i2c-mpc: do not allow interruptions when waiting for I2C to complete
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / reiserfs / objectid.c
blobea0cf8c28a9965a20ce35602fc6dd36919edbd00
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/string.h>
6 #include <linux/random.h>
7 #include <linux/time.h>
8 #include <linux/reiserfs_fs.h>
9 #include <linux/reiserfs_fs_sb.h>
11 // find where objectid map starts
12 #define objectid_map(s,rs) (old_format_only (s) ? \
13 (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
14 (__le32 *)((rs) + 1))
16 #ifdef CONFIG_REISERFS_CHECK
18 static void check_objectid_map(struct super_block *s, __le32 * map)
20 if (le32_to_cpu(map[0]) != 1)
21 reiserfs_panic(s,
22 "vs-15010: check_objectid_map: map corrupted: %lx",
23 (long unsigned int)le32_to_cpu(map[0]));
25 // FIXME: add something else here
28 #else
29 static void check_objectid_map(struct super_block *s, __le32 * map)
32 #endif
34 /* When we allocate objectids we allocate the first unused objectid.
35 Each sequence of objectids in use (the odd sequences) is followed
36 by a sequence of objectids not in use (the even sequences). We
37 only need to record the last objectid in each of these sequences
38 (both the odd and even sequences) in order to fully define the
39 boundaries of the sequences. A consequence of allocating the first
40 objectid not in use is that under most conditions this scheme is
41 extremely compact. The exception is immediately after a sequence
42 of operations which deletes a large number of objects of
43 non-sequential objectids, and even then it will become compact
44 again as soon as more objects are created. Note that many
45 interesting optimizations of layout could result from complicating
46 objectid assignment, but we have deferred making them for now. */
48 /* get unique object identifier */
49 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
51 struct super_block *s = th->t_super;
52 struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
53 __le32 *map = objectid_map(s, rs);
54 __u32 unused_objectid;
56 BUG_ON(!th->t_trans_id);
58 check_objectid_map(s, map);
60 reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
61 /* comment needed -Hans */
62 unused_objectid = le32_to_cpu(map[1]);
63 if (unused_objectid == U32_MAX) {
64 reiserfs_warning(s, "%s: no more object ids", __func__);
65 reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
66 return 0;
69 /* This incrementation allocates the first unused objectid. That
70 is to say, the first entry on the objectid map is the first
71 unused objectid, and by incrementing it we use it. See below
72 where we check to see if we eliminated a sequence of unused
73 objectids.... */
74 map[1] = cpu_to_le32(unused_objectid + 1);
76 /* Now we check to see if we eliminated the last remaining member of
77 the first even sequence (and can eliminate the sequence by
78 eliminating its last objectid from oids), and can collapse the
79 first two odd sequences into one sequence. If so, then the net
80 result is to eliminate a pair of objectids from oids. We do this
81 by shifting the entire map to the left. */
82 if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
83 memmove(map + 1, map + 3,
84 (sb_oid_cursize(rs) - 3) * sizeof(__u32));
85 set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
88 journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
89 return unused_objectid;
92 /* makes object identifier unused */
93 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
94 __u32 objectid_to_release)
96 struct super_block *s = th->t_super;
97 struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
98 __le32 *map = objectid_map(s, rs);
99 int i = 0;
101 BUG_ON(!th->t_trans_id);
102 //return;
103 check_objectid_map(s, map);
105 reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
106 journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s));
108 /* start at the beginning of the objectid map (i = 0) and go to
109 the end of it (i = disk_sb->s_oid_cursize). Linear search is
110 what we use, though it is possible that binary search would be
111 more efficient after performing lots of deletions (which is
112 when oids is large.) We only check even i's. */
113 while (i < sb_oid_cursize(rs)) {
114 if (objectid_to_release == le32_to_cpu(map[i])) {
115 /* This incrementation unallocates the objectid. */
116 //map[i]++;
117 le32_add_cpu(&map[i], 1);
119 /* Did we unallocate the last member of an odd sequence, and can shrink oids? */
120 if (map[i] == map[i + 1]) {
121 /* shrink objectid map */
122 memmove(map + i, map + i + 2,
123 (sb_oid_cursize(rs) - i -
124 2) * sizeof(__u32));
125 //disk_sb->s_oid_cursize -= 2;
126 set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
128 RFALSE(sb_oid_cursize(rs) < 2 ||
129 sb_oid_cursize(rs) > sb_oid_maxsize(rs),
130 "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
131 sb_oid_cursize(rs), sb_oid_maxsize(rs));
133 return;
136 if (objectid_to_release > le32_to_cpu(map[i]) &&
137 objectid_to_release < le32_to_cpu(map[i + 1])) {
138 /* size of objectid map is not changed */
139 if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
140 //objectid_map[i+1]--;
141 le32_add_cpu(&map[i + 1], -1);
142 return;
145 /* JDM comparing two little-endian values for equality -- safe */
146 if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
147 /* objectid map must be expanded, but there is no space */
148 PROC_INFO_INC(s, leaked_oid);
149 return;
152 /* expand the objectid map */
153 memmove(map + i + 3, map + i + 1,
154 (sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
155 map[i + 1] = cpu_to_le32(objectid_to_release);
156 map[i + 2] = cpu_to_le32(objectid_to_release + 1);
157 set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
158 return;
160 i += 2;
163 reiserfs_warning(s,
164 "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)",
165 (long unsigned)objectid_to_release);
168 int reiserfs_convert_objectid_map_v1(struct super_block *s)
170 struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
171 int cur_size = sb_oid_cursize(disk_sb);
172 int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
173 int old_max = sb_oid_maxsize(disk_sb);
174 struct reiserfs_super_block_v1 *disk_sb_v1;
175 __le32 *objectid_map, *new_objectid_map;
176 int i;
178 disk_sb_v1 =
179 (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
180 objectid_map = (__le32 *) (disk_sb_v1 + 1);
181 new_objectid_map = (__le32 *) (disk_sb + 1);
183 if (cur_size > new_size) {
184 /* mark everyone used that was listed as free at the end of the objectid
185 ** map
187 objectid_map[new_size - 1] = objectid_map[cur_size - 1];
188 set_sb_oid_cursize(disk_sb, new_size);
190 /* move the smaller objectid map past the end of the new super */
191 for (i = new_size - 1; i >= 0; i--) {
192 objectid_map[i + (old_max - new_size)] = objectid_map[i];
195 /* set the max size so we don't overflow later */
196 set_sb_oid_maxsize(disk_sb, new_size);
198 /* Zero out label and generate random UUID */
199 memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
200 generate_random_uuid(disk_sb->s_uuid);
202 /* finally, zero out the unused chunk of the new super */
203 memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
204 return 0;