2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
54 #include <asm/cacheflush.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
60 #include <asm/debugreg.h>
62 void jprobe_return_end(void);
64 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
65 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
67 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
71 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
72 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
73 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
76 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 * Groups, and some special opcodes can not boost.
79 static const u32 twobyte_is_boostable
[256 / 32] = {
80 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
81 /* ---------------------------------------------- */
82 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
83 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
84 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
85 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
86 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
87 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
88 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
89 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
90 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
91 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
92 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
93 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
94 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
95 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
96 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
97 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
98 /* ----------------------------------------------- */
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
103 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
104 {"__switch_to", }, /* This function switches only current task, but
105 doesn't switch kernel stack.*/
106 {NULL
, NULL
} /* Terminator */
108 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
110 static void __kprobes
__synthesize_relative_insn(void *from
, void *to
, u8 op
)
112 struct __arch_relative_insn
{
115 } __attribute__((packed
)) *insn
;
117 insn
= (struct __arch_relative_insn
*)from
;
118 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 static void __kprobes
synthesize_reljump(void *from
, void *to
)
125 __synthesize_relative_insn(from
, to
, RELATIVEJUMP_OPCODE
);
129 * Skip the prefixes of the instruction.
131 static kprobe_opcode_t
*__kprobes
skip_prefixes(kprobe_opcode_t
*insn
)
135 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
136 while (inat_is_legacy_prefix(attr
)) {
138 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
141 if (inat_is_rex_prefix(attr
))
148 * Returns non-zero if opcode is boostable.
149 * RIP relative instructions are adjusted at copying time in 64 bits mode
151 static int __kprobes
can_boost(kprobe_opcode_t
*opcodes
)
153 kprobe_opcode_t opcode
;
154 kprobe_opcode_t
*orig_opcodes
= opcodes
;
156 if (search_exception_tables((unsigned long)opcodes
))
157 return 0; /* Page fault may occur on this address. */
160 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
162 opcode
= *(opcodes
++);
164 /* 2nd-byte opcode */
165 if (opcode
== 0x0f) {
166 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
168 return test_bit(*opcodes
,
169 (unsigned long *)twobyte_is_boostable
);
172 switch (opcode
& 0xf0) {
175 goto retry
; /* REX prefix is boostable */
178 if (0x63 < opcode
&& opcode
< 0x67)
179 goto retry
; /* prefixes */
180 /* can't boost Address-size override and bound */
181 return (opcode
!= 0x62 && opcode
!= 0x67);
183 return 0; /* can't boost conditional jump */
185 /* can't boost software-interruptions */
186 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
188 /* can boost AA* and XLAT */
189 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
191 /* can boost in/out and absolute jmps */
192 return ((opcode
& 0x04) || opcode
== 0xea);
194 if ((opcode
& 0x0c) == 0 && opcode
!= 0xf1)
195 goto retry
; /* lock/rep(ne) prefix */
196 /* clear and set flags are boostable */
197 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
199 /* segment override prefixes are boostable */
200 if (opcode
== 0x26 || opcode
== 0x36 || opcode
== 0x3e)
201 goto retry
; /* prefixes */
202 /* CS override prefix and call are not boostable */
203 return (opcode
!= 0x2e && opcode
!= 0x9a);
207 /* Recover the probed instruction at addr for further analysis. */
208 static int recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
211 kp
= get_kprobe((void *)addr
);
216 * Basically, kp->ainsn.insn has an original instruction.
217 * However, RIP-relative instruction can not do single-stepping
218 * at different place, __copy_instruction() tweaks the displacement of
219 * that instruction. In that case, we can't recover the instruction
220 * from the kp->ainsn.insn.
222 * On the other hand, kp->opcode has a copy of the first byte of
223 * the probed instruction, which is overwritten by int3. And
224 * the instruction at kp->addr is not modified by kprobes except
225 * for the first byte, we can recover the original instruction
226 * from it and kp->opcode.
228 memcpy(buf
, kp
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
233 /* Dummy buffers for kallsyms_lookup */
234 static char __dummy_buf
[KSYM_NAME_LEN
];
236 /* Check if paddr is at an instruction boundary */
237 static int __kprobes
can_probe(unsigned long paddr
)
240 unsigned long addr
, offset
= 0;
242 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
244 if (!kallsyms_lookup(paddr
, NULL
, &offset
, NULL
, __dummy_buf
))
247 /* Decode instructions */
248 addr
= paddr
- offset
;
249 while (addr
< paddr
) {
250 kernel_insn_init(&insn
, (void *)addr
);
251 insn_get_opcode(&insn
);
254 * Check if the instruction has been modified by another
255 * kprobe, in which case we replace the breakpoint by the
256 * original instruction in our buffer.
258 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
) {
259 ret
= recover_probed_instruction(buf
, addr
);
262 * Another debugging subsystem might insert
263 * this breakpoint. In that case, we can't
267 kernel_insn_init(&insn
, buf
);
269 insn_get_length(&insn
);
273 return (addr
== paddr
);
277 * Returns non-zero if opcode modifies the interrupt flag.
279 static int __kprobes
is_IF_modifier(kprobe_opcode_t
*insn
)
282 insn
= skip_prefixes(insn
);
287 case 0xcf: /* iret/iretd */
288 case 0x9d: /* popf/popfd */
296 * Copy an instruction and adjust the displacement if the instruction
297 * uses the %rip-relative addressing mode.
298 * If it does, Return the address of the 32-bit displacement word.
299 * If not, return null.
300 * Only applicable to 64-bit x86.
302 static int __kprobes
__copy_instruction(u8
*dest
, u8
*src
, int recover
)
306 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
308 kernel_insn_init(&insn
, src
);
310 insn_get_opcode(&insn
);
311 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
) {
312 ret
= recover_probed_instruction(buf
,
316 kernel_insn_init(&insn
, buf
);
319 insn_get_length(&insn
);
320 memcpy(dest
, insn
.kaddr
, insn
.length
);
323 if (insn_rip_relative(&insn
)) {
326 kernel_insn_init(&insn
, dest
);
327 insn_get_displacement(&insn
);
329 * The copied instruction uses the %rip-relative addressing
330 * mode. Adjust the displacement for the difference between
331 * the original location of this instruction and the location
332 * of the copy that will actually be run. The tricky bit here
333 * is making sure that the sign extension happens correctly in
334 * this calculation, since we need a signed 32-bit result to
335 * be sign-extended to 64 bits when it's added to the %rip
336 * value and yield the same 64-bit result that the sign-
337 * extension of the original signed 32-bit displacement would
340 newdisp
= (u8
*) src
+ (s64
) insn
.displacement
.value
-
342 BUG_ON((s64
) (s32
) newdisp
!= newdisp
); /* Sanity check. */
343 disp
= (u8
*) dest
+ insn_offset_displacement(&insn
);
344 *(s32
*) disp
= (s32
) newdisp
;
350 static void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
353 * Copy an instruction without recovering int3, because it will be
354 * put by another subsystem.
356 __copy_instruction(p
->ainsn
.insn
, p
->addr
, 0);
358 if (can_boost(p
->addr
))
359 p
->ainsn
.boostable
= 0;
361 p
->ainsn
.boostable
= -1;
363 p
->opcode
= *p
->addr
;
366 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
368 if (alternatives_text_reserved(p
->addr
, p
->addr
))
371 if (!can_probe((unsigned long)p
->addr
))
373 /* insn: must be on special executable page on x86. */
374 p
->ainsn
.insn
= get_insn_slot();
381 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
383 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
386 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
388 text_poke(p
->addr
, &p
->opcode
, 1);
391 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
394 free_insn_slot(p
->ainsn
.insn
, (p
->ainsn
.boostable
== 1));
395 p
->ainsn
.insn
= NULL
;
399 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
401 kcb
->prev_kprobe
.kp
= kprobe_running();
402 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
403 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
404 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
407 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
409 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
410 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
411 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
412 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
415 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
416 struct kprobe_ctlblk
*kcb
)
418 __get_cpu_var(current_kprobe
) = p
;
419 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
420 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
421 if (is_IF_modifier(p
->ainsn
.insn
))
422 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
425 static void __kprobes
clear_btf(void)
427 if (test_thread_flag(TIF_BLOCKSTEP
)) {
428 unsigned long debugctl
= get_debugctlmsr();
430 debugctl
&= ~DEBUGCTLMSR_BTF
;
431 update_debugctlmsr(debugctl
);
435 static void __kprobes
restore_btf(void)
437 if (test_thread_flag(TIF_BLOCKSTEP
)) {
438 unsigned long debugctl
= get_debugctlmsr();
440 debugctl
|= DEBUGCTLMSR_BTF
;
441 update_debugctlmsr(debugctl
);
445 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
446 struct pt_regs
*regs
)
448 unsigned long *sara
= stack_addr(regs
);
450 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
452 /* Replace the return addr with trampoline addr */
453 *sara
= (unsigned long) &kretprobe_trampoline
;
456 #ifdef CONFIG_OPTPROBES
457 static int __kprobes
setup_detour_execution(struct kprobe
*p
,
458 struct pt_regs
*regs
,
461 #define setup_detour_execution(p, regs, reenter) (0)
464 static void __kprobes
setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
465 struct kprobe_ctlblk
*kcb
, int reenter
)
467 if (setup_detour_execution(p
, regs
, reenter
))
470 #if !defined(CONFIG_PREEMPT)
471 if (p
->ainsn
.boostable
== 1 && !p
->post_handler
) {
472 /* Boost up -- we can execute copied instructions directly */
474 reset_current_kprobe();
476 * Reentering boosted probe doesn't reset current_kprobe,
477 * nor set current_kprobe, because it doesn't use single
480 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
481 preempt_enable_no_resched();
486 save_previous_kprobe(kcb
);
487 set_current_kprobe(p
, regs
, kcb
);
488 kcb
->kprobe_status
= KPROBE_REENTER
;
490 kcb
->kprobe_status
= KPROBE_HIT_SS
;
491 /* Prepare real single stepping */
493 regs
->flags
|= X86_EFLAGS_TF
;
494 regs
->flags
&= ~X86_EFLAGS_IF
;
495 /* single step inline if the instruction is an int3 */
496 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
497 regs
->ip
= (unsigned long)p
->addr
;
499 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
503 * We have reentered the kprobe_handler(), since another probe was hit while
504 * within the handler. We save the original kprobes variables and just single
505 * step on the instruction of the new probe without calling any user handlers.
507 static int __kprobes
reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
508 struct kprobe_ctlblk
*kcb
)
510 switch (kcb
->kprobe_status
) {
511 case KPROBE_HIT_SSDONE
:
512 case KPROBE_HIT_ACTIVE
:
513 kprobes_inc_nmissed_count(p
);
514 setup_singlestep(p
, regs
, kcb
, 1);
517 /* A probe has been hit in the codepath leading up to, or just
518 * after, single-stepping of a probed instruction. This entire
519 * codepath should strictly reside in .kprobes.text section.
520 * Raise a BUG or we'll continue in an endless reentering loop
521 * and eventually a stack overflow.
523 printk(KERN_WARNING
"Unrecoverable kprobe detected at %p.\n",
528 /* impossible cases */
537 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
538 * remain disabled throughout this function.
540 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
542 kprobe_opcode_t
*addr
;
544 struct kprobe_ctlblk
*kcb
;
546 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
548 * We don't want to be preempted for the entire
549 * duration of kprobe processing. We conditionally
550 * re-enable preemption at the end of this function,
551 * and also in reenter_kprobe() and setup_singlestep().
555 kcb
= get_kprobe_ctlblk();
556 p
= get_kprobe(addr
);
559 if (kprobe_running()) {
560 if (reenter_kprobe(p
, regs
, kcb
))
563 set_current_kprobe(p
, regs
, kcb
);
564 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
567 * If we have no pre-handler or it returned 0, we
568 * continue with normal processing. If we have a
569 * pre-handler and it returned non-zero, it prepped
570 * for calling the break_handler below on re-entry
571 * for jprobe processing, so get out doing nothing
574 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
575 setup_singlestep(p
, regs
, kcb
, 0);
578 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
580 * The breakpoint instruction was removed right
581 * after we hit it. Another cpu has removed
582 * either a probepoint or a debugger breakpoint
583 * at this address. In either case, no further
584 * handling of this interrupt is appropriate.
585 * Back up over the (now missing) int3 and run
586 * the original instruction.
588 regs
->ip
= (unsigned long)addr
;
589 preempt_enable_no_resched();
591 } else if (kprobe_running()) {
592 p
= __get_cpu_var(current_kprobe
);
593 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
594 setup_singlestep(p
, regs
, kcb
, 0);
597 } /* else: not a kprobe fault; let the kernel handle it */
599 preempt_enable_no_resched();
604 #define SAVE_REGS_STRING \
605 /* Skip cs, ip, orig_ax. */ \
606 " subq $24, %rsp\n" \
622 #define RESTORE_REGS_STRING \
638 /* Skip orig_ax, ip, cs */ \
641 #define SAVE_REGS_STRING \
642 /* Skip cs, ip, orig_ax and gs. */ \
643 " subl $16, %esp\n" \
654 #define RESTORE_REGS_STRING \
662 /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
667 * When a retprobed function returns, this code saves registers and
668 * calls trampoline_handler() runs, which calls the kretprobe's handler.
670 static void __used __kprobes
kretprobe_trampoline_holder(void)
673 ".global kretprobe_trampoline\n"
674 "kretprobe_trampoline: \n"
676 /* We don't bother saving the ss register */
681 " call trampoline_handler\n"
682 /* Replace saved sp with true return address. */
683 " movq %rax, 152(%rsp)\n"
690 " call trampoline_handler\n"
691 /* Move flags to cs */
692 " movl 56(%esp), %edx\n"
693 " movl %edx, 52(%esp)\n"
694 /* Replace saved flags with true return address. */
695 " movl %eax, 56(%esp)\n"
703 * Called from kretprobe_trampoline
705 static __used __kprobes
void *trampoline_handler(struct pt_regs
*regs
)
707 struct kretprobe_instance
*ri
= NULL
;
708 struct hlist_head
*head
, empty_rp
;
709 struct hlist_node
*node
, *tmp
;
710 unsigned long flags
, orig_ret_address
= 0;
711 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
712 kprobe_opcode_t
*correct_ret_addr
= NULL
;
714 INIT_HLIST_HEAD(&empty_rp
);
715 kretprobe_hash_lock(current
, &head
, &flags
);
716 /* fixup registers */
718 regs
->cs
= __KERNEL_CS
;
720 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
723 regs
->ip
= trampoline_address
;
724 regs
->orig_ax
= ~0UL;
727 * It is possible to have multiple instances associated with a given
728 * task either because multiple functions in the call path have
729 * return probes installed on them, and/or more than one
730 * return probe was registered for a target function.
732 * We can handle this because:
733 * - instances are always pushed into the head of the list
734 * - when multiple return probes are registered for the same
735 * function, the (chronologically) first instance's ret_addr
736 * will be the real return address, and all the rest will
737 * point to kretprobe_trampoline.
739 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
740 if (ri
->task
!= current
)
741 /* another task is sharing our hash bucket */
744 orig_ret_address
= (unsigned long)ri
->ret_addr
;
746 if (orig_ret_address
!= trampoline_address
)
748 * This is the real return address. Any other
749 * instances associated with this task are for
750 * other calls deeper on the call stack
755 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
757 correct_ret_addr
= ri
->ret_addr
;
758 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
759 if (ri
->task
!= current
)
760 /* another task is sharing our hash bucket */
763 orig_ret_address
= (unsigned long)ri
->ret_addr
;
764 if (ri
->rp
&& ri
->rp
->handler
) {
765 __get_cpu_var(current_kprobe
) = &ri
->rp
->kp
;
766 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
767 ri
->ret_addr
= correct_ret_addr
;
768 ri
->rp
->handler(ri
, regs
);
769 __get_cpu_var(current_kprobe
) = NULL
;
772 recycle_rp_inst(ri
, &empty_rp
);
774 if (orig_ret_address
!= trampoline_address
)
776 * This is the real return address. Any other
777 * instances associated with this task are for
778 * other calls deeper on the call stack
783 kretprobe_hash_unlock(current
, &flags
);
785 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
786 hlist_del(&ri
->hlist
);
789 return (void *)orig_ret_address
;
793 * Called after single-stepping. p->addr is the address of the
794 * instruction whose first byte has been replaced by the "int 3"
795 * instruction. To avoid the SMP problems that can occur when we
796 * temporarily put back the original opcode to single-step, we
797 * single-stepped a copy of the instruction. The address of this
798 * copy is p->ainsn.insn.
800 * This function prepares to return from the post-single-step
801 * interrupt. We have to fix up the stack as follows:
803 * 0) Except in the case of absolute or indirect jump or call instructions,
804 * the new ip is relative to the copied instruction. We need to make
805 * it relative to the original instruction.
807 * 1) If the single-stepped instruction was pushfl, then the TF and IF
808 * flags are set in the just-pushed flags, and may need to be cleared.
810 * 2) If the single-stepped instruction was a call, the return address
811 * that is atop the stack is the address following the copied instruction.
812 * We need to make it the address following the original instruction.
814 * If this is the first time we've single-stepped the instruction at
815 * this probepoint, and the instruction is boostable, boost it: add a
816 * jump instruction after the copied instruction, that jumps to the next
817 * instruction after the probepoint.
819 static void __kprobes
resume_execution(struct kprobe
*p
,
820 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
822 unsigned long *tos
= stack_addr(regs
);
823 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
824 unsigned long orig_ip
= (unsigned long)p
->addr
;
825 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
828 insn
= skip_prefixes(insn
);
830 regs
->flags
&= ~X86_EFLAGS_TF
;
832 case 0x9c: /* pushfl */
833 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
834 *tos
|= kcb
->kprobe_old_flags
;
836 case 0xc2: /* iret/ret/lret */
841 case 0xea: /* jmp absolute -- ip is correct */
842 /* ip is already adjusted, no more changes required */
843 p
->ainsn
.boostable
= 1;
845 case 0xe8: /* call relative - Fix return addr */
846 *tos
= orig_ip
+ (*tos
- copy_ip
);
849 case 0x9a: /* call absolute -- same as call absolute, indirect */
850 *tos
= orig_ip
+ (*tos
- copy_ip
);
854 if ((insn
[1] & 0x30) == 0x10) {
856 * call absolute, indirect
857 * Fix return addr; ip is correct.
858 * But this is not boostable
860 *tos
= orig_ip
+ (*tos
- copy_ip
);
862 } else if (((insn
[1] & 0x31) == 0x20) ||
863 ((insn
[1] & 0x31) == 0x21)) {
865 * jmp near and far, absolute indirect
866 * ip is correct. And this is boostable
868 p
->ainsn
.boostable
= 1;
875 if (p
->ainsn
.boostable
== 0) {
876 if ((regs
->ip
> copy_ip
) &&
877 (regs
->ip
- copy_ip
) + 5 < MAX_INSN_SIZE
) {
879 * These instructions can be executed directly if it
880 * jumps back to correct address.
882 synthesize_reljump((void *)regs
->ip
,
883 (void *)orig_ip
+ (regs
->ip
- copy_ip
));
884 p
->ainsn
.boostable
= 1;
886 p
->ainsn
.boostable
= -1;
890 regs
->ip
+= orig_ip
- copy_ip
;
897 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
898 * remain disabled throughout this function.
900 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
902 struct kprobe
*cur
= kprobe_running();
903 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
908 resume_execution(cur
, regs
, kcb
);
909 regs
->flags
|= kcb
->kprobe_saved_flags
;
911 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
912 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
913 cur
->post_handler(cur
, regs
, 0);
916 /* Restore back the original saved kprobes variables and continue. */
917 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
918 restore_previous_kprobe(kcb
);
921 reset_current_kprobe();
923 preempt_enable_no_resched();
926 * if somebody else is singlestepping across a probe point, flags
927 * will have TF set, in which case, continue the remaining processing
928 * of do_debug, as if this is not a probe hit.
930 if (regs
->flags
& X86_EFLAGS_TF
)
936 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
938 struct kprobe
*cur
= kprobe_running();
939 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
941 switch (kcb
->kprobe_status
) {
945 * We are here because the instruction being single
946 * stepped caused a page fault. We reset the current
947 * kprobe and the ip points back to the probe address
948 * and allow the page fault handler to continue as a
951 regs
->ip
= (unsigned long)cur
->addr
;
952 regs
->flags
|= kcb
->kprobe_old_flags
;
953 if (kcb
->kprobe_status
== KPROBE_REENTER
)
954 restore_previous_kprobe(kcb
);
956 reset_current_kprobe();
957 preempt_enable_no_resched();
959 case KPROBE_HIT_ACTIVE
:
960 case KPROBE_HIT_SSDONE
:
962 * We increment the nmissed count for accounting,
963 * we can also use npre/npostfault count for accounting
964 * these specific fault cases.
966 kprobes_inc_nmissed_count(cur
);
969 * We come here because instructions in the pre/post
970 * handler caused the page_fault, this could happen
971 * if handler tries to access user space by
972 * copy_from_user(), get_user() etc. Let the
973 * user-specified handler try to fix it first.
975 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
979 * In case the user-specified fault handler returned
980 * zero, try to fix up.
982 if (fixup_exception(regs
))
986 * fixup routine could not handle it,
987 * Let do_page_fault() fix it.
997 * Wrapper routine for handling exceptions.
999 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
1000 unsigned long val
, void *data
)
1002 struct die_args
*args
= data
;
1003 int ret
= NOTIFY_DONE
;
1005 if (args
->regs
&& user_mode_vm(args
->regs
))
1010 if (kprobe_handler(args
->regs
))
1014 if (post_kprobe_handler(args
->regs
)) {
1016 * Reset the BS bit in dr6 (pointed by args->err) to
1017 * denote completion of processing
1019 (*(unsigned long *)ERR_PTR(args
->err
)) &= ~DR_STEP
;
1025 * To be potentially processing a kprobe fault and to
1026 * trust the result from kprobe_running(), we have
1027 * be non-preemptible.
1029 if (!preemptible() && kprobe_running() &&
1030 kprobe_fault_handler(args
->regs
, args
->trapnr
))
1039 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1041 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1043 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1045 kcb
->jprobe_saved_regs
= *regs
;
1046 kcb
->jprobe_saved_sp
= stack_addr(regs
);
1047 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
1050 * As Linus pointed out, gcc assumes that the callee
1051 * owns the argument space and could overwrite it, e.g.
1052 * tailcall optimization. So, to be absolutely safe
1053 * we also save and restore enough stack bytes to cover
1054 * the argument area.
1056 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
1057 MIN_STACK_SIZE(addr
));
1058 regs
->flags
&= ~X86_EFLAGS_IF
;
1059 trace_hardirqs_off();
1060 regs
->ip
= (unsigned long)(jp
->entry
);
1064 void __kprobes
jprobe_return(void)
1066 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1069 #ifdef CONFIG_X86_64
1070 " xchg %%rbx,%%rsp \n"
1072 " xchgl %%ebx,%%esp \n"
1075 " .globl jprobe_return_end\n"
1076 " jprobe_return_end: \n"
1078 (kcb
->jprobe_saved_sp
):"memory");
1081 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1083 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1084 u8
*addr
= (u8
*) (regs
->ip
- 1);
1085 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1087 if ((addr
> (u8
*) jprobe_return
) &&
1088 (addr
< (u8
*) jprobe_return_end
)) {
1089 if (stack_addr(regs
) != kcb
->jprobe_saved_sp
) {
1090 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
1092 "current sp %p does not match saved sp %p\n",
1093 stack_addr(regs
), kcb
->jprobe_saved_sp
);
1094 printk(KERN_ERR
"Saved registers for jprobe %p\n", jp
);
1095 show_registers(saved_regs
);
1096 printk(KERN_ERR
"Current registers\n");
1097 show_registers(regs
);
1100 *regs
= kcb
->jprobe_saved_regs
;
1101 memcpy((kprobe_opcode_t
*)(kcb
->jprobe_saved_sp
),
1103 MIN_STACK_SIZE(kcb
->jprobe_saved_sp
));
1104 preempt_enable_no_resched();
1111 #ifdef CONFIG_OPTPROBES
1113 /* Insert a call instruction at address 'from', which calls address 'to'.*/
1114 static void __kprobes
synthesize_relcall(void *from
, void *to
)
1116 __synthesize_relative_insn(from
, to
, RELATIVECALL_OPCODE
);
1119 /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1120 static void __kprobes
synthesize_set_arg1(kprobe_opcode_t
*addr
,
1123 #ifdef CONFIG_X86_64
1129 *(unsigned long *)addr
= val
;
1132 void __kprobes
kprobes_optinsn_template_holder(void)
1135 ".global optprobe_template_entry\n"
1136 "optprobe_template_entry: \n"
1137 #ifdef CONFIG_X86_64
1138 /* We don't bother saving the ss register */
1142 " movq %rsp, %rsi\n"
1143 ".global optprobe_template_val\n"
1144 "optprobe_template_val: \n"
1147 ".global optprobe_template_call\n"
1148 "optprobe_template_call: \n"
1150 /* Move flags to rsp */
1151 " movq 144(%rsp), %rdx\n"
1152 " movq %rdx, 152(%rsp)\n"
1154 /* Skip flags entry */
1157 #else /* CONFIG_X86_32 */
1160 " movl %esp, %edx\n"
1161 ".global optprobe_template_val\n"
1162 "optprobe_template_val: \n"
1164 ".global optprobe_template_call\n"
1165 "optprobe_template_call: \n"
1168 " addl $4, %esp\n" /* skip cs */
1171 ".global optprobe_template_end\n"
1172 "optprobe_template_end: \n");
1175 #define TMPL_MOVE_IDX \
1176 ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1177 #define TMPL_CALL_IDX \
1178 ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1179 #define TMPL_END_IDX \
1180 ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1182 #define INT3_SIZE sizeof(kprobe_opcode_t)
1184 /* Optimized kprobe call back function: called from optinsn */
1185 static void __kprobes
optimized_callback(struct optimized_kprobe
*op
,
1186 struct pt_regs
*regs
)
1188 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1191 if (kprobe_running()) {
1192 kprobes_inc_nmissed_count(&op
->kp
);
1194 /* Save skipped registers */
1195 #ifdef CONFIG_X86_64
1196 regs
->cs
= __KERNEL_CS
;
1198 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
1201 regs
->ip
= (unsigned long)op
->kp
.addr
+ INT3_SIZE
;
1202 regs
->orig_ax
= ~0UL;
1204 __get_cpu_var(current_kprobe
) = &op
->kp
;
1205 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
1206 opt_pre_handler(&op
->kp
, regs
);
1207 __get_cpu_var(current_kprobe
) = NULL
;
1209 preempt_enable_no_resched();
1212 static int __kprobes
copy_optimized_instructions(u8
*dest
, u8
*src
)
1216 while (len
< RELATIVEJUMP_SIZE
) {
1217 ret
= __copy_instruction(dest
+ len
, src
+ len
, 1);
1218 if (!ret
|| !can_boost(dest
+ len
))
1222 /* Check whether the address range is reserved */
1223 if (ftrace_text_reserved(src
, src
+ len
- 1) ||
1224 alternatives_text_reserved(src
, src
+ len
- 1))
1230 /* Check whether insn is indirect jump */
1231 static int __kprobes
insn_is_indirect_jump(struct insn
*insn
)
1233 return ((insn
->opcode
.bytes
[0] == 0xff &&
1234 (X86_MODRM_REG(insn
->modrm
.value
) & 6) == 4) || /* Jump */
1235 insn
->opcode
.bytes
[0] == 0xea); /* Segment based jump */
1238 /* Check whether insn jumps into specified address range */
1239 static int insn_jump_into_range(struct insn
*insn
, unsigned long start
, int len
)
1241 unsigned long target
= 0;
1243 switch (insn
->opcode
.bytes
[0]) {
1244 case 0xe0: /* loopne */
1245 case 0xe1: /* loope */
1246 case 0xe2: /* loop */
1247 case 0xe3: /* jcxz */
1248 case 0xe9: /* near relative jump */
1249 case 0xeb: /* short relative jump */
1252 if ((insn
->opcode
.bytes
[1] & 0xf0) == 0x80) /* jcc near */
1256 if ((insn
->opcode
.bytes
[0] & 0xf0) == 0x70) /* jcc short */
1260 target
= (unsigned long)insn
->next_byte
+ insn
->immediate
.value
;
1262 return (start
<= target
&& target
<= start
+ len
);
1265 /* Decode whole function to ensure any instructions don't jump into target */
1266 static int __kprobes
can_optimize(unsigned long paddr
)
1269 unsigned long addr
, size
= 0, offset
= 0;
1271 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
1272 /* Dummy buffers for lookup_symbol_attrs */
1273 static char __dummy_buf
[KSYM_NAME_LEN
];
1275 /* Lookup symbol including addr */
1276 if (!kallsyms_lookup(paddr
, &size
, &offset
, NULL
, __dummy_buf
))
1279 /* Check there is enough space for a relative jump. */
1280 if (size
- offset
< RELATIVEJUMP_SIZE
)
1283 /* Decode instructions */
1284 addr
= paddr
- offset
;
1285 while (addr
< paddr
- offset
+ size
) { /* Decode until function end */
1286 if (search_exception_tables(addr
))
1288 * Since some fixup code will jumps into this function,
1289 * we can't optimize kprobe in this function.
1292 kernel_insn_init(&insn
, (void *)addr
);
1293 insn_get_opcode(&insn
);
1294 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
) {
1295 ret
= recover_probed_instruction(buf
, addr
);
1298 kernel_insn_init(&insn
, buf
);
1300 insn_get_length(&insn
);
1301 /* Recover address */
1302 insn
.kaddr
= (void *)addr
;
1303 insn
.next_byte
= (void *)(addr
+ insn
.length
);
1304 /* Check any instructions don't jump into target */
1305 if (insn_is_indirect_jump(&insn
) ||
1306 insn_jump_into_range(&insn
, paddr
+ INT3_SIZE
,
1307 RELATIVE_ADDR_SIZE
))
1309 addr
+= insn
.length
;
1315 /* Check optimized_kprobe can actually be optimized. */
1316 int __kprobes
arch_check_optimized_kprobe(struct optimized_kprobe
*op
)
1321 for (i
= 1; i
< op
->optinsn
.size
; i
++) {
1322 p
= get_kprobe(op
->kp
.addr
+ i
);
1323 if (p
&& !kprobe_disabled(p
))
1330 /* Check the addr is within the optimized instructions. */
1331 int __kprobes
arch_within_optimized_kprobe(struct optimized_kprobe
*op
,
1334 return ((unsigned long)op
->kp
.addr
<= addr
&&
1335 (unsigned long)op
->kp
.addr
+ op
->optinsn
.size
> addr
);
1338 /* Free optimized instruction slot */
1340 void __arch_remove_optimized_kprobe(struct optimized_kprobe
*op
, int dirty
)
1342 if (op
->optinsn
.insn
) {
1343 free_optinsn_slot(op
->optinsn
.insn
, dirty
);
1344 op
->optinsn
.insn
= NULL
;
1345 op
->optinsn
.size
= 0;
1349 void __kprobes
arch_remove_optimized_kprobe(struct optimized_kprobe
*op
)
1351 __arch_remove_optimized_kprobe(op
, 1);
1355 * Copy replacing target instructions
1356 * Target instructions MUST be relocatable (checked inside)
1358 int __kprobes
arch_prepare_optimized_kprobe(struct optimized_kprobe
*op
)
1364 if (!can_optimize((unsigned long)op
->kp
.addr
))
1367 op
->optinsn
.insn
= get_optinsn_slot();
1368 if (!op
->optinsn
.insn
)
1372 * Verify if the address gap is in 2GB range, because this uses
1375 rel
= (long)op
->optinsn
.insn
- (long)op
->kp
.addr
+ RELATIVEJUMP_SIZE
;
1376 if (abs(rel
) > 0x7fffffff)
1379 buf
= (u8
*)op
->optinsn
.insn
;
1381 /* Copy instructions into the out-of-line buffer */
1382 ret
= copy_optimized_instructions(buf
+ TMPL_END_IDX
, op
->kp
.addr
);
1384 __arch_remove_optimized_kprobe(op
, 0);
1387 op
->optinsn
.size
= ret
;
1389 /* Copy arch-dep-instance from template */
1390 memcpy(buf
, &optprobe_template_entry
, TMPL_END_IDX
);
1392 /* Set probe information */
1393 synthesize_set_arg1(buf
+ TMPL_MOVE_IDX
, (unsigned long)op
);
1395 /* Set probe function call */
1396 synthesize_relcall(buf
+ TMPL_CALL_IDX
, optimized_callback
);
1398 /* Set returning jmp instruction at the tail of out-of-line buffer */
1399 synthesize_reljump(buf
+ TMPL_END_IDX
+ op
->optinsn
.size
,
1400 (u8
*)op
->kp
.addr
+ op
->optinsn
.size
);
1402 flush_icache_range((unsigned long) buf
,
1403 (unsigned long) buf
+ TMPL_END_IDX
+
1404 op
->optinsn
.size
+ RELATIVEJUMP_SIZE
);
1408 /* Replace a breakpoint (int3) with a relative jump. */
1409 int __kprobes
arch_optimize_kprobe(struct optimized_kprobe
*op
)
1411 unsigned char jmp_code
[RELATIVEJUMP_SIZE
];
1412 s32 rel
= (s32
)((long)op
->optinsn
.insn
-
1413 ((long)op
->kp
.addr
+ RELATIVEJUMP_SIZE
));
1415 /* Backup instructions which will be replaced by jump address */
1416 memcpy(op
->optinsn
.copied_insn
, op
->kp
.addr
+ INT3_SIZE
,
1417 RELATIVE_ADDR_SIZE
);
1419 jmp_code
[0] = RELATIVEJUMP_OPCODE
;
1420 *(s32
*)(&jmp_code
[1]) = rel
;
1423 * text_poke_smp doesn't support NMI/MCE code modifying.
1424 * However, since kprobes itself also doesn't support NMI/MCE
1425 * code probing, it's not a problem.
1427 text_poke_smp(op
->kp
.addr
, jmp_code
, RELATIVEJUMP_SIZE
);
1431 /* Replace a relative jump with a breakpoint (int3). */
1432 void __kprobes
arch_unoptimize_kprobe(struct optimized_kprobe
*op
)
1434 u8 buf
[RELATIVEJUMP_SIZE
];
1436 /* Set int3 to first byte for kprobes */
1437 buf
[0] = BREAKPOINT_INSTRUCTION
;
1438 memcpy(buf
+ 1, op
->optinsn
.copied_insn
, RELATIVE_ADDR_SIZE
);
1439 text_poke_smp(op
->kp
.addr
, buf
, RELATIVEJUMP_SIZE
);
1442 static int __kprobes
setup_detour_execution(struct kprobe
*p
,
1443 struct pt_regs
*regs
,
1446 struct optimized_kprobe
*op
;
1448 if (p
->flags
& KPROBE_FLAG_OPTIMIZED
) {
1449 /* This kprobe is really able to run optimized path. */
1450 op
= container_of(p
, struct optimized_kprobe
, kp
);
1451 /* Detour through copied instructions */
1452 regs
->ip
= (unsigned long)op
->optinsn
.insn
+ TMPL_END_IDX
;
1454 reset_current_kprobe();
1455 preempt_enable_no_resched();
1462 int __init
arch_init_kprobes(void)
1467 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)