1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
18 #define HPET_MASK CLOCKSOURCE_MASK(32)
22 #define FSEC_PER_NSEC 1000000L
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 unsigned long hpet_address
;
36 u8 hpet_blockid
; /* OS timer block num */
40 static unsigned long hpet_num_timers
;
42 static void __iomem
*hpet_virt_address
;
45 struct clock_event_device evt
;
53 inline unsigned int hpet_readl(unsigned int a
)
55 return readl(hpet_virt_address
+ a
);
58 static inline void hpet_writel(unsigned int d
, unsigned int a
)
60 writel(d
, hpet_virt_address
+ a
);
64 #include <asm/pgtable.h>
67 static inline void hpet_set_mapping(void)
69 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
71 __set_fixmap(VSYSCALL_HPET
, hpet_address
, PAGE_KERNEL_VSYSCALL_NOCACHE
);
75 static inline void hpet_clear_mapping(void)
77 iounmap(hpet_virt_address
);
78 hpet_virt_address
= NULL
;
82 * HPET command line enable / disable
84 static int boot_hpet_disable
;
86 static int hpet_verbose
;
88 static int __init
hpet_setup(char *str
)
91 if (!strncmp("disable", str
, 7))
92 boot_hpet_disable
= 1;
93 if (!strncmp("force", str
, 5))
95 if (!strncmp("verbose", str
, 7))
100 __setup("hpet=", hpet_setup
);
102 static int __init
disable_hpet(char *str
)
104 boot_hpet_disable
= 1;
107 __setup("nohpet", disable_hpet
);
109 static inline int is_hpet_capable(void)
111 return !boot_hpet_disable
&& hpet_address
;
115 * HPET timer interrupt enable / disable
117 static int hpet_legacy_int_enabled
;
120 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122 int is_hpet_enabled(void)
124 return is_hpet_capable() && hpet_legacy_int_enabled
;
126 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
128 static void _hpet_print_config(const char *function
, int line
)
131 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
132 l
= hpet_readl(HPET_ID
);
133 h
= hpet_readl(HPET_PERIOD
);
134 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
135 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
136 l
= hpet_readl(HPET_CFG
);
137 h
= hpet_readl(HPET_STATUS
);
138 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
139 l
= hpet_readl(HPET_COUNTER
);
140 h
= hpet_readl(HPET_COUNTER
+4);
141 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
143 for (i
= 0; i
< timers
; i
++) {
144 l
= hpet_readl(HPET_Tn_CFG(i
));
145 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
146 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148 l
= hpet_readl(HPET_Tn_CMP(i
));
149 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
150 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152 l
= hpet_readl(HPET_Tn_ROUTE(i
));
153 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
154 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
159 #define hpet_print_config() \
162 _hpet_print_config(__FUNCTION__, __LINE__); \
166 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167 * timer 0 and timer 1 in case of RTC emulation.
171 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
173 static void hpet_reserve_platform_timers(unsigned int id
)
175 struct hpet __iomem
*hpet
= hpet_virt_address
;
176 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
177 unsigned int nrtimers
, i
;
180 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
182 memset(&hd
, 0, sizeof(hd
));
183 hd
.hd_phys_address
= hpet_address
;
184 hd
.hd_address
= hpet
;
185 hd
.hd_nirqs
= nrtimers
;
186 hpet_reserve_timer(&hd
, 0);
188 #ifdef CONFIG_HPET_EMULATE_RTC
189 hpet_reserve_timer(&hd
, 1);
193 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194 * is wrong for i8259!) not the output IRQ. Many BIOS writers
195 * don't bother configuring *any* comparator interrupts.
197 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
198 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
200 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
201 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
202 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
205 hpet_reserve_msi_timers(&hd
);
211 static void hpet_reserve_platform_timers(unsigned int id
) { }
217 static unsigned long hpet_period
;
219 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
220 struct clock_event_device
*evt
);
221 static int hpet_legacy_next_event(unsigned long delta
,
222 struct clock_event_device
*evt
);
225 * The hpet clock event device
227 static struct clock_event_device hpet_clockevent
= {
229 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
230 .set_mode
= hpet_legacy_set_mode
,
231 .set_next_event
= hpet_legacy_next_event
,
237 static void hpet_stop_counter(void)
239 unsigned long cfg
= hpet_readl(HPET_CFG
);
240 cfg
&= ~HPET_CFG_ENABLE
;
241 hpet_writel(cfg
, HPET_CFG
);
244 static void hpet_reset_counter(void)
246 hpet_writel(0, HPET_COUNTER
);
247 hpet_writel(0, HPET_COUNTER
+ 4);
250 static void hpet_start_counter(void)
252 unsigned int cfg
= hpet_readl(HPET_CFG
);
253 cfg
|= HPET_CFG_ENABLE
;
254 hpet_writel(cfg
, HPET_CFG
);
257 static void hpet_restart_counter(void)
260 hpet_reset_counter();
261 hpet_start_counter();
264 static void hpet_resume_device(void)
269 static void hpet_resume_counter(struct clocksource
*cs
)
271 hpet_resume_device();
272 hpet_restart_counter();
275 static void hpet_enable_legacy_int(void)
277 unsigned int cfg
= hpet_readl(HPET_CFG
);
279 cfg
|= HPET_CFG_LEGACY
;
280 hpet_writel(cfg
, HPET_CFG
);
281 hpet_legacy_int_enabled
= 1;
284 static void hpet_legacy_clockevent_register(void)
286 /* Start HPET legacy interrupts */
287 hpet_enable_legacy_int();
290 * The mult factor is defined as (include/linux/clockchips.h)
291 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292 * hpet_period is in units of femtoseconds (per cycle), so
293 * mult/2^shift = cyc/ns = 10^6/hpet_period
294 * mult = (10^6 * 2^shift)/hpet_period
295 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
297 hpet_clockevent
.mult
= div_sc((unsigned long) FSEC_PER_NSEC
,
298 hpet_period
, hpet_clockevent
.shift
);
299 /* Calculate the min / max delta */
300 hpet_clockevent
.max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF,
302 /* 5 usec minimum reprogramming delta. */
303 hpet_clockevent
.min_delta_ns
= 5000;
306 * Start hpet with the boot cpu mask and make it
307 * global after the IO_APIC has been initialized.
309 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
310 clockevents_register_device(&hpet_clockevent
);
311 global_clock_event
= &hpet_clockevent
;
312 printk(KERN_DEBUG
"hpet clockevent registered\n");
315 static int hpet_setup_msi_irq(unsigned int irq
);
317 static void hpet_set_mode(enum clock_event_mode mode
,
318 struct clock_event_device
*evt
, int timer
)
320 unsigned int cfg
, cmp
, now
;
324 case CLOCK_EVT_MODE_PERIODIC
:
326 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
327 delta
>>= evt
->shift
;
328 now
= hpet_readl(HPET_COUNTER
);
329 cmp
= now
+ (unsigned int) delta
;
330 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
331 /* Make sure we use edge triggered interrupts */
332 cfg
&= ~HPET_TN_LEVEL
;
333 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
334 HPET_TN_SETVAL
| HPET_TN_32BIT
;
335 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
336 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
339 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341 * bit is automatically cleared after the first write.
342 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343 * Publication # 24674)
345 hpet_writel((unsigned int) delta
, HPET_Tn_CMP(timer
));
346 hpet_start_counter();
350 case CLOCK_EVT_MODE_ONESHOT
:
351 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
352 cfg
&= ~HPET_TN_PERIODIC
;
353 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
354 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
357 case CLOCK_EVT_MODE_UNUSED
:
358 case CLOCK_EVT_MODE_SHUTDOWN
:
359 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
360 cfg
&= ~HPET_TN_ENABLE
;
361 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
364 case CLOCK_EVT_MODE_RESUME
:
366 hpet_enable_legacy_int();
368 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
369 hpet_setup_msi_irq(hdev
->irq
);
370 disable_irq(hdev
->irq
);
371 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
372 enable_irq(hdev
->irq
);
379 static int hpet_next_event(unsigned long delta
,
380 struct clock_event_device
*evt
, int timer
)
384 cnt
= hpet_readl(HPET_COUNTER
);
386 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
389 * We need to read back the CMP register on certain HPET
390 * implementations (ATI chipsets) which seem to delay the
391 * transfer of the compare register into the internal compare
392 * logic. With small deltas this might actually be too late as
393 * the counter could already be higher than the compare value
394 * at that point and we would wait for the next hpet interrupt
395 * forever. We found out that reading the CMP register back
396 * forces the transfer so we can rely on the comparison with
397 * the counter register below. If the read back from the
398 * compare register does not match the value we programmed
399 * then we might have a real hardware problem. We can not do
400 * much about it here, but at least alert the user/admin with
401 * a prominent warning.
403 * An erratum on some chipsets (ICH9,..), results in
404 * comparator read immediately following a write returning old
405 * value. Workaround for this is to read this value second
406 * time, when first read returns old value.
408 * In fact the write to the comparator register is delayed up
409 * to two HPET cycles so the workaround we tried to restrict
410 * the readback to those known to be borked ATI chipsets
411 * failed miserably. So we give up on optimizations forever
412 * and penalize all HPET incarnations unconditionally.
414 if (unlikely((u32
)hpet_readl(HPET_Tn_CMP(timer
)) != cnt
)) {
415 if (hpet_readl(HPET_Tn_CMP(timer
)) != cnt
)
416 printk_once(KERN_WARNING
417 "hpet: compare register read back failed.\n");
420 return (s32
)(hpet_readl(HPET_COUNTER
) - cnt
) >= 0 ? -ETIME
: 0;
423 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
424 struct clock_event_device
*evt
)
426 hpet_set_mode(mode
, evt
, 0);
429 static int hpet_legacy_next_event(unsigned long delta
,
430 struct clock_event_device
*evt
)
432 return hpet_next_event(delta
, evt
, 0);
438 #ifdef CONFIG_PCI_MSI
440 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
441 static struct hpet_dev
*hpet_devs
;
443 void hpet_msi_unmask(unsigned int irq
)
445 struct hpet_dev
*hdev
= get_irq_data(irq
);
449 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
451 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
454 void hpet_msi_mask(unsigned int irq
)
457 struct hpet_dev
*hdev
= get_irq_data(irq
);
460 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
462 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
465 void hpet_msi_write(unsigned int irq
, struct msi_msg
*msg
)
467 struct hpet_dev
*hdev
= get_irq_data(irq
);
469 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
470 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
473 void hpet_msi_read(unsigned int irq
, struct msi_msg
*msg
)
475 struct hpet_dev
*hdev
= get_irq_data(irq
);
477 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
478 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
482 static void hpet_msi_set_mode(enum clock_event_mode mode
,
483 struct clock_event_device
*evt
)
485 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
486 hpet_set_mode(mode
, evt
, hdev
->num
);
489 static int hpet_msi_next_event(unsigned long delta
,
490 struct clock_event_device
*evt
)
492 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
493 return hpet_next_event(delta
, evt
, hdev
->num
);
496 static int hpet_setup_msi_irq(unsigned int irq
)
498 if (arch_setup_hpet_msi(irq
, hpet_blockid
)) {
505 static int hpet_assign_irq(struct hpet_dev
*dev
)
509 irq
= create_irq_nr(0, -1);
513 set_irq_data(irq
, dev
);
515 if (hpet_setup_msi_irq(irq
))
522 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
524 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
525 struct clock_event_device
*hevt
= &dev
->evt
;
527 if (!hevt
->event_handler
) {
528 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
533 hevt
->event_handler(hevt
);
537 static int hpet_setup_irq(struct hpet_dev
*dev
)
540 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
541 IRQF_TIMER
| IRQF_DISABLED
| IRQF_NOBALANCING
,
545 disable_irq(dev
->irq
);
546 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
547 enable_irq(dev
->irq
);
549 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
550 dev
->name
, dev
->irq
);
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
558 struct clock_event_device
*evt
= &hdev
->evt
;
561 WARN_ON(cpu
!= smp_processor_id());
562 if (!(hdev
->flags
& HPET_DEV_VALID
))
565 if (hpet_setup_msi_irq(hdev
->irq
))
569 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
570 evt
->name
= hdev
->name
;
571 hpet_setup_irq(hdev
);
572 evt
->irq
= hdev
->irq
;
575 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
576 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
577 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
579 evt
->set_mode
= hpet_msi_set_mode
;
580 evt
->set_next_event
= hpet_msi_next_event
;
584 * The period is a femto seconds value. We need to calculate the
585 * scaled math multiplication factor for nanosecond to hpet tick
588 hpet_freq
= FSEC_PER_SEC
;
589 do_div(hpet_freq
, hpet_period
);
590 evt
->mult
= div_sc((unsigned long) hpet_freq
,
591 NSEC_PER_SEC
, evt
->shift
);
592 /* Calculate the max delta */
593 evt
->max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF, evt
);
594 /* 5 usec minimum reprogramming delta. */
595 evt
->min_delta_ns
= 5000;
597 evt
->cpumask
= cpumask_of(hdev
->cpu
);
598 clockevents_register_device(evt
);
602 /* Reserve at least one timer for userspace (/dev/hpet) */
603 #define RESERVE_TIMERS 1
605 #define RESERVE_TIMERS 0
608 static void hpet_msi_capability_lookup(unsigned int start_timer
)
611 unsigned int num_timers
;
612 unsigned int num_timers_used
= 0;
615 if (hpet_msi_disable
)
618 if (boot_cpu_has(X86_FEATURE_ARAT
))
620 id
= hpet_readl(HPET_ID
);
622 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
623 num_timers
++; /* Value read out starts from 0 */
626 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
630 hpet_num_timers
= num_timers
;
632 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
633 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
634 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
636 /* Only consider HPET timer with MSI support */
637 if (!(cfg
& HPET_TN_FSB_CAP
))
641 if (cfg
& HPET_TN_PERIODIC_CAP
)
642 hdev
->flags
|= HPET_DEV_PERI_CAP
;
645 sprintf(hdev
->name
, "hpet%d", i
);
646 if (hpet_assign_irq(hdev
))
649 hdev
->flags
|= HPET_DEV_FSB_CAP
;
650 hdev
->flags
|= HPET_DEV_VALID
;
652 if (num_timers_used
== num_possible_cpus())
656 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
657 num_timers
, num_timers_used
);
661 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
668 for (i
= 0; i
< hpet_num_timers
; i
++) {
669 struct hpet_dev
*hdev
= &hpet_devs
[i
];
671 if (!(hdev
->flags
& HPET_DEV_VALID
))
674 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
675 hpet_reserve_timer(hd
, hdev
->num
);
680 static struct hpet_dev
*hpet_get_unused_timer(void)
687 for (i
= 0; i
< hpet_num_timers
; i
++) {
688 struct hpet_dev
*hdev
= &hpet_devs
[i
];
690 if (!(hdev
->flags
& HPET_DEV_VALID
))
692 if (test_and_set_bit(HPET_DEV_USED_BIT
,
693 (unsigned long *)&hdev
->flags
))
700 struct hpet_work_struct
{
701 struct delayed_work work
;
702 struct completion complete
;
705 static void hpet_work(struct work_struct
*w
)
707 struct hpet_dev
*hdev
;
708 int cpu
= smp_processor_id();
709 struct hpet_work_struct
*hpet_work
;
711 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
713 hdev
= hpet_get_unused_timer();
715 init_one_hpet_msi_clockevent(hdev
, cpu
);
717 complete(&hpet_work
->complete
);
720 static int hpet_cpuhp_notify(struct notifier_block
*n
,
721 unsigned long action
, void *hcpu
)
723 unsigned long cpu
= (unsigned long)hcpu
;
724 struct hpet_work_struct work
;
725 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
727 switch (action
& 0xf) {
729 INIT_DELAYED_WORK_ON_STACK(&work
.work
, hpet_work
);
730 init_completion(&work
.complete
);
731 /* FIXME: add schedule_work_on() */
732 schedule_delayed_work_on(cpu
, &work
.work
, 0);
733 wait_for_completion(&work
.complete
);
734 destroy_timer_on_stack(&work
.work
.timer
);
738 free_irq(hdev
->irq
, hdev
);
739 hdev
->flags
&= ~HPET_DEV_USED
;
740 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
748 static int hpet_setup_msi_irq(unsigned int irq
)
752 static void hpet_msi_capability_lookup(unsigned int start_timer
)
758 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
764 static int hpet_cpuhp_notify(struct notifier_block
*n
,
765 unsigned long action
, void *hcpu
)
773 * Clock source related code
775 static cycle_t
read_hpet(struct clocksource
*cs
)
777 return (cycle_t
)hpet_readl(HPET_COUNTER
);
781 static cycle_t __vsyscall_fn
vread_hpet(void)
783 return readl((const void __iomem
*)fix_to_virt(VSYSCALL_HPET
) + 0xf0);
787 static struct clocksource clocksource_hpet
= {
792 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
793 .resume
= hpet_resume_counter
,
799 static int hpet_clocksource_register(void)
805 /* Start the counter */
806 hpet_restart_counter();
808 /* Verify whether hpet counter works */
809 t1
= hpet_readl(HPET_COUNTER
);
813 * We don't know the TSC frequency yet, but waiting for
814 * 200000 TSC cycles is safe:
821 } while ((now
- start
) < 200000UL);
823 if (t1
== hpet_readl(HPET_COUNTER
)) {
825 "HPET counter not counting. HPET disabled\n");
830 * The definition of mult is (include/linux/clocksource.h)
831 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
832 * so we first need to convert hpet_period to ns/cyc units:
833 * mult/2^shift = ns/cyc = hpet_period/10^6
834 * mult = (hpet_period * 2^shift)/10^6
835 * mult = (hpet_period << shift)/FSEC_PER_NSEC
838 /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
840 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
841 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
843 hpet_freq
= FSEC_PER_SEC
;
844 do_div(hpet_freq
, hpet_period
);
845 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
851 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
853 int __init
hpet_enable(void)
858 if (!is_hpet_capable())
864 * Read the period and check for a sane value:
866 hpet_period
= hpet_readl(HPET_PERIOD
);
869 * AMD SB700 based systems with spread spectrum enabled use a
870 * SMM based HPET emulation to provide proper frequency
871 * setting. The SMM code is initialized with the first HPET
872 * register access and takes some time to complete. During
873 * this time the config register reads 0xffffffff. We check
874 * for max. 1000 loops whether the config register reads a non
875 * 0xffffffff value to make sure that HPET is up and running
876 * before we go further. A counting loop is safe, as the HPET
877 * access takes thousands of CPU cycles. On non SB700 based
878 * machines this check is only done once and has no side
881 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
884 "HPET config register value = 0xFFFFFFFF. "
890 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
894 * Read the HPET ID register to retrieve the IRQ routing
895 * information and the number of channels
897 id
= hpet_readl(HPET_ID
);
900 #ifdef CONFIG_HPET_EMULATE_RTC
902 * The legacy routing mode needs at least two channels, tick timer
903 * and the rtc emulation channel.
905 if (!(id
& HPET_ID_NUMBER
))
909 if (hpet_clocksource_register())
912 if (id
& HPET_ID_LEGSUP
) {
913 hpet_legacy_clockevent_register();
919 hpet_clear_mapping();
925 * Needs to be late, as the reserve_timer code calls kalloc !
927 * Not a problem on i386 as hpet_enable is called from late_time_init,
928 * but on x86_64 it is necessary !
930 static __init
int hpet_late_init(void)
934 if (boot_hpet_disable
)
938 if (!force_hpet_address
)
941 hpet_address
= force_hpet_address
;
945 if (!hpet_virt_address
)
948 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
949 hpet_msi_capability_lookup(2);
951 hpet_msi_capability_lookup(0);
953 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
956 if (hpet_msi_disable
)
959 if (boot_cpu_has(X86_FEATURE_ARAT
))
962 for_each_online_cpu(cpu
) {
963 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
966 /* This notifier should be called after workqueue is ready */
967 hotcpu_notifier(hpet_cpuhp_notify
, -20);
971 fs_initcall(hpet_late_init
);
973 void hpet_disable(void)
975 if (is_hpet_capable() && hpet_virt_address
) {
976 unsigned int cfg
= hpet_readl(HPET_CFG
);
978 if (hpet_legacy_int_enabled
) {
979 cfg
&= ~HPET_CFG_LEGACY
;
980 hpet_legacy_int_enabled
= 0;
982 cfg
&= ~HPET_CFG_ENABLE
;
983 hpet_writel(cfg
, HPET_CFG
);
987 #ifdef CONFIG_HPET_EMULATE_RTC
989 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
990 * is enabled, we support RTC interrupt functionality in software.
991 * RTC has 3 kinds of interrupts:
992 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
994 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
995 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
996 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
997 * (1) and (2) above are implemented using polling at a frequency of
998 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
999 * overhead. (DEFAULT_RTC_INT_FREQ)
1000 * For (3), we use interrupts at 64Hz or user specified periodic
1001 * frequency, whichever is higher.
1003 #include <linux/mc146818rtc.h>
1004 #include <linux/rtc.h>
1005 #include <asm/rtc.h>
1007 #define DEFAULT_RTC_INT_FREQ 64
1008 #define DEFAULT_RTC_SHIFT 6
1009 #define RTC_NUM_INTS 1
1011 static unsigned long hpet_rtc_flags
;
1012 static int hpet_prev_update_sec
;
1013 static struct rtc_time hpet_alarm_time
;
1014 static unsigned long hpet_pie_count
;
1015 static u32 hpet_t1_cmp
;
1016 static u32 hpet_default_delta
;
1017 static u32 hpet_pie_delta
;
1018 static unsigned long hpet_pie_limit
;
1020 static rtc_irq_handler irq_handler
;
1023 * Check that the hpet counter c1 is ahead of the c2
1025 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1027 return (s32
)(c2
- c1
) < 0;
1031 * Registers a IRQ handler.
1033 int hpet_register_irq_handler(rtc_irq_handler handler
)
1035 if (!is_hpet_enabled())
1040 irq_handler
= handler
;
1044 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1047 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1050 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1052 if (!is_hpet_enabled())
1058 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1061 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1062 * is not supported by all HPET implementations for timer 1.
1064 * hpet_rtc_timer_init() is called when the rtc is initialized.
1066 int hpet_rtc_timer_init(void)
1068 unsigned int cfg
, cnt
, delta
;
1069 unsigned long flags
;
1071 if (!is_hpet_enabled())
1074 if (!hpet_default_delta
) {
1077 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1078 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1079 hpet_default_delta
= clc
;
1082 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1083 delta
= hpet_default_delta
;
1085 delta
= hpet_pie_delta
;
1087 local_irq_save(flags
);
1089 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1090 hpet_writel(cnt
, HPET_T1_CMP
);
1093 cfg
= hpet_readl(HPET_T1_CFG
);
1094 cfg
&= ~HPET_TN_PERIODIC
;
1095 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1096 hpet_writel(cfg
, HPET_T1_CFG
);
1098 local_irq_restore(flags
);
1102 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1105 * The functions below are called from rtc driver.
1106 * Return 0 if HPET is not being used.
1107 * Otherwise do the necessary changes and return 1.
1109 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1111 if (!is_hpet_enabled())
1114 hpet_rtc_flags
&= ~bit_mask
;
1117 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1119 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1121 unsigned long oldbits
= hpet_rtc_flags
;
1123 if (!is_hpet_enabled())
1126 hpet_rtc_flags
|= bit_mask
;
1128 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1129 hpet_prev_update_sec
= -1;
1132 hpet_rtc_timer_init();
1136 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1138 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1141 if (!is_hpet_enabled())
1144 hpet_alarm_time
.tm_hour
= hrs
;
1145 hpet_alarm_time
.tm_min
= min
;
1146 hpet_alarm_time
.tm_sec
= sec
;
1150 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1152 int hpet_set_periodic_freq(unsigned long freq
)
1156 if (!is_hpet_enabled())
1159 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1160 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1162 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1164 clc
>>= hpet_clockevent
.shift
;
1165 hpet_pie_delta
= clc
;
1170 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1172 int hpet_rtc_dropped_irq(void)
1174 return is_hpet_enabled();
1176 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1178 static void hpet_rtc_timer_reinit(void)
1180 unsigned int cfg
, delta
;
1183 if (unlikely(!hpet_rtc_flags
)) {
1184 cfg
= hpet_readl(HPET_T1_CFG
);
1185 cfg
&= ~HPET_TN_ENABLE
;
1186 hpet_writel(cfg
, HPET_T1_CFG
);
1190 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1191 delta
= hpet_default_delta
;
1193 delta
= hpet_pie_delta
;
1196 * Increment the comparator value until we are ahead of the
1200 hpet_t1_cmp
+= delta
;
1201 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1203 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1206 if (hpet_rtc_flags
& RTC_PIE
)
1207 hpet_pie_count
+= lost_ints
;
1208 if (printk_ratelimit())
1209 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1214 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1216 struct rtc_time curr_time
;
1217 unsigned long rtc_int_flag
= 0;
1219 hpet_rtc_timer_reinit();
1220 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1222 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1223 get_rtc_time(&curr_time
);
1225 if (hpet_rtc_flags
& RTC_UIE
&&
1226 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1227 if (hpet_prev_update_sec
>= 0)
1228 rtc_int_flag
= RTC_UF
;
1229 hpet_prev_update_sec
= curr_time
.tm_sec
;
1232 if (hpet_rtc_flags
& RTC_PIE
&&
1233 ++hpet_pie_count
>= hpet_pie_limit
) {
1234 rtc_int_flag
|= RTC_PF
;
1238 if (hpet_rtc_flags
& RTC_AIE
&&
1239 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1240 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1241 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1242 rtc_int_flag
|= RTC_AF
;
1245 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1247 irq_handler(rtc_int_flag
, dev_id
);
1251 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);