rfkill: yet more minor kernel-doc fixes for rfkill_toggle_radio
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blobded8f9ed246eac8550ffe59890393159ed391022
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
53 #include <asm/tlbflush.h>
55 struct kmem_cache *anon_vma_cachep;
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
60 struct anon_vma *anon_vma = vma->anon_vma;
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 allocated = NULL;
87 spin_unlock(&mm->page_table_lock);
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
94 return 0;
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
103 void __anon_vma_link(struct vm_area_struct *vma)
105 struct anon_vma *anon_vma = vma->anon_vma;
107 if (anon_vma)
108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
111 void anon_vma_link(struct vm_area_struct *vma)
113 struct anon_vma *anon_vma = vma->anon_vma;
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 spin_unlock(&anon_vma->lock);
122 void anon_vma_unlink(struct vm_area_struct *vma)
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
127 if (!anon_vma)
128 return;
130 spin_lock(&anon_vma->lock);
131 list_del(&vma->anon_vma_node);
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
137 if (empty)
138 anon_vma_free(anon_vma);
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
143 struct anon_vma *anon_vma = data;
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
149 void __init anon_vma_init(void)
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
161 struct anon_vma *anon_vma;
162 unsigned long anon_mapping;
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
173 return anon_vma;
174 out:
175 rcu_read_unlock();
176 return NULL;
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 /* page should be within @vma mapping range */
199 return -EFAULT;
201 return address;
205 * At what user virtual address is page expected in vma? checking that the
206 * page matches the vma: currently only used on anon pages, by unuse_vma;
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
224 * Check that @page is mapped at @address into @mm.
226 * If @sync is false, page_check_address may perform a racy check to avoid
227 * the page table lock when the pte is not present (helpful when reclaiming
228 * highly shared pages).
230 * On success returns with pte mapped and locked.
232 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
233 unsigned long address, spinlock_t **ptlp, int sync)
235 pgd_t *pgd;
236 pud_t *pud;
237 pmd_t *pmd;
238 pte_t *pte;
239 spinlock_t *ptl;
241 pgd = pgd_offset(mm, address);
242 if (!pgd_present(*pgd))
243 return NULL;
245 pud = pud_offset(pgd, address);
246 if (!pud_present(*pud))
247 return NULL;
249 pmd = pmd_offset(pud, address);
250 if (!pmd_present(*pmd))
251 return NULL;
253 pte = pte_offset_map(pmd, address);
254 /* Make a quick check before getting the lock */
255 if (!sync && !pte_present(*pte)) {
256 pte_unmap(pte);
257 return NULL;
260 ptl = pte_lockptr(mm, pmd);
261 spin_lock(ptl);
262 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
263 *ptlp = ptl;
264 return pte;
266 pte_unmap_unlock(pte, ptl);
267 return NULL;
271 * Subfunctions of page_referenced: page_referenced_one called
272 * repeatedly from either page_referenced_anon or page_referenced_file.
274 static int page_referenced_one(struct page *page,
275 struct vm_area_struct *vma, unsigned int *mapcount)
277 struct mm_struct *mm = vma->vm_mm;
278 unsigned long address;
279 pte_t *pte;
280 spinlock_t *ptl;
281 int referenced = 0;
283 address = vma_address(page, vma);
284 if (address == -EFAULT)
285 goto out;
287 pte = page_check_address(page, mm, address, &ptl, 0);
288 if (!pte)
289 goto out;
291 if (vma->vm_flags & VM_LOCKED) {
292 referenced++;
293 *mapcount = 1; /* break early from loop */
294 } else if (ptep_clear_flush_young(vma, address, pte))
295 referenced++;
297 /* Pretend the page is referenced if the task has the
298 swap token and is in the middle of a page fault. */
299 if (mm != current->mm && has_swap_token(mm) &&
300 rwsem_is_locked(&mm->mmap_sem))
301 referenced++;
303 (*mapcount)--;
304 pte_unmap_unlock(pte, ptl);
305 out:
306 return referenced;
309 static int page_referenced_anon(struct page *page,
310 struct mem_cgroup *mem_cont)
312 unsigned int mapcount;
313 struct anon_vma *anon_vma;
314 struct vm_area_struct *vma;
315 int referenced = 0;
317 anon_vma = page_lock_anon_vma(page);
318 if (!anon_vma)
319 return referenced;
321 mapcount = page_mapcount(page);
322 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
324 * If we are reclaiming on behalf of a cgroup, skip
325 * counting on behalf of references from different
326 * cgroups
328 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
329 continue;
330 referenced += page_referenced_one(page, vma, &mapcount);
331 if (!mapcount)
332 break;
335 page_unlock_anon_vma(anon_vma);
336 return referenced;
340 * page_referenced_file - referenced check for object-based rmap
341 * @page: the page we're checking references on.
342 * @mem_cont: target memory controller
344 * For an object-based mapped page, find all the places it is mapped and
345 * check/clear the referenced flag. This is done by following the page->mapping
346 * pointer, then walking the chain of vmas it holds. It returns the number
347 * of references it found.
349 * This function is only called from page_referenced for object-based pages.
351 static int page_referenced_file(struct page *page,
352 struct mem_cgroup *mem_cont)
354 unsigned int mapcount;
355 struct address_space *mapping = page->mapping;
356 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
357 struct vm_area_struct *vma;
358 struct prio_tree_iter iter;
359 int referenced = 0;
362 * The caller's checks on page->mapping and !PageAnon have made
363 * sure that this is a file page: the check for page->mapping
364 * excludes the case just before it gets set on an anon page.
366 BUG_ON(PageAnon(page));
369 * The page lock not only makes sure that page->mapping cannot
370 * suddenly be NULLified by truncation, it makes sure that the
371 * structure at mapping cannot be freed and reused yet,
372 * so we can safely take mapping->i_mmap_lock.
374 BUG_ON(!PageLocked(page));
376 spin_lock(&mapping->i_mmap_lock);
379 * i_mmap_lock does not stabilize mapcount at all, but mapcount
380 * is more likely to be accurate if we note it after spinning.
382 mapcount = page_mapcount(page);
384 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
386 * If we are reclaiming on behalf of a cgroup, skip
387 * counting on behalf of references from different
388 * cgroups
390 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
391 continue;
392 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
393 == (VM_LOCKED|VM_MAYSHARE)) {
394 referenced++;
395 break;
397 referenced += page_referenced_one(page, vma, &mapcount);
398 if (!mapcount)
399 break;
402 spin_unlock(&mapping->i_mmap_lock);
403 return referenced;
407 * page_referenced - test if the page was referenced
408 * @page: the page to test
409 * @is_locked: caller holds lock on the page
410 * @mem_cont: target memory controller
412 * Quick test_and_clear_referenced for all mappings to a page,
413 * returns the number of ptes which referenced the page.
415 int page_referenced(struct page *page, int is_locked,
416 struct mem_cgroup *mem_cont)
418 int referenced = 0;
420 if (TestClearPageReferenced(page))
421 referenced++;
423 if (page_mapped(page) && page->mapping) {
424 if (PageAnon(page))
425 referenced += page_referenced_anon(page, mem_cont);
426 else if (is_locked)
427 referenced += page_referenced_file(page, mem_cont);
428 else if (TestSetPageLocked(page))
429 referenced++;
430 else {
431 if (page->mapping)
432 referenced +=
433 page_referenced_file(page, mem_cont);
434 unlock_page(page);
438 if (page_test_and_clear_young(page))
439 referenced++;
441 return referenced;
444 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
446 struct mm_struct *mm = vma->vm_mm;
447 unsigned long address;
448 pte_t *pte;
449 spinlock_t *ptl;
450 int ret = 0;
452 address = vma_address(page, vma);
453 if (address == -EFAULT)
454 goto out;
456 pte = page_check_address(page, mm, address, &ptl, 1);
457 if (!pte)
458 goto out;
460 if (pte_dirty(*pte) || pte_write(*pte)) {
461 pte_t entry;
463 flush_cache_page(vma, address, pte_pfn(*pte));
464 entry = ptep_clear_flush(vma, address, pte);
465 entry = pte_wrprotect(entry);
466 entry = pte_mkclean(entry);
467 set_pte_at(mm, address, pte, entry);
468 ret = 1;
471 pte_unmap_unlock(pte, ptl);
472 out:
473 return ret;
476 static int page_mkclean_file(struct address_space *mapping, struct page *page)
478 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
479 struct vm_area_struct *vma;
480 struct prio_tree_iter iter;
481 int ret = 0;
483 BUG_ON(PageAnon(page));
485 spin_lock(&mapping->i_mmap_lock);
486 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
487 if (vma->vm_flags & VM_SHARED)
488 ret += page_mkclean_one(page, vma);
490 spin_unlock(&mapping->i_mmap_lock);
491 return ret;
494 int page_mkclean(struct page *page)
496 int ret = 0;
498 BUG_ON(!PageLocked(page));
500 if (page_mapped(page)) {
501 struct address_space *mapping = page_mapping(page);
502 if (mapping) {
503 ret = page_mkclean_file(mapping, page);
504 if (page_test_dirty(page)) {
505 page_clear_dirty(page);
506 ret = 1;
511 return ret;
513 EXPORT_SYMBOL_GPL(page_mkclean);
516 * __page_set_anon_rmap - setup new anonymous rmap
517 * @page: the page to add the mapping to
518 * @vma: the vm area in which the mapping is added
519 * @address: the user virtual address mapped
521 static void __page_set_anon_rmap(struct page *page,
522 struct vm_area_struct *vma, unsigned long address)
524 struct anon_vma *anon_vma = vma->anon_vma;
526 BUG_ON(!anon_vma);
527 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
528 page->mapping = (struct address_space *) anon_vma;
530 page->index = linear_page_index(vma, address);
533 * nr_mapped state can be updated without turning off
534 * interrupts because it is not modified via interrupt.
536 __inc_zone_page_state(page, NR_ANON_PAGES);
540 * __page_check_anon_rmap - sanity check anonymous rmap addition
541 * @page: the page to add the mapping to
542 * @vma: the vm area in which the mapping is added
543 * @address: the user virtual address mapped
545 static void __page_check_anon_rmap(struct page *page,
546 struct vm_area_struct *vma, unsigned long address)
548 #ifdef CONFIG_DEBUG_VM
550 * The page's anon-rmap details (mapping and index) are guaranteed to
551 * be set up correctly at this point.
553 * We have exclusion against page_add_anon_rmap because the caller
554 * always holds the page locked, except if called from page_dup_rmap,
555 * in which case the page is already known to be setup.
557 * We have exclusion against page_add_new_anon_rmap because those pages
558 * are initially only visible via the pagetables, and the pte is locked
559 * over the call to page_add_new_anon_rmap.
561 struct anon_vma *anon_vma = vma->anon_vma;
562 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
563 BUG_ON(page->mapping != (struct address_space *)anon_vma);
564 BUG_ON(page->index != linear_page_index(vma, address));
565 #endif
569 * page_add_anon_rmap - add pte mapping to an anonymous page
570 * @page: the page to add the mapping to
571 * @vma: the vm area in which the mapping is added
572 * @address: the user virtual address mapped
574 * The caller needs to hold the pte lock and the page must be locked.
576 void page_add_anon_rmap(struct page *page,
577 struct vm_area_struct *vma, unsigned long address)
579 VM_BUG_ON(!PageLocked(page));
580 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
581 if (atomic_inc_and_test(&page->_mapcount))
582 __page_set_anon_rmap(page, vma, address);
583 else {
584 __page_check_anon_rmap(page, vma, address);
586 * We unconditionally charged during prepare, we uncharge here
587 * This takes care of balancing the reference counts
589 mem_cgroup_uncharge_page(page);
594 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
595 * @page: the page to add the mapping to
596 * @vma: the vm area in which the mapping is added
597 * @address: the user virtual address mapped
599 * Same as page_add_anon_rmap but must only be called on *new* pages.
600 * This means the inc-and-test can be bypassed.
601 * Page does not have to be locked.
603 void page_add_new_anon_rmap(struct page *page,
604 struct vm_area_struct *vma, unsigned long address)
606 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
607 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
608 __page_set_anon_rmap(page, vma, address);
612 * page_add_file_rmap - add pte mapping to a file page
613 * @page: the page to add the mapping to
615 * The caller needs to hold the pte lock.
617 void page_add_file_rmap(struct page *page)
619 if (atomic_inc_and_test(&page->_mapcount))
620 __inc_zone_page_state(page, NR_FILE_MAPPED);
621 else
623 * We unconditionally charged during prepare, we uncharge here
624 * This takes care of balancing the reference counts
626 mem_cgroup_uncharge_page(page);
629 #ifdef CONFIG_DEBUG_VM
631 * page_dup_rmap - duplicate pte mapping to a page
632 * @page: the page to add the mapping to
633 * @vma: the vm area being duplicated
634 * @address: the user virtual address mapped
636 * For copy_page_range only: minimal extract from page_add_file_rmap /
637 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
638 * quicker.
640 * The caller needs to hold the pte lock.
642 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
644 BUG_ON(page_mapcount(page) == 0);
645 if (PageAnon(page))
646 __page_check_anon_rmap(page, vma, address);
647 atomic_inc(&page->_mapcount);
649 #endif
652 * page_remove_rmap - take down pte mapping from a page
653 * @page: page to remove mapping from
654 * @vma: the vm area in which the mapping is removed
656 * The caller needs to hold the pte lock.
658 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
660 if (atomic_add_negative(-1, &page->_mapcount)) {
661 if (unlikely(page_mapcount(page) < 0)) {
662 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
663 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
664 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
665 printk (KERN_EMERG " page->count = %x\n", page_count(page));
666 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
667 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
668 if (vma->vm_ops) {
669 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
671 if (vma->vm_file && vma->vm_file->f_op)
672 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
673 BUG();
677 * It would be tidy to reset the PageAnon mapping here,
678 * but that might overwrite a racing page_add_anon_rmap
679 * which increments mapcount after us but sets mapping
680 * before us: so leave the reset to free_hot_cold_page,
681 * and remember that it's only reliable while mapped.
682 * Leaving it set also helps swapoff to reinstate ptes
683 * faster for those pages still in swapcache.
685 if (page_test_dirty(page)) {
686 page_clear_dirty(page);
687 set_page_dirty(page);
689 mem_cgroup_uncharge_page(page);
691 __dec_zone_page_state(page,
692 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
697 * Subfunctions of try_to_unmap: try_to_unmap_one called
698 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
700 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
701 int migration)
703 struct mm_struct *mm = vma->vm_mm;
704 unsigned long address;
705 pte_t *pte;
706 pte_t pteval;
707 spinlock_t *ptl;
708 int ret = SWAP_AGAIN;
710 address = vma_address(page, vma);
711 if (address == -EFAULT)
712 goto out;
714 pte = page_check_address(page, mm, address, &ptl, 0);
715 if (!pte)
716 goto out;
719 * If the page is mlock()d, we cannot swap it out.
720 * If it's recently referenced (perhaps page_referenced
721 * skipped over this mm) then we should reactivate it.
723 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
724 (ptep_clear_flush_young(vma, address, pte)))) {
725 ret = SWAP_FAIL;
726 goto out_unmap;
729 /* Nuke the page table entry. */
730 flush_cache_page(vma, address, page_to_pfn(page));
731 pteval = ptep_clear_flush(vma, address, pte);
733 /* Move the dirty bit to the physical page now the pte is gone. */
734 if (pte_dirty(pteval))
735 set_page_dirty(page);
737 /* Update high watermark before we lower rss */
738 update_hiwater_rss(mm);
740 if (PageAnon(page)) {
741 swp_entry_t entry = { .val = page_private(page) };
743 if (PageSwapCache(page)) {
745 * Store the swap location in the pte.
746 * See handle_pte_fault() ...
748 swap_duplicate(entry);
749 if (list_empty(&mm->mmlist)) {
750 spin_lock(&mmlist_lock);
751 if (list_empty(&mm->mmlist))
752 list_add(&mm->mmlist, &init_mm.mmlist);
753 spin_unlock(&mmlist_lock);
755 dec_mm_counter(mm, anon_rss);
756 #ifdef CONFIG_MIGRATION
757 } else {
759 * Store the pfn of the page in a special migration
760 * pte. do_swap_page() will wait until the migration
761 * pte is removed and then restart fault handling.
763 BUG_ON(!migration);
764 entry = make_migration_entry(page, pte_write(pteval));
765 #endif
767 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
768 BUG_ON(pte_file(*pte));
769 } else
770 #ifdef CONFIG_MIGRATION
771 if (migration) {
772 /* Establish migration entry for a file page */
773 swp_entry_t entry;
774 entry = make_migration_entry(page, pte_write(pteval));
775 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
776 } else
777 #endif
778 dec_mm_counter(mm, file_rss);
781 page_remove_rmap(page, vma);
782 page_cache_release(page);
784 out_unmap:
785 pte_unmap_unlock(pte, ptl);
786 out:
787 return ret;
791 * objrmap doesn't work for nonlinear VMAs because the assumption that
792 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
793 * Consequently, given a particular page and its ->index, we cannot locate the
794 * ptes which are mapping that page without an exhaustive linear search.
796 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
797 * maps the file to which the target page belongs. The ->vm_private_data field
798 * holds the current cursor into that scan. Successive searches will circulate
799 * around the vma's virtual address space.
801 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
802 * more scanning pressure is placed against them as well. Eventually pages
803 * will become fully unmapped and are eligible for eviction.
805 * For very sparsely populated VMAs this is a little inefficient - chances are
806 * there there won't be many ptes located within the scan cluster. In this case
807 * maybe we could scan further - to the end of the pte page, perhaps.
809 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
810 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
812 static void try_to_unmap_cluster(unsigned long cursor,
813 unsigned int *mapcount, struct vm_area_struct *vma)
815 struct mm_struct *mm = vma->vm_mm;
816 pgd_t *pgd;
817 pud_t *pud;
818 pmd_t *pmd;
819 pte_t *pte;
820 pte_t pteval;
821 spinlock_t *ptl;
822 struct page *page;
823 unsigned long address;
824 unsigned long end;
826 address = (vma->vm_start + cursor) & CLUSTER_MASK;
827 end = address + CLUSTER_SIZE;
828 if (address < vma->vm_start)
829 address = vma->vm_start;
830 if (end > vma->vm_end)
831 end = vma->vm_end;
833 pgd = pgd_offset(mm, address);
834 if (!pgd_present(*pgd))
835 return;
837 pud = pud_offset(pgd, address);
838 if (!pud_present(*pud))
839 return;
841 pmd = pmd_offset(pud, address);
842 if (!pmd_present(*pmd))
843 return;
845 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
847 /* Update high watermark before we lower rss */
848 update_hiwater_rss(mm);
850 for (; address < end; pte++, address += PAGE_SIZE) {
851 if (!pte_present(*pte))
852 continue;
853 page = vm_normal_page(vma, address, *pte);
854 BUG_ON(!page || PageAnon(page));
856 if (ptep_clear_flush_young(vma, address, pte))
857 continue;
859 /* Nuke the page table entry. */
860 flush_cache_page(vma, address, pte_pfn(*pte));
861 pteval = ptep_clear_flush(vma, address, pte);
863 /* If nonlinear, store the file page offset in the pte. */
864 if (page->index != linear_page_index(vma, address))
865 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
867 /* Move the dirty bit to the physical page now the pte is gone. */
868 if (pte_dirty(pteval))
869 set_page_dirty(page);
871 page_remove_rmap(page, vma);
872 page_cache_release(page);
873 dec_mm_counter(mm, file_rss);
874 (*mapcount)--;
876 pte_unmap_unlock(pte - 1, ptl);
879 static int try_to_unmap_anon(struct page *page, int migration)
881 struct anon_vma *anon_vma;
882 struct vm_area_struct *vma;
883 int ret = SWAP_AGAIN;
885 anon_vma = page_lock_anon_vma(page);
886 if (!anon_vma)
887 return ret;
889 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
890 ret = try_to_unmap_one(page, vma, migration);
891 if (ret == SWAP_FAIL || !page_mapped(page))
892 break;
895 page_unlock_anon_vma(anon_vma);
896 return ret;
900 * try_to_unmap_file - unmap file page using the object-based rmap method
901 * @page: the page to unmap
902 * @migration: migration flag
904 * Find all the mappings of a page using the mapping pointer and the vma chains
905 * contained in the address_space struct it points to.
907 * This function is only called from try_to_unmap for object-based pages.
909 static int try_to_unmap_file(struct page *page, int migration)
911 struct address_space *mapping = page->mapping;
912 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
913 struct vm_area_struct *vma;
914 struct prio_tree_iter iter;
915 int ret = SWAP_AGAIN;
916 unsigned long cursor;
917 unsigned long max_nl_cursor = 0;
918 unsigned long max_nl_size = 0;
919 unsigned int mapcount;
921 spin_lock(&mapping->i_mmap_lock);
922 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
923 ret = try_to_unmap_one(page, vma, migration);
924 if (ret == SWAP_FAIL || !page_mapped(page))
925 goto out;
928 if (list_empty(&mapping->i_mmap_nonlinear))
929 goto out;
931 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
932 shared.vm_set.list) {
933 if ((vma->vm_flags & VM_LOCKED) && !migration)
934 continue;
935 cursor = (unsigned long) vma->vm_private_data;
936 if (cursor > max_nl_cursor)
937 max_nl_cursor = cursor;
938 cursor = vma->vm_end - vma->vm_start;
939 if (cursor > max_nl_size)
940 max_nl_size = cursor;
943 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
944 ret = SWAP_FAIL;
945 goto out;
949 * We don't try to search for this page in the nonlinear vmas,
950 * and page_referenced wouldn't have found it anyway. Instead
951 * just walk the nonlinear vmas trying to age and unmap some.
952 * The mapcount of the page we came in with is irrelevant,
953 * but even so use it as a guide to how hard we should try?
955 mapcount = page_mapcount(page);
956 if (!mapcount)
957 goto out;
958 cond_resched_lock(&mapping->i_mmap_lock);
960 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
961 if (max_nl_cursor == 0)
962 max_nl_cursor = CLUSTER_SIZE;
964 do {
965 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
966 shared.vm_set.list) {
967 if ((vma->vm_flags & VM_LOCKED) && !migration)
968 continue;
969 cursor = (unsigned long) vma->vm_private_data;
970 while ( cursor < max_nl_cursor &&
971 cursor < vma->vm_end - vma->vm_start) {
972 try_to_unmap_cluster(cursor, &mapcount, vma);
973 cursor += CLUSTER_SIZE;
974 vma->vm_private_data = (void *) cursor;
975 if ((int)mapcount <= 0)
976 goto out;
978 vma->vm_private_data = (void *) max_nl_cursor;
980 cond_resched_lock(&mapping->i_mmap_lock);
981 max_nl_cursor += CLUSTER_SIZE;
982 } while (max_nl_cursor <= max_nl_size);
985 * Don't loop forever (perhaps all the remaining pages are
986 * in locked vmas). Reset cursor on all unreserved nonlinear
987 * vmas, now forgetting on which ones it had fallen behind.
989 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
990 vma->vm_private_data = NULL;
991 out:
992 spin_unlock(&mapping->i_mmap_lock);
993 return ret;
997 * try_to_unmap - try to remove all page table mappings to a page
998 * @page: the page to get unmapped
999 * @migration: migration flag
1001 * Tries to remove all the page table entries which are mapping this
1002 * page, used in the pageout path. Caller must hold the page lock.
1003 * Return values are:
1005 * SWAP_SUCCESS - we succeeded in removing all mappings
1006 * SWAP_AGAIN - we missed a mapping, try again later
1007 * SWAP_FAIL - the page is unswappable
1009 int try_to_unmap(struct page *page, int migration)
1011 int ret;
1013 BUG_ON(!PageLocked(page));
1015 if (PageAnon(page))
1016 ret = try_to_unmap_anon(page, migration);
1017 else
1018 ret = try_to_unmap_file(page, migration);
1020 if (!page_mapped(page))
1021 ret = SWAP_SUCCESS;
1022 return ret;