame
= skb_push(tx_skb
, TTP_HEADER
+TTP_SAR_HEADER
);
1415 frame
[0] = TTP_PARAMETERS
| n
;
1416 frame
[1] = 0x04; /* Length */
1418 /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1419 /* TTP_SAR_HEADER, ¶m_info) */
1421 frame
[2] = 0x01; /* MaxSduSize */
1422 frame
[3] = 0x02; /* Value length */
1424 put_unaligned(cpu_to_be16((__u16
) max_sdu_size
),
1425 (__be16
*)(frame
+4));
1427 /* Insert TTP header */
1428 frame
= skb_push(tx_skb
, TTP_HEADER
);
1430 frame
[0] = n
& 0x7f;
1433 ret
= irlmp_connect_response(self
->lsap
, tx_skb
);
1437 EXPORT_SYMBOL(irttp_connect_response
);
1440 * Function irttp_dup (self, instance)
1442 * Duplicate TSAP, can be used by servers to confirm a connection on a
1443 * new TSAP so it can keep listening on the old one.
1445 struct tsap_cb
*irttp_dup(struct tsap_cb
*orig
, void *instance
)
1447 struct tsap_cb
*new;
1448 unsigned long flags
;
1450 IRDA_DEBUG(1, "%s()\n", __func__
);
1452 /* Protect our access to the old tsap instance */
1453 spin_lock_irqsave(&irttp
->tsaps
->hb_spinlock
, flags
);
1455 /* Find the old instance */
1456 if (!hashbin_find(irttp
->tsaps
, (long) orig
, NULL
)) {
1457 IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__
);
1458 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1462 /* Allocate a new instance */
1463 new = kmalloc(sizeof(struct tsap_cb
), GFP_ATOMIC
);
1465 IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__
);
1466 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1470 memcpy(new, orig
, sizeof(struct tsap_cb
));
1471 spin_lock_init(&new->lock
);
1473 /* We don't need the old instance any more */
1474 spin_unlock_irqrestore(&irttp
->tsaps
->hb_spinlock
, flags
);
1476 /* Try to dup the LSAP (may fail if we were too slow) */
1477 new->lsap
= irlmp_dup(orig
->lsap
, new);
1479 IRDA_DEBUG(0, "%s(), dup failed!\n", __func__
);
1484 /* Not everything should be copied */
1485 new->notify
.instance
= instance
;
1487 /* Initialize internal objects */
1488 irttp_init_tsap(new);
1490 /* This is locked */
1491 hashbin_insert(irttp
->tsaps
, (irda_queue_t
*) new, (long) new, NULL
);
1495 EXPORT_SYMBOL(irttp_dup
);
1498 * Function irttp_disconnect_request (self)
1500 * Close this connection please! If priority is high, the queued data
1501 * segments, if any, will be deallocated first
1504 int irttp_disconnect_request(struct tsap_cb
*self
, struct sk_buff
*userdata
,
1509 IRDA_ASSERT(self
!= NULL
, return -1;);
1510 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return -1;);
1512 /* Already disconnected? */
1513 if (!self
->connected
) {
1514 IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__
);
1516 dev_kfree_skb(userdata
);
1520 /* Disconnect already pending ?
1521 * We need to use an atomic operation to prevent reentry. This
1522 * function may be called from various context, like user, timer
1523 * for following a disconnect_indication() (i.e. net_bh).
1525 if(test_and_set_bit(0, &self
->disconnect_pend
)) {
1526 IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1529 dev_kfree_skb(userdata
);
1531 /* Try to make some progress */
1532 irttp_run_tx_queue(self
);
1537 * Check if there is still data segments in the transmit queue
1539 if (!skb_queue_empty(&self
->tx_queue
)) {
1540 if (priority
== P_HIGH
) {
1542 * No need to send the queued data, if we are
1543 * disconnecting right now since the data will
1544 * not have any usable connection to be sent on
1546 IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__
);
1547 irttp_flush_queues(self
);
1548 } else if (priority
== P_NORMAL
) {
1550 * Must delay disconnect until after all data segments
1551 * have been sent and the tx_queue is empty
1553 /* We'll reuse this one later for the disconnect */
1554 self
->disconnect_skb
= userdata
; /* May be NULL */
1556 irttp_run_tx_queue(self
);
1558 irttp_start_todo_timer(self
, HZ
/10);
1562 /* Note : we don't need to check if self->rx_queue is full and the
1563 * state of self->rx_sdu_busy because the disconnect response will
1564 * be sent at the LMP level (so even if the peer has its Tx queue
1565 * full of data). - Jean II */
1567 IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__
);
1568 self
->connected
= FALSE
;
1571 struct sk_buff
*tx_skb
;
1572 tx_skb
= alloc_skb(LMP_MAX_HEADER
, GFP_ATOMIC
);
1577 * Reserve space for MUX and LAP header
1579 skb_reserve(tx_skb
, LMP_MAX_HEADER
);
1583 ret
= irlmp_disconnect_request(self
->lsap
, userdata
);
1585 /* The disconnect is no longer pending */
1586 clear_bit(0, &self
->disconnect_pend
); /* FALSE */
1590 EXPORT_SYMBOL(irttp_disconnect_request
);
1593 * Function irttp_disconnect_indication (self, reason)
1595 * Disconnect indication, TSAP disconnected by peer?
1598 static void irttp_disconnect_indication(void *instance
, void *sap
,
1599 LM_REASON reason
, struct sk_buff
*skb
)
1601 struct tsap_cb
*self
;
1603 IRDA_DEBUG(4, "%s()\n", __func__
);
1605 self
= (struct tsap_cb
*) instance
;
1607 IRDA_ASSERT(self
!= NULL
, return;);
1608 IRDA_ASSERT(self
->magic
== TTP_TSAP_MAGIC
, return;);
1610 /* Prevent higher layer to send more data */
1611 self
->connected
= FALSE
;
1613 /* Check if client has already tried to close the TSAP */
1614 if (self
->close_pend
) {
1615 /* In this case, the higher layer is probably gone. Don't
1616 * bother it and clean up the remains - Jean II */
1619 irttp_close_tsap(self
);
1623 /* If we are here, we assume that is the higher layer is still
1624 * waiting for the disconnect notification and able to process it,
1625 * even if he tried to disconnect. Otherwise, it would have already
1626 * attempted to close the tsap and self->close_pend would be TRUE.
1629 /* No need to notify the client if has already tried to disconnect */
1630 if(self
->notify
.disconnect_indication
)
1631 self
->notify
.disconnect_indication(self
->notify
.instance
, self
,
1639 * Function irttp_do_data_indication (self, skb)
1641 * Try to deliver reassembled skb to layer above, and requeue it if that
1642 * for some reason should fail. We mark rx sdu as busy to apply back
1643 * pressure is necessary.
1645 static void irttp_do_data_indication(struct tsap_cb
*self
, struct sk_buff
*skb
)
1649 /* Check if client has already closed the TSAP and gone away */
1650 if (self
->close_pend
) {
1655 err
= self
->notify
.data_indication(self
->notify
.instance
, self
, skb
);
1657 /* Usually the layer above will notify that it's input queue is
1658 * starting to get filled by using the flow request, but this may
1659 * be difficult, so it can instead just refuse to eat it and just
1660 * give an error back
1663 IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__
);
1665 /* Make sure we take a break */
1666 self
->rx_sdu_busy
= TRUE
;
1668 /* Need to push the header in again */
1669 skb_push(skb
, TTP_HEADER
);
1670 skb
->data
[0] = 0x00; /* Make sure MORE bit is cleared */
1672 /* Put skb back on queue */
1673 skb_queue_head(&self
->rx_queue
, skb
);
1678 * Function irttp_run_rx_queue (self)
1680 * Check if we have any frames to be transmitted, or if we have any
1681 * available credit to give away.
1683 static void irttp_run_rx_queue(struct tsap_cb
*self
)
1685 struct sk_buff
*skb
;
1688 IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__
,
1689 self
->send_credit
, self
->avail_credit
, self
->remote_credit
);
1691 /* Get exclusive access to the rx queue, otherwise don't touch it */
1692 if (irda_lock(&self
->rx_queue_lock
) == FALSE
)
1696 * Reassemble all frames in receive queue and deliver them
1698 while (!self
->rx_sdu_busy
&& (skb
= skb_dequeue(&self
->rx_queue
))) {
1699 /* This bit will tell us if it's the last fragment or not */
1700 more
= skb
->data
[0] & 0x80;
1702 /* Remove TTP header */
1703 skb_pull(skb
, TTP_HEADER
);
1705 /* Add the length of the remaining data */
1706 self
->rx_sdu_size
+= skb
->len
;
1709 * If SAR is disabled, or user has requested no reassembly
1710 * of received fragments then we just deliver them
1711 * immediately. This can be requested by clients that
1712 * implements byte streams without any message boundaries
1714 if (self
->rx_max_sdu_size
== TTP_SAR_DISABLE
) {
1715 irttp_do_data_indication(self
, skb
);
1716 self
->rx_sdu_size
= 0;
1721 /* Check if this is a fragment, and not the last fragment */
1724 * Queue the fragment if we still are within the
1725 * limits of the maximum size of the rx_sdu
1727 if (self
->rx_sdu_size
<= self
->rx_max_sdu_size
) {
1728 IRDA_DEBUG(4, "%s(), queueing frag\n",
1730 skb_queue_tail(&self
->rx_fragments
, skb
);
1732 /* Free the part of the SDU that is too big */
1738 * This is the last fragment, so time to reassemble!
1740 if ((self
->rx_sdu_size
<= self
->rx_max_sdu_size
) ||
1741 (self
->rx_max_sdu_size
== TTP_SAR_UNBOUND
))
1744 * A little optimizing. Only queue the fragment if
1745 * there are other fragments. Since if this is the
1746 * last and only fragment, there is no need to
1749 if (!skb_queue_empty(&self
->rx_fragments
)) {
1750 skb_queue_tail(&self
->rx_fragments
,
1753 skb
= irttp_reassemble_skb(self
);
1756 /* Now we can deliver the reassembled skb */
1757 irttp_do_data_indication(self
, skb
);
1759 IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__
);
1761 /* Free the part of the SDU that is too big */
1764 /* Deliver only the valid but truncated part of SDU */
1765 skb
= irttp_reassemble_skb(self
);
1767 irttp_do_data_indication(self
, skb
);
1769 self
->rx_sdu_size
= 0;
1773 * It's not trivial to keep track of how many credits are available
1774 * by incrementing at each packet, because delivery may fail
1775 * (irttp_do_data_indication() may requeue the frame) and because
1776 * we need to take care of fragmentation.
1777 * We want the other side to send up to initial_credit packets.
1778 * We have some frames in our queues, and we have already allowed it
1779 * to send remote_credit.
1780 * No need to spinlock, write is atomic and self correcting...
1783 self
->avail_credit
= (self
->initial_credit
-
1784 (self
->remote_credit
+
1785 skb_queue_len(&self
->rx_queue
) +
1786 skb_queue_len(&self
->rx_fragments
)));
1788 /* Do we have too much credits to send to peer ? */
1789 if ((self
->remote_credit
<= TTP_RX_MIN_CREDIT
) &&
1790 (self
->avail_credit
> 0)) {
1791 /* Send explicit credit frame */
1792 irttp_give_credit(self
);
1793 /* Note : do *NOT* check if tx_queue is non-empty, that
1794 * will produce deadlocks. I repeat : send a credit frame
1795 * even if we have something to send in our Tx queue.
1796 * If we have credits, it means that our Tx queue is blocked.
1798 * Let's suppose the peer can't keep up with our Tx. He will
1799 * flow control us by not sending us any credits, and we
1800 * will stop Tx and start accumulating credits here.
1801 * Up to the point where the peer will stop its Tx queue,
1802 * for lack of credits.
1803 * Let's assume the peer application is single threaded.
1804 * It will block on Tx and never consume any Rx buffer.
1805 * Deadlock. Guaranteed. - Jean II
1810 self
->rx_queue_lock
= 0;
1813 #ifdef CONFIG_PROC_FS
1814 struct irttp_iter_state
{
1818 static void *irttp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1820 struct irttp_iter_state
*iter
= seq
->private;
1821 struct tsap_cb
*self
;
1823 /* Protect our access to the tsap list */
1824 spin_lock_irq(&irttp
->tsaps
->hb_spinlock
);
1827 for (self
= (struct tsap_cb
*) hashbin_get_first(irttp
->tsaps
);
1829 self
= (struct tsap_cb
*) hashbin_get_next(irttp
->tsaps
)) {
1830 if (iter
->id
== *pos
)
1838 static void *irttp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1840 struct irttp_iter_state
*iter
= seq
->private;
1844 return (void *) hashbin_get_next(irttp
->tsaps
);
1847 static void irttp_seq_stop(struct seq_file
*seq
, void *v
)
1849 spin_unlock_irq(&irttp
->tsaps
->hb_spinlock
);
1852 static int irttp_seq_show(struct seq_file
*seq
, void *v
)
1854 const struct irttp_iter_state
*iter
= seq
->private;
1855 const struct tsap_cb
*self
= v
;
1857 seq_printf(seq
, "TSAP %d, ", iter
->id
);
1858 seq_printf(seq
, "stsap_sel: %02x, ",
1860 seq_printf(seq
, "dtsap_sel: %02x\n",
1862 seq_printf(seq
, " connected: %s, ",
1863 self
->connected
? "TRUE":"FALSE");
1864 seq_printf(seq
, "avail credit: %d, ",
1865 self
->avail_credit
);
1866 seq_printf(seq
, "remote credit: %d, ",
1867 self
->remote_credit
);
1868 seq_printf(seq
, "send credit: %d\n",
1870 seq_printf(seq
, " tx packets: %lu, ",
1871 self
->stats
.tx_packets
);
1872 seq_printf(seq
, "rx packets: %lu, ",
1873 self
->stats
.rx_packets
);
1874 seq_printf(seq
, "tx_queue len: %u ",
1875 skb_queue_len(&self
->tx_queue
));
1876 seq_printf(seq
, "rx_queue len: %u\n",
1877 skb_queue_len(&self
->rx_queue
));
1878 seq_printf(seq
, " tx_sdu_busy: %s, ",
1879 self
->tx_sdu_busy
? "TRUE":"FALSE");
1880 seq_printf(seq
, "rx_sdu_busy: %s\n",
1881 self
->rx_sdu_busy
? "TRUE":"FALSE");
1882 seq_printf(seq
, " max_seg_size: %u, ",
1883 self
->max_seg_size
);
1884 seq_printf(seq
, "tx_max_sdu_size: %u, ",
1885 self
->tx_max_sdu_size
);
1886 seq_printf(seq
, "rx_max_sdu_size: %u\n",
1887 self
->rx_max_sdu_size
);
1889 seq_printf(seq
, " Used by (%s)\n\n",
1894 static const struct seq_operations irttp_seq_ops
= {
1895 .start
= irttp_seq_start
,
1896 .next
= irttp_seq_next
,
1897 .stop
= irttp_seq_stop
,
1898 .show
= irttp_seq_show
,
1901 static int irttp_seq_open(struct inode
*inode
, struct file
*file
)
1903 return seq_open_private(file
, &irttp_seq_ops
,
1904 sizeof(struct irttp_iter_state
));
1907 const struct file_operations irttp_seq_fops
= {
1908 .owner
= THIS_MODULE
,
1909 .open
= irttp_seq_open
,
1911 .llseek
= seq_lseek
,
1912 .release
= seq_release_private
,
1915 #endif /* PROC_FS */