1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
82 #include <linux/slab.h>
85 #include <asm/system.h>
86 #include <asm/div64.h>
91 #include "s2io-regs.h"
93 #define DRV_VERSION "2.0.26.25"
95 /* S2io Driver name & version. */
96 static char s2io_driver_name
[] = "Neterion";
97 static char s2io_driver_version
[] = DRV_VERSION
;
99 static int rxd_size
[2] = {32, 48};
100 static int rxd_count
[2] = {127, 85};
102 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
106 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
107 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
125 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
127 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
139 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
141 {"tmac_data_octets"},
145 {"tmac_pause_ctrl_frms"},
149 {"tmac_any_err_frms"},
150 {"tmac_ttl_less_fb_octets"},
151 {"tmac_vld_ip_octets"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
165 {"rmac_out_rng_len_err_frms"},
167 {"rmac_pause_ctrl_frms"},
168 {"rmac_unsup_ctrl_frms"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
172 {"rmac_discarded_frms"},
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
179 {"rmac_jabber_frms"},
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
193 {"rmac_err_drp_udp"},
194 {"rmac_xgmii_err_sym"},
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
214 {"rmac_accepted_ip"},
218 {"new_rd_req_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
223 {"new_wr_req_rtry_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
236 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
255 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
323 {"prc_pcix_err_cnt"},
330 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
340 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
352 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
353 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
354 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
355 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
356 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
357 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
361 static void s2io_vlan_rx_register(struct net_device
*dev
,
362 struct vlan_group
*grp
)
365 struct s2io_nic
*nic
= netdev_priv(dev
);
366 unsigned long flags
[MAX_TX_FIFOS
];
367 struct config_param
*config
= &nic
->config
;
368 struct mac_info
*mac_control
= &nic
->mac_control
;
370 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
371 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
373 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
378 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
379 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
381 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
389 struct s2io_nic
*nic
= netdev_priv(dev
);
390 unsigned long flags
[MAX_TX_FIFOS
];
391 struct config_param
*config
= &nic
->config
;
392 struct mac_info
*mac_control
= &nic
->mac_control
;
394 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
395 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
397 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
401 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
403 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
404 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
406 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
411 * Constants to be programmed into the Xena's registers, to configure
416 static const u64 herc_act_dtx_cfg
[] = {
418 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
420 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
422 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
424 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
426 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
428 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
430 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
432 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
437 static const u64 xena_dtx_cfg
[] = {
439 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
441 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
443 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
445 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
447 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
449 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
454 * Constants for Fixing the MacAddress problem seen mostly on
457 static const u64 fix_mac
[] = {
458 0x0060000000000000ULL
, 0x0060600000000000ULL
,
459 0x0040600000000000ULL
, 0x0000600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0060600000000000ULL
,
469 0x0020600000000000ULL
, 0x0060600000000000ULL
,
470 0x0020600000000000ULL
, 0x0000600000000000ULL
,
471 0x0040600000000000ULL
, 0x0060600000000000ULL
,
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION
);
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
481 S2IO_PARM_INT(rx_ring_num
, 1);
482 S2IO_PARM_INT(multiq
, 0);
483 S2IO_PARM_INT(rx_ring_mode
, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
485 S2IO_PARM_INT(rmac_pause_time
, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
488 S2IO_PARM_INT(shared_splits
, 0);
489 S2IO_PARM_INT(tmac_util_period
, 5);
490 S2IO_PARM_INT(rmac_util_period
, 5);
491 S2IO_PARM_INT(l3l4hdr_size
, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency
, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type
, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable
;
500 module_param_named(lro
, lro_enable
, uint
, 0);
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
505 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts
, 0);
508 S2IO_PARM_INT(napi
, 1);
509 S2IO_PARM_INT(ufo
, 0);
510 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
512 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
513 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
514 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
515 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
516 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
517 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
519 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
520 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
521 module_param_array(rts_frm_len
, uint
, NULL
, 0);
525 * This table lists all the devices that this driver supports.
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
528 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
529 PCI_ANY_ID
, PCI_ANY_ID
},
530 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
531 PCI_ANY_ID
, PCI_ANY_ID
},
532 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
533 PCI_ANY_ID
, PCI_ANY_ID
},
534 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
535 PCI_ANY_ID
, PCI_ANY_ID
},
539 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
541 static struct pci_error_handlers s2io_err_handler
= {
542 .error_detected
= s2io_io_error_detected
,
543 .slot_reset
= s2io_io_slot_reset
,
544 .resume
= s2io_io_resume
,
547 static struct pci_driver s2io_driver
= {
549 .id_table
= s2io_tbl
,
550 .probe
= s2io_init_nic
,
551 .remove
= __devexit_p(s2io_rem_nic
),
552 .err_handler
= &s2io_err_handler
,
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
561 if (!sp
->config
.multiq
) {
564 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
565 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
567 netif_tx_stop_all_queues(sp
->dev
);
570 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
572 if (!sp
->config
.multiq
)
573 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
576 netif_tx_stop_all_queues(sp
->dev
);
579 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
581 if (!sp
->config
.multiq
) {
584 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
585 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
587 netif_tx_start_all_queues(sp
->dev
);
590 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
592 if (!sp
->config
.multiq
)
593 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
596 netif_tx_start_all_queues(sp
->dev
);
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
601 if (!sp
->config
.multiq
) {
604 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
605 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
607 netif_tx_wake_all_queues(sp
->dev
);
610 static inline void s2io_wake_tx_queue(
611 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
615 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
616 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
617 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
618 if (netif_queue_stopped(fifo
->dev
)) {
619 fifo
->queue_state
= FIFO_QUEUE_START
;
620 netif_wake_queue(fifo
->dev
);
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
630 * Rx descriptors and the statistics block.
633 static int init_shared_mem(struct s2io_nic
*nic
)
636 void *tmp_v_addr
, *tmp_v_addr_next
;
637 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
638 struct RxD_block
*pre_rxd_blk
= NULL
;
640 int lst_size
, lst_per_page
;
641 struct net_device
*dev
= nic
->dev
;
644 struct config_param
*config
= &nic
->config
;
645 struct mac_info
*mac_control
= &nic
->mac_control
;
646 unsigned long long mem_allocated
= 0;
648 /* Allocation and initialization of TXDLs in FIFOs */
650 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
651 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
653 size
+= tx_cfg
->fifo_len
;
655 if (size
> MAX_AVAILABLE_TXDS
) {
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size
, MAX_AVAILABLE_TXDS
);
663 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
664 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
666 size
= tx_cfg
->fifo_len
;
668 * Legal values are from 2 to 8192
671 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
678 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
679 lst_per_page
= PAGE_SIZE
/ lst_size
;
681 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
682 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
683 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
684 int fifo_len
= tx_cfg
->fifo_len
;
685 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
687 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
688 if (!fifo
->list_info
) {
689 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
692 mem_allocated
+= list_holder_size
;
694 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
695 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
697 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
698 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
700 fifo
->tx_curr_put_info
.offset
= 0;
701 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
702 fifo
->tx_curr_get_info
.offset
= 0;
703 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
706 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
709 for (j
= 0; j
< page_num
; j
++) {
713 tmp_v
= pci_alloc_consistent(nic
->pdev
,
717 "pci_alloc_consistent failed for TxDL\n");
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
726 mac_control
->zerodma_virt_addr
= tmp_v
;
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
731 tmp_v
= pci_alloc_consistent(nic
->pdev
,
735 "pci_alloc_consistent failed for TxDL\n");
738 mem_allocated
+= PAGE_SIZE
;
740 while (k
< lst_per_page
) {
741 int l
= (j
* lst_per_page
) + k
;
742 if (l
== tx_cfg
->fifo_len
)
744 fifo
->list_info
[l
].list_virt_addr
=
745 tmp_v
+ (k
* lst_size
);
746 fifo
->list_info
[l
].list_phy_addr
=
747 tmp_p
+ (k
* lst_size
);
753 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
754 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
755 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
757 size
= tx_cfg
->fifo_len
;
758 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
759 if (!fifo
->ufo_in_band_v
)
761 mem_allocated
+= (size
* sizeof(u64
));
764 /* Allocation and initialization of RXDs in Rings */
766 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
767 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
768 struct ring_info
*ring
= &mac_control
->rings
[i
];
770 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
771 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
776 size
+= rx_cfg
->num_rxd
;
777 ring
->block_count
= rx_cfg
->num_rxd
/
778 (rxd_count
[nic
->rxd_mode
] + 1);
779 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
781 if (nic
->rxd_mode
== RXD_MODE_1
)
782 size
= (size
* (sizeof(struct RxD1
)));
784 size
= (size
* (sizeof(struct RxD3
)));
786 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
787 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
788 struct ring_info
*ring
= &mac_control
->rings
[i
];
790 ring
->rx_curr_get_info
.block_index
= 0;
791 ring
->rx_curr_get_info
.offset
= 0;
792 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
793 ring
->rx_curr_put_info
.block_index
= 0;
794 ring
->rx_curr_put_info
.offset
= 0;
795 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
798 ring
->lro
= lro_enable
;
800 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
801 /* Allocating all the Rx blocks */
802 for (j
= 0; j
< blk_cnt
; j
++) {
803 struct rx_block_info
*rx_blocks
;
806 rx_blocks
= &ring
->rx_blocks
[j
];
807 size
= SIZE_OF_BLOCK
; /* size is always page size */
808 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
810 if (tmp_v_addr
== NULL
) {
812 * In case of failure, free_shared_mem()
813 * is called, which should free any
814 * memory that was alloced till the
817 rx_blocks
->block_virt_addr
= tmp_v_addr
;
820 mem_allocated
+= size
;
821 memset(tmp_v_addr
, 0, size
);
823 size
= sizeof(struct rxd_info
) *
824 rxd_count
[nic
->rxd_mode
];
825 rx_blocks
->block_virt_addr
= tmp_v_addr
;
826 rx_blocks
->block_dma_addr
= tmp_p_addr
;
827 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
828 if (!rx_blocks
->rxds
)
830 mem_allocated
+= size
;
831 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
832 rx_blocks
->rxds
[l
].virt_addr
=
833 rx_blocks
->block_virt_addr
+
834 (rxd_size
[nic
->rxd_mode
] * l
);
835 rx_blocks
->rxds
[l
].dma_addr
=
836 rx_blocks
->block_dma_addr
+
837 (rxd_size
[nic
->rxd_mode
] * l
);
840 /* Interlinking all Rx Blocks */
841 for (j
= 0; j
< blk_cnt
; j
++) {
842 int next
= (j
+ 1) % blk_cnt
;
843 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
844 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
845 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
846 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
848 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
849 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
850 (unsigned long)tmp_v_addr_next
;
851 pre_rxd_blk
->pNext_RxD_Blk_physical
=
852 (u64
)tmp_p_addr_next
;
855 if (nic
->rxd_mode
== RXD_MODE_3B
) {
857 * Allocation of Storages for buffer addresses in 2BUFF mode
858 * and the buffers as well.
860 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
861 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
862 struct ring_info
*ring
= &mac_control
->rings
[i
];
864 blk_cnt
= rx_cfg
->num_rxd
/
865 (rxd_count
[nic
->rxd_mode
] + 1);
866 size
= sizeof(struct buffAdd
*) * blk_cnt
;
867 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
870 mem_allocated
+= size
;
871 for (j
= 0; j
< blk_cnt
; j
++) {
874 size
= sizeof(struct buffAdd
) *
875 (rxd_count
[nic
->rxd_mode
] + 1);
876 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
879 mem_allocated
+= size
;
880 while (k
!= rxd_count
[nic
->rxd_mode
]) {
881 ba
= &ring
->ba
[j
][k
];
882 size
= BUF0_LEN
+ ALIGN_SIZE
;
883 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
886 mem_allocated
+= size
;
887 tmp
= (unsigned long)ba
->ba_0_org
;
889 tmp
&= ~((unsigned long)ALIGN_SIZE
);
890 ba
->ba_0
= (void *)tmp
;
892 size
= BUF1_LEN
+ ALIGN_SIZE
;
893 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
896 mem_allocated
+= size
;
897 tmp
= (unsigned long)ba
->ba_1_org
;
899 tmp
&= ~((unsigned long)ALIGN_SIZE
);
900 ba
->ba_1
= (void *)tmp
;
907 /* Allocation and initialization of Statistics block */
908 size
= sizeof(struct stat_block
);
909 mac_control
->stats_mem
=
910 pci_alloc_consistent(nic
->pdev
, size
,
911 &mac_control
->stats_mem_phy
);
913 if (!mac_control
->stats_mem
) {
915 * In case of failure, free_shared_mem() is called, which
916 * should free any memory that was alloced till the
921 mem_allocated
+= size
;
922 mac_control
->stats_mem_sz
= size
;
924 tmp_v_addr
= mac_control
->stats_mem
;
925 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
926 memset(tmp_v_addr
, 0, size
);
927 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
928 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
929 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
934 * free_shared_mem - Free the allocated Memory
935 * @nic: Device private variable.
936 * Description: This function is to free all memory locations allocated by
937 * the init_shared_mem() function and return it to the kernel.
940 static void free_shared_mem(struct s2io_nic
*nic
)
942 int i
, j
, blk_cnt
, size
;
944 dma_addr_t tmp_p_addr
;
945 int lst_size
, lst_per_page
;
946 struct net_device
*dev
;
948 struct config_param
*config
;
949 struct mac_info
*mac_control
;
950 struct stat_block
*stats
;
951 struct swStat
*swstats
;
958 config
= &nic
->config
;
959 mac_control
= &nic
->mac_control
;
960 stats
= mac_control
->stats_info
;
961 swstats
= &stats
->sw_stat
;
963 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
964 lst_per_page
= PAGE_SIZE
/ lst_size
;
966 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
967 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
968 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
970 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
971 for (j
= 0; j
< page_num
; j
++) {
972 int mem_blks
= (j
* lst_per_page
);
973 struct list_info_hold
*fli
;
975 if (!fifo
->list_info
)
978 fli
= &fifo
->list_info
[mem_blks
];
979 if (!fli
->list_virt_addr
)
981 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
984 swstats
->mem_freed
+= PAGE_SIZE
;
986 /* If we got a zero DMA address during allocation,
989 if (mac_control
->zerodma_virt_addr
) {
990 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
991 mac_control
->zerodma_virt_addr
,
994 "%s: Freeing TxDL with zero DMA address. "
995 "Virtual address %p\n",
996 dev
->name
, mac_control
->zerodma_virt_addr
);
997 swstats
->mem_freed
+= PAGE_SIZE
;
999 kfree(fifo
->list_info
);
1000 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1001 sizeof(struct list_info_hold
);
1004 size
= SIZE_OF_BLOCK
;
1005 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1006 struct ring_info
*ring
= &mac_control
->rings
[i
];
1008 blk_cnt
= ring
->block_count
;
1009 for (j
= 0; j
< blk_cnt
; j
++) {
1010 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1011 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1012 if (tmp_v_addr
== NULL
)
1014 pci_free_consistent(nic
->pdev
, size
,
1015 tmp_v_addr
, tmp_p_addr
);
1016 swstats
->mem_freed
+= size
;
1017 kfree(ring
->rx_blocks
[j
].rxds
);
1018 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1019 rxd_count
[nic
->rxd_mode
];
1023 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1024 /* Freeing buffer storage addresses in 2BUFF mode. */
1025 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1026 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1027 struct ring_info
*ring
= &mac_control
->rings
[i
];
1029 blk_cnt
= rx_cfg
->num_rxd
/
1030 (rxd_count
[nic
->rxd_mode
] + 1);
1031 for (j
= 0; j
< blk_cnt
; j
++) {
1035 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1036 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1037 kfree(ba
->ba_0_org
);
1038 swstats
->mem_freed
+=
1039 BUF0_LEN
+ ALIGN_SIZE
;
1040 kfree(ba
->ba_1_org
);
1041 swstats
->mem_freed
+=
1042 BUF1_LEN
+ ALIGN_SIZE
;
1046 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1047 (rxd_count
[nic
->rxd_mode
] + 1);
1050 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1055 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1056 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1057 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1059 if (fifo
->ufo_in_band_v
) {
1060 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1062 kfree(fifo
->ufo_in_band_v
);
1066 if (mac_control
->stats_mem
) {
1067 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1068 pci_free_consistent(nic
->pdev
,
1069 mac_control
->stats_mem_sz
,
1070 mac_control
->stats_mem
,
1071 mac_control
->stats_mem_phy
);
1076 * s2io_verify_pci_mode -
1079 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1081 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1082 register u64 val64
= 0;
1085 val64
= readq(&bar0
->pci_mode
);
1086 mode
= (u8
)GET_PCI_MODE(val64
);
1088 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1089 return -1; /* Unknown PCI mode */
1093 #define NEC_VENID 0x1033
1094 #define NEC_DEVID 0x0125
1095 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1097 struct pci_dev
*tdev
= NULL
;
1098 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1099 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1100 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1109 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1111 * s2io_print_pci_mode -
1113 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1115 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1116 register u64 val64
= 0;
1118 struct config_param
*config
= &nic
->config
;
1119 const char *pcimode
;
1121 val64
= readq(&bar0
->pci_mode
);
1122 mode
= (u8
)GET_PCI_MODE(val64
);
1124 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1125 return -1; /* Unknown PCI mode */
1127 config
->bus_speed
= bus_speed
[mode
];
1129 if (s2io_on_nec_bridge(nic
->pdev
)) {
1130 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1136 case PCI_MODE_PCI_33
:
1137 pcimode
= "33MHz PCI bus";
1139 case PCI_MODE_PCI_66
:
1140 pcimode
= "66MHz PCI bus";
1142 case PCI_MODE_PCIX_M1_66
:
1143 pcimode
= "66MHz PCIX(M1) bus";
1145 case PCI_MODE_PCIX_M1_100
:
1146 pcimode
= "100MHz PCIX(M1) bus";
1148 case PCI_MODE_PCIX_M1_133
:
1149 pcimode
= "133MHz PCIX(M1) bus";
1151 case PCI_MODE_PCIX_M2_66
:
1152 pcimode
= "133MHz PCIX(M2) bus";
1154 case PCI_MODE_PCIX_M2_100
:
1155 pcimode
= "200MHz PCIX(M2) bus";
1157 case PCI_MODE_PCIX_M2_133
:
1158 pcimode
= "266MHz PCIX(M2) bus";
1161 pcimode
= "unsupported bus!";
1165 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1166 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1172 * init_tti - Initialization transmit traffic interrupt scheme
1173 * @nic: device private variable
1174 * @link: link status (UP/DOWN) used to enable/disable continuous
1175 * transmit interrupts
1176 * Description: The function configures transmit traffic interrupts
1177 * Return Value: SUCCESS on success and
1181 static int init_tti(struct s2io_nic
*nic
, int link
)
1183 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1184 register u64 val64
= 0;
1186 struct config_param
*config
= &nic
->config
;
1188 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1190 * TTI Initialization. Default Tx timer gets us about
1191 * 250 interrupts per sec. Continuous interrupts are enabled
1194 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1195 int count
= (nic
->config
.bus_speed
* 125)/2;
1196 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1198 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1200 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1201 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1205 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1206 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1207 writeq(val64
, &bar0
->tti_data1_mem
);
1209 if (nic
->config
.intr_type
== MSI_X
) {
1210 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213 TTI_DATA2_MEM_TX_UFC_D(0x300);
1215 if ((nic
->config
.tx_steering_type
==
1216 TX_DEFAULT_STEERING
) &&
1217 (config
->tx_fifo_num
> 1) &&
1218 (i
>= nic
->udp_fifo_idx
) &&
1219 (i
< (nic
->udp_fifo_idx
+
1220 nic
->total_udp_fifos
)))
1221 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x120);
1226 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229 TTI_DATA2_MEM_TX_UFC_D(0x80);
1232 writeq(val64
, &bar0
->tti_data2_mem
);
1234 val64
= TTI_CMD_MEM_WE
|
1235 TTI_CMD_MEM_STROBE_NEW_CMD
|
1236 TTI_CMD_MEM_OFFSET(i
);
1237 writeq(val64
, &bar0
->tti_command_mem
);
1239 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1240 TTI_CMD_MEM_STROBE_NEW_CMD
,
1241 S2IO_BIT_RESET
) != SUCCESS
)
1249 * init_nic - Initialization of hardware
1250 * @nic: device private variable
1251 * Description: The function sequentially configures every block
1252 * of the H/W from their reset values.
1253 * Return Value: SUCCESS on success and
1254 * '-1' on failure (endian settings incorrect).
1257 static int init_nic(struct s2io_nic
*nic
)
1259 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1260 struct net_device
*dev
= nic
->dev
;
1261 register u64 val64
= 0;
1266 unsigned long long mem_share
;
1268 struct config_param
*config
= &nic
->config
;
1269 struct mac_info
*mac_control
= &nic
->mac_control
;
1271 /* to set the swapper controle on the card */
1272 if (s2io_set_swapper(nic
)) {
1273 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1278 * Herc requires EOI to be removed from reset before XGXS, so..
1280 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1281 val64
= 0xA500000000ULL
;
1282 writeq(val64
, &bar0
->sw_reset
);
1284 val64
= readq(&bar0
->sw_reset
);
1287 /* Remove XGXS from reset state */
1289 writeq(val64
, &bar0
->sw_reset
);
1291 val64
= readq(&bar0
->sw_reset
);
1293 /* Ensure that it's safe to access registers by checking
1294 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1296 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1297 for (i
= 0; i
< 50; i
++) {
1298 val64
= readq(&bar0
->adapter_status
);
1299 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1307 /* Enable Receiving broadcasts */
1308 add
= &bar0
->mac_cfg
;
1309 val64
= readq(&bar0
->mac_cfg
);
1310 val64
|= MAC_RMAC_BCAST_ENABLE
;
1311 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1312 writel((u32
)val64
, add
);
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1314 writel((u32
) (val64
>> 32), (add
+ 4));
1316 /* Read registers in all blocks */
1317 val64
= readq(&bar0
->mac_int_mask
);
1318 val64
= readq(&bar0
->mc_int_mask
);
1319 val64
= readq(&bar0
->xgxs_int_mask
);
1323 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1325 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1326 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1327 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1328 &bar0
->dtx_control
, UF
);
1330 msleep(1); /* Necessary!! */
1334 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1335 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1336 &bar0
->dtx_control
, UF
);
1337 val64
= readq(&bar0
->dtx_control
);
1342 /* Tx DMA Initialization */
1344 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1345 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1346 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1347 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1349 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1350 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1352 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1353 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1355 if (i
== (config
->tx_fifo_num
- 1)) {
1362 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1372 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1377 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1388 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1391 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1392 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1394 val64
= readq(&bar0
->tx_fifo_partition_0
);
1395 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1396 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1399 * Initialization of Tx_PA_CONFIG register to ignore packet
1400 * integrity checking.
1402 val64
= readq(&bar0
->tx_pa_cfg
);
1403 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1404 TX_PA_CFG_IGNORE_SNAP_OUI
|
1405 TX_PA_CFG_IGNORE_LLC_CTRL
|
1406 TX_PA_CFG_IGNORE_L2_ERR
;
1407 writeq(val64
, &bar0
->tx_pa_cfg
);
1409 /* Rx DMA intialization. */
1411 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1412 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1414 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1416 writeq(val64
, &bar0
->rx_queue_priority
);
1419 * Allocating equal share of memory to all the
1423 if (nic
->device_type
& XFRAME_II_DEVICE
)
1428 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1431 mem_share
= (mem_size
/ config
->rx_ring_num
+
1432 mem_size
% config
->rx_ring_num
);
1433 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1436 mem_share
= (mem_size
/ config
->rx_ring_num
);
1437 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1440 mem_share
= (mem_size
/ config
->rx_ring_num
);
1441 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1444 mem_share
= (mem_size
/ config
->rx_ring_num
);
1445 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1448 mem_share
= (mem_size
/ config
->rx_ring_num
);
1449 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1452 mem_share
= (mem_size
/ config
->rx_ring_num
);
1453 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1456 mem_share
= (mem_size
/ config
->rx_ring_num
);
1457 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1460 mem_share
= (mem_size
/ config
->rx_ring_num
);
1461 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1465 writeq(val64
, &bar0
->rx_queue_cfg
);
1468 * Filling Tx round robin registers
1469 * as per the number of FIFOs for equal scheduling priority
1471 switch (config
->tx_fifo_num
) {
1474 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1475 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1476 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1481 val64
= 0x0001000100010001ULL
;
1482 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1483 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1484 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1485 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1486 val64
= 0x0001000100000000ULL
;
1487 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1490 val64
= 0x0001020001020001ULL
;
1491 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1492 val64
= 0x0200010200010200ULL
;
1493 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1494 val64
= 0x0102000102000102ULL
;
1495 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1496 val64
= 0x0001020001020001ULL
;
1497 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1498 val64
= 0x0200010200000000ULL
;
1499 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1502 val64
= 0x0001020300010203ULL
;
1503 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1504 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1506 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1507 val64
= 0x0001020300000000ULL
;
1508 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1511 val64
= 0x0001020304000102ULL
;
1512 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1513 val64
= 0x0304000102030400ULL
;
1514 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1515 val64
= 0x0102030400010203ULL
;
1516 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1517 val64
= 0x0400010203040001ULL
;
1518 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1519 val64
= 0x0203040000000000ULL
;
1520 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1523 val64
= 0x0001020304050001ULL
;
1524 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1525 val64
= 0x0203040500010203ULL
;
1526 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1527 val64
= 0x0405000102030405ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1529 val64
= 0x0001020304050001ULL
;
1530 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1531 val64
= 0x0203040500000000ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1535 val64
= 0x0001020304050600ULL
;
1536 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1537 val64
= 0x0102030405060001ULL
;
1538 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1539 val64
= 0x0203040506000102ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1541 val64
= 0x0304050600010203ULL
;
1542 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1543 val64
= 0x0405060000000000ULL
;
1544 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1547 val64
= 0x0001020304050607ULL
;
1548 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1549 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1550 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1551 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1552 val64
= 0x0001020300000000ULL
;
1553 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1557 /* Enable all configured Tx FIFO partitions */
1558 val64
= readq(&bar0
->tx_fifo_partition_0
);
1559 val64
|= (TX_FIFO_PARTITION_EN
);
1560 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1562 /* Filling the Rx round robin registers as per the
1563 * number of Rings and steering based on QoS with
1566 switch (config
->rx_ring_num
) {
1569 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1570 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1571 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1572 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1573 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1575 val64
= 0x8080808080808080ULL
;
1576 writeq(val64
, &bar0
->rts_qos_steering
);
1579 val64
= 0x0001000100010001ULL
;
1580 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1581 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1582 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1583 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1584 val64
= 0x0001000100000000ULL
;
1585 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1587 val64
= 0x8080808040404040ULL
;
1588 writeq(val64
, &bar0
->rts_qos_steering
);
1591 val64
= 0x0001020001020001ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1593 val64
= 0x0200010200010200ULL
;
1594 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1595 val64
= 0x0102000102000102ULL
;
1596 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1597 val64
= 0x0001020001020001ULL
;
1598 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1599 val64
= 0x0200010200000000ULL
;
1600 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1602 val64
= 0x8080804040402020ULL
;
1603 writeq(val64
, &bar0
->rts_qos_steering
);
1606 val64
= 0x0001020300010203ULL
;
1607 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1608 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1609 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1610 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1611 val64
= 0x0001020300000000ULL
;
1612 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1614 val64
= 0x8080404020201010ULL
;
1615 writeq(val64
, &bar0
->rts_qos_steering
);
1618 val64
= 0x0001020304000102ULL
;
1619 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1620 val64
= 0x0304000102030400ULL
;
1621 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1622 val64
= 0x0102030400010203ULL
;
1623 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1624 val64
= 0x0400010203040001ULL
;
1625 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1626 val64
= 0x0203040000000000ULL
;
1627 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1629 val64
= 0x8080404020201008ULL
;
1630 writeq(val64
, &bar0
->rts_qos_steering
);
1633 val64
= 0x0001020304050001ULL
;
1634 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1635 val64
= 0x0203040500010203ULL
;
1636 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1637 val64
= 0x0405000102030405ULL
;
1638 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1639 val64
= 0x0001020304050001ULL
;
1640 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1641 val64
= 0x0203040500000000ULL
;
1642 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1644 val64
= 0x8080404020100804ULL
;
1645 writeq(val64
, &bar0
->rts_qos_steering
);
1648 val64
= 0x0001020304050600ULL
;
1649 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1650 val64
= 0x0102030405060001ULL
;
1651 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1652 val64
= 0x0203040506000102ULL
;
1653 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1654 val64
= 0x0304050600010203ULL
;
1655 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1656 val64
= 0x0405060000000000ULL
;
1657 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1659 val64
= 0x8080402010080402ULL
;
1660 writeq(val64
, &bar0
->rts_qos_steering
);
1663 val64
= 0x0001020304050607ULL
;
1664 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1665 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1666 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1667 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1668 val64
= 0x0001020300000000ULL
;
1669 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1671 val64
= 0x8040201008040201ULL
;
1672 writeq(val64
, &bar0
->rts_qos_steering
);
1678 for (i
= 0; i
< 8; i
++)
1679 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1681 /* Set the default rts frame length for the rings configured */
1682 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1683 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1684 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1686 /* Set the frame length for the configured rings
1687 * desired by the user
1689 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1690 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691 * specified frame length steering.
1692 * If the user provides the frame length then program
1693 * the rts_frm_len register for those values or else
1694 * leave it as it is.
1696 if (rts_frm_len
[i
] != 0) {
1697 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1698 &bar0
->rts_frm_len_n
[i
]);
1702 /* Disable differentiated services steering logic */
1703 for (i
= 0; i
< 64; i
++) {
1704 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1706 "%s: rts_ds_steer failed on codepoint %d\n",
1712 /* Program statistics memory */
1713 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1715 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1716 val64
= STAT_BC(0x320);
1717 writeq(val64
, &bar0
->stat_byte_cnt
);
1721 * Initializing the sampling rate for the device to calculate the
1722 * bandwidth utilization.
1724 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1725 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1726 writeq(val64
, &bar0
->mac_link_util
);
1729 * Initializing the Transmit and Receive Traffic Interrupt
1733 /* Initialize TTI */
1734 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1737 /* RTI Initialization */
1738 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1740 * Programmed to generate Apprx 500 Intrs per
1743 int count
= (nic
->config
.bus_speed
* 125)/4;
1744 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1746 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1748 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1752 writeq(val64
, &bar0
->rti_data1_mem
);
1754 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic
->config
.intr_type
== MSI_X
)
1757 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1760 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64
, &bar0
->rti_data2_mem
);
1764 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1765 val64
= RTI_CMD_MEM_WE
|
1766 RTI_CMD_MEM_STROBE_NEW_CMD
|
1767 RTI_CMD_MEM_OFFSET(i
);
1768 writeq(val64
, &bar0
->rti_command_mem
);
1771 * Once the operation completes, the Strobe bit of the
1772 * command register will be reset. We poll for this
1773 * particular condition. We wait for a maximum of 500ms
1774 * for the operation to complete, if it's not complete
1775 * by then we return error.
1779 val64
= readq(&bar0
->rti_command_mem
);
1780 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1784 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1794 * Initializing proper values as Pause threshold into all
1795 * the 8 Queues on Rx side.
1797 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1798 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1800 /* Disable RMAC PAD STRIPPING */
1801 add
= &bar0
->mac_cfg
;
1802 val64
= readq(&bar0
->mac_cfg
);
1803 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1805 writel((u32
) (val64
), add
);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1807 writel((u32
) (val64
>> 32), (add
+ 4));
1808 val64
= readq(&bar0
->mac_cfg
);
1810 /* Enable FCS stripping by adapter */
1811 add
= &bar0
->mac_cfg
;
1812 val64
= readq(&bar0
->mac_cfg
);
1813 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1814 if (nic
->device_type
== XFRAME_II_DEVICE
)
1815 writeq(val64
, &bar0
->mac_cfg
);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1818 writel((u32
) (val64
), add
);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1820 writel((u32
) (val64
>> 32), (add
+ 4));
1824 * Set the time value to be inserted in the pause frame
1825 * generated by xena.
1827 val64
= readq(&bar0
->rmac_pause_cfg
);
1828 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1830 writeq(val64
, &bar0
->rmac_pause_cfg
);
1833 * Set the Threshold Limit for Generating the pause frame
1834 * If the amount of data in any Queue exceeds ratio of
1835 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836 * pause frame is generated
1839 for (i
= 0; i
< 4; i
++) {
1840 val64
|= (((u64
)0xFF00 |
1841 nic
->mac_control
.mc_pause_threshold_q0q3
)
1844 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1847 for (i
= 0; i
< 4; i
++) {
1848 val64
|= (((u64
)0xFF00 |
1849 nic
->mac_control
.mc_pause_threshold_q4q7
)
1852 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1855 * TxDMA will stop Read request if the number of read split has
1856 * exceeded the limit pointed by shared_splits
1858 val64
= readq(&bar0
->pic_control
);
1859 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1860 writeq(val64
, &bar0
->pic_control
);
1862 if (nic
->config
.bus_speed
== 266) {
1863 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1864 writeq(0x0, &bar0
->read_retry_delay
);
1865 writeq(0x0, &bar0
->write_retry_delay
);
1869 * Programming the Herc to split every write transaction
1870 * that does not start on an ADB to reduce disconnects.
1872 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1873 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1874 MISC_LINK_STABILITY_PRD(3);
1875 writeq(val64
, &bar0
->misc_control
);
1876 val64
= readq(&bar0
->pic_control2
);
1877 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1878 writeq(val64
, &bar0
->pic_control2
);
1880 if (strstr(nic
->product_name
, "CX4")) {
1881 val64
= TMAC_AVG_IPG(0x17);
1882 writeq(val64
, &bar0
->tmac_avg_ipg
);
1887 #define LINK_UP_DOWN_INTERRUPT 1
1888 #define MAC_RMAC_ERR_TIMER 2
1890 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1892 if (nic
->device_type
== XFRAME_II_DEVICE
)
1893 return LINK_UP_DOWN_INTERRUPT
;
1895 return MAC_RMAC_ERR_TIMER
;
1899 * do_s2io_write_bits - update alarm bits in alarm register
1900 * @value: alarm bits
1901 * @flag: interrupt status
1902 * @addr: address value
1903 * Description: update alarm bits in alarm register
1907 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1911 temp64
= readq(addr
);
1913 if (flag
== ENABLE_INTRS
)
1914 temp64
&= ~((u64
)value
);
1916 temp64
|= ((u64
)value
);
1917 writeq(temp64
, addr
);
1920 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1922 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1923 register u64 gen_int_mask
= 0;
1926 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1927 if (mask
& TX_DMA_INTR
) {
1928 gen_int_mask
|= TXDMA_INT_M
;
1930 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1931 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1932 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1933 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1935 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1936 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1937 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1938 &bar0
->pfc_err_mask
);
1940 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1941 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1942 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1944 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1945 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1946 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1947 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1948 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1950 flag
, &bar0
->pcc_err_mask
);
1952 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1953 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1955 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1956 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1957 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1958 flag
, &bar0
->lso_err_mask
);
1960 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1961 flag
, &bar0
->tpa_err_mask
);
1963 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1966 if (mask
& TX_MAC_INTR
) {
1967 gen_int_mask
|= TXMAC_INT_M
;
1968 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1969 &bar0
->mac_int_mask
);
1970 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1971 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1972 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1973 flag
, &bar0
->mac_tmac_err_mask
);
1976 if (mask
& TX_XGXS_INTR
) {
1977 gen_int_mask
|= TXXGXS_INT_M
;
1978 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1979 &bar0
->xgxs_int_mask
);
1980 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1981 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1982 flag
, &bar0
->xgxs_txgxs_err_mask
);
1985 if (mask
& RX_DMA_INTR
) {
1986 gen_int_mask
|= RXDMA_INT_M
;
1987 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1988 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1989 flag
, &bar0
->rxdma_int_mask
);
1990 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1991 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1992 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1993 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1994 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1995 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1996 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1997 &bar0
->prc_pcix_err_mask
);
1998 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1999 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
2000 &bar0
->rpa_err_mask
);
2001 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2002 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2003 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2004 RDA_FRM_ECC_SG_ERR
|
2005 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2006 flag
, &bar0
->rda_err_mask
);
2007 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2008 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2009 flag
, &bar0
->rti_err_mask
);
2012 if (mask
& RX_MAC_INTR
) {
2013 gen_int_mask
|= RXMAC_INT_M
;
2014 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2015 &bar0
->mac_int_mask
);
2016 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2017 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2018 RMAC_DOUBLE_ECC_ERR
);
2019 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2020 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2021 do_s2io_write_bits(interruptible
,
2022 flag
, &bar0
->mac_rmac_err_mask
);
2025 if (mask
& RX_XGXS_INTR
) {
2026 gen_int_mask
|= RXXGXS_INT_M
;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2028 &bar0
->xgxs_int_mask
);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2030 &bar0
->xgxs_rxgxs_err_mask
);
2033 if (mask
& MC_INTR
) {
2034 gen_int_mask
|= MC_INT_M
;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2036 flag
, &bar0
->mc_int_mask
);
2037 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2038 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2039 &bar0
->mc_err_mask
);
2041 nic
->general_int_mask
= gen_int_mask
;
2043 /* Remove this line when alarm interrupts are enabled */
2044 nic
->general_int_mask
= 0;
2048 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2049 * @nic: device private variable,
2050 * @mask: A mask indicating which Intr block must be modified and,
2051 * @flag: A flag indicating whether to enable or disable the Intrs.
2052 * Description: This function will either disable or enable the interrupts
2053 * depending on the flag argument. The mask argument can be used to
2054 * enable/disable any Intr block.
2055 * Return Value: NONE.
2058 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2060 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2061 register u64 temp64
= 0, intr_mask
= 0;
2063 intr_mask
= nic
->general_int_mask
;
2065 /* Top level interrupt classification */
2066 /* PIC Interrupts */
2067 if (mask
& TX_PIC_INTR
) {
2068 /* Enable PIC Intrs in the general intr mask register */
2069 intr_mask
|= TXPIC_INT_M
;
2070 if (flag
== ENABLE_INTRS
) {
2072 * If Hercules adapter enable GPIO otherwise
2073 * disable all PCIX, Flash, MDIO, IIC and GPIO
2074 * interrupts for now.
2077 if (s2io_link_fault_indication(nic
) ==
2078 LINK_UP_DOWN_INTERRUPT
) {
2079 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2080 &bar0
->pic_int_mask
);
2081 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2082 &bar0
->gpio_int_mask
);
2084 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2085 } else if (flag
== DISABLE_INTRS
) {
2087 * Disable PIC Intrs in the general
2088 * intr mask register
2090 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2094 /* Tx traffic interrupts */
2095 if (mask
& TX_TRAFFIC_INTR
) {
2096 intr_mask
|= TXTRAFFIC_INT_M
;
2097 if (flag
== ENABLE_INTRS
) {
2099 * Enable all the Tx side interrupts
2100 * writing 0 Enables all 64 TX interrupt levels
2102 writeq(0x0, &bar0
->tx_traffic_mask
);
2103 } else if (flag
== DISABLE_INTRS
) {
2105 * Disable Tx Traffic Intrs in the general intr mask
2108 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2112 /* Rx traffic interrupts */
2113 if (mask
& RX_TRAFFIC_INTR
) {
2114 intr_mask
|= RXTRAFFIC_INT_M
;
2115 if (flag
== ENABLE_INTRS
) {
2116 /* writing 0 Enables all 8 RX interrupt levels */
2117 writeq(0x0, &bar0
->rx_traffic_mask
);
2118 } else if (flag
== DISABLE_INTRS
) {
2120 * Disable Rx Traffic Intrs in the general intr mask
2123 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2127 temp64
= readq(&bar0
->general_int_mask
);
2128 if (flag
== ENABLE_INTRS
)
2129 temp64
&= ~((u64
)intr_mask
);
2131 temp64
= DISABLE_ALL_INTRS
;
2132 writeq(temp64
, &bar0
->general_int_mask
);
2134 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2138 * verify_pcc_quiescent- Checks for PCC quiescent state
2139 * Return: 1 If PCC is quiescence
2140 * 0 If PCC is not quiescence
2142 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2145 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2146 u64 val64
= readq(&bar0
->adapter_status
);
2148 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2150 if (flag
== false) {
2151 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2152 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2155 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2159 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2160 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2161 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2164 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2165 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2173 * verify_xena_quiescence - Checks whether the H/W is ready
2174 * Description: Returns whether the H/W is ready to go or not. Depending
2175 * on whether adapter enable bit was written or not the comparison
2176 * differs and the calling function passes the input argument flag to
2178 * Return: 1 If xena is quiescence
2179 * 0 If Xena is not quiescence
2182 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2185 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2186 u64 val64
= readq(&bar0
->adapter_status
);
2187 mode
= s2io_verify_pci_mode(sp
);
2189 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2190 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2193 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2194 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2197 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2198 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2201 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2202 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2205 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2206 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2209 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2210 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2213 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2214 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2217 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2218 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2223 * In PCI 33 mode, the P_PLL is not used, and therefore,
2224 * the the P_PLL_LOCK bit in the adapter_status register will
2227 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2228 sp
->device_type
== XFRAME_II_DEVICE
&&
2229 mode
!= PCI_MODE_PCI_33
) {
2230 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2233 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2234 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2235 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2242 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2243 * @sp: Pointer to device specifc structure
2245 * New procedure to clear mac address reading problems on Alpha platforms
2249 static void fix_mac_address(struct s2io_nic
*sp
)
2251 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2255 while (fix_mac
[i
] != END_SIGN
) {
2256 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2258 val64
= readq(&bar0
->gpio_control
);
2263 * start_nic - Turns the device on
2264 * @nic : device private variable.
2266 * This function actually turns the device on. Before this function is
2267 * called,all Registers are configured from their reset states
2268 * and shared memory is allocated but the NIC is still quiescent. On
2269 * calling this function, the device interrupts are cleared and the NIC is
2270 * literally switched on by writing into the adapter control register.
2272 * SUCCESS on success and -1 on failure.
2275 static int start_nic(struct s2io_nic
*nic
)
2277 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2278 struct net_device
*dev
= nic
->dev
;
2279 register u64 val64
= 0;
2281 struct config_param
*config
= &nic
->config
;
2282 struct mac_info
*mac_control
= &nic
->mac_control
;
2284 /* PRC Initialization and configuration */
2285 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2286 struct ring_info
*ring
= &mac_control
->rings
[i
];
2288 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2289 &bar0
->prc_rxd0_n
[i
]);
2291 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2292 if (nic
->rxd_mode
== RXD_MODE_1
)
2293 val64
|= PRC_CTRL_RC_ENABLED
;
2295 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2296 if (nic
->device_type
== XFRAME_II_DEVICE
)
2297 val64
|= PRC_CTRL_GROUP_READS
;
2298 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2300 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2303 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2304 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305 val64
= readq(&bar0
->rx_pa_cfg
);
2306 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2307 writeq(val64
, &bar0
->rx_pa_cfg
);
2310 if (vlan_tag_strip
== 0) {
2311 val64
= readq(&bar0
->rx_pa_cfg
);
2312 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2313 writeq(val64
, &bar0
->rx_pa_cfg
);
2314 nic
->vlan_strip_flag
= 0;
2318 * Enabling MC-RLDRAM. After enabling the device, we timeout
2319 * for around 100ms, which is approximately the time required
2320 * for the device to be ready for operation.
2322 val64
= readq(&bar0
->mc_rldram_mrs
);
2323 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2324 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2325 val64
= readq(&bar0
->mc_rldram_mrs
);
2327 msleep(100); /* Delay by around 100 ms. */
2329 /* Enabling ECC Protection. */
2330 val64
= readq(&bar0
->adapter_control
);
2331 val64
&= ~ADAPTER_ECC_EN
;
2332 writeq(val64
, &bar0
->adapter_control
);
2335 * Verify if the device is ready to be enabled, if so enable
2338 val64
= readq(&bar0
->adapter_status
);
2339 if (!verify_xena_quiescence(nic
)) {
2340 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2341 "Adapter status reads: 0x%llx\n",
2342 dev
->name
, (unsigned long long)val64
);
2347 * With some switches, link might be already up at this point.
2348 * Because of this weird behavior, when we enable laser,
2349 * we may not get link. We need to handle this. We cannot
2350 * figure out which switch is misbehaving. So we are forced to
2351 * make a global change.
2354 /* Enabling Laser. */
2355 val64
= readq(&bar0
->adapter_control
);
2356 val64
|= ADAPTER_EOI_TX_ON
;
2357 writeq(val64
, &bar0
->adapter_control
);
2359 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2361 * Dont see link state interrupts initally on some switches,
2362 * so directly scheduling the link state task here.
2364 schedule_work(&nic
->set_link_task
);
2366 /* SXE-002: Initialize link and activity LED */
2367 subid
= nic
->pdev
->subsystem_device
;
2368 if (((subid
& 0xFF) >= 0x07) &&
2369 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2370 val64
= readq(&bar0
->gpio_control
);
2371 val64
|= 0x0000800000000000ULL
;
2372 writeq(val64
, &bar0
->gpio_control
);
2373 val64
= 0x0411040400000000ULL
;
2374 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2380 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2382 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2383 struct TxD
*txdlp
, int get_off
)
2385 struct s2io_nic
*nic
= fifo_data
->nic
;
2386 struct sk_buff
*skb
;
2391 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2392 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2393 sizeof(u64
), PCI_DMA_TODEVICE
);
2397 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2399 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2402 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2403 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2404 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2407 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2408 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2409 if (!txds
->Buffer_Pointer
)
2411 pci_unmap_page(nic
->pdev
,
2412 (dma_addr_t
)txds
->Buffer_Pointer
,
2413 frag
->size
, PCI_DMA_TODEVICE
);
2416 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2421 * free_tx_buffers - Free all queued Tx buffers
2422 * @nic : device private variable.
2424 * Free all queued Tx buffers.
2425 * Return Value: void
2428 static void free_tx_buffers(struct s2io_nic
*nic
)
2430 struct net_device
*dev
= nic
->dev
;
2431 struct sk_buff
*skb
;
2435 struct config_param
*config
= &nic
->config
;
2436 struct mac_info
*mac_control
= &nic
->mac_control
;
2437 struct stat_block
*stats
= mac_control
->stats_info
;
2438 struct swStat
*swstats
= &stats
->sw_stat
;
2440 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2441 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2442 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2443 unsigned long flags
;
2445 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2446 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2447 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2448 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2450 swstats
->mem_freed
+= skb
->truesize
;
2456 "%s: forcibly freeing %d skbs on FIFO%d\n",
2458 fifo
->tx_curr_get_info
.offset
= 0;
2459 fifo
->tx_curr_put_info
.offset
= 0;
2460 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2465 * stop_nic - To stop the nic
2466 * @nic ; device private variable.
2468 * This function does exactly the opposite of what the start_nic()
2469 * function does. This function is called to stop the device.
2474 static void stop_nic(struct s2io_nic
*nic
)
2476 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2477 register u64 val64
= 0;
2480 /* Disable all interrupts */
2481 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2482 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2483 interruptible
|= TX_PIC_INTR
;
2484 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64
= readq(&bar0
->adapter_control
);
2488 val64
&= ~(ADAPTER_CNTL_EN
);
2489 writeq(val64
, &bar0
->adapter_control
);
2493 * fill_rx_buffers - Allocates the Rx side skbs
2494 * @ring_info: per ring structure
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2512 * SUCCESS on success or an appropriate -ve value on failure.
2514 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2517 struct sk_buff
*skb
;
2519 int off
, size
, block_no
, block_no1
;
2524 struct RxD_t
*first_rxdp
= NULL
;
2525 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2529 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2531 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2533 block_no1
= ring
->rx_curr_get_info
.block_index
;
2534 while (alloc_tab
< alloc_cnt
) {
2535 block_no
= ring
->rx_curr_put_info
.block_index
;
2537 off
= ring
->rx_curr_put_info
.offset
;
2539 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2541 rxd_index
= off
+ 1;
2543 rxd_index
+= (block_no
* ring
->rxd_count
);
2545 if ((block_no
== block_no1
) &&
2546 (off
== ring
->rx_curr_get_info
.offset
) &&
2547 (rxdp
->Host_Control
)) {
2548 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2552 if (off
&& (off
== ring
->rxd_count
)) {
2553 ring
->rx_curr_put_info
.block_index
++;
2554 if (ring
->rx_curr_put_info
.block_index
==
2556 ring
->rx_curr_put_info
.block_index
= 0;
2557 block_no
= ring
->rx_curr_put_info
.block_index
;
2559 ring
->rx_curr_put_info
.offset
= off
;
2560 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2561 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2562 ring
->dev
->name
, rxdp
);
2566 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2567 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2568 (rxdp
->Control_2
& s2BIT(0)))) {
2569 ring
->rx_curr_put_info
.offset
= off
;
2572 /* calculate size of skb based on ring mode */
2574 HEADER_ETHERNET_II_802_3_SIZE
+
2575 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2576 if (ring
->rxd_mode
== RXD_MODE_1
)
2577 size
+= NET_IP_ALIGN
;
2579 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2582 skb
= dev_alloc_skb(size
);
2584 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2588 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2590 swstats
->mem_alloc_fail_cnt
++;
2594 swstats
->mem_allocated
+= skb
->truesize
;
2596 if (ring
->rxd_mode
== RXD_MODE_1
) {
2597 /* 1 buffer mode - normal operation mode */
2598 rxdp1
= (struct RxD1
*)rxdp
;
2599 memset(rxdp
, 0, sizeof(struct RxD1
));
2600 skb_reserve(skb
, NET_IP_ALIGN
);
2601 rxdp1
->Buffer0_ptr
=
2602 pci_map_single(ring
->pdev
, skb
->data
,
2603 size
- NET_IP_ALIGN
,
2604 PCI_DMA_FROMDEVICE
);
2605 if (pci_dma_mapping_error(nic
->pdev
,
2606 rxdp1
->Buffer0_ptr
))
2607 goto pci_map_failed
;
2610 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2611 rxdp
->Host_Control
= (unsigned long)skb
;
2612 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2615 * 2 buffer mode provides 128
2616 * byte aligned receive buffers.
2619 rxdp3
= (struct RxD3
*)rxdp
;
2620 /* save buffer pointers to avoid frequent dma mapping */
2621 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2622 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2623 memset(rxdp
, 0, sizeof(struct RxD3
));
2624 /* restore the buffer pointers for dma sync*/
2625 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2626 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2628 ba
= &ring
->ba
[block_no
][off
];
2629 skb_reserve(skb
, BUF0_LEN
);
2630 tmp
= (u64
)(unsigned long)skb
->data
;
2633 skb
->data
= (void *) (unsigned long)tmp
;
2634 skb_reset_tail_pointer(skb
);
2637 rxdp3
->Buffer0_ptr
=
2638 pci_map_single(ring
->pdev
, ba
->ba_0
,
2640 PCI_DMA_FROMDEVICE
);
2641 if (pci_dma_mapping_error(nic
->pdev
,
2642 rxdp3
->Buffer0_ptr
))
2643 goto pci_map_failed
;
2645 pci_dma_sync_single_for_device(ring
->pdev
,
2646 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2648 PCI_DMA_FROMDEVICE
);
2650 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2651 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2652 /* Two buffer mode */
2655 * Buffer2 will have L3/L4 header plus
2658 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2661 PCI_DMA_FROMDEVICE
);
2663 if (pci_dma_mapping_error(nic
->pdev
,
2664 rxdp3
->Buffer2_ptr
))
2665 goto pci_map_failed
;
2668 rxdp3
->Buffer1_ptr
=
2669 pci_map_single(ring
->pdev
,
2672 PCI_DMA_FROMDEVICE
);
2674 if (pci_dma_mapping_error(nic
->pdev
,
2675 rxdp3
->Buffer1_ptr
)) {
2676 pci_unmap_single(ring
->pdev
,
2677 (dma_addr_t
)(unsigned long)
2680 PCI_DMA_FROMDEVICE
);
2681 goto pci_map_failed
;
2684 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2685 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2688 rxdp
->Control_2
|= s2BIT(0);
2689 rxdp
->Host_Control
= (unsigned long) (skb
);
2691 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2692 rxdp
->Control_1
|= RXD_OWN_XENA
;
2694 if (off
== (ring
->rxd_count
+ 1))
2696 ring
->rx_curr_put_info
.offset
= off
;
2698 rxdp
->Control_2
|= SET_RXD_MARKER
;
2699 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2702 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2706 ring
->rx_bufs_left
+= 1;
2711 /* Transfer ownership of first descriptor to adapter just before
2712 * exiting. Before that, use memory barrier so that ownership
2713 * and other fields are seen by adapter correctly.
2717 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2723 swstats
->pci_map_fail_cnt
++;
2724 swstats
->mem_freed
+= skb
->truesize
;
2725 dev_kfree_skb_irq(skb
);
2729 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2731 struct net_device
*dev
= sp
->dev
;
2733 struct sk_buff
*skb
;
2738 struct mac_info
*mac_control
= &sp
->mac_control
;
2739 struct stat_block
*stats
= mac_control
->stats_info
;
2740 struct swStat
*swstats
= &stats
->sw_stat
;
2742 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2743 rxdp
= mac_control
->rings
[ring_no
].
2744 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2745 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2748 if (sp
->rxd_mode
== RXD_MODE_1
) {
2749 rxdp1
= (struct RxD1
*)rxdp
;
2750 pci_unmap_single(sp
->pdev
,
2751 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2753 HEADER_ETHERNET_II_802_3_SIZE
+
2754 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2755 PCI_DMA_FROMDEVICE
);
2756 memset(rxdp
, 0, sizeof(struct RxD1
));
2757 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2758 rxdp3
= (struct RxD3
*)rxdp
;
2759 ba
= &mac_control
->rings
[ring_no
].ba
[blk
][j
];
2760 pci_unmap_single(sp
->pdev
,
2761 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2763 PCI_DMA_FROMDEVICE
);
2764 pci_unmap_single(sp
->pdev
,
2765 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2767 PCI_DMA_FROMDEVICE
);
2768 pci_unmap_single(sp
->pdev
,
2769 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2771 PCI_DMA_FROMDEVICE
);
2772 memset(rxdp
, 0, sizeof(struct RxD3
));
2774 swstats
->mem_freed
+= skb
->truesize
;
2776 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2781 * free_rx_buffers - Frees all Rx buffers
2782 * @sp: device private variable.
2784 * This function will free all Rx buffers allocated by host.
2789 static void free_rx_buffers(struct s2io_nic
*sp
)
2791 struct net_device
*dev
= sp
->dev
;
2792 int i
, blk
= 0, buf_cnt
= 0;
2793 struct config_param
*config
= &sp
->config
;
2794 struct mac_info
*mac_control
= &sp
->mac_control
;
2796 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2797 struct ring_info
*ring
= &mac_control
->rings
[i
];
2799 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2800 free_rxd_blk(sp
, i
, blk
);
2802 ring
->rx_curr_put_info
.block_index
= 0;
2803 ring
->rx_curr_get_info
.block_index
= 0;
2804 ring
->rx_curr_put_info
.offset
= 0;
2805 ring
->rx_curr_get_info
.offset
= 0;
2806 ring
->rx_bufs_left
= 0;
2807 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2808 dev
->name
, buf_cnt
, i
);
2812 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2814 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2815 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2822 * s2io_poll - Rx interrupt handler for NAPI support
2823 * @napi : pointer to the napi structure.
2824 * @budget : The number of packets that were budgeted to be processed
2825 * during one pass through the 'Poll" function.
2827 * Comes into picture only if NAPI support has been incorporated. It does
2828 * the same thing that rx_intr_handler does, but not in a interrupt context
2829 * also It will process only a given number of packets.
2831 * 0 on success and 1 if there are No Rx packets to be processed.
2834 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2836 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2837 struct net_device
*dev
= ring
->dev
;
2838 int pkts_processed
= 0;
2839 u8 __iomem
*addr
= NULL
;
2841 struct s2io_nic
*nic
= netdev_priv(dev
);
2842 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2843 int budget_org
= budget
;
2845 if (unlikely(!is_s2io_card_up(nic
)))
2848 pkts_processed
= rx_intr_handler(ring
, budget
);
2849 s2io_chk_rx_buffers(nic
, ring
);
2851 if (pkts_processed
< budget_org
) {
2852 napi_complete(napi
);
2853 /*Re Enable MSI-Rx Vector*/
2854 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2855 addr
+= 7 - ring
->ring_no
;
2856 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2860 return pkts_processed
;
2863 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2865 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2866 int pkts_processed
= 0;
2867 int ring_pkts_processed
, i
;
2868 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2869 int budget_org
= budget
;
2870 struct config_param
*config
= &nic
->config
;
2871 struct mac_info
*mac_control
= &nic
->mac_control
;
2873 if (unlikely(!is_s2io_card_up(nic
)))
2876 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2877 struct ring_info
*ring
= &mac_control
->rings
[i
];
2878 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2879 s2io_chk_rx_buffers(nic
, ring
);
2880 pkts_processed
+= ring_pkts_processed
;
2881 budget
-= ring_pkts_processed
;
2885 if (pkts_processed
< budget_org
) {
2886 napi_complete(napi
);
2887 /* Re enable the Rx interrupts for the ring */
2888 writeq(0, &bar0
->rx_traffic_mask
);
2889 readl(&bar0
->rx_traffic_mask
);
2891 return pkts_processed
;
2894 #ifdef CONFIG_NET_POLL_CONTROLLER
2896 * s2io_netpoll - netpoll event handler entry point
2897 * @dev : pointer to the device structure.
2899 * This function will be called by upper layer to check for events on the
2900 * interface in situations where interrupts are disabled. It is used for
2901 * specific in-kernel networking tasks, such as remote consoles and kernel
2902 * debugging over the network (example netdump in RedHat).
2904 static void s2io_netpoll(struct net_device
*dev
)
2906 struct s2io_nic
*nic
= netdev_priv(dev
);
2907 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2908 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2910 struct config_param
*config
= &nic
->config
;
2911 struct mac_info
*mac_control
= &nic
->mac_control
;
2913 if (pci_channel_offline(nic
->pdev
))
2916 disable_irq(dev
->irq
);
2918 writeq(val64
, &bar0
->rx_traffic_int
);
2919 writeq(val64
, &bar0
->tx_traffic_int
);
2921 /* we need to free up the transmitted skbufs or else netpoll will
2922 * run out of skbs and will fail and eventually netpoll application such
2923 * as netdump will fail.
2925 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2926 tx_intr_handler(&mac_control
->fifos
[i
]);
2928 /* check for received packet and indicate up to network */
2929 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2930 struct ring_info
*ring
= &mac_control
->rings
[i
];
2932 rx_intr_handler(ring
, 0);
2935 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2936 struct ring_info
*ring
= &mac_control
->rings
[i
];
2938 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2940 "%s: Out of memory in Rx Netpoll!!\n",
2945 enable_irq(dev
->irq
);
2950 * rx_intr_handler - Rx interrupt handler
2951 * @ring_info: per ring structure.
2952 * @budget: budget for napi processing.
2954 * If the interrupt is because of a received frame or if the
2955 * receive ring contains fresh as yet un-processed frames,this function is
2956 * called. It picks out the RxD at which place the last Rx processing had
2957 * stopped and sends the skb to the OSM's Rx handler and then increments
2960 * No. of napi packets processed.
2962 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2964 int get_block
, put_block
;
2965 struct rx_curr_get_info get_info
, put_info
;
2967 struct sk_buff
*skb
;
2968 int pkt_cnt
= 0, napi_pkts
= 0;
2973 get_info
= ring_data
->rx_curr_get_info
;
2974 get_block
= get_info
.block_index
;
2975 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2976 put_block
= put_info
.block_index
;
2977 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2979 while (RXD_IS_UP2DT(rxdp
)) {
2981 * If your are next to put index then it's
2982 * FIFO full condition
2984 if ((get_block
== put_block
) &&
2985 (get_info
.offset
+ 1) == put_info
.offset
) {
2986 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2987 ring_data
->dev
->name
);
2990 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2992 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2993 ring_data
->dev
->name
);
2996 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2997 rxdp1
= (struct RxD1
*)rxdp
;
2998 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3001 HEADER_ETHERNET_II_802_3_SIZE
+
3004 PCI_DMA_FROMDEVICE
);
3005 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3006 rxdp3
= (struct RxD3
*)rxdp
;
3007 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3008 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3010 PCI_DMA_FROMDEVICE
);
3011 pci_unmap_single(ring_data
->pdev
,
3012 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3014 PCI_DMA_FROMDEVICE
);
3016 prefetch(skb
->data
);
3017 rx_osm_handler(ring_data
, rxdp
);
3019 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3020 rxdp
= ring_data
->rx_blocks
[get_block
].
3021 rxds
[get_info
.offset
].virt_addr
;
3022 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3023 get_info
.offset
= 0;
3024 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3026 if (get_block
== ring_data
->block_count
)
3028 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3029 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3032 if (ring_data
->nic
->config
.napi
) {
3039 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3042 if (ring_data
->lro
) {
3043 /* Clear all LRO sessions before exiting */
3044 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3045 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3047 update_L3L4_header(ring_data
->nic
, lro
);
3048 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3049 clear_lro_session(lro
);
3057 * tx_intr_handler - Transmit interrupt handler
3058 * @nic : device private variable
3060 * If an interrupt was raised to indicate DMA complete of the
3061 * Tx packet, this function is called. It identifies the last TxD
3062 * whose buffer was freed and frees all skbs whose data have already
3063 * DMA'ed into the NICs internal memory.
3068 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3070 struct s2io_nic
*nic
= fifo_data
->nic
;
3071 struct tx_curr_get_info get_info
, put_info
;
3072 struct sk_buff
*skb
= NULL
;
3075 unsigned long flags
= 0;
3077 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3078 struct swStat
*swstats
= &stats
->sw_stat
;
3080 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3083 get_info
= fifo_data
->tx_curr_get_info
;
3084 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3085 txdlp
= (struct TxD
*)
3086 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3087 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3088 (get_info
.offset
!= put_info
.offset
) &&
3089 (txdlp
->Host_Control
)) {
3090 /* Check for TxD errors */
3091 if (txdlp
->Control_1
& TXD_T_CODE
) {
3092 unsigned long long err
;
3093 err
= txdlp
->Control_1
& TXD_T_CODE
;
3095 swstats
->parity_err_cnt
++;
3098 /* update t_code statistics */
3099 err_mask
= err
>> 48;
3102 swstats
->tx_buf_abort_cnt
++;
3106 swstats
->tx_desc_abort_cnt
++;
3110 swstats
->tx_parity_err_cnt
++;
3114 swstats
->tx_link_loss_cnt
++;
3118 swstats
->tx_list_proc_err_cnt
++;
3123 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3125 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3126 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3132 /* Updating the statistics block */
3133 nic
->dev
->stats
.tx_bytes
+= skb
->len
;
3134 swstats
->mem_freed
+= skb
->truesize
;
3135 dev_kfree_skb_irq(skb
);
3138 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3139 get_info
.offset
= 0;
3140 txdlp
= (struct TxD
*)
3141 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3142 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3145 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3147 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3151 * s2io_mdio_write - Function to write in to MDIO registers
3152 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153 * @addr : address value
3154 * @value : data value
3155 * @dev : pointer to net_device structure
3157 * This function is used to write values to the MDIO registers
3160 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3161 struct net_device
*dev
)
3164 struct s2io_nic
*sp
= netdev_priv(dev
);
3165 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3167 /* address transaction */
3168 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3169 MDIO_MMD_DEV_ADDR(mmd_type
) |
3170 MDIO_MMS_PRT_ADDR(0x0);
3171 writeq(val64
, &bar0
->mdio_control
);
3172 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64
, &bar0
->mdio_control
);
3176 /* Data transaction */
3177 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3178 MDIO_MMD_DEV_ADDR(mmd_type
) |
3179 MDIO_MMS_PRT_ADDR(0x0) |
3180 MDIO_MDIO_DATA(value
) |
3181 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3182 writeq(val64
, &bar0
->mdio_control
);
3183 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64
, &bar0
->mdio_control
);
3187 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3188 MDIO_MMD_DEV_ADDR(mmd_type
) |
3189 MDIO_MMS_PRT_ADDR(0x0) |
3190 MDIO_OP(MDIO_OP_READ_TRANS
);
3191 writeq(val64
, &bar0
->mdio_control
);
3192 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3193 writeq(val64
, &bar0
->mdio_control
);
3198 * s2io_mdio_read - Function to write in to MDIO registers
3199 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200 * @addr : address value
3201 * @dev : pointer to net_device structure
3203 * This function is used to read values to the MDIO registers
3206 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3210 struct s2io_nic
*sp
= netdev_priv(dev
);
3211 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3213 /* address transaction */
3214 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3215 | MDIO_MMD_DEV_ADDR(mmd_type
)
3216 | MDIO_MMS_PRT_ADDR(0x0));
3217 writeq(val64
, &bar0
->mdio_control
);
3218 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64
, &bar0
->mdio_control
);
3222 /* Data transaction */
3223 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3224 MDIO_MMD_DEV_ADDR(mmd_type
) |
3225 MDIO_MMS_PRT_ADDR(0x0) |
3226 MDIO_OP(MDIO_OP_READ_TRANS
);
3227 writeq(val64
, &bar0
->mdio_control
);
3228 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64
, &bar0
->mdio_control
);
3232 /* Read the value from regs */
3233 rval64
= readq(&bar0
->mdio_control
);
3234 rval64
= rval64
& 0xFFFF0000;
3235 rval64
= rval64
>> 16;
3240 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3241 * @counter : counter value to be updated
3242 * @flag : flag to indicate the status
3243 * @type : counter type
3245 * This function is to check the status of the xpak counters value
3249 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3255 for (i
= 0; i
< index
; i
++)
3259 *counter
= *counter
+ 1;
3260 val64
= *regs_stat
& mask
;
3261 val64
= val64
>> (index
* 0x2);
3267 "Take Xframe NIC out of service.\n");
3269 "Excessive temperatures may result in premature transceiver failure.\n");
3273 "Take Xframe NIC out of service.\n");
3275 "Excessive bias currents may indicate imminent laser diode failure.\n");
3279 "Take Xframe NIC out of service.\n");
3281 "Excessive laser output power may saturate far-end receiver.\n");
3285 "Incorrect XPAK Alarm type\n");
3289 val64
= val64
<< (index
* 0x2);
3290 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3293 *regs_stat
= *regs_stat
& (~mask
);
3298 * s2io_updt_xpak_counter - Function to update the xpak counters
3299 * @dev : pointer to net_device struct
3301 * This function is to upate the status of the xpak counters value
3304 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3312 struct s2io_nic
*sp
= netdev_priv(dev
);
3313 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3314 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3316 /* Check the communication with the MDIO slave */
3319 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3320 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3322 "ERR: MDIO slave access failed - Returned %llx\n",
3323 (unsigned long long)val64
);
3327 /* Check for the expected value of control reg 1 */
3328 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3329 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3330 "Returned: %llx- Expected: 0x%x\n",
3331 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3335 /* Loading the DOM register to MDIO register */
3337 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3338 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3340 /* Reading the Alarm flags */
3343 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3345 flag
= CHECKBIT(val64
, 0x7);
3347 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3348 &xstats
->xpak_regs_stat
,
3351 if (CHECKBIT(val64
, 0x6))
3352 xstats
->alarm_transceiver_temp_low
++;
3354 flag
= CHECKBIT(val64
, 0x3);
3356 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3357 &xstats
->xpak_regs_stat
,
3360 if (CHECKBIT(val64
, 0x2))
3361 xstats
->alarm_laser_bias_current_low
++;
3363 flag
= CHECKBIT(val64
, 0x1);
3365 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3366 &xstats
->xpak_regs_stat
,
3369 if (CHECKBIT(val64
, 0x0))
3370 xstats
->alarm_laser_output_power_low
++;
3372 /* Reading the Warning flags */
3375 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3377 if (CHECKBIT(val64
, 0x7))
3378 xstats
->warn_transceiver_temp_high
++;
3380 if (CHECKBIT(val64
, 0x6))
3381 xstats
->warn_transceiver_temp_low
++;
3383 if (CHECKBIT(val64
, 0x3))
3384 xstats
->warn_laser_bias_current_high
++;
3386 if (CHECKBIT(val64
, 0x2))
3387 xstats
->warn_laser_bias_current_low
++;
3389 if (CHECKBIT(val64
, 0x1))
3390 xstats
->warn_laser_output_power_high
++;
3392 if (CHECKBIT(val64
, 0x0))
3393 xstats
->warn_laser_output_power_low
++;
3397 * wait_for_cmd_complete - waits for a command to complete.
3398 * @sp : private member of the device structure, which is a pointer to the
3399 * s2io_nic structure.
3400 * Description: Function that waits for a command to Write into RMAC
3401 * ADDR DATA registers to be completed and returns either success or
3402 * error depending on whether the command was complete or not.
3404 * SUCCESS on success and FAILURE on failure.
3407 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3410 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3413 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3417 val64
= readq(addr
);
3418 if (bit_state
== S2IO_BIT_RESET
) {
3419 if (!(val64
& busy_bit
)) {
3424 if (val64
& busy_bit
) {
3441 * check_pci_device_id - Checks if the device id is supported
3443 * Description: Function to check if the pci device id is supported by driver.
3444 * Return value: Actual device id if supported else PCI_ANY_ID
3446 static u16
check_pci_device_id(u16 id
)
3449 case PCI_DEVICE_ID_HERC_WIN
:
3450 case PCI_DEVICE_ID_HERC_UNI
:
3451 return XFRAME_II_DEVICE
;
3452 case PCI_DEVICE_ID_S2IO_UNI
:
3453 case PCI_DEVICE_ID_S2IO_WIN
:
3454 return XFRAME_I_DEVICE
;
3461 * s2io_reset - Resets the card.
3462 * @sp : private member of the device structure.
3463 * Description: Function to Reset the card. This function then also
3464 * restores the previously saved PCI configuration space registers as
3465 * the card reset also resets the configuration space.
3470 static void s2io_reset(struct s2io_nic
*sp
)
3472 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3477 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3478 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3479 struct stat_block
*stats
;
3480 struct swStat
*swstats
;
3482 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3483 __func__
, pci_name(sp
->pdev
));
3485 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3486 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3488 val64
= SW_RESET_ALL
;
3489 writeq(val64
, &bar0
->sw_reset
);
3490 if (strstr(sp
->product_name
, "CX4"))
3493 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3495 /* Restore the PCI state saved during initialization. */
3496 pci_restore_state(sp
->pdev
);
3497 pci_save_state(sp
->pdev
);
3498 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3499 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3504 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3505 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3507 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3511 /* Set swapper to enable I/O register access */
3512 s2io_set_swapper(sp
);
3514 /* restore mac_addr entries */
3515 do_s2io_restore_unicast_mc(sp
);
3517 /* Restore the MSIX table entries from local variables */
3518 restore_xmsi_data(sp
);
3520 /* Clear certain PCI/PCI-X fields after reset */
3521 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3522 /* Clear "detected parity error" bit */
3523 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3525 /* Clearing PCIX Ecc status register */
3526 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3528 /* Clearing PCI_STATUS error reflected here */
3529 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3532 /* Reset device statistics maintained by OS */
3533 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3535 stats
= sp
->mac_control
.stats_info
;
3536 swstats
= &stats
->sw_stat
;
3538 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3539 up_cnt
= swstats
->link_up_cnt
;
3540 down_cnt
= swstats
->link_down_cnt
;
3541 up_time
= swstats
->link_up_time
;
3542 down_time
= swstats
->link_down_time
;
3543 reset_cnt
= swstats
->soft_reset_cnt
;
3544 mem_alloc_cnt
= swstats
->mem_allocated
;
3545 mem_free_cnt
= swstats
->mem_freed
;
3546 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3548 memset(stats
, 0, sizeof(struct stat_block
));
3550 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3551 swstats
->link_up_cnt
= up_cnt
;
3552 swstats
->link_down_cnt
= down_cnt
;
3553 swstats
->link_up_time
= up_time
;
3554 swstats
->link_down_time
= down_time
;
3555 swstats
->soft_reset_cnt
= reset_cnt
;
3556 swstats
->mem_allocated
= mem_alloc_cnt
;
3557 swstats
->mem_freed
= mem_free_cnt
;
3558 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3560 /* SXE-002: Configure link and activity LED to turn it off */
3561 subid
= sp
->pdev
->subsystem_device
;
3562 if (((subid
& 0xFF) >= 0x07) &&
3563 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3564 val64
= readq(&bar0
->gpio_control
);
3565 val64
|= 0x0000800000000000ULL
;
3566 writeq(val64
, &bar0
->gpio_control
);
3567 val64
= 0x0411040400000000ULL
;
3568 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3572 * Clear spurious ECC interrupts that would have occured on
3573 * XFRAME II cards after reset.
3575 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3576 val64
= readq(&bar0
->pcc_err_reg
);
3577 writeq(val64
, &bar0
->pcc_err_reg
);
3580 sp
->device_enabled_once
= false;
3584 * s2io_set_swapper - to set the swapper controle on the card
3585 * @sp : private member of the device structure,
3586 * pointer to the s2io_nic structure.
3587 * Description: Function to set the swapper control on the card
3588 * correctly depending on the 'endianness' of the system.
3590 * SUCCESS on success and FAILURE on failure.
3593 static int s2io_set_swapper(struct s2io_nic
*sp
)
3595 struct net_device
*dev
= sp
->dev
;
3596 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3597 u64 val64
, valt
, valr
;
3600 * Set proper endian settings and verify the same by reading
3601 * the PIF Feed-back register.
3604 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3605 if (val64
!= 0x0123456789ABCDEFULL
) {
3607 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3608 0x8100008181000081ULL
, /* FE=1, SE=0 */
3609 0x4200004242000042ULL
, /* FE=0, SE=1 */
3610 0}; /* FE=0, SE=0 */
3613 writeq(value
[i
], &bar0
->swapper_ctrl
);
3614 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3615 if (val64
== 0x0123456789ABCDEFULL
)
3620 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3621 "feedback read %llx\n",
3622 dev
->name
, (unsigned long long)val64
);
3627 valr
= readq(&bar0
->swapper_ctrl
);
3630 valt
= 0x0123456789ABCDEFULL
;
3631 writeq(valt
, &bar0
->xmsi_address
);
3632 val64
= readq(&bar0
->xmsi_address
);
3634 if (val64
!= valt
) {
3636 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3637 0x0081810000818100ULL
, /* FE=1, SE=0 */
3638 0x0042420000424200ULL
, /* FE=0, SE=1 */
3639 0}; /* FE=0, SE=0 */
3642 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3643 writeq(valt
, &bar0
->xmsi_address
);
3644 val64
= readq(&bar0
->xmsi_address
);
3650 unsigned long long x
= val64
;
3652 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3656 val64
= readq(&bar0
->swapper_ctrl
);
3657 val64
&= 0xFFFF000000000000ULL
;
3661 * The device by default set to a big endian format, so a
3662 * big endian driver need not set anything.
3664 val64
|= (SWAPPER_CTRL_TXP_FE
|
3665 SWAPPER_CTRL_TXP_SE
|
3666 SWAPPER_CTRL_TXD_R_FE
|
3667 SWAPPER_CTRL_TXD_W_FE
|
3668 SWAPPER_CTRL_TXF_R_FE
|
3669 SWAPPER_CTRL_RXD_R_FE
|
3670 SWAPPER_CTRL_RXD_W_FE
|
3671 SWAPPER_CTRL_RXF_W_FE
|
3672 SWAPPER_CTRL_XMSI_FE
|
3673 SWAPPER_CTRL_STATS_FE
|
3674 SWAPPER_CTRL_STATS_SE
);
3675 if (sp
->config
.intr_type
== INTA
)
3676 val64
|= SWAPPER_CTRL_XMSI_SE
;
3677 writeq(val64
, &bar0
->swapper_ctrl
);
3680 * Initially we enable all bits to make it accessible by the
3681 * driver, then we selectively enable only those bits that
3684 val64
|= (SWAPPER_CTRL_TXP_FE
|
3685 SWAPPER_CTRL_TXP_SE
|
3686 SWAPPER_CTRL_TXD_R_FE
|
3687 SWAPPER_CTRL_TXD_R_SE
|
3688 SWAPPER_CTRL_TXD_W_FE
|
3689 SWAPPER_CTRL_TXD_W_SE
|
3690 SWAPPER_CTRL_TXF_R_FE
|
3691 SWAPPER_CTRL_RXD_R_FE
|
3692 SWAPPER_CTRL_RXD_R_SE
|
3693 SWAPPER_CTRL_RXD_W_FE
|
3694 SWAPPER_CTRL_RXD_W_SE
|
3695 SWAPPER_CTRL_RXF_W_FE
|
3696 SWAPPER_CTRL_XMSI_FE
|
3697 SWAPPER_CTRL_STATS_FE
|
3698 SWAPPER_CTRL_STATS_SE
);
3699 if (sp
->config
.intr_type
== INTA
)
3700 val64
|= SWAPPER_CTRL_XMSI_SE
;
3701 writeq(val64
, &bar0
->swapper_ctrl
);
3703 val64
= readq(&bar0
->swapper_ctrl
);
3706 * Verifying if endian settings are accurate by reading a
3707 * feedback register.
3709 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3710 if (val64
!= 0x0123456789ABCDEFULL
) {
3711 /* Endian settings are incorrect, calls for another dekko. */
3713 "%s: Endian settings are wrong, feedback read %llx\n",
3714 dev
->name
, (unsigned long long)val64
);
3721 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3723 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3725 int ret
= 0, cnt
= 0;
3728 val64
= readq(&bar0
->xmsi_access
);
3729 if (!(val64
& s2BIT(15)))
3735 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3742 static void restore_xmsi_data(struct s2io_nic
*nic
)
3744 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3748 if (nic
->device_type
== XFRAME_I_DEVICE
)
3751 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3752 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3753 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3754 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3755 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3756 writeq(val64
, &bar0
->xmsi_access
);
3757 if (wait_for_msix_trans(nic
, msix_index
)) {
3758 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3759 __func__
, msix_index
);
3765 static void store_xmsi_data(struct s2io_nic
*nic
)
3767 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3768 u64 val64
, addr
, data
;
3771 if (nic
->device_type
== XFRAME_I_DEVICE
)
3774 /* Store and display */
3775 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3776 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3777 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3778 writeq(val64
, &bar0
->xmsi_access
);
3779 if (wait_for_msix_trans(nic
, msix_index
)) {
3780 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3781 __func__
, msix_index
);
3784 addr
= readq(&bar0
->xmsi_address
);
3785 data
= readq(&bar0
->xmsi_data
);
3787 nic
->msix_info
[i
].addr
= addr
;
3788 nic
->msix_info
[i
].data
= data
;
3793 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3795 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3797 u16 msi_control
; /* Temp variable */
3798 int ret
, i
, j
, msix_indx
= 1;
3800 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3801 struct swStat
*swstats
= &stats
->sw_stat
;
3803 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3804 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3805 if (!nic
->entries
) {
3806 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3808 swstats
->mem_alloc_fail_cnt
++;
3811 swstats
->mem_allocated
+= size
;
3813 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3814 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3815 if (!nic
->s2io_entries
) {
3816 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3818 swstats
->mem_alloc_fail_cnt
++;
3819 kfree(nic
->entries
);
3821 += (nic
->num_entries
* sizeof(struct msix_entry
));
3824 swstats
->mem_allocated
+= size
;
3826 nic
->entries
[0].entry
= 0;
3827 nic
->s2io_entries
[0].entry
= 0;
3828 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3829 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3830 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3832 for (i
= 1; i
< nic
->num_entries
; i
++) {
3833 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3834 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3835 nic
->s2io_entries
[i
].arg
= NULL
;
3836 nic
->s2io_entries
[i
].in_use
= 0;
3839 rx_mat
= readq(&bar0
->rx_mat
);
3840 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3841 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3842 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3843 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3844 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3847 writeq(rx_mat
, &bar0
->rx_mat
);
3848 readq(&bar0
->rx_mat
);
3850 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3851 /* We fail init if error or we get less vectors than min required */
3853 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3854 kfree(nic
->entries
);
3855 swstats
->mem_freed
+= nic
->num_entries
*
3856 sizeof(struct msix_entry
);
3857 kfree(nic
->s2io_entries
);
3858 swstats
->mem_freed
+= nic
->num_entries
*
3859 sizeof(struct s2io_msix_entry
);
3860 nic
->entries
= NULL
;
3861 nic
->s2io_entries
= NULL
;
3866 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3867 * in the herc NIC. (Temp change, needs to be removed later)
3869 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3870 msi_control
|= 0x1; /* Enable MSI */
3871 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3876 /* Handle software interrupt used during MSI(X) test */
3877 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3879 struct s2io_nic
*sp
= dev_id
;
3881 sp
->msi_detected
= 1;
3882 wake_up(&sp
->msi_wait
);
3887 /* Test interrupt path by forcing a a software IRQ */
3888 static int s2io_test_msi(struct s2io_nic
*sp
)
3890 struct pci_dev
*pdev
= sp
->pdev
;
3891 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3895 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3898 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3899 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3903 init_waitqueue_head(&sp
->msi_wait
);
3904 sp
->msi_detected
= 0;
3906 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3907 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3908 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3909 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3910 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3912 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3914 if (!sp
->msi_detected
) {
3915 /* MSI(X) test failed, go back to INTx mode */
3916 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3917 "using MSI(X) during test\n",
3918 sp
->dev
->name
, pci_name(pdev
));
3923 free_irq(sp
->entries
[1].vector
, sp
);
3925 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3930 static void remove_msix_isr(struct s2io_nic
*sp
)
3935 for (i
= 0; i
< sp
->num_entries
; i
++) {
3936 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3937 int vector
= sp
->entries
[i
].vector
;
3938 void *arg
= sp
->s2io_entries
[i
].arg
;
3939 free_irq(vector
, arg
);
3944 kfree(sp
->s2io_entries
);
3946 sp
->s2io_entries
= NULL
;
3948 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3949 msi_control
&= 0xFFFE; /* Disable MSI */
3950 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3952 pci_disable_msix(sp
->pdev
);
3955 static void remove_inta_isr(struct s2io_nic
*sp
)
3957 struct net_device
*dev
= sp
->dev
;
3959 free_irq(sp
->pdev
->irq
, dev
);
3962 /* ********************************************************* *
3963 * Functions defined below concern the OS part of the driver *
3964 * ********************************************************* */
3967 * s2io_open - open entry point of the driver
3968 * @dev : pointer to the device structure.
3970 * This function is the open entry point of the driver. It mainly calls a
3971 * function to allocate Rx buffers and inserts them into the buffer
3972 * descriptors and then enables the Rx part of the NIC.
3974 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3978 static int s2io_open(struct net_device
*dev
)
3980 struct s2io_nic
*sp
= netdev_priv(dev
);
3981 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3985 * Make sure you have link off by default every time
3986 * Nic is initialized
3988 netif_carrier_off(dev
);
3989 sp
->last_link_state
= 0;
3991 /* Initialize H/W and enable interrupts */
3992 err
= s2io_card_up(sp
);
3994 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3996 goto hw_init_failed
;
3999 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4000 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4003 goto hw_init_failed
;
4005 s2io_start_all_tx_queue(sp
);
4009 if (sp
->config
.intr_type
== MSI_X
) {
4012 swstats
->mem_freed
+= sp
->num_entries
*
4013 sizeof(struct msix_entry
);
4015 if (sp
->s2io_entries
) {
4016 kfree(sp
->s2io_entries
);
4017 swstats
->mem_freed
+= sp
->num_entries
*
4018 sizeof(struct s2io_msix_entry
);
4025 * s2io_close -close entry point of the driver
4026 * @dev : device pointer.
4028 * This is the stop entry point of the driver. It needs to undo exactly
4029 * whatever was done by the open entry point,thus it's usually referred to
4030 * as the close function.Among other things this function mainly stops the
4031 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4033 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4037 static int s2io_close(struct net_device
*dev
)
4039 struct s2io_nic
*sp
= netdev_priv(dev
);
4040 struct config_param
*config
= &sp
->config
;
4044 /* Return if the device is already closed *
4045 * Can happen when s2io_card_up failed in change_mtu *
4047 if (!is_s2io_card_up(sp
))
4050 s2io_stop_all_tx_queue(sp
);
4051 /* delete all populated mac entries */
4052 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4053 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4054 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4055 do_s2io_delete_unicast_mc(sp
, tmp64
);
4064 * s2io_xmit - Tx entry point of te driver
4065 * @skb : the socket buffer containing the Tx data.
4066 * @dev : device pointer.
4068 * This function is the Tx entry point of the driver. S2IO NIC supports
4069 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4070 * NOTE: when device cant queue the pkt,just the trans_start variable will
4073 * 0 on success & 1 on failure.
4076 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4078 struct s2io_nic
*sp
= netdev_priv(dev
);
4079 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4082 struct TxFIFO_element __iomem
*tx_fifo
;
4083 unsigned long flags
= 0;
4085 struct fifo_info
*fifo
= NULL
;
4086 int do_spin_lock
= 1;
4088 int enable_per_list_interrupt
= 0;
4089 struct config_param
*config
= &sp
->config
;
4090 struct mac_info
*mac_control
= &sp
->mac_control
;
4091 struct stat_block
*stats
= mac_control
->stats_info
;
4092 struct swStat
*swstats
= &stats
->sw_stat
;
4094 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4096 if (unlikely(skb
->len
<= 0)) {
4097 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4098 dev_kfree_skb_any(skb
);
4099 return NETDEV_TX_OK
;
4102 if (!is_s2io_card_up(sp
)) {
4103 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4106 return NETDEV_TX_OK
;
4110 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4111 vlan_tag
= vlan_tx_tag_get(skb
);
4112 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4113 if (skb
->protocol
== htons(ETH_P_IP
)) {
4118 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4119 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4122 if (ip
->protocol
== IPPROTO_TCP
) {
4123 queue_len
= sp
->total_tcp_fifos
;
4124 queue
= (ntohs(th
->source
) +
4126 sp
->fifo_selector
[queue_len
- 1];
4127 if (queue
>= queue_len
)
4128 queue
= queue_len
- 1;
4129 } else if (ip
->protocol
== IPPROTO_UDP
) {
4130 queue_len
= sp
->total_udp_fifos
;
4131 queue
= (ntohs(th
->source
) +
4133 sp
->fifo_selector
[queue_len
- 1];
4134 if (queue
>= queue_len
)
4135 queue
= queue_len
- 1;
4136 queue
+= sp
->udp_fifo_idx
;
4137 if (skb
->len
> 1024)
4138 enable_per_list_interrupt
= 1;
4143 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4144 /* get fifo number based on skb->priority value */
4145 queue
= config
->fifo_mapping
4146 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4147 fifo
= &mac_control
->fifos
[queue
];
4150 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4152 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4153 return NETDEV_TX_LOCKED
;
4156 if (sp
->config
.multiq
) {
4157 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4158 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4159 return NETDEV_TX_BUSY
;
4161 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4162 if (netif_queue_stopped(dev
)) {
4163 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4164 return NETDEV_TX_BUSY
;
4168 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4169 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4170 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4172 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4173 /* Avoid "put" pointer going beyond "get" pointer */
4174 if (txdp
->Host_Control
||
4175 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4176 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4177 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4179 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4180 return NETDEV_TX_OK
;
4183 offload_type
= s2io_offload_type(skb
);
4184 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4185 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4186 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4188 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4189 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4193 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4194 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4195 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4196 if (enable_per_list_interrupt
)
4197 if (put_off
& (queue_len
>> 5))
4198 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4200 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4201 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4204 frg_len
= skb_headlen(skb
);
4205 if (offload_type
== SKB_GSO_UDP
) {
4208 ufo_size
= s2io_udp_mss(skb
);
4210 txdp
->Control_1
|= TXD_UFO_EN
;
4211 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4212 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4214 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4215 fifo
->ufo_in_band_v
[put_off
] =
4216 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4218 fifo
->ufo_in_band_v
[put_off
] =
4219 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4221 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4222 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4223 fifo
->ufo_in_band_v
,
4226 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4227 goto pci_map_failed
;
4231 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4232 frg_len
, PCI_DMA_TODEVICE
);
4233 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4234 goto pci_map_failed
;
4236 txdp
->Host_Control
= (unsigned long)skb
;
4237 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4238 if (offload_type
== SKB_GSO_UDP
)
4239 txdp
->Control_1
|= TXD_UFO_EN
;
4241 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4242 /* For fragmented SKB. */
4243 for (i
= 0; i
< frg_cnt
; i
++) {
4244 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4245 /* A '0' length fragment will be ignored */
4249 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4253 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4254 if (offload_type
== SKB_GSO_UDP
)
4255 txdp
->Control_1
|= TXD_UFO_EN
;
4257 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4259 if (offload_type
== SKB_GSO_UDP
)
4260 frg_cnt
++; /* as Txd0 was used for inband header */
4262 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4263 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4264 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4266 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4269 val64
|= TX_FIFO_SPECIAL_FUNC
;
4271 writeq(val64
, &tx_fifo
->List_Control
);
4276 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4278 fifo
->tx_curr_put_info
.offset
= put_off
;
4280 /* Avoid "put" pointer going beyond "get" pointer */
4281 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4282 swstats
->fifo_full_cnt
++;
4284 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4286 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4288 swstats
->mem_allocated
+= skb
->truesize
;
4289 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4291 if (sp
->config
.intr_type
== MSI_X
)
4292 tx_intr_handler(fifo
);
4294 return NETDEV_TX_OK
;
4297 swstats
->pci_map_fail_cnt
++;
4298 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4299 swstats
->mem_freed
+= skb
->truesize
;
4301 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4302 return NETDEV_TX_OK
;
4306 s2io_alarm_handle(unsigned long data
)
4308 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4309 struct net_device
*dev
= sp
->dev
;
4311 s2io_handle_errors(dev
);
4312 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4315 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4317 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4318 struct s2io_nic
*sp
= ring
->nic
;
4319 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4321 if (unlikely(!is_s2io_card_up(sp
)))
4324 if (sp
->config
.napi
) {
4325 u8 __iomem
*addr
= NULL
;
4328 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4329 addr
+= (7 - ring
->ring_no
);
4330 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4333 napi_schedule(&ring
->napi
);
4335 rx_intr_handler(ring
, 0);
4336 s2io_chk_rx_buffers(sp
, ring
);
4342 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4345 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4346 struct s2io_nic
*sp
= fifos
->nic
;
4347 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4348 struct config_param
*config
= &sp
->config
;
4351 if (unlikely(!is_s2io_card_up(sp
)))
4354 reason
= readq(&bar0
->general_int_status
);
4355 if (unlikely(reason
== S2IO_MINUS_ONE
))
4356 /* Nothing much can be done. Get out */
4359 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4360 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4362 if (reason
& GEN_INTR_TXPIC
)
4363 s2io_txpic_intr_handle(sp
);
4365 if (reason
& GEN_INTR_TXTRAFFIC
)
4366 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4368 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4369 tx_intr_handler(&fifos
[i
]);
4371 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4372 readl(&bar0
->general_int_status
);
4375 /* The interrupt was not raised by us */
4379 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4381 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4384 val64
= readq(&bar0
->pic_int_status
);
4385 if (val64
& PIC_INT_GPIO
) {
4386 val64
= readq(&bar0
->gpio_int_reg
);
4387 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4388 (val64
& GPIO_INT_REG_LINK_UP
)) {
4390 * This is unstable state so clear both up/down
4391 * interrupt and adapter to re-evaluate the link state.
4393 val64
|= GPIO_INT_REG_LINK_DOWN
;
4394 val64
|= GPIO_INT_REG_LINK_UP
;
4395 writeq(val64
, &bar0
->gpio_int_reg
);
4396 val64
= readq(&bar0
->gpio_int_mask
);
4397 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4398 GPIO_INT_MASK_LINK_DOWN
);
4399 writeq(val64
, &bar0
->gpio_int_mask
);
4400 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4401 val64
= readq(&bar0
->adapter_status
);
4402 /* Enable Adapter */
4403 val64
= readq(&bar0
->adapter_control
);
4404 val64
|= ADAPTER_CNTL_EN
;
4405 writeq(val64
, &bar0
->adapter_control
);
4406 val64
|= ADAPTER_LED_ON
;
4407 writeq(val64
, &bar0
->adapter_control
);
4408 if (!sp
->device_enabled_once
)
4409 sp
->device_enabled_once
= 1;
4411 s2io_link(sp
, LINK_UP
);
4413 * unmask link down interrupt and mask link-up
4416 val64
= readq(&bar0
->gpio_int_mask
);
4417 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4418 val64
|= GPIO_INT_MASK_LINK_UP
;
4419 writeq(val64
, &bar0
->gpio_int_mask
);
4421 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4422 val64
= readq(&bar0
->adapter_status
);
4423 s2io_link(sp
, LINK_DOWN
);
4424 /* Link is down so unmaks link up interrupt */
4425 val64
= readq(&bar0
->gpio_int_mask
);
4426 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4427 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4428 writeq(val64
, &bar0
->gpio_int_mask
);
4431 val64
= readq(&bar0
->adapter_control
);
4432 val64
= val64
& (~ADAPTER_LED_ON
);
4433 writeq(val64
, &bar0
->adapter_control
);
4436 val64
= readq(&bar0
->gpio_int_mask
);
4440 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4441 * @value: alarm bits
4442 * @addr: address value
4443 * @cnt: counter variable
4444 * Description: Check for alarm and increment the counter
4446 * 1 - if alarm bit set
4447 * 0 - if alarm bit is not set
4449 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4450 unsigned long long *cnt
)
4453 val64
= readq(addr
);
4454 if (val64
& value
) {
4455 writeq(val64
, addr
);
4464 * s2io_handle_errors - Xframe error indication handler
4465 * @nic: device private variable
4466 * Description: Handle alarms such as loss of link, single or
4467 * double ECC errors, critical and serious errors.
4471 static void s2io_handle_errors(void *dev_id
)
4473 struct net_device
*dev
= (struct net_device
*)dev_id
;
4474 struct s2io_nic
*sp
= netdev_priv(dev
);
4475 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4476 u64 temp64
= 0, val64
= 0;
4479 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4480 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4482 if (!is_s2io_card_up(sp
))
4485 if (pci_channel_offline(sp
->pdev
))
4488 memset(&sw_stat
->ring_full_cnt
, 0,
4489 sizeof(sw_stat
->ring_full_cnt
));
4491 /* Handling the XPAK counters update */
4492 if (stats
->xpak_timer_count
< 72000) {
4493 /* waiting for an hour */
4494 stats
->xpak_timer_count
++;
4496 s2io_updt_xpak_counter(dev
);
4497 /* reset the count to zero */
4498 stats
->xpak_timer_count
= 0;
4501 /* Handling link status change error Intr */
4502 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4503 val64
= readq(&bar0
->mac_rmac_err_reg
);
4504 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4505 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4506 schedule_work(&sp
->set_link_task
);
4509 /* In case of a serious error, the device will be Reset. */
4510 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4511 &sw_stat
->serious_err_cnt
))
4514 /* Check for data parity error */
4515 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4516 &sw_stat
->parity_err_cnt
))
4519 /* Check for ring full counter */
4520 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4521 val64
= readq(&bar0
->ring_bump_counter1
);
4522 for (i
= 0; i
< 4; i
++) {
4523 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4524 temp64
>>= 64 - ((i
+1)*16);
4525 sw_stat
->ring_full_cnt
[i
] += temp64
;
4528 val64
= readq(&bar0
->ring_bump_counter2
);
4529 for (i
= 0; i
< 4; i
++) {
4530 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4531 temp64
>>= 64 - ((i
+1)*16);
4532 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4536 val64
= readq(&bar0
->txdma_int_status
);
4537 /*check for pfc_err*/
4538 if (val64
& TXDMA_PFC_INT
) {
4539 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4540 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4543 &sw_stat
->pfc_err_cnt
))
4545 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4547 &sw_stat
->pfc_err_cnt
);
4550 /*check for tda_err*/
4551 if (val64
& TXDMA_TDA_INT
) {
4552 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4556 &sw_stat
->tda_err_cnt
))
4558 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4560 &sw_stat
->tda_err_cnt
);
4562 /*check for pcc_err*/
4563 if (val64
& TXDMA_PCC_INT
) {
4564 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4565 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4566 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4567 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4570 &sw_stat
->pcc_err_cnt
))
4572 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4574 &sw_stat
->pcc_err_cnt
);
4577 /*check for tti_err*/
4578 if (val64
& TXDMA_TTI_INT
) {
4579 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4581 &sw_stat
->tti_err_cnt
))
4583 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4585 &sw_stat
->tti_err_cnt
);
4588 /*check for lso_err*/
4589 if (val64
& TXDMA_LSO_INT
) {
4590 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4591 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4593 &sw_stat
->lso_err_cnt
))
4595 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4597 &sw_stat
->lso_err_cnt
);
4600 /*check for tpa_err*/
4601 if (val64
& TXDMA_TPA_INT
) {
4602 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4604 &sw_stat
->tpa_err_cnt
))
4606 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4608 &sw_stat
->tpa_err_cnt
);
4611 /*check for sm_err*/
4612 if (val64
& TXDMA_SM_INT
) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4615 &sw_stat
->sm_err_cnt
))
4619 val64
= readq(&bar0
->mac_int_status
);
4620 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4622 &bar0
->mac_tmac_err_reg
,
4623 &sw_stat
->mac_tmac_err_cnt
))
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4626 TMAC_DESC_ECC_SG_ERR
|
4627 TMAC_DESC_ECC_DB_ERR
,
4628 &bar0
->mac_tmac_err_reg
,
4629 &sw_stat
->mac_tmac_err_cnt
);
4632 val64
= readq(&bar0
->xgxs_int_status
);
4633 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4634 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4635 &bar0
->xgxs_txgxs_err_reg
,
4636 &sw_stat
->xgxs_txgxs_err_cnt
))
4638 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4639 &bar0
->xgxs_txgxs_err_reg
,
4640 &sw_stat
->xgxs_txgxs_err_cnt
);
4643 val64
= readq(&bar0
->rxdma_int_status
);
4644 if (val64
& RXDMA_INT_RC_INT_M
) {
4645 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4647 RC_PRCn_SM_ERR_ALARM
|
4648 RC_FTC_SM_ERR_ALARM
,
4650 &sw_stat
->rc_err_cnt
))
4652 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4654 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4655 &sw_stat
->rc_err_cnt
);
4656 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4659 &bar0
->prc_pcix_err_reg
,
4660 &sw_stat
->prc_pcix_err_cnt
))
4662 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4665 &bar0
->prc_pcix_err_reg
,
4666 &sw_stat
->prc_pcix_err_cnt
);
4669 if (val64
& RXDMA_INT_RPA_INT_M
) {
4670 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4672 &sw_stat
->rpa_err_cnt
))
4674 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4676 &sw_stat
->rpa_err_cnt
);
4679 if (val64
& RXDMA_INT_RDA_INT_M
) {
4680 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4681 RDA_FRM_ECC_DB_N_AERR
|
4684 RDA_RXD_ECC_DB_SERR
,
4686 &sw_stat
->rda_err_cnt
))
4688 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4689 RDA_FRM_ECC_SG_ERR
|
4693 &sw_stat
->rda_err_cnt
);
4696 if (val64
& RXDMA_INT_RTI_INT_M
) {
4697 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4699 &sw_stat
->rti_err_cnt
))
4701 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4703 &sw_stat
->rti_err_cnt
);
4706 val64
= readq(&bar0
->mac_int_status
);
4707 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4708 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4709 &bar0
->mac_rmac_err_reg
,
4710 &sw_stat
->mac_rmac_err_cnt
))
4712 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4713 RMAC_SINGLE_ECC_ERR
|
4714 RMAC_DOUBLE_ECC_ERR
,
4715 &bar0
->mac_rmac_err_reg
,
4716 &sw_stat
->mac_rmac_err_cnt
);
4719 val64
= readq(&bar0
->xgxs_int_status
);
4720 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4721 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4722 &bar0
->xgxs_rxgxs_err_reg
,
4723 &sw_stat
->xgxs_rxgxs_err_cnt
))
4727 val64
= readq(&bar0
->mc_int_status
);
4728 if (val64
& MC_INT_STATUS_MC_INT
) {
4729 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4731 &sw_stat
->mc_err_cnt
))
4734 /* Handling Ecc errors */
4735 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4736 writeq(val64
, &bar0
->mc_err_reg
);
4737 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4738 sw_stat
->double_ecc_errs
++;
4739 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4741 * Reset XframeI only if critical error
4744 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4745 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4749 sw_stat
->single_ecc_errs
++;
4755 s2io_stop_all_tx_queue(sp
);
4756 schedule_work(&sp
->rst_timer_task
);
4757 sw_stat
->soft_reset_cnt
++;
4761 * s2io_isr - ISR handler of the device .
4762 * @irq: the irq of the device.
4763 * @dev_id: a void pointer to the dev structure of the NIC.
4764 * Description: This function is the ISR handler of the device. It
4765 * identifies the reason for the interrupt and calls the relevant
4766 * service routines. As a contongency measure, this ISR allocates the
4767 * recv buffers, if their numbers are below the panic value which is
4768 * presently set to 25% of the original number of rcv buffers allocated.
4770 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4771 * IRQ_NONE: will be returned if interrupt is not from our device
4773 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4775 struct net_device
*dev
= (struct net_device
*)dev_id
;
4776 struct s2io_nic
*sp
= netdev_priv(dev
);
4777 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4780 struct mac_info
*mac_control
;
4781 struct config_param
*config
;
4783 /* Pretend we handled any irq's from a disconnected card */
4784 if (pci_channel_offline(sp
->pdev
))
4787 if (!is_s2io_card_up(sp
))
4790 config
= &sp
->config
;
4791 mac_control
= &sp
->mac_control
;
4794 * Identify the cause for interrupt and call the appropriate
4795 * interrupt handler. Causes for the interrupt could be;
4800 reason
= readq(&bar0
->general_int_status
);
4802 if (unlikely(reason
== S2IO_MINUS_ONE
))
4803 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4806 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4807 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4810 if (reason
& GEN_INTR_RXTRAFFIC
) {
4811 napi_schedule(&sp
->napi
);
4812 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4813 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4814 readl(&bar0
->rx_traffic_int
);
4818 * rx_traffic_int reg is an R1 register, writing all 1's
4819 * will ensure that the actual interrupt causing bit
4820 * get's cleared and hence a read can be avoided.
4822 if (reason
& GEN_INTR_RXTRAFFIC
)
4823 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4825 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4826 struct ring_info
*ring
= &mac_control
->rings
[i
];
4828 rx_intr_handler(ring
, 0);
4833 * tx_traffic_int reg is an R1 register, writing all 1's
4834 * will ensure that the actual interrupt causing bit get's
4835 * cleared and hence a read can be avoided.
4837 if (reason
& GEN_INTR_TXTRAFFIC
)
4838 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4840 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4841 tx_intr_handler(&mac_control
->fifos
[i
]);
4843 if (reason
& GEN_INTR_TXPIC
)
4844 s2io_txpic_intr_handle(sp
);
4847 * Reallocate the buffers from the interrupt handler itself.
4849 if (!config
->napi
) {
4850 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4851 struct ring_info
*ring
= &mac_control
->rings
[i
];
4853 s2io_chk_rx_buffers(sp
, ring
);
4856 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4857 readl(&bar0
->general_int_status
);
4861 } else if (!reason
) {
4862 /* The interrupt was not raised by us */
4872 static void s2io_updt_stats(struct s2io_nic
*sp
)
4874 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4878 if (is_s2io_card_up(sp
)) {
4879 /* Apprx 30us on a 133 MHz bus */
4880 val64
= SET_UPDT_CLICKS(10) |
4881 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4882 writeq(val64
, &bar0
->stat_cfg
);
4885 val64
= readq(&bar0
->stat_cfg
);
4886 if (!(val64
& s2BIT(0)))
4890 break; /* Updt failed */
4896 * s2io_get_stats - Updates the device statistics structure.
4897 * @dev : pointer to the device structure.
4899 * This function updates the device statistics structure in the s2io_nic
4900 * structure and returns a pointer to the same.
4902 * pointer to the updated net_device_stats structure.
4905 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4907 struct s2io_nic
*sp
= netdev_priv(dev
);
4908 struct config_param
*config
= &sp
->config
;
4909 struct mac_info
*mac_control
= &sp
->mac_control
;
4910 struct stat_block
*stats
= mac_control
->stats_info
;
4913 /* Configure Stats for immediate updt */
4914 s2io_updt_stats(sp
);
4916 /* Using sp->stats as a staging area, because reset (due to mtu
4917 change, for example) will clear some hardware counters */
4918 dev
->stats
.tx_packets
+= le32_to_cpu(stats
->tmac_frms
) -
4919 sp
->stats
.tx_packets
;
4920 sp
->stats
.tx_packets
= le32_to_cpu(stats
->tmac_frms
);
4922 dev
->stats
.tx_errors
+= le32_to_cpu(stats
->tmac_any_err_frms
) -
4923 sp
->stats
.tx_errors
;
4924 sp
->stats
.tx_errors
= le32_to_cpu(stats
->tmac_any_err_frms
);
4926 dev
->stats
.rx_errors
+= le64_to_cpu(stats
->rmac_drop_frms
) -
4927 sp
->stats
.rx_errors
;
4928 sp
->stats
.rx_errors
= le64_to_cpu(stats
->rmac_drop_frms
);
4930 dev
->stats
.multicast
= le32_to_cpu(stats
->rmac_vld_mcst_frms
) -
4931 sp
->stats
.multicast
;
4932 sp
->stats
.multicast
= le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4934 dev
->stats
.rx_length_errors
= le64_to_cpu(stats
->rmac_long_frms
) -
4935 sp
->stats
.rx_length_errors
;
4936 sp
->stats
.rx_length_errors
= le64_to_cpu(stats
->rmac_long_frms
);
4938 /* collect per-ring rx_packets and rx_bytes */
4939 dev
->stats
.rx_packets
= dev
->stats
.rx_bytes
= 0;
4940 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4941 struct ring_info
*ring
= &mac_control
->rings
[i
];
4943 dev
->stats
.rx_packets
+= ring
->rx_packets
;
4944 dev
->stats
.rx_bytes
+= ring
->rx_bytes
;
4951 * s2io_set_multicast - entry point for multicast address enable/disable.
4952 * @dev : pointer to the device structure
4954 * This function is a driver entry point which gets called by the kernel
4955 * whenever multicast addresses must be enabled/disabled. This also gets
4956 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4957 * determine, if multicast address must be enabled or if promiscuous mode
4958 * is to be disabled etc.
4963 static void s2io_set_multicast(struct net_device
*dev
)
4966 struct netdev_hw_addr
*ha
;
4967 struct s2io_nic
*sp
= netdev_priv(dev
);
4968 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4969 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4971 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4973 struct config_param
*config
= &sp
->config
;
4975 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4976 /* Enable all Multicast addresses */
4977 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4978 &bar0
->rmac_addr_data0_mem
);
4979 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4980 &bar0
->rmac_addr_data1_mem
);
4981 val64
= RMAC_ADDR_CMD_MEM_WE
|
4982 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4983 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4984 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4985 /* Wait till command completes */
4986 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4987 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4991 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4992 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4993 /* Disable all Multicast addresses */
4994 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4995 &bar0
->rmac_addr_data0_mem
);
4996 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4997 &bar0
->rmac_addr_data1_mem
);
4998 val64
= RMAC_ADDR_CMD_MEM_WE
|
4999 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5000 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5001 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5002 /* Wait till command completes */
5003 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5004 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5008 sp
->all_multi_pos
= 0;
5011 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5012 /* Put the NIC into promiscuous mode */
5013 add
= &bar0
->mac_cfg
;
5014 val64
= readq(&bar0
->mac_cfg
);
5015 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5017 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5018 writel((u32
)val64
, add
);
5019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5020 writel((u32
) (val64
>> 32), (add
+ 4));
5022 if (vlan_tag_strip
!= 1) {
5023 val64
= readq(&bar0
->rx_pa_cfg
);
5024 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5025 writeq(val64
, &bar0
->rx_pa_cfg
);
5026 sp
->vlan_strip_flag
= 0;
5029 val64
= readq(&bar0
->mac_cfg
);
5030 sp
->promisc_flg
= 1;
5031 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5033 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5034 /* Remove the NIC from promiscuous mode */
5035 add
= &bar0
->mac_cfg
;
5036 val64
= readq(&bar0
->mac_cfg
);
5037 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5039 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5040 writel((u32
)val64
, add
);
5041 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5042 writel((u32
) (val64
>> 32), (add
+ 4));
5044 if (vlan_tag_strip
!= 0) {
5045 val64
= readq(&bar0
->rx_pa_cfg
);
5046 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5047 writeq(val64
, &bar0
->rx_pa_cfg
);
5048 sp
->vlan_strip_flag
= 1;
5051 val64
= readq(&bar0
->mac_cfg
);
5052 sp
->promisc_flg
= 0;
5053 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5056 /* Update individual M_CAST address list */
5057 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5058 if (netdev_mc_count(dev
) >
5059 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5061 "%s: No more Rx filters can be added - "
5062 "please enable ALL_MULTI instead\n",
5067 prev_cnt
= sp
->mc_addr_count
;
5068 sp
->mc_addr_count
= netdev_mc_count(dev
);
5070 /* Clear out the previous list of Mc in the H/W. */
5071 for (i
= 0; i
< prev_cnt
; i
++) {
5072 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5073 &bar0
->rmac_addr_data0_mem
);
5074 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5075 &bar0
->rmac_addr_data1_mem
);
5076 val64
= RMAC_ADDR_CMD_MEM_WE
|
5077 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5078 RMAC_ADDR_CMD_MEM_OFFSET
5079 (config
->mc_start_offset
+ i
);
5080 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5082 /* Wait for command completes */
5083 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5084 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5087 "%s: Adding Multicasts failed\n",
5093 /* Create the new Rx filter list and update the same in H/W. */
5095 netdev_for_each_mc_addr(ha
, dev
) {
5096 memcpy(sp
->usr_addrs
[i
].addr
, ha
->addr
,
5099 for (j
= 0; j
< ETH_ALEN
; j
++) {
5100 mac_addr
|= ha
->addr
[j
];
5104 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5105 &bar0
->rmac_addr_data0_mem
);
5106 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5107 &bar0
->rmac_addr_data1_mem
);
5108 val64
= RMAC_ADDR_CMD_MEM_WE
|
5109 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5110 RMAC_ADDR_CMD_MEM_OFFSET
5111 (i
+ config
->mc_start_offset
);
5112 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5114 /* Wait for command completes */
5115 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5116 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5119 "%s: Adding Multicasts failed\n",
5128 /* read from CAM unicast & multicast addresses and store it in
5129 * def_mac_addr structure
5131 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5135 struct config_param
*config
= &sp
->config
;
5137 /* store unicast & multicast mac addresses */
5138 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5139 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5140 /* if read fails disable the entry */
5141 if (mac_addr
== FAILURE
)
5142 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5143 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5147 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5148 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5151 struct config_param
*config
= &sp
->config
;
5152 /* restore unicast mac address */
5153 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5154 do_s2io_prog_unicast(sp
->dev
,
5155 sp
->def_mac_addr
[offset
].mac_addr
);
5157 /* restore multicast mac address */
5158 for (offset
= config
->mc_start_offset
;
5159 offset
< config
->max_mc_addr
; offset
++)
5160 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5163 /* add a multicast MAC address to CAM */
5164 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5168 struct config_param
*config
= &sp
->config
;
5170 for (i
= 0; i
< ETH_ALEN
; i
++) {
5172 mac_addr
|= addr
[i
];
5174 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5177 /* check if the multicast mac already preset in CAM */
5178 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5180 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5181 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5184 if (tmp64
== mac_addr
)
5187 if (i
== config
->max_mc_addr
) {
5189 "CAM full no space left for multicast MAC\n");
5192 /* Update the internal structure with this new mac address */
5193 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5195 return do_s2io_add_mac(sp
, mac_addr
, i
);
5198 /* add MAC address to CAM */
5199 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5202 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5204 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5205 &bar0
->rmac_addr_data0_mem
);
5207 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5208 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5209 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5211 /* Wait till command completes */
5212 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5213 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5215 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5220 /* deletes a specified unicast/multicast mac entry from CAM */
5221 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5224 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5225 struct config_param
*config
= &sp
->config
;
5228 offset
< config
->max_mc_addr
; offset
++) {
5229 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5230 if (tmp64
== addr
) {
5231 /* disable the entry by writing 0xffffffffffffULL */
5232 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5234 /* store the new mac list from CAM */
5235 do_s2io_store_unicast_mc(sp
);
5239 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5240 (unsigned long long)addr
);
5244 /* read mac entries from CAM */
5245 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5247 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5248 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5251 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5252 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5253 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5255 /* Wait till command completes */
5256 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5257 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5259 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5262 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5268 * s2io_set_mac_addr driver entry point
5271 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5273 struct sockaddr
*addr
= p
;
5275 if (!is_valid_ether_addr(addr
->sa_data
))
5278 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5280 /* store the MAC address in CAM */
5281 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5284 * do_s2io_prog_unicast - Programs the Xframe mac address
5285 * @dev : pointer to the device structure.
5286 * @addr: a uchar pointer to the new mac address which is to be set.
5287 * Description : This procedure will program the Xframe to receive
5288 * frames with new Mac Address
5289 * Return value: SUCCESS on success and an appropriate (-)ve integer
5290 * as defined in errno.h file on failure.
5293 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5295 struct s2io_nic
*sp
= netdev_priv(dev
);
5296 register u64 mac_addr
= 0, perm_addr
= 0;
5299 struct config_param
*config
= &sp
->config
;
5302 * Set the new MAC address as the new unicast filter and reflect this
5303 * change on the device address registered with the OS. It will be
5306 for (i
= 0; i
< ETH_ALEN
; i
++) {
5308 mac_addr
|= addr
[i
];
5310 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5313 /* check if the dev_addr is different than perm_addr */
5314 if (mac_addr
== perm_addr
)
5317 /* check if the mac already preset in CAM */
5318 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5319 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5320 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5323 if (tmp64
== mac_addr
) {
5325 "MAC addr:0x%llx already present in CAM\n",
5326 (unsigned long long)mac_addr
);
5330 if (i
== config
->max_mac_addr
) {
5331 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5334 /* Update the internal structure with this new mac address */
5335 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5337 return do_s2io_add_mac(sp
, mac_addr
, i
);
5341 * s2io_ethtool_sset - Sets different link parameters.
5342 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5343 * @info: pointer to the structure with parameters given by ethtool to set
5346 * The function sets different link parameters provided by the user onto
5352 static int s2io_ethtool_sset(struct net_device
*dev
,
5353 struct ethtool_cmd
*info
)
5355 struct s2io_nic
*sp
= netdev_priv(dev
);
5356 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5357 (info
->speed
!= SPEED_10000
) ||
5358 (info
->duplex
!= DUPLEX_FULL
))
5361 s2io_close(sp
->dev
);
5369 * s2io_ethtol_gset - Return link specific information.
5370 * @sp : private member of the device structure, pointer to the
5371 * s2io_nic structure.
5372 * @info : pointer to the structure with parameters given by ethtool
5373 * to return link information.
5375 * Returns link specific information like speed, duplex etc.. to ethtool.
5377 * return 0 on success.
5380 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5382 struct s2io_nic
*sp
= netdev_priv(dev
);
5383 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5384 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5385 info
->port
= PORT_FIBRE
;
5387 /* info->transceiver */
5388 info
->transceiver
= XCVR_EXTERNAL
;
5390 if (netif_carrier_ok(sp
->dev
)) {
5391 info
->speed
= 10000;
5392 info
->duplex
= DUPLEX_FULL
;
5398 info
->autoneg
= AUTONEG_DISABLE
;
5403 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5404 * @sp : private member of the device structure, which is a pointer to the
5405 * s2io_nic structure.
5406 * @info : pointer to the structure with parameters given by ethtool to
5407 * return driver information.
5409 * Returns driver specefic information like name, version etc.. to ethtool.
5414 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5415 struct ethtool_drvinfo
*info
)
5417 struct s2io_nic
*sp
= netdev_priv(dev
);
5419 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5420 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5421 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5422 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5423 info
->regdump_len
= XENA_REG_SPACE
;
5424 info
->eedump_len
= XENA_EEPROM_SPACE
;
5428 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5429 * @sp: private member of the device structure, which is a pointer to the
5430 * s2io_nic structure.
5431 * @regs : pointer to the structure with parameters given by ethtool for
5432 * dumping the registers.
5433 * @reg_space: The input argumnet into which all the registers are dumped.
5435 * Dumps the entire register space of xFrame NIC into the user given
5441 static void s2io_ethtool_gregs(struct net_device
*dev
,
5442 struct ethtool_regs
*regs
, void *space
)
5446 u8
*reg_space
= (u8
*)space
;
5447 struct s2io_nic
*sp
= netdev_priv(dev
);
5449 regs
->len
= XENA_REG_SPACE
;
5450 regs
->version
= sp
->pdev
->subsystem_device
;
5452 for (i
= 0; i
< regs
->len
; i
+= 8) {
5453 reg
= readq(sp
->bar0
+ i
);
5454 memcpy((reg_space
+ i
), ®
, 8);
5459 * s2io_phy_id - timer function that alternates adapter LED.
5460 * @data : address of the private member of the device structure, which
5461 * is a pointer to the s2io_nic structure, provided as an u32.
5462 * Description: This is actually the timer function that alternates the
5463 * adapter LED bit of the adapter control bit to set/reset every time on
5464 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5465 * once every second.
5467 static void s2io_phy_id(unsigned long data
)
5469 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
5470 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5474 subid
= sp
->pdev
->subsystem_device
;
5475 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5476 ((subid
& 0xFF) >= 0x07)) {
5477 val64
= readq(&bar0
->gpio_control
);
5478 val64
^= GPIO_CTRL_GPIO_0
;
5479 writeq(val64
, &bar0
->gpio_control
);
5481 val64
= readq(&bar0
->adapter_control
);
5482 val64
^= ADAPTER_LED_ON
;
5483 writeq(val64
, &bar0
->adapter_control
);
5486 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5490 * s2io_ethtool_idnic - To physically identify the nic on the system.
5491 * @sp : private member of the device structure, which is a pointer to the
5492 * s2io_nic structure.
5493 * @id : pointer to the structure with identification parameters given by
5495 * Description: Used to physically identify the NIC on the system.
5496 * The Link LED will blink for a time specified by the user for
5498 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5499 * identification is possible only if it's link is up.
5501 * int , returns 0 on success
5504 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5506 u64 val64
= 0, last_gpio_ctrl_val
;
5507 struct s2io_nic
*sp
= netdev_priv(dev
);
5508 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5511 subid
= sp
->pdev
->subsystem_device
;
5512 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5513 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5514 val64
= readq(&bar0
->adapter_control
);
5515 if (!(val64
& ADAPTER_CNTL_EN
)) {
5516 pr_err("Adapter Link down, cannot blink LED\n");
5520 if (sp
->id_timer
.function
== NULL
) {
5521 init_timer(&sp
->id_timer
);
5522 sp
->id_timer
.function
= s2io_phy_id
;
5523 sp
->id_timer
.data
= (unsigned long)sp
;
5525 mod_timer(&sp
->id_timer
, jiffies
);
5527 msleep_interruptible(data
* HZ
);
5529 msleep_interruptible(MAX_FLICKER_TIME
);
5530 del_timer_sync(&sp
->id_timer
);
5532 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5533 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5534 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5540 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5541 struct ethtool_ringparam
*ering
)
5543 struct s2io_nic
*sp
= netdev_priv(dev
);
5544 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5546 if (sp
->rxd_mode
== RXD_MODE_1
)
5547 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5548 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5549 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5551 ering
->tx_max_pending
= MAX_TX_DESC
;
5552 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5553 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5555 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5556 ering
->tx_pending
= tx_desc_count
;
5558 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5559 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5561 ering
->rx_pending
= rx_desc_count
;
5563 ering
->rx_mini_max_pending
= 0;
5564 ering
->rx_mini_pending
= 0;
5565 if (sp
->rxd_mode
== RXD_MODE_1
)
5566 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5567 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5568 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5569 ering
->rx_jumbo_pending
= rx_desc_count
;
5573 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5574 * @sp : private member of the device structure, which is a pointer to the
5575 * s2io_nic structure.
5576 * @ep : pointer to the structure with pause parameters given by ethtool.
5578 * Returns the Pause frame generation and reception capability of the NIC.
5582 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5583 struct ethtool_pauseparam
*ep
)
5586 struct s2io_nic
*sp
= netdev_priv(dev
);
5587 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5589 val64
= readq(&bar0
->rmac_pause_cfg
);
5590 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5591 ep
->tx_pause
= true;
5592 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5593 ep
->rx_pause
= true;
5594 ep
->autoneg
= false;
5598 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5599 * @sp : private member of the device structure, which is a pointer to the
5600 * s2io_nic structure.
5601 * @ep : pointer to the structure with pause parameters given by ethtool.
5603 * It can be used to set or reset Pause frame generation or reception
5604 * support of the NIC.
5606 * int, returns 0 on Success
5609 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5610 struct ethtool_pauseparam
*ep
)
5613 struct s2io_nic
*sp
= netdev_priv(dev
);
5614 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5616 val64
= readq(&bar0
->rmac_pause_cfg
);
5618 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5620 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5622 val64
|= RMAC_PAUSE_RX_ENABLE
;
5624 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5625 writeq(val64
, &bar0
->rmac_pause_cfg
);
5630 * read_eeprom - reads 4 bytes of data from user given offset.
5631 * @sp : private member of the device structure, which is a pointer to the
5632 * s2io_nic structure.
5633 * @off : offset at which the data must be written
5634 * @data : Its an output parameter where the data read at the given
5637 * Will read 4 bytes of data from the user given offset and return the
5639 * NOTE: Will allow to read only part of the EEPROM visible through the
5642 * -1 on failure and 0 on success.
5645 #define S2IO_DEV_ID 5
5646 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5651 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5653 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5654 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5655 I2C_CONTROL_ADDR(off
) |
5656 I2C_CONTROL_BYTE_CNT(0x3) |
5658 I2C_CONTROL_CNTL_START
;
5659 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5661 while (exit_cnt
< 5) {
5662 val64
= readq(&bar0
->i2c_control
);
5663 if (I2C_CONTROL_CNTL_END(val64
)) {
5664 *data
= I2C_CONTROL_GET_DATA(val64
);
5673 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5674 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5675 SPI_CONTROL_BYTECNT(0x3) |
5676 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5677 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5678 val64
|= SPI_CONTROL_REQ
;
5679 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5680 while (exit_cnt
< 5) {
5681 val64
= readq(&bar0
->spi_control
);
5682 if (val64
& SPI_CONTROL_NACK
) {
5685 } else if (val64
& SPI_CONTROL_DONE
) {
5686 *data
= readq(&bar0
->spi_data
);
5699 * write_eeprom - actually writes the relevant part of the data value.
5700 * @sp : private member of the device structure, which is a pointer to the
5701 * s2io_nic structure.
5702 * @off : offset at which the data must be written
5703 * @data : The data that is to be written
5704 * @cnt : Number of bytes of the data that are actually to be written into
5705 * the Eeprom. (max of 3)
5707 * Actually writes the relevant part of the data value into the Eeprom
5708 * through the I2C bus.
5710 * 0 on success, -1 on failure.
5713 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5715 int exit_cnt
= 0, ret
= -1;
5717 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5719 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5720 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5721 I2C_CONTROL_ADDR(off
) |
5722 I2C_CONTROL_BYTE_CNT(cnt
) |
5723 I2C_CONTROL_SET_DATA((u32
)data
) |
5724 I2C_CONTROL_CNTL_START
;
5725 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5727 while (exit_cnt
< 5) {
5728 val64
= readq(&bar0
->i2c_control
);
5729 if (I2C_CONTROL_CNTL_END(val64
)) {
5730 if (!(val64
& I2C_CONTROL_NACK
))
5739 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5740 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5741 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5743 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5744 SPI_CONTROL_BYTECNT(write_cnt
) |
5745 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5746 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5747 val64
|= SPI_CONTROL_REQ
;
5748 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5749 while (exit_cnt
< 5) {
5750 val64
= readq(&bar0
->spi_control
);
5751 if (val64
& SPI_CONTROL_NACK
) {
5754 } else if (val64
& SPI_CONTROL_DONE
) {
5764 static void s2io_vpd_read(struct s2io_nic
*nic
)
5768 int i
= 0, cnt
, fail
= 0;
5769 int vpd_addr
= 0x80;
5770 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5772 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5773 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5776 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5779 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5781 vpd_data
= kmalloc(256, GFP_KERNEL
);
5783 swstats
->mem_alloc_fail_cnt
++;
5786 swstats
->mem_allocated
+= 256;
5788 for (i
= 0; i
< 256; i
+= 4) {
5789 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5790 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5791 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5792 for (cnt
= 0; cnt
< 5; cnt
++) {
5794 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5799 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5803 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5804 (u32
*)&vpd_data
[i
]);
5808 /* read serial number of adapter */
5809 for (cnt
= 0; cnt
< 256; cnt
++) {
5810 if ((vpd_data
[cnt
] == 'S') &&
5811 (vpd_data
[cnt
+1] == 'N') &&
5812 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5813 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5814 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5821 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
))
5822 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5824 swstats
->mem_freed
+= 256;
5828 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5829 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5830 * @eeprom : pointer to the user level structure provided by ethtool,
5831 * containing all relevant information.
5832 * @data_buf : user defined value to be written into Eeprom.
5833 * Description: Reads the values stored in the Eeprom at given offset
5834 * for a given length. Stores these values int the input argument data
5835 * buffer 'data_buf' and returns these to the caller (ethtool.)
5840 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5841 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5845 struct s2io_nic
*sp
= netdev_priv(dev
);
5847 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5849 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5850 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5852 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5853 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5854 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5858 memcpy((data_buf
+ i
), &valid
, 4);
5864 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5865 * @sp : private member of the device structure, which is a pointer to the
5866 * s2io_nic structure.
5867 * @eeprom : pointer to the user level structure provided by ethtool,
5868 * containing all relevant information.
5869 * @data_buf ; user defined value to be written into Eeprom.
5871 * Tries to write the user provided value in the Eeprom, at the offset
5872 * given by the user.
5874 * 0 on success, -EFAULT on failure.
5877 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5878 struct ethtool_eeprom
*eeprom
,
5881 int len
= eeprom
->len
, cnt
= 0;
5882 u64 valid
= 0, data
;
5883 struct s2io_nic
*sp
= netdev_priv(dev
);
5885 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5887 "ETHTOOL_WRITE_EEPROM Err: "
5888 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5889 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5895 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5897 valid
= (u32
)(data
<< 24);
5901 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5903 "ETHTOOL_WRITE_EEPROM Err: "
5904 "Cannot write into the specified offset\n");
5915 * s2io_register_test - reads and writes into all clock domains.
5916 * @sp : private member of the device structure, which is a pointer to the
5917 * s2io_nic structure.
5918 * @data : variable that returns the result of each of the test conducted b
5921 * Read and write into all clock domains. The NIC has 3 clock domains,
5922 * see that registers in all the three regions are accessible.
5927 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5929 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5930 u64 val64
= 0, exp_val
;
5933 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5934 if (val64
!= 0x123456789abcdefULL
) {
5936 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5939 val64
= readq(&bar0
->rmac_pause_cfg
);
5940 if (val64
!= 0xc000ffff00000000ULL
) {
5942 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5945 val64
= readq(&bar0
->rx_queue_cfg
);
5946 if (sp
->device_type
== XFRAME_II_DEVICE
)
5947 exp_val
= 0x0404040404040404ULL
;
5949 exp_val
= 0x0808080808080808ULL
;
5950 if (val64
!= exp_val
) {
5952 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5955 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5956 if (val64
!= 0x000000001923141EULL
) {
5958 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5961 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5962 writeq(val64
, &bar0
->xmsi_data
);
5963 val64
= readq(&bar0
->xmsi_data
);
5964 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5966 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5969 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5970 writeq(val64
, &bar0
->xmsi_data
);
5971 val64
= readq(&bar0
->xmsi_data
);
5972 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5974 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5982 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5983 * @sp : private member of the device structure, which is a pointer to the
5984 * s2io_nic structure.
5985 * @data:variable that returns the result of each of the test conducted by
5988 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5994 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5997 u64 ret_data
, org_4F0
, org_7F0
;
5998 u8 saved_4F0
= 0, saved_7F0
= 0;
5999 struct net_device
*dev
= sp
->dev
;
6001 /* Test Write Error at offset 0 */
6002 /* Note that SPI interface allows write access to all areas
6003 * of EEPROM. Hence doing all negative testing only for Xframe I.
6005 if (sp
->device_type
== XFRAME_I_DEVICE
)
6006 if (!write_eeprom(sp
, 0, 0, 3))
6009 /* Save current values at offsets 0x4F0 and 0x7F0 */
6010 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6012 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6015 /* Test Write at offset 4f0 */
6016 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6018 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6021 if (ret_data
!= 0x012345) {
6022 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6023 "Data written %llx Data read %llx\n",
6024 dev
->name
, (unsigned long long)0x12345,
6025 (unsigned long long)ret_data
);
6029 /* Reset the EEPROM data go FFFF */
6030 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6032 /* Test Write Request Error at offset 0x7c */
6033 if (sp
->device_type
== XFRAME_I_DEVICE
)
6034 if (!write_eeprom(sp
, 0x07C, 0, 3))
6037 /* Test Write Request at offset 0x7f0 */
6038 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6040 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6043 if (ret_data
!= 0x012345) {
6044 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6045 "Data written %llx Data read %llx\n",
6046 dev
->name
, (unsigned long long)0x12345,
6047 (unsigned long long)ret_data
);
6051 /* Reset the EEPROM data go FFFF */
6052 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6054 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6055 /* Test Write Error at offset 0x80 */
6056 if (!write_eeprom(sp
, 0x080, 0, 3))
6059 /* Test Write Error at offset 0xfc */
6060 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6063 /* Test Write Error at offset 0x100 */
6064 if (!write_eeprom(sp
, 0x100, 0, 3))
6067 /* Test Write Error at offset 4ec */
6068 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6072 /* Restore values at offsets 0x4F0 and 0x7F0 */
6074 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6076 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6083 * s2io_bist_test - invokes the MemBist test of the card .
6084 * @sp : private member of the device structure, which is a pointer to the
6085 * s2io_nic structure.
6086 * @data:variable that returns the result of each of the test conducted by
6089 * This invokes the MemBist test of the card. We give around
6090 * 2 secs time for the Test to complete. If it's still not complete
6091 * within this peiod, we consider that the test failed.
6093 * 0 on success and -1 on failure.
6096 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6099 int cnt
= 0, ret
= -1;
6101 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6102 bist
|= PCI_BIST_START
;
6103 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6106 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6107 if (!(bist
& PCI_BIST_START
)) {
6108 *data
= (bist
& PCI_BIST_CODE_MASK
);
6120 * s2io-link_test - verifies the link state of the nic
6121 * @sp ; private member of the device structure, which is a pointer to the
6122 * s2io_nic structure.
6123 * @data: variable that returns the result of each of the test conducted by
6126 * The function verifies the link state of the NIC and updates the input
6127 * argument 'data' appropriately.
6132 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6134 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6137 val64
= readq(&bar0
->adapter_status
);
6138 if (!(LINK_IS_UP(val64
)))
6147 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6148 * @sp - private member of the device structure, which is a pointer to the
6149 * s2io_nic structure.
6150 * @data - variable that returns the result of each of the test
6151 * conducted by the driver.
6153 * This is one of the offline test that tests the read and write
6154 * access to the RldRam chip on the NIC.
6159 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6161 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6163 int cnt
, iteration
= 0, test_fail
= 0;
6165 val64
= readq(&bar0
->adapter_control
);
6166 val64
&= ~ADAPTER_ECC_EN
;
6167 writeq(val64
, &bar0
->adapter_control
);
6169 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6170 val64
|= MC_RLDRAM_TEST_MODE
;
6171 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6173 val64
= readq(&bar0
->mc_rldram_mrs
);
6174 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6175 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6177 val64
|= MC_RLDRAM_MRS_ENABLE
;
6178 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6180 while (iteration
< 2) {
6181 val64
= 0x55555555aaaa0000ULL
;
6183 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6184 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6186 val64
= 0xaaaa5a5555550000ULL
;
6188 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6189 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6191 val64
= 0x55aaaaaaaa5a0000ULL
;
6193 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6194 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6196 val64
= (u64
) (0x0000003ffffe0100ULL
);
6197 writeq(val64
, &bar0
->mc_rldram_test_add
);
6199 val64
= MC_RLDRAM_TEST_MODE
|
6200 MC_RLDRAM_TEST_WRITE
|
6202 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6204 for (cnt
= 0; cnt
< 5; cnt
++) {
6205 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6206 if (val64
& MC_RLDRAM_TEST_DONE
)
6214 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6215 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6217 for (cnt
= 0; cnt
< 5; cnt
++) {
6218 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6219 if (val64
& MC_RLDRAM_TEST_DONE
)
6227 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6228 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6236 /* Bring the adapter out of test mode */
6237 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6243 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6244 * @sp : private member of the device structure, which is a pointer to the
6245 * s2io_nic structure.
6246 * @ethtest : pointer to a ethtool command specific structure that will be
6247 * returned to the user.
6248 * @data : variable that returns the result of each of the test
6249 * conducted by the driver.
6251 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6252 * the health of the card.
6257 static void s2io_ethtool_test(struct net_device
*dev
,
6258 struct ethtool_test
*ethtest
,
6261 struct s2io_nic
*sp
= netdev_priv(dev
);
6262 int orig_state
= netif_running(sp
->dev
);
6264 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6265 /* Offline Tests. */
6267 s2io_close(sp
->dev
);
6269 if (s2io_register_test(sp
, &data
[0]))
6270 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6274 if (s2io_rldram_test(sp
, &data
[3]))
6275 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6279 if (s2io_eeprom_test(sp
, &data
[1]))
6280 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6282 if (s2io_bist_test(sp
, &data
[4]))
6283 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6292 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6301 if (s2io_link_test(sp
, &data
[2]))
6302 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6311 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6312 struct ethtool_stats
*estats
,
6316 struct s2io_nic
*sp
= netdev_priv(dev
);
6317 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6318 struct swStat
*swstats
= &stats
->sw_stat
;
6319 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6321 s2io_updt_stats(sp
);
6323 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6324 le32_to_cpu(stats
->tmac_frms
);
6326 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6327 le32_to_cpu(stats
->tmac_data_octets
);
6328 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6330 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6331 le32_to_cpu(stats
->tmac_mcst_frms
);
6333 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6334 le32_to_cpu(stats
->tmac_bcst_frms
);
6335 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6337 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6338 le32_to_cpu(stats
->tmac_ttl_octets
);
6340 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6341 le32_to_cpu(stats
->tmac_ucst_frms
);
6343 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6344 le32_to_cpu(stats
->tmac_nucst_frms
);
6346 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6347 le32_to_cpu(stats
->tmac_any_err_frms
);
6348 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6349 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6351 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6352 le32_to_cpu(stats
->tmac_vld_ip
);
6354 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6355 le32_to_cpu(stats
->tmac_drop_ip
);
6357 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6358 le32_to_cpu(stats
->tmac_icmp
);
6360 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6361 le32_to_cpu(stats
->tmac_rst_tcp
);
6362 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6363 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6364 le32_to_cpu(stats
->tmac_udp
);
6366 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6367 le32_to_cpu(stats
->rmac_vld_frms
);
6369 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6370 le32_to_cpu(stats
->rmac_data_octets
);
6371 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6372 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6374 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6375 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6377 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6378 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6379 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6380 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6381 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6382 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6383 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6385 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6386 le32_to_cpu(stats
->rmac_ttl_octets
);
6388 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6389 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6391 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6392 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6394 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6395 le32_to_cpu(stats
->rmac_discarded_frms
);
6397 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6398 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6399 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6400 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6402 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6403 le32_to_cpu(stats
->rmac_usized_frms
);
6405 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6406 le32_to_cpu(stats
->rmac_osized_frms
);
6408 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6409 le32_to_cpu(stats
->rmac_frag_frms
);
6411 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6412 le32_to_cpu(stats
->rmac_jabber_frms
);
6413 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6414 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6415 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6417 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6418 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6420 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6421 le32_to_cpu(stats
->rmac_ip
);
6422 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6423 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6425 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6426 le32_to_cpu(stats
->rmac_drop_ip
);
6428 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6429 le32_to_cpu(stats
->rmac_icmp
);
6430 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6432 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6433 le32_to_cpu(stats
->rmac_udp
);
6435 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6436 le32_to_cpu(stats
->rmac_err_drp_udp
);
6437 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6438 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6439 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6440 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6441 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6442 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6443 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6444 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6445 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6446 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6447 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6448 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6449 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6450 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6451 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6452 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6453 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6455 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6456 le32_to_cpu(stats
->rmac_pause_cnt
);
6457 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6458 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6460 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6461 le32_to_cpu(stats
->rmac_accepted_ip
);
6462 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6463 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6464 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6465 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6466 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6467 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6468 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6469 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6470 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6471 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6472 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6473 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6474 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6475 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6476 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6477 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6478 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6479 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6480 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6482 /* Enhanced statistics exist only for Hercules */
6483 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6485 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6487 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6489 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6490 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6491 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6492 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6493 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6494 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6495 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6496 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6497 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6498 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6499 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6500 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6506 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6507 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6508 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6509 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6510 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6511 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6512 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6513 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6514 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6515 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6516 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6517 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6518 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6519 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6520 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6521 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6522 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6523 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6524 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6525 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6526 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6527 tmp_stats
[i
++] = swstats
->sending_both
;
6528 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6529 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6530 if (swstats
->num_aggregations
) {
6531 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6534 * Since 64-bit divide does not work on all platforms,
6535 * do repeated subtraction.
6537 while (tmp
>= swstats
->num_aggregations
) {
6538 tmp
-= swstats
->num_aggregations
;
6541 tmp_stats
[i
++] = count
;
6544 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6545 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6546 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6547 tmp_stats
[i
++] = swstats
->mem_allocated
;
6548 tmp_stats
[i
++] = swstats
->mem_freed
;
6549 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6550 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6551 tmp_stats
[i
++] = swstats
->link_up_time
;
6552 tmp_stats
[i
++] = swstats
->link_down_time
;
6554 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6555 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6556 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6557 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6558 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6560 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6561 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6562 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6563 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6564 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6565 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6566 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6567 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6568 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6569 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6570 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6571 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6572 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6573 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6574 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6575 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6576 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6577 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6578 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6579 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6580 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6581 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6582 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6583 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6584 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6585 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6588 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6590 return XENA_REG_SPACE
;
6594 static u32
s2io_ethtool_get_rx_csum(struct net_device
*dev
)
6596 struct s2io_nic
*sp
= netdev_priv(dev
);
6601 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6603 struct s2io_nic
*sp
= netdev_priv(dev
);
6613 static int s2io_get_eeprom_len(struct net_device
*dev
)
6615 return XENA_EEPROM_SPACE
;
6618 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6620 struct s2io_nic
*sp
= netdev_priv(dev
);
6624 return S2IO_TEST_LEN
;
6626 switch (sp
->device_type
) {
6627 case XFRAME_I_DEVICE
:
6628 return XFRAME_I_STAT_LEN
;
6629 case XFRAME_II_DEVICE
:
6630 return XFRAME_II_STAT_LEN
;
6639 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6640 u32 stringset
, u8
*data
)
6643 struct s2io_nic
*sp
= netdev_priv(dev
);
6645 switch (stringset
) {
6647 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6650 stat_size
= sizeof(ethtool_xena_stats_keys
);
6651 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6652 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6653 memcpy(data
+ stat_size
,
6654 ðtool_enhanced_stats_keys
,
6655 sizeof(ethtool_enhanced_stats_keys
));
6656 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6659 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6660 sizeof(ethtool_driver_stats_keys
));
6664 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6667 dev
->features
|= NETIF_F_IP_CSUM
;
6669 dev
->features
&= ~NETIF_F_IP_CSUM
;
6674 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6676 return (dev
->features
& NETIF_F_TSO
) != 0;
6678 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6681 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6683 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6688 static const struct ethtool_ops netdev_ethtool_ops
= {
6689 .get_settings
= s2io_ethtool_gset
,
6690 .set_settings
= s2io_ethtool_sset
,
6691 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6692 .get_regs_len
= s2io_ethtool_get_regs_len
,
6693 .get_regs
= s2io_ethtool_gregs
,
6694 .get_link
= ethtool_op_get_link
,
6695 .get_eeprom_len
= s2io_get_eeprom_len
,
6696 .get_eeprom
= s2io_ethtool_geeprom
,
6697 .set_eeprom
= s2io_ethtool_seeprom
,
6698 .get_ringparam
= s2io_ethtool_gringparam
,
6699 .get_pauseparam
= s2io_ethtool_getpause_data
,
6700 .set_pauseparam
= s2io_ethtool_setpause_data
,
6701 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6702 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6703 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6704 .set_sg
= ethtool_op_set_sg
,
6705 .get_tso
= s2io_ethtool_op_get_tso
,
6706 .set_tso
= s2io_ethtool_op_set_tso
,
6707 .set_ufo
= ethtool_op_set_ufo
,
6708 .self_test
= s2io_ethtool_test
,
6709 .get_strings
= s2io_ethtool_get_strings
,
6710 .phys_id
= s2io_ethtool_idnic
,
6711 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6712 .get_sset_count
= s2io_get_sset_count
,
6716 * s2io_ioctl - Entry point for the Ioctl
6717 * @dev : Device pointer.
6718 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6719 * a proprietary structure used to pass information to the driver.
6720 * @cmd : This is used to distinguish between the different commands that
6721 * can be passed to the IOCTL functions.
6723 * Currently there are no special functionality supported in IOCTL, hence
6724 * function always return EOPNOTSUPPORTED
6727 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6733 * s2io_change_mtu - entry point to change MTU size for the device.
6734 * @dev : device pointer.
6735 * @new_mtu : the new MTU size for the device.
6736 * Description: A driver entry point to change MTU size for the device.
6737 * Before changing the MTU the device must be stopped.
6739 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6743 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6745 struct s2io_nic
*sp
= netdev_priv(dev
);
6748 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6749 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6754 if (netif_running(dev
)) {
6755 s2io_stop_all_tx_queue(sp
);
6757 ret
= s2io_card_up(sp
);
6759 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6763 s2io_wake_all_tx_queue(sp
);
6764 } else { /* Device is down */
6765 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6766 u64 val64
= new_mtu
;
6768 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6775 * s2io_set_link - Set the LInk status
6776 * @data: long pointer to device private structue
6777 * Description: Sets the link status for the adapter
6780 static void s2io_set_link(struct work_struct
*work
)
6782 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6784 struct net_device
*dev
= nic
->dev
;
6785 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6791 if (!netif_running(dev
))
6794 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6795 /* The card is being reset, no point doing anything */
6799 subid
= nic
->pdev
->subsystem_device
;
6800 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6802 * Allow a small delay for the NICs self initiated
6803 * cleanup to complete.
6808 val64
= readq(&bar0
->adapter_status
);
6809 if (LINK_IS_UP(val64
)) {
6810 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6811 if (verify_xena_quiescence(nic
)) {
6812 val64
= readq(&bar0
->adapter_control
);
6813 val64
|= ADAPTER_CNTL_EN
;
6814 writeq(val64
, &bar0
->adapter_control
);
6815 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6816 nic
->device_type
, subid
)) {
6817 val64
= readq(&bar0
->gpio_control
);
6818 val64
|= GPIO_CTRL_GPIO_0
;
6819 writeq(val64
, &bar0
->gpio_control
);
6820 val64
= readq(&bar0
->gpio_control
);
6822 val64
|= ADAPTER_LED_ON
;
6823 writeq(val64
, &bar0
->adapter_control
);
6825 nic
->device_enabled_once
= true;
6828 "%s: Error: device is not Quiescent\n",
6830 s2io_stop_all_tx_queue(nic
);
6833 val64
= readq(&bar0
->adapter_control
);
6834 val64
|= ADAPTER_LED_ON
;
6835 writeq(val64
, &bar0
->adapter_control
);
6836 s2io_link(nic
, LINK_UP
);
6838 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6840 val64
= readq(&bar0
->gpio_control
);
6841 val64
&= ~GPIO_CTRL_GPIO_0
;
6842 writeq(val64
, &bar0
->gpio_control
);
6843 val64
= readq(&bar0
->gpio_control
);
6846 val64
= readq(&bar0
->adapter_control
);
6847 val64
= val64
& (~ADAPTER_LED_ON
);
6848 writeq(val64
, &bar0
->adapter_control
);
6849 s2io_link(nic
, LINK_DOWN
);
6851 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6857 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6859 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6860 u64
*temp2
, int size
)
6862 struct net_device
*dev
= sp
->dev
;
6863 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6865 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6866 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6869 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6871 * As Rx frame are not going to be processed,
6872 * using same mapped address for the Rxd
6875 rxdp1
->Buffer0_ptr
= *temp0
;
6877 *skb
= dev_alloc_skb(size
);
6880 "%s: Out of memory to allocate %s\n",
6881 dev
->name
, "1 buf mode SKBs");
6882 stats
->mem_alloc_fail_cnt
++;
6885 stats
->mem_allocated
+= (*skb
)->truesize
;
6886 /* storing the mapped addr in a temp variable
6887 * such it will be used for next rxd whose
6888 * Host Control is NULL
6890 rxdp1
->Buffer0_ptr
= *temp0
=
6891 pci_map_single(sp
->pdev
, (*skb
)->data
,
6892 size
- NET_IP_ALIGN
,
6893 PCI_DMA_FROMDEVICE
);
6894 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6895 goto memalloc_failed
;
6896 rxdp
->Host_Control
= (unsigned long) (*skb
);
6898 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6899 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6900 /* Two buffer Mode */
6902 rxdp3
->Buffer2_ptr
= *temp2
;
6903 rxdp3
->Buffer0_ptr
= *temp0
;
6904 rxdp3
->Buffer1_ptr
= *temp1
;
6906 *skb
= dev_alloc_skb(size
);
6909 "%s: Out of memory to allocate %s\n",
6912 stats
->mem_alloc_fail_cnt
++;
6915 stats
->mem_allocated
+= (*skb
)->truesize
;
6916 rxdp3
->Buffer2_ptr
= *temp2
=
6917 pci_map_single(sp
->pdev
, (*skb
)->data
,
6919 PCI_DMA_FROMDEVICE
);
6920 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6921 goto memalloc_failed
;
6922 rxdp3
->Buffer0_ptr
= *temp0
=
6923 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6924 PCI_DMA_FROMDEVICE
);
6925 if (pci_dma_mapping_error(sp
->pdev
,
6926 rxdp3
->Buffer0_ptr
)) {
6927 pci_unmap_single(sp
->pdev
,
6928 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6930 PCI_DMA_FROMDEVICE
);
6931 goto memalloc_failed
;
6933 rxdp
->Host_Control
= (unsigned long) (*skb
);
6935 /* Buffer-1 will be dummy buffer not used */
6936 rxdp3
->Buffer1_ptr
= *temp1
=
6937 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6938 PCI_DMA_FROMDEVICE
);
6939 if (pci_dma_mapping_error(sp
->pdev
,
6940 rxdp3
->Buffer1_ptr
)) {
6941 pci_unmap_single(sp
->pdev
,
6942 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6943 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6944 pci_unmap_single(sp
->pdev
,
6945 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6947 PCI_DMA_FROMDEVICE
);
6948 goto memalloc_failed
;
6955 stats
->pci_map_fail_cnt
++;
6956 stats
->mem_freed
+= (*skb
)->truesize
;
6957 dev_kfree_skb(*skb
);
6961 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6964 struct net_device
*dev
= sp
->dev
;
6965 if (sp
->rxd_mode
== RXD_MODE_1
) {
6966 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6967 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6968 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6969 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6970 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6974 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6976 int i
, j
, k
, blk_cnt
= 0, size
;
6977 struct config_param
*config
= &sp
->config
;
6978 struct mac_info
*mac_control
= &sp
->mac_control
;
6979 struct net_device
*dev
= sp
->dev
;
6980 struct RxD_t
*rxdp
= NULL
;
6981 struct sk_buff
*skb
= NULL
;
6982 struct buffAdd
*ba
= NULL
;
6983 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6985 /* Calculate the size based on ring mode */
6986 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6987 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6988 if (sp
->rxd_mode
== RXD_MODE_1
)
6989 size
+= NET_IP_ALIGN
;
6990 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6991 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6993 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6994 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6995 struct ring_info
*ring
= &mac_control
->rings
[i
];
6997 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
6999 for (j
= 0; j
< blk_cnt
; j
++) {
7000 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7001 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7002 if (sp
->rxd_mode
== RXD_MODE_3B
)
7003 ba
= &ring
->ba
[j
][k
];
7004 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7012 set_rxd_buffer_size(sp
, rxdp
, size
);
7014 /* flip the Ownership bit to Hardware */
7015 rxdp
->Control_1
|= RXD_OWN_XENA
;
7023 static int s2io_add_isr(struct s2io_nic
*sp
)
7026 struct net_device
*dev
= sp
->dev
;
7029 if (sp
->config
.intr_type
== MSI_X
)
7030 ret
= s2io_enable_msi_x(sp
);
7032 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7033 sp
->config
.intr_type
= INTA
;
7037 * Store the values of the MSIX table in
7038 * the struct s2io_nic structure
7040 store_xmsi_data(sp
);
7042 /* After proper initialization of H/W, register ISR */
7043 if (sp
->config
.intr_type
== MSI_X
) {
7044 int i
, msix_rx_cnt
= 0;
7046 for (i
= 0; i
< sp
->num_entries
; i
++) {
7047 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7048 if (sp
->s2io_entries
[i
].type
==
7050 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7052 err
= request_irq(sp
->entries
[i
].vector
,
7053 s2io_msix_ring_handle
,
7056 sp
->s2io_entries
[i
].arg
);
7057 } else if (sp
->s2io_entries
[i
].type
==
7059 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7061 err
= request_irq(sp
->entries
[i
].vector
,
7062 s2io_msix_fifo_handle
,
7065 sp
->s2io_entries
[i
].arg
);
7068 /* if either data or addr is zero print it. */
7069 if (!(sp
->msix_info
[i
].addr
&&
7070 sp
->msix_info
[i
].data
)) {
7072 "%s @Addr:0x%llx Data:0x%llx\n",
7074 (unsigned long long)
7075 sp
->msix_info
[i
].addr
,
7076 (unsigned long long)
7077 ntohl(sp
->msix_info
[i
].data
));
7081 remove_msix_isr(sp
);
7084 "%s:MSI-X-%d registration "
7085 "failed\n", dev
->name
, i
);
7088 "%s: Defaulting to INTA\n",
7090 sp
->config
.intr_type
= INTA
;
7093 sp
->s2io_entries
[i
].in_use
=
7094 MSIX_REGISTERED_SUCCESS
;
7098 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7100 "MSI-X-TX entries enabled through alarm vector\n");
7103 if (sp
->config
.intr_type
== INTA
) {
7104 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7107 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7115 static void s2io_rem_isr(struct s2io_nic
*sp
)
7117 if (sp
->config
.intr_type
== MSI_X
)
7118 remove_msix_isr(sp
);
7120 remove_inta_isr(sp
);
7123 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7126 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7127 register u64 val64
= 0;
7128 struct config_param
*config
;
7129 config
= &sp
->config
;
7131 if (!is_s2io_card_up(sp
))
7134 del_timer_sync(&sp
->alarm_timer
);
7135 /* If s2io_set_link task is executing, wait till it completes. */
7136 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7138 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7141 if (sp
->config
.napi
) {
7143 if (config
->intr_type
== MSI_X
) {
7144 for (; off
< sp
->config
.rx_ring_num
; off
++)
7145 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7148 napi_disable(&sp
->napi
);
7151 /* disable Tx and Rx traffic on the NIC */
7157 /* stop the tx queue, indicate link down */
7158 s2io_link(sp
, LINK_DOWN
);
7160 /* Check if the device is Quiescent and then Reset the NIC */
7162 /* As per the HW requirement we need to replenish the
7163 * receive buffer to avoid the ring bump. Since there is
7164 * no intention of processing the Rx frame at this pointwe are
7165 * just settting the ownership bit of rxd in Each Rx
7166 * ring to HW and set the appropriate buffer size
7167 * based on the ring mode
7169 rxd_owner_bit_reset(sp
);
7171 val64
= readq(&bar0
->adapter_status
);
7172 if (verify_xena_quiescence(sp
)) {
7173 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7180 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7181 "adapter status reads 0x%llx\n",
7182 (unsigned long long)val64
);
7189 /* Free all Tx buffers */
7190 free_tx_buffers(sp
);
7192 /* Free all Rx buffers */
7193 free_rx_buffers(sp
);
7195 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7198 static void s2io_card_down(struct s2io_nic
*sp
)
7200 do_s2io_card_down(sp
, 1);
7203 static int s2io_card_up(struct s2io_nic
*sp
)
7206 struct config_param
*config
;
7207 struct mac_info
*mac_control
;
7208 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7211 /* Initialize the H/W I/O registers */
7214 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7222 * Initializing the Rx buffers. For now we are considering only 1
7223 * Rx ring and initializing buffers into 30 Rx blocks
7225 config
= &sp
->config
;
7226 mac_control
= &sp
->mac_control
;
7228 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7229 struct ring_info
*ring
= &mac_control
->rings
[i
];
7231 ring
->mtu
= dev
->mtu
;
7232 ret
= fill_rx_buffers(sp
, ring
, 1);
7234 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7237 free_rx_buffers(sp
);
7240 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7241 ring
->rx_bufs_left
);
7244 /* Initialise napi */
7246 if (config
->intr_type
== MSI_X
) {
7247 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7248 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7250 napi_enable(&sp
->napi
);
7254 /* Maintain the state prior to the open */
7255 if (sp
->promisc_flg
)
7256 sp
->promisc_flg
= 0;
7257 if (sp
->m_cast_flg
) {
7259 sp
->all_multi_pos
= 0;
7262 /* Setting its receive mode */
7263 s2io_set_multicast(dev
);
7266 /* Initialize max aggregatable pkts per session based on MTU */
7267 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7268 /* Check if we can use (if specified) user provided value */
7269 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7270 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7273 /* Enable Rx Traffic and interrupts on the NIC */
7274 if (start_nic(sp
)) {
7275 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7277 free_rx_buffers(sp
);
7281 /* Add interrupt service routine */
7282 if (s2io_add_isr(sp
) != 0) {
7283 if (sp
->config
.intr_type
== MSI_X
)
7286 free_rx_buffers(sp
);
7290 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7292 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7294 /* Enable select interrupts */
7295 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7296 if (sp
->config
.intr_type
!= INTA
) {
7297 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7298 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7300 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7301 interruptible
|= TX_PIC_INTR
;
7302 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7309 * s2io_restart_nic - Resets the NIC.
7310 * @data : long pointer to the device private structure
7312 * This function is scheduled to be run by the s2io_tx_watchdog
7313 * function after 0.5 secs to reset the NIC. The idea is to reduce
7314 * the run time of the watch dog routine which is run holding a
7318 static void s2io_restart_nic(struct work_struct
*work
)
7320 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7321 struct net_device
*dev
= sp
->dev
;
7325 if (!netif_running(dev
))
7329 if (s2io_card_up(sp
)) {
7330 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7332 s2io_wake_all_tx_queue(sp
);
7333 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7339 * s2io_tx_watchdog - Watchdog for transmit side.
7340 * @dev : Pointer to net device structure
7342 * This function is triggered if the Tx Queue is stopped
7343 * for a pre-defined amount of time when the Interface is still up.
7344 * If the Interface is jammed in such a situation, the hardware is
7345 * reset (by s2io_close) and restarted again (by s2io_open) to
7346 * overcome any problem that might have been caused in the hardware.
7351 static void s2io_tx_watchdog(struct net_device
*dev
)
7353 struct s2io_nic
*sp
= netdev_priv(dev
);
7354 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7356 if (netif_carrier_ok(dev
)) {
7357 swstats
->watchdog_timer_cnt
++;
7358 schedule_work(&sp
->rst_timer_task
);
7359 swstats
->soft_reset_cnt
++;
7364 * rx_osm_handler - To perform some OS related operations on SKB.
7365 * @sp: private member of the device structure,pointer to s2io_nic structure.
7366 * @skb : the socket buffer pointer.
7367 * @len : length of the packet
7368 * @cksum : FCS checksum of the frame.
7369 * @ring_no : the ring from which this RxD was extracted.
7371 * This function is called by the Rx interrupt serivce routine to perform
7372 * some OS related operations on the SKB before passing it to the upper
7373 * layers. It mainly checks if the checksum is OK, if so adds it to the
7374 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7375 * to the upper layer. If the checksum is wrong, it increments the Rx
7376 * packet error count, frees the SKB and returns error.
7378 * SUCCESS on success and -1 on failure.
7380 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7382 struct s2io_nic
*sp
= ring_data
->nic
;
7383 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7384 struct sk_buff
*skb
= (struct sk_buff
*)
7385 ((unsigned long)rxdp
->Host_Control
);
7386 int ring_no
= ring_data
->ring_no
;
7387 u16 l3_csum
, l4_csum
;
7388 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7389 struct lro
*uninitialized_var(lro
);
7391 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7396 /* Check for parity error */
7398 swstats
->parity_err_cnt
++;
7400 err_mask
= err
>> 48;
7403 swstats
->rx_parity_err_cnt
++;
7407 swstats
->rx_abort_cnt
++;
7411 swstats
->rx_parity_abort_cnt
++;
7415 swstats
->rx_rda_fail_cnt
++;
7419 swstats
->rx_unkn_prot_cnt
++;
7423 swstats
->rx_fcs_err_cnt
++;
7427 swstats
->rx_buf_size_err_cnt
++;
7431 swstats
->rx_rxd_corrupt_cnt
++;
7435 swstats
->rx_unkn_err_cnt
++;
7439 * Drop the packet if bad transfer code. Exception being
7440 * 0x5, which could be due to unsupported IPv6 extension header.
7441 * In this case, we let stack handle the packet.
7442 * Note that in this case, since checksum will be incorrect,
7443 * stack will validate the same.
7445 if (err_mask
!= 0x5) {
7446 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7447 dev
->name
, err_mask
);
7448 dev
->stats
.rx_crc_errors
++;
7452 ring_data
->rx_bufs_left
-= 1;
7453 rxdp
->Host_Control
= 0;
7458 /* Updating statistics */
7459 ring_data
->rx_packets
++;
7460 rxdp
->Host_Control
= 0;
7461 if (sp
->rxd_mode
== RXD_MODE_1
) {
7462 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7464 ring_data
->rx_bytes
+= len
;
7467 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7468 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7469 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7470 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7471 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7472 unsigned char *buff
= skb_push(skb
, buf0_len
);
7474 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7475 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7476 memcpy(buff
, ba
->ba_0
, buf0_len
);
7477 skb_put(skb
, buf2_len
);
7480 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7481 ((!ring_data
->lro
) ||
7482 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7484 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7485 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7486 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7488 * NIC verifies if the Checksum of the received
7489 * frame is Ok or not and accordingly returns
7490 * a flag in the RxD.
7492 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7493 if (ring_data
->lro
) {
7498 ret
= s2io_club_tcp_session(ring_data
,
7503 case 3: /* Begin anew */
7506 case 1: /* Aggregate */
7507 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7509 case 4: /* Flush session */
7510 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7511 queue_rx_frame(lro
->parent
,
7513 clear_lro_session(lro
);
7514 swstats
->flush_max_pkts
++;
7516 case 2: /* Flush both */
7517 lro
->parent
->data_len
= lro
->frags_len
;
7518 swstats
->sending_both
++;
7519 queue_rx_frame(lro
->parent
,
7521 clear_lro_session(lro
);
7523 case 0: /* sessions exceeded */
7524 case -1: /* non-TCP or not L2 aggregatable */
7526 * First pkt in session not
7527 * L3/L4 aggregatable
7532 "%s: Samadhana!!\n",
7539 * Packet with erroneous checksum, let the
7540 * upper layers deal with it.
7542 skb
->ip_summed
= CHECKSUM_NONE
;
7545 skb
->ip_summed
= CHECKSUM_NONE
;
7547 swstats
->mem_freed
+= skb
->truesize
;
7549 skb_record_rx_queue(skb
, ring_no
);
7550 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7552 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7557 * s2io_link - stops/starts the Tx queue.
7558 * @sp : private member of the device structure, which is a pointer to the
7559 * s2io_nic structure.
7560 * @link : inidicates whether link is UP/DOWN.
7562 * This function stops/starts the Tx queue depending on whether the link
7563 * status of the NIC is is down or up. This is called by the Alarm
7564 * interrupt handler whenever a link change interrupt comes up.
7569 static void s2io_link(struct s2io_nic
*sp
, int link
)
7571 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7572 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7574 if (link
!= sp
->last_link_state
) {
7576 if (link
== LINK_DOWN
) {
7577 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7578 s2io_stop_all_tx_queue(sp
);
7579 netif_carrier_off(dev
);
7580 if (swstats
->link_up_cnt
)
7581 swstats
->link_up_time
=
7582 jiffies
- sp
->start_time
;
7583 swstats
->link_down_cnt
++;
7585 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7586 if (swstats
->link_down_cnt
)
7587 swstats
->link_down_time
=
7588 jiffies
- sp
->start_time
;
7589 swstats
->link_up_cnt
++;
7590 netif_carrier_on(dev
);
7591 s2io_wake_all_tx_queue(sp
);
7594 sp
->last_link_state
= link
;
7595 sp
->start_time
= jiffies
;
7599 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7600 * @sp : private member of the device structure, which is a pointer to the
7601 * s2io_nic structure.
7603 * This function initializes a few of the PCI and PCI-X configuration registers
7604 * with recommended values.
7609 static void s2io_init_pci(struct s2io_nic
*sp
)
7611 u16 pci_cmd
= 0, pcix_cmd
= 0;
7613 /* Enable Data Parity Error Recovery in PCI-X command register. */
7614 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7616 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7618 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7621 /* Set the PErr Response bit in PCI command register. */
7622 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7623 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7624 (pci_cmd
| PCI_COMMAND_PARITY
));
7625 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7628 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7631 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7632 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7633 "(%d) not supported\n", tx_fifo_num
);
7635 if (tx_fifo_num
< 1)
7638 tx_fifo_num
= MAX_TX_FIFOS
;
7640 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7644 *dev_multiq
= multiq
;
7646 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7647 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7649 "Tx steering is not supported with "
7650 "one fifo. Disabling Tx steering.\n");
7651 tx_steering_type
= NO_STEERING
;
7654 if ((tx_steering_type
< NO_STEERING
) ||
7655 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7657 "Requested transmit steering not supported\n");
7658 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7659 tx_steering_type
= NO_STEERING
;
7662 if (rx_ring_num
> MAX_RX_RINGS
) {
7664 "Requested number of rx rings not supported\n");
7665 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7667 rx_ring_num
= MAX_RX_RINGS
;
7670 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7671 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7672 "Defaulting to INTA\n");
7673 *dev_intr_type
= INTA
;
7676 if ((*dev_intr_type
== MSI_X
) &&
7677 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7678 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7679 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7680 "Defaulting to INTA\n");
7681 *dev_intr_type
= INTA
;
7684 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7685 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7686 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7693 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7694 * or Traffic class respectively.
7695 * @nic: device private variable
7696 * Description: The function configures the receive steering to
7697 * desired receive ring.
7698 * Return Value: SUCCESS on success and
7699 * '-1' on failure (endian settings incorrect).
7701 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7703 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7704 register u64 val64
= 0;
7706 if (ds_codepoint
> 63)
7709 val64
= RTS_DS_MEM_DATA(ring
);
7710 writeq(val64
, &bar0
->rts_ds_mem_data
);
7712 val64
= RTS_DS_MEM_CTRL_WE
|
7713 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7714 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7716 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7718 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7719 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7723 static const struct net_device_ops s2io_netdev_ops
= {
7724 .ndo_open
= s2io_open
,
7725 .ndo_stop
= s2io_close
,
7726 .ndo_get_stats
= s2io_get_stats
,
7727 .ndo_start_xmit
= s2io_xmit
,
7728 .ndo_validate_addr
= eth_validate_addr
,
7729 .ndo_set_multicast_list
= s2io_set_multicast
,
7730 .ndo_do_ioctl
= s2io_ioctl
,
7731 .ndo_set_mac_address
= s2io_set_mac_addr
,
7732 .ndo_change_mtu
= s2io_change_mtu
,
7733 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7734 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7735 .ndo_tx_timeout
= s2io_tx_watchdog
,
7736 #ifdef CONFIG_NET_POLL_CONTROLLER
7737 .ndo_poll_controller
= s2io_netpoll
,
7742 * s2io_init_nic - Initialization of the adapter .
7743 * @pdev : structure containing the PCI related information of the device.
7744 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7746 * The function initializes an adapter identified by the pci_dec structure.
7747 * All OS related initialization including memory and device structure and
7748 * initlaization of the device private variable is done. Also the swapper
7749 * control register is initialized to enable read and write into the I/O
7750 * registers of the device.
7752 * returns 0 on success and negative on failure.
7755 static int __devinit
7756 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7758 struct s2io_nic
*sp
;
7759 struct net_device
*dev
;
7761 int dma_flag
= false;
7762 u32 mac_up
, mac_down
;
7763 u64 val64
= 0, tmp64
= 0;
7764 struct XENA_dev_config __iomem
*bar0
= NULL
;
7766 struct config_param
*config
;
7767 struct mac_info
*mac_control
;
7769 u8 dev_intr_type
= intr_type
;
7772 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7776 ret
= pci_enable_device(pdev
);
7779 "%s: pci_enable_device failed\n", __func__
);
7783 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7784 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7786 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7788 "Unable to obtain 64bit DMA "
7789 "for consistent allocations\n");
7790 pci_disable_device(pdev
);
7793 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7794 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7796 pci_disable_device(pdev
);
7799 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7801 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7803 pci_disable_device(pdev
);
7807 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7809 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7811 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7812 pci_disable_device(pdev
);
7813 pci_release_regions(pdev
);
7817 pci_set_master(pdev
);
7818 pci_set_drvdata(pdev
, dev
);
7819 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7821 /* Private member variable initialized to s2io NIC structure */
7822 sp
= netdev_priv(dev
);
7823 memset(sp
, 0, sizeof(struct s2io_nic
));
7826 sp
->high_dma_flag
= dma_flag
;
7827 sp
->device_enabled_once
= false;
7828 if (rx_ring_mode
== 1)
7829 sp
->rxd_mode
= RXD_MODE_1
;
7830 if (rx_ring_mode
== 2)
7831 sp
->rxd_mode
= RXD_MODE_3B
;
7833 sp
->config
.intr_type
= dev_intr_type
;
7835 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7836 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7837 sp
->device_type
= XFRAME_II_DEVICE
;
7839 sp
->device_type
= XFRAME_I_DEVICE
;
7841 sp
->lro
= lro_enable
;
7843 /* Initialize some PCI/PCI-X fields of the NIC. */
7847 * Setting the device configuration parameters.
7848 * Most of these parameters can be specified by the user during
7849 * module insertion as they are module loadable parameters. If
7850 * these parameters are not not specified during load time, they
7851 * are initialized with default values.
7853 config
= &sp
->config
;
7854 mac_control
= &sp
->mac_control
;
7856 config
->napi
= napi
;
7857 config
->tx_steering_type
= tx_steering_type
;
7859 /* Tx side parameters. */
7860 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7861 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7863 config
->tx_fifo_num
= tx_fifo_num
;
7865 /* Initialize the fifos used for tx steering */
7866 if (config
->tx_fifo_num
< 5) {
7867 if (config
->tx_fifo_num
== 1)
7868 sp
->total_tcp_fifos
= 1;
7870 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7871 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7872 sp
->total_udp_fifos
= 1;
7873 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7875 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7876 FIFO_OTHER_MAX_NUM
);
7877 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7878 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7879 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7882 config
->multiq
= dev_multiq
;
7883 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7884 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7886 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7887 tx_cfg
->fifo_priority
= i
;
7890 /* mapping the QoS priority to the configured fifos */
7891 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7892 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7894 /* map the hashing selector table to the configured fifos */
7895 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7896 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7899 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7900 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7901 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7903 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7904 if (tx_cfg
->fifo_len
< 65) {
7905 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7909 /* + 2 because one Txd for skb->data and one Txd for UFO */
7910 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7912 /* Rx side parameters. */
7913 config
->rx_ring_num
= rx_ring_num
;
7914 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7915 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7916 struct ring_info
*ring
= &mac_control
->rings
[i
];
7918 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7919 rx_cfg
->ring_priority
= i
;
7920 ring
->rx_bufs_left
= 0;
7921 ring
->rxd_mode
= sp
->rxd_mode
;
7922 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7923 ring
->pdev
= sp
->pdev
;
7924 ring
->dev
= sp
->dev
;
7927 for (i
= 0; i
< rx_ring_num
; i
++) {
7928 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7930 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7931 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7934 /* Setting Mac Control parameters */
7935 mac_control
->rmac_pause_time
= rmac_pause_time
;
7936 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7937 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7940 /* initialize the shared memory used by the NIC and the host */
7941 if (init_shared_mem(sp
)) {
7942 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7944 goto mem_alloc_failed
;
7947 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7949 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7952 goto bar0_remap_failed
;
7955 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7957 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7960 goto bar1_remap_failed
;
7963 dev
->irq
= pdev
->irq
;
7964 dev
->base_addr
= (unsigned long)sp
->bar0
;
7966 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7967 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7968 mac_control
->tx_FIFO_start
[j
] =
7969 (struct TxFIFO_element __iomem
*)
7970 (sp
->bar1
+ (j
* 0x00020000));
7973 /* Driver entry points */
7974 dev
->netdev_ops
= &s2io_netdev_ops
;
7975 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7976 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7978 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7979 if (sp
->high_dma_flag
== true)
7980 dev
->features
|= NETIF_F_HIGHDMA
;
7981 dev
->features
|= NETIF_F_TSO
;
7982 dev
->features
|= NETIF_F_TSO6
;
7983 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7984 dev
->features
|= NETIF_F_UFO
;
7985 dev
->features
|= NETIF_F_HW_CSUM
;
7987 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7988 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7989 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7991 pci_save_state(sp
->pdev
);
7993 /* Setting swapper control on the NIC, for proper reset operation */
7994 if (s2io_set_swapper(sp
)) {
7995 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
7998 goto set_swap_failed
;
8001 /* Verify if the Herc works on the slot its placed into */
8002 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8003 mode
= s2io_verify_pci_mode(sp
);
8005 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8008 goto set_swap_failed
;
8012 if (sp
->config
.intr_type
== MSI_X
) {
8013 sp
->num_entries
= config
->rx_ring_num
+ 1;
8014 ret
= s2io_enable_msi_x(sp
);
8017 ret
= s2io_test_msi(sp
);
8018 /* rollback MSI-X, will re-enable during add_isr() */
8019 remove_msix_isr(sp
);
8024 "MSI-X requested but failed to enable\n");
8025 sp
->config
.intr_type
= INTA
;
8029 if (config
->intr_type
== MSI_X
) {
8030 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8031 struct ring_info
*ring
= &mac_control
->rings
[i
];
8033 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8036 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8039 /* Not needed for Herc */
8040 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8042 * Fix for all "FFs" MAC address problems observed on
8045 fix_mac_address(sp
);
8050 * MAC address initialization.
8051 * For now only one mac address will be read and used.
8054 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8055 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8056 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8057 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8058 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8060 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8061 mac_down
= (u32
)tmp64
;
8062 mac_up
= (u32
) (tmp64
>> 32);
8064 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8065 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8066 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8067 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8068 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8069 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8071 /* Set the factory defined MAC address initially */
8072 dev
->addr_len
= ETH_ALEN
;
8073 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8074 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8076 /* initialize number of multicast & unicast MAC entries variables */
8077 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8078 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8079 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8080 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8081 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8082 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8083 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8084 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8087 /* store mac addresses from CAM to s2io_nic structure */
8088 do_s2io_store_unicast_mc(sp
);
8090 /* Configure MSIX vector for number of rings configured plus one */
8091 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8092 (config
->intr_type
== MSI_X
))
8093 sp
->num_entries
= config
->rx_ring_num
+ 1;
8095 /* Store the values of the MSIX table in the s2io_nic structure */
8096 store_xmsi_data(sp
);
8097 /* reset Nic and bring it to known state */
8101 * Initialize link state flags
8102 * and the card state parameter
8106 /* Initialize spinlocks */
8107 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8108 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8110 spin_lock_init(&fifo
->tx_lock
);
8114 * SXE-002: Configure link and activity LED to init state
8117 subid
= sp
->pdev
->subsystem_device
;
8118 if ((subid
& 0xFF) >= 0x07) {
8119 val64
= readq(&bar0
->gpio_control
);
8120 val64
|= 0x0000800000000000ULL
;
8121 writeq(val64
, &bar0
->gpio_control
);
8122 val64
= 0x0411040400000000ULL
;
8123 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8124 val64
= readq(&bar0
->gpio_control
);
8127 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8129 if (register_netdev(dev
)) {
8130 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8132 goto register_failed
;
8135 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8136 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8137 sp
->product_name
, pdev
->revision
);
8138 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8139 s2io_driver_version
);
8140 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8141 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8142 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8143 mode
= s2io_print_pci_mode(sp
);
8146 unregister_netdev(dev
);
8147 goto set_swap_failed
;
8150 switch (sp
->rxd_mode
) {
8152 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8156 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8161 switch (sp
->config
.napi
) {
8163 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8166 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8170 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8171 sp
->config
.tx_fifo_num
);
8173 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8174 sp
->config
.rx_ring_num
);
8176 switch (sp
->config
.intr_type
) {
8178 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8181 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8184 if (sp
->config
.multiq
) {
8185 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8186 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8188 fifo
->multiq
= config
->multiq
;
8190 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8193 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8196 switch (sp
->config
.tx_steering_type
) {
8198 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8201 case TX_PRIORITY_STEERING
:
8203 "%s: Priority steering enabled for transmit\n",
8206 case TX_DEFAULT_STEERING
:
8208 "%s: Default steering enabled for transmit\n",
8213 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8217 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8219 /* Initialize device name */
8220 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8223 sp
->vlan_strip_flag
= 1;
8225 sp
->vlan_strip_flag
= 0;
8228 * Make Link state as off at this point, when the Link change
8229 * interrupt comes the state will be automatically changed to
8232 netif_carrier_off(dev
);
8243 free_shared_mem(sp
);
8244 pci_disable_device(pdev
);
8245 pci_release_regions(pdev
);
8246 pci_set_drvdata(pdev
, NULL
);
8253 * s2io_rem_nic - Free the PCI device
8254 * @pdev: structure containing the PCI related information of the device.
8255 * Description: This function is called by the Pci subsystem to release a
8256 * PCI device and free up all resource held up by the device. This could
8257 * be in response to a Hot plug event or when the driver is to be removed
8261 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8263 struct net_device
*dev
=
8264 (struct net_device
*)pci_get_drvdata(pdev
);
8265 struct s2io_nic
*sp
;
8268 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8272 flush_scheduled_work();
8274 sp
= netdev_priv(dev
);
8275 unregister_netdev(dev
);
8277 free_shared_mem(sp
);
8280 pci_release_regions(pdev
);
8281 pci_set_drvdata(pdev
, NULL
);
8283 pci_disable_device(pdev
);
8287 * s2io_starter - Entry point for the driver
8288 * Description: This function is the entry point for the driver. It verifies
8289 * the module loadable parameters and initializes PCI configuration space.
8292 static int __init
s2io_starter(void)
8294 return pci_register_driver(&s2io_driver
);
8298 * s2io_closer - Cleanup routine for the driver
8299 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8302 static __exit
void s2io_closer(void)
8304 pci_unregister_driver(&s2io_driver
);
8305 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8308 module_init(s2io_starter
);
8309 module_exit(s2io_closer
);
8311 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8312 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8313 struct s2io_nic
*sp
)
8316 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8318 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8320 "%s: Non-TCP frames not supported for LRO\n",
8325 /* Checking for DIX type or DIX type with VLAN */
8326 if ((l2_type
== 0) || (l2_type
== 4)) {
8327 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8329 * If vlan stripping is disabled and the frame is VLAN tagged,
8330 * shift the offset by the VLAN header size bytes.
8332 if ((!sp
->vlan_strip_flag
) &&
8333 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8334 ip_off
+= HEADER_VLAN_SIZE
;
8336 /* LLC, SNAP etc are considered non-mergeable */
8340 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8341 ip_len
= (u8
)((*ip
)->ihl
);
8343 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8348 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8351 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8352 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8353 (lro
->iph
->daddr
!= ip
->daddr
) ||
8354 (lro
->tcph
->source
!= tcp
->source
) ||
8355 (lro
->tcph
->dest
!= tcp
->dest
))
8360 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8362 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8365 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8366 struct iphdr
*ip
, struct tcphdr
*tcp
,
8367 u32 tcp_pyld_len
, u16 vlan_tag
)
8369 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8373 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8374 lro
->tcp_ack
= tcp
->ack_seq
;
8376 lro
->total_len
= ntohs(ip
->tot_len
);
8378 lro
->vlan_tag
= vlan_tag
;
8380 * Check if we saw TCP timestamp.
8381 * Other consistency checks have already been done.
8383 if (tcp
->doff
== 8) {
8385 ptr
= (__be32
*)(tcp
+1);
8387 lro
->cur_tsval
= ntohl(*(ptr
+1));
8388 lro
->cur_tsecr
= *(ptr
+2);
8393 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8395 struct iphdr
*ip
= lro
->iph
;
8396 struct tcphdr
*tcp
= lro
->tcph
;
8398 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8400 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8402 /* Update L3 header */
8403 ip
->tot_len
= htons(lro
->total_len
);
8405 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8408 /* Update L4 header */
8409 tcp
->ack_seq
= lro
->tcp_ack
;
8410 tcp
->window
= lro
->window
;
8412 /* Update tsecr field if this session has timestamps enabled */
8414 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8415 *(ptr
+2) = lro
->cur_tsecr
;
8418 /* Update counters required for calculation of
8419 * average no. of packets aggregated.
8421 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8422 swstats
->num_aggregations
++;
8425 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8426 struct tcphdr
*tcp
, u32 l4_pyld
)
8428 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8429 lro
->total_len
+= l4_pyld
;
8430 lro
->frags_len
+= l4_pyld
;
8431 lro
->tcp_next_seq
+= l4_pyld
;
8434 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8435 lro
->tcp_ack
= tcp
->ack_seq
;
8436 lro
->window
= tcp
->window
;
8440 /* Update tsecr and tsval from this packet */
8441 ptr
= (__be32
*)(tcp
+1);
8442 lro
->cur_tsval
= ntohl(*(ptr
+1));
8443 lro
->cur_tsecr
= *(ptr
+ 2);
8447 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8448 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8452 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8454 if (!tcp_pyld_len
) {
8455 /* Runt frame or a pure ack */
8459 if (ip
->ihl
!= 5) /* IP has options */
8462 /* If we see CE codepoint in IP header, packet is not mergeable */
8463 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8466 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8467 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8468 tcp
->syn
|| tcp
->fin
||
8469 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8471 * Currently recognize only the ack control word and
8472 * any other control field being set would result in
8473 * flushing the LRO session
8479 * Allow only one TCP timestamp option. Don't aggregate if
8480 * any other options are detected.
8482 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8485 if (tcp
->doff
== 8) {
8486 ptr
= (u8
*)(tcp
+ 1);
8487 while (*ptr
== TCPOPT_NOP
)
8489 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8492 /* Ensure timestamp value increases monotonically */
8494 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8497 /* timestamp echo reply should be non-zero */
8498 if (*((__be32
*)(ptr
+6)) == 0)
8505 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8506 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8507 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8510 struct tcphdr
*tcph
;
8513 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8515 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8520 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8522 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8523 tcph
= (struct tcphdr
*)*tcp
;
8524 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8525 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8526 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8527 if (l_lro
->in_use
) {
8528 if (check_for_socket_match(l_lro
, ip
, tcph
))
8530 /* Sock pair matched */
8533 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8534 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8535 "expected 0x%x, actual 0x%x\n",
8537 (*lro
)->tcp_next_seq
,
8540 swstats
->outof_sequence_pkts
++;
8545 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8547 ret
= 1; /* Aggregate */
8549 ret
= 2; /* Flush both */
8555 /* Before searching for available LRO objects,
8556 * check if the pkt is L3/L4 aggregatable. If not
8557 * don't create new LRO session. Just send this
8560 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8563 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8564 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8565 if (!(l_lro
->in_use
)) {
8567 ret
= 3; /* Begin anew */
8573 if (ret
== 0) { /* sessions exceeded */
8574 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8582 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8586 update_L3L4_header(sp
, *lro
);
8589 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8590 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8591 update_L3L4_header(sp
, *lro
);
8592 ret
= 4; /* Flush the LRO */
8596 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8603 static void clear_lro_session(struct lro
*lro
)
8605 static u16 lro_struct_size
= sizeof(struct lro
);
8607 memset(lro
, 0, lro_struct_size
);
8610 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8612 struct net_device
*dev
= skb
->dev
;
8613 struct s2io_nic
*sp
= netdev_priv(dev
);
8615 skb
->protocol
= eth_type_trans(skb
, dev
);
8616 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8617 /* Queueing the vlan frame to the upper layer */
8618 if (sp
->config
.napi
)
8619 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8621 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8623 if (sp
->config
.napi
)
8624 netif_receive_skb(skb
);
8630 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8631 struct sk_buff
*skb
, u32 tcp_len
)
8633 struct sk_buff
*first
= lro
->parent
;
8634 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8636 first
->len
+= tcp_len
;
8637 first
->data_len
= lro
->frags_len
;
8638 skb_pull(skb
, (skb
->len
- tcp_len
));
8639 if (skb_shinfo(first
)->frag_list
)
8640 lro
->last_frag
->next
= skb
;
8642 skb_shinfo(first
)->frag_list
= skb
;
8643 first
->truesize
+= skb
->truesize
;
8644 lro
->last_frag
= skb
;
8645 swstats
->clubbed_frms_cnt
++;
8649 * s2io_io_error_detected - called when PCI error is detected
8650 * @pdev: Pointer to PCI device
8651 * @state: The current pci connection state
8653 * This function is called after a PCI bus error affecting
8654 * this device has been detected.
8656 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8657 pci_channel_state_t state
)
8659 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8660 struct s2io_nic
*sp
= netdev_priv(netdev
);
8662 netif_device_detach(netdev
);
8664 if (state
== pci_channel_io_perm_failure
)
8665 return PCI_ERS_RESULT_DISCONNECT
;
8667 if (netif_running(netdev
)) {
8668 /* Bring down the card, while avoiding PCI I/O */
8669 do_s2io_card_down(sp
, 0);
8671 pci_disable_device(pdev
);
8673 return PCI_ERS_RESULT_NEED_RESET
;
8677 * s2io_io_slot_reset - called after the pci bus has been reset.
8678 * @pdev: Pointer to PCI device
8680 * Restart the card from scratch, as if from a cold-boot.
8681 * At this point, the card has exprienced a hard reset,
8682 * followed by fixups by BIOS, and has its config space
8683 * set up identically to what it was at cold boot.
8685 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8687 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8688 struct s2io_nic
*sp
= netdev_priv(netdev
);
8690 if (pci_enable_device(pdev
)) {
8691 pr_err("Cannot re-enable PCI device after reset.\n");
8692 return PCI_ERS_RESULT_DISCONNECT
;
8695 pci_set_master(pdev
);
8698 return PCI_ERS_RESULT_RECOVERED
;
8702 * s2io_io_resume - called when traffic can start flowing again.
8703 * @pdev: Pointer to PCI device
8705 * This callback is called when the error recovery driver tells
8706 * us that its OK to resume normal operation.
8708 static void s2io_io_resume(struct pci_dev
*pdev
)
8710 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8711 struct s2io_nic
*sp
= netdev_priv(netdev
);
8713 if (netif_running(netdev
)) {
8714 if (s2io_card_up(sp
)) {
8715 pr_err("Can't bring device back up after reset.\n");
8719 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8721 pr_err("Can't restore mac addr after reset.\n");
8726 netif_device_attach(netdev
);
8727 netif_tx_wake_all_queues(netdev
);